SYNTHESIS AND BIOLOGICAL ACTIVITIES OF O...

40
SYNTHESIS AND BIOLOGICAL ACTIVITIES OF O- AND C-PRENYLATED FLAVONOID DERIVATIVES NUR EDELIN BINTI MOHD FAUZI A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Chemistry) Faculty of Science Universiti Teknologi Malaysia MARCH 2017

Transcript of SYNTHESIS AND BIOLOGICAL ACTIVITIES OF O...

SYNTHESIS AND BIOLOGICAL ACTIVITIES OF O- AND C-PRENYLATED

FLAVONOID DERIVATIVES

NUR EDELIN BINTI MOHD FAUZI

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Science (Chemistry)

Faculty of Science

Universiti Teknologi Malaysia

MARCH 2017

iii

With lots of love,

Parents and Grandparents

The siblings,

Siti Umairah

Fairuz Wirdani

Muhammad Abbas

Muhammad Umar

Wonderful husband,

Muhammad Shahrul bin Po’at

For always standing by my side through ups and downs

iv

ACKNOWLEDGEMENTS

With the name of Allah the Most Gracious and Merciful. All praise and

gratitude be given to Him for giving me great strength, patience and courage to finish

what I choose to start.

First of all, I would like to express my deepest appreciation to Assoc. Prof.

Dr. Farediah Ahmad for her supervision, advice, and guidance from the beginning

until now. She will always be the best teacher ever for not giving up on me and

always supporting me.

To my fellow postgraduate colleagues, Athirah, Nuzul, Mala, Saidu, and

others (members of MPKO 1 and MPKO 2), for the valuable advice in science

discussion, commentary and friendship, thank you a lot.

It is a pleasure to pay tribute also to the data collection collaborators. To Mr.

Amin Mr. Azmi, Mr. Rashidi and Mr. Subri, I would like to thank for their assistance

in obtaining the data of all the compounds.

Last but not least, for all whose involved in helping to accomplish this

journey, all of you have been an auxiliary through all the time. Thank you.

v

ABSTRACT

Chalcones scaffolds have attracted many researchers to investigate their

synthetic routes, potential biological activities and their roles as intermediates for

naturally occurring flavanoid skeletons. This study focused on the synthesis of

chalcones bearing the O-, C-prenyl and chromane as substituents. The target

compounds were purified by chromatographic methods and the structures of these

compounds were determined by using infrared (IR), nuclear magnetic resonance

(NMR) and mass spectrometry (MS) spectroscopies. The prenylated precursors were

synthesized starting from 2,4-dihydroxyacetophenone (65) and 2,4,6-

trihydroxyacetophenone (93). Prenylation of 2,4-dihydroxyacetophenone using

prenyl bromide has been successfully accomplished to produce 2-hydroxy-4-O-

prenylacetophenone (101). A reaction of 2,4,6-trihydroxyacetophenone with prenyl

bromide in the presence of base resulted in a mixture and the chromatographic

purification gave 2,4,6-trihydroxy-3-C-prenylacetophenone (132) and 2,4-dihydroxy-

5,6-chromanacetophenone (133). Compound (133) was prenylated into 2-hydroxy-4-

O-prenyl-5,6-chromanacetophenone (136). C-prenylated acetophenone (132) was

then converted to 2-hydroxy-3-C-prenyl-4,6-dimethoxyacetophenone (137) using

methyl iodide in the presence of potassium carbonate. Claisen-Schmidt condensation

of O- and C-prenylated acetophenone with individual benzaldehydes, namely 4-

(N,N-dimethyl)aminobenzaldehyde (61), 2-methoxybenzaldehyde (126), 4-

isopropylbenzaldehyde (127), 3,4-dimethoxybenzaldehyde (128) and 4-

chlorobenzaldehyde (129) resulted in the formation of two series of chalcones, each

consisting of five chalcones. These two series differ in the existence of prenyl

substituents on ring A of the chalcone structure. Five chalcones bear O-prenyl and

five others bear C-prenyl substituent with both series having the same substituents on

ring B consisting of 4-(N,N-dimethyl)amino, 2-methoxy, 4-isopropyl, 3,4-dimethoxy

and 4-chloro substituents. Chromanochalcone (152) was the sole compound

successfully synthesized with the aid of prenylation of free hydroxyl group of the

chromanacetophenone (133) precursor. All the synthetic compounds were screened

for antibacterial activity by the micro dilution method against two bacteria strains,

namely Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram

negative (Pseudomonas aeruginosa and Escherichia coli). The compounds were also

tested for 15-LOX assay using Lipoxygenase inhibitory screening assay kit (Item No.

760700). All the synthetic compounds did not show activity against the bacteria

tested, while compound (138) and (145) showed moderate lypoxygenase activity at

100 M concentration with 53.9% and 50.9% inhibition, respectively.

vi

ABSTRAK

Rangka kalkon telah menarik ramai penyelidik untuk mengkaji laluan

sintesis, keupayaan aktiviti biologi dan peranannya sebagai bahan perantara untuk

rangka flavanoid semulajadi. Kajian ini memfokuskan kepada sintesis kalkon yang

mempunyai penukarganti O-, C-prenil dan kromano. Sebatian sasaran ditulenkan

dengan kaedah kromatografi dan struktur semua sebatian ditentukan dengan

menggunakan kaedah spektroskopi inframerah (IM), resonans magnetik nuklear

(RMN) dan spektrometri jisim (SJ). Prekursor terprenil telah disintesiskan bermula

daripada 2,4-dihidroksiasetofenon (65) dan 2,4,6-trihidroksiasetofenon (93).

Pemprenilan 2,4-dihidroksiasetofenon menggunakan prenil bromida telah

dilaksanakan dengan jayanya bagi menghasilkan 2-hidroksi-4-O-prenilasetofenon

(101). Tindak balas 2,4,6-trihidroksiasetofenon dengan prenil bromida dengan

kehadiran bes telah menghasilkan satu campuran, dan penulenan kromatografi

memberikan 2,4,6-trihidroksi-3-C-prenilasetofenon (132) dan 2,4-dihidroksi-5,6-

kromanasetofenon (133). Sebatian (133) telah diprenilkan kepada 2-hidroksi-4-O-

prenil-5,6-kromanasetofenon (136). C-prenilasetofenon (132) kemudian diubah

kepada 2-hidroksi-3-C-prenil-4,6-dimetoksiasetofenon (137) menggunakan metil

iodida dengan kehadiran kalium karbonat. Kondensasi Claisen-Schmidt O- dan C-

prenilasetofenon dengan benzaldehid individu, iaitu 4-(N,N-

dimetil)aminobenzaldehid (61), 2-metoksibenzaldehid (126), 4-isopropilbenzaldehid

(127), 3,4-dimetoksibenzaldehid (128) dan 4-klorobenzaldehid (129) telah

menghasilkan dua siri kalkon, tiap-tiap satu terdiri daripada lima kalkon. Dua siri ini

berbeza dari segi kewujudan prenil pada gelang A struktur kalkon. Lima kalkon

mempunyai O-prenil dan lima kalkon yang lain mempunyai penukar ganti C-prenil

dengan kedua-dua siri mempunyai penukar ganti yang sama pada gelang B yang

terdiri daripada penukar ganti 4-(N,N-dimetil)amino, 2-metoksi, 4-isopropil, 3,4-

dimetoksi and 4-kloro. Kromanokalkon (152) adalah sebatian tunggal yang berjaya

disintesis dengan bantuan pemprenilan kumpulan hidroksil bebas pada prekursor

kromanasetofenon (133). Semua sebatian sintetik telah disaring untuk aktiviti

antibakteria menggunakan kaedah pencairan mikro terhadap dua jujukan bakteria

iaitu Gram positif (Staphylococcus aureus dan Bacillus subtilis) dan Gram negatif

(Pseudomonas aeruginosa dan Escherichia coli). Sebatian juga telah diuji untuk

cerakin 15-LOX menggunakan kit cerakin saringan perencatan lipoksigenase (Item

No. 760700). Semua sebatian sintetik tidak menunjukkan aktiviti terhadap bakteria

yang diuji, manakala sebatian (138) dan (145) menunjukkan aktiviti lipoksigenase

sederhana pada kepekatan 100 M dengan masing-masing mempunyai nilai

perencatan sebanyak 53.9% dan 50.9%.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGMENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF SCHEMES xiii

LIST OF FIGURES xvi

LIST OF ABBREVIATIONS xvii

LIST OF APPENDICES

xix

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Problem Statement 2

1.3 Objectives of Study 3

1.4 Scope of Study 3

2 LITERATURE REVIEW 5

2.1 Flavonoids 5

2.2 Chalcones 5

2.3 Biosynthesis of Chalcones 6

2.4 Prenylated Chalcones 9

viii

2.5 Chromanochalcones and Pyranochalcones 11

2.6 Chemical Synthesis of Chalcones

Derivatives

13

2.6.1 KOH and NaOH as Catalyst 13

2.6.2 BF3.Et2O and K2CO3 as Catalyst 19

2.6.3 DBU, Pyridine or Piperidine as

Catalyst

21

2.6.4 Suzuki-Miyaura Reaction 24

2.6.5 Heterogenous and Ecofriendly

Synthesis Methods

25

2.7 Biological Activities of Chalcones 26

3 RESULTS AND DISCUSSION 30

3.1 Retrosynthetic Analysis 30

3.2 Synthesis of Chalcone Intermediates 31

3.3 Prenylation of Acetophenone 31

3.3.1 Prenylation Using DBU as

Catalyst

32

3.3.2 Prenylation Using K2CO3 as

Catalyst

40

3.3.3

Prenylation of 2,4-dihydroxy-5,6-

chromanoacetophenone (133) by

Using DBU

42

3.4 Synthesis of Methylated Acetophenone 43

3.5

Synthesis of Series of Prenylated Chalcones 45

3.5.1 Synthesis of 2'-Hydroxy-4-(N,N-

dimethyl)amino-4'-O-

prenylchalcone (125)

46

3.5.2

Synthesis of 2'-Hydroxy-2-

methoxy-4'-O-prenylchalcone

(138)

48

3.5.3 Synthesis of 2'-Hydroxy-4-

isopropyl-4'-O-prenylchalcone

52

ix

(139)

3.5.4 Synthesis of 2'-Hydroxy-3,4-

dimethoxy-4'-O-prenylchalcone

(140)

54

3.5.5

Synthesis of 2'-Hydroxy-4-chloro-

4'-O-prenylchalcone (141) 55

3.6 SSynthesis of C-Prenylchalcone Derivatives 56

3.6.1 Synthesis of 2'-Hydroxy-4',6'-

dimethoxy-4-N,N-

dimethyl)amino-3'-C-

prenylchalcone (142)

57

3.6.2

Synthesis of 2'-Hydroxy-2,4',6'-

trimethoxy-3'-C-prenylchalcone

(143)

59

3.6.3

Synthesis of 2'-Hydroxy-4',6'-

dimethoxy-4-isopropyl-3'-C-

prenylchalcone (144)

60

3.6.4

Synthesis of 2'-Hydroxy-

3,4,4',6'-tetramethoxy-3'-C-

prenylchalcone (145)

62

3.6.5

Synthesis of 2'-Hydroxy-4',6'-

dimethoxy-4-chloro-3'-C-

prenylchalcone (146)

63

3.7

Comparison of Yields for the Synthesized

of O-and C-Prenylated Chalcones

66

3.8

Synthesis of 2'-Hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenyl-5,6-

chromanochalcone (152)

67

3.9 Alternative Method for Chalcone Synthesis 70

3.10 Antibacterial Activity 74

3.11 Lipoxygenase Activity 74

4 EXPERIMENTAL 76

4.1 General Introduction 76

4.2

Synthesis of Prenylated Acetophenone

77

x

Using DBU as Catalyst

4.2.1

Prenylated Precursor from 2,4-

Dihydroxyacetophenone (65)

77

4.2.2

Prenylated Precursor From 2,4,6-

Trihydroxyacetophenone (93)

78

4.3 Synthesis of Prenylated Acetophenone

Using K2CO3 as Catalyst

80

4.3.1 Prenylated Precursor from 2,4-

Dihydroxyacetophenone (65)

80

4.3.2

Prenylated Precursor from 2,4,6-

Trihydroxyacetophenone (93)

80

4.4

Synthesis of Chromanoacetophenone (133)

by Using DBU and K2CO3

82

4.5

Prenylation of 2,4-dihydroxy-5,6-

chromanacetophenone (133) by Using DBU

83

4.6

Synthesis of Methylated C-

prenylacetophenone

83

4.7

General Procedure for Synthesis of O-

Prenylated Chalcones Derivatives

84

4.8 General Procedure for Synthesis of C-

Prenylated Chalcones Derivatives

87

4.9

Synthesis of 2'-Hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenyl-5,6-

chromanochalcone (152)

90

4.10 Attempted Synthesis of Chromanochalcone

via Grinding Method

91

4.11 Attempted Synthesis of Hydroxylated

Chalcone Using Piperidine

92

4.12

Attempted Synthesis Hydroxylated C-

Prenylated Chalcones using BF3.OEt2

92

4.13 Antibacterial activity 93

4.13.1 Chemicals and Microorganisms 93

4.13.2

Minimum Inhibitory

Concentration (MIC) and

Minimum Bactericidal

94

xi

Concentration (MBC)

4.14 Lipoxygenase Activity 95

4.14.1 Chemicals and Instrumentation 95

4.14.2 15-Lipoxygenase Inhibitory

Activity

95

5 CONCLUSION AND RECOMMENDATIONS 97

5.1 Conclusion 97

5.2 Recommendations 98

REFERENCES 99

APPENDICES 113

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Chalcones with C-prenyl substituents 28

3.1 Data of 1H NMR and

13C NMR spectra for compound

(101) and (131)

35

3.2 Stoichiometric equivalence of reagents for synthesis of

prenylated compounds

41

3.3 NMR data tabulation for compound (137)

44

3.4 NMR (1H and

13C) data of compound (138)

49

3.5 NMR (1H and

13C) data of compound (139) 53

3.6 NMR (1H and

13C) data of compound (142) 58

3.7 1H NMR and

13C NMR spectrum of compounds (143-

146)

64

3.8 Yield and melting point of chalcones (125, 138-146) 66

3.9 13

C NMR and DEPT of compound (152) 69

3.10 15-Lipoxygenase Inhibition by chalcones

75

xiii

LIST OF SCHEMES

SCHEMES TITLE PAGE

2.1 Biosynthesis pathways of chalcones 7

2.2 Biosynthetic pathway of xanthohumol (9) in plants 9

2.3 Synthesis of chalcones (46) via Claisen-Schmidt

condensation

14

2.4 Synthesis of chalcone (49), O-prenylated (50) and O-

geranylated derivatives (51)

14

2.5 Synthesis of chalcone derivatives (57-59) 15

2.6 Synthesis of chalcones via Claisen-Schmidt

condensation using KOH in EtOH

16

2.7 Synthesis of geranylated chalcones 17

2.8 Synthesis of xanthohumol (9) 18

2.9 Formation of acylated chalcones (80) by means of

BF3.Et2O

19

2.10 Chelation and cyclization of C-prenylated chalcone 20

2.11 Prenylation of flavonoids using K2CO3 21

2.12 Chalcone synthesis via Julia-Kocienski olefination 22

2.13 DBU as catalyst for alkylation 22

2.14 Formation of acyl chromene (99) and

chromenochalcones (100)

23

2.15 Synthesis of chalcone using piperidine 24

2.16 Suzuki-Miyaura reaction for synthesis of chalcone 25

2.17 Synthesis of chalcones using NaOH under solvent free

condition

25

xiv

2.18 Synthesis of chalcones using NaOH-Al2O3 26

3.1 Retrosynthetic pathway of chalcone (125) 30

3.2 Prenylation of 2,4-dihydroxyacetophenone (65) 32

3.3 Prenylation of 2,4,6-trihydroxyacetophenone (93) 37

3.4 Mechanism of C-prenyl cyclization into chromane 38

3.5 Mechanism of prenylation using DBU as base catalyst 39

3.6 Prenylation using DBU with different stoichiometry of

reagents

40

3.7 Prenylation of 2,4-dihydroxyacetophenone (65) using

K2CO3

41

3.8 Prenylation of 2,4,6-trihydroxyacetophenone (93) using

K2CO3

41

3.9 Prenylation of 2,4-dihydroxy-5,6-chromanacetophenone

(133)

42

3.10 Methylation of compound (132) 43

3.11 Mechanism for the formation of chalcone (149) 46

3.12 Reaction for the formation of (125) 47

3.13 Synthesis of 2'-hydroxy-2-methoxy-4'-O-prenylchalcone

(138)

48

3.14 Mass fragmentation pattern of compound (138) 51

3.15 Synthesis of 2'-hydroxy-4-isopropyl-4'-O-

prenylchalcone (139)

52

3.16 Synthesis of 2'-hydroxy-3,4-dimethoxy-4'-O-

prenylchalcone (140)

54

3.17 Synthesis of 2'-hydroxy-4-chloro-4'-O-prenylchalcone

(141)

55

3.18 Synthesis of 2'-hydroxy-4',6'-dimethoxy-4-(N,N-

dimethyl)amino-3'-C-prenylchalcone (142)

57

3.19 Synthesis of 2'-hydroxy-2,4',6'-trimethoxy-3'-C-

prenylchalcone (143)

59

3.20 Synthesis of 2'-hydroxy-4',6'-dimethoxy-4-isopropyl-3'-

C-prenylchalcone (144)

60

xv

3.21 Mass fragmentation pattern of C-prenylated compound

(144)

61

3.22 Synthesis of 2'-hydroxy-3,4,4',6'-tetramethoxy-3'-C-

prenylchalcone (145)

62

3.23 Synthesis of 2'-hydroxy-4',6'-dimethoxy-4-chloro-3'-C-

prenylchalcone (146)

63

3.24 Cannizaro reaction on benzaldehyde 67

3.25 Retrosynthetic route of synthesis pathway for compound

(152)

68

3.26 Attempt of chalcone synthesis via grinding method 70

3.27 Attempt of chalcone synthesis using piperidine as base 71

3.28 Attempt of synthesis of C-prenylated chalcone using

BF3.Et2O

71

3.29 Proposed mechanism of prenyl cyclization to chromane

substituent

72

xvi

LIST OF FIGURES

FIGURES TITLE PAGE

2.1 Biosynthetic pathway for prenylated flavonoids 8

3.1 Comparison spectra of O-prenylated acetophenone

(101) and C-prenylated acetophenone (131)

34

3.2 Electron delocalization of phenoxide 2,4-

dihydroxyacetophenone (65)

36

3.3 Spectra of chromane acetophenone (133) (a) and

expected chalcone (b)

73

xvii

LIST OF ABBREVIATIONS

BF3-Et2O boron trifluoride etherate

13C carbon-13

CD3COCD3 deuterated acetone

CDCl3 deuterated chloroform

CHCl3 chloroform

d doublet

DBU 1,8-diazobicyclo [5.4.0] undec-7-ene

dd doublet of doublets

DEPT Distortionless Enhancement by Polarization Transfer

EIMS Electron Impact Mass Spectrometry

Et2O diethyl ether

EtOAc ethyl acetate

EtOH ethanol

1H proton

HCl hydrochloric acid

HMBC heteronuclear multiple bond correlation

HMQC heteronuclear multiple quantum coherence

Hz hertz

iNOS inducible nitric oxide synthase

IR infrared

IM inframerah

J coupling constant

K2CO3 potassium carbonate

KBr potassium bromide

KOH potassium hydroxide

lit. Literature

LOX Lipooxygenase

xviii

m/z mass to charge ratio

m multiplet

M molar

MBC minimum bactericidal concentration

Me2SO4 dimethyl sulphate

MeOH methanol

MgSO4 magnesium sulphate

MHz megahertz

MIC minimum inhibition concentration

MOM methoxylmethyl ether

m.p melting point

MS mass spectrometry

NaOH sodium hydroxide

NMR nuclear magnetic resonance

ppm parts per million

Rf retention factor

RMN resonans magnetik nuklear

SD standard deviation

s singlet

sept septet

SM spectrum jisim

t triplet

THP tetrahydropyranyl acetal

TLC thin layer chromatography

δ chemical shift

λ lambda

xix

LIST OF APPENDICES

APPENDIX TITLE PAGE

1 1H NMR spectrum of 2,4-O-diprenylacetophenone

(130)

114

2 IR spectrum of 2-hydroxy-4-O-prenylacetophenone

(101)

115

3 1H NMR spectrum of 2-hydroxy-4-O-

prenylacetophenone (101)

116

4 13

C NMR spectrum of 2-hydroxy-4-O-

prenylacetophenone (101)

117

5 1H NMR spectrum of 2,4-dihydroxy-C-

prenylacetophenone (131)

118

6 13

C NMR spectrum of 2,4-dihydroxy-3-C-

prenylacetophenone (131)

119

7 IR spectra of 2,4,6-trihydroxy-C-

prenylacetophenone (132)

120

8 1H NMR of 2,3,6-trihydroxy-C-prenylacetophenone

(132)

121

9 13

C NMR spectrum of 2,4,6-trihydoxy-C-

prenylacetophenone (132)

122

10 IR spectrum of 2,4-dihydroxy-5,6-

chromanoacetophenone (133)

123

11 1H NMR spectrum of 2,4-dihydroxy-5,6-

chromanoacetophenone (133)

124

12 1H NMR spectrum of 2,6-dihydroxy-4-O-

prenylacetophenone (134)

125

13 1H NMR spectrum of 2,6-dihydroxy-3-C-4-O-

diprenylacetophenone (135)

126

xx

14 1H NMR spectrum of 2-hydroxy-4-O-prenyl-5,6-

chromanacetophenone (136)

127

15 IR spectrum of 2-hydroxy-3-C-prenyl-4,6-

dimethoxyacetophenone (137)

128

16 1H NMR of 2-hydroxy-3-C-prenyl-4,6-

dimethoxyacetophenone (137)

129

17 13

C NMR spectrum of 2-hydroxy-3-C-prenyl-4,6-

dimethoxyacetophenone (137)

130

18 IR spectrum of 2'-hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenylchalcone (125)

131

19 1H NMR spectrum of 2'-hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenylchalcone (125)

132

20 13

C NMR spectrum of 2'-hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenylchalcone (125)

133

21 IR spectrum of 2'-hydroxy-2-methoxy-4'-O-

prenylchalcone (138)

134

22 1

H NMR spectrum of 2'-hydroxy-2-methoxy-4'-O-

prenylchalcone (138)

135

23 13

C NMR spectrum of 2'-hydroxy-2-methoxy-4'-O-

prenylchalcone (138)

136

24 HMQC spectrum of 2'-hydroxy-2-methoxy-4'-O-

prenylchalcone (138)

137

25 MS spectrum of 2'-hydroxy-2-methoxy-4'-O-

prenylchalcone (138)

138

26 IR spectrum of 2'-hydroxy-4-isopropyl-4'-O-

prenylchalcone (139)

139

27 1H NMR spectrum of 2'-hydroxy-4-isopropyl-4'-O-

prenylchalcone (139)

140

28 13

C NMR of 2'-hydroxy-4-isopropyl-4'-O-

prenylchalcone (139)

141

29 HMQC spectrum of 2'-Hydroxy-4-isopropyl-4'-O-

prenylchalcone (139)

142

30 IR spectrum of 2'-hydroxy-3,4-dimethoxy-4'-O-

prenylchalcone (140)

143

31 1H NMR spectrum of 2'-hydroxy-3,4-dimethoxy- 144

xxi

4'-O-prenylchalcone (140)

32 13

C NMR spectrum of 2'-hydroxy-3,4-dimethoxy-

4'-O-prenylchalcone (140)

145

33 DEPT spectrum of 2'-hydroxy-3,4-dimethoxy-4'-

O-prenylchalcone (140)

146

34 IR spectrum of 2'-hydroxy-4-chloro-4'-O-

prenylchalcone (141)

147

35 1H NMR spectrum of 2'-hydroxy-4-chloro-4'-O-

prenylchalcone (141)

148

36 13

C NMR spectrum of 2'-hydroxy-4-chloro-4'-O-

prenylchalcone (141)

149

37 IR spectrum of 2'-hydroxy-4',6'-dimethoxy-4-(N,N-

dimethyl)amino-3'-C-prenylchalcone (142)

150

38 1H NMR spectrum of 2'-hydroxy-4',6'-dimethoxy-

4-(N,N-dimethyl)amino-3'-C-prenylchalcone (142)

151

39 13

C NMR spectrum of 2'-hydroxy-4',6'-dimethoxy-

4-(N,N-dimethyl)amino-3'-C-prenylchalcone (142)

152

40 HMQC spectrum of 2'-Hydroxy-4',6'-dimethoxy-4-

(N,N-dimethyl)amino-3'-C-prenylchalcone (142)

153

41 IR spectrum of 2’-hydroxy-2,4’,6’-trimethoxy-3’-C-prenylchalcone (143)

154

42 1H NMR spectrum of 2'-hydroxy-2,4',6'-

trimethoxy-3'-C-prenylchalcone (143)

155

43 13

C NMR spectrum of 2'-hydroxy-2,4',6'-

trimethoxy-3'-C-prenylchalcone (143)

156

44 IR spectrum of 2'-hydroxy-4',6'-dimethoxy-4-

isopropyl-3'-C-prenylchalcone (144)

157

45 1H NMR spectrum of 2'-hydroxy-4',6'-dimethoxy-

4-isopropyl-3'-C-prenylchalcone (144)

158

46 13

C NMR spectrum of 2'-hydroxy-4',6'-dimethoxy-

4-isopropyl-3'-C-prenylchalcone (144)

159

47 HMQC spectrum of 2'-Hydroxy-4',6'-dimethoxy-4-

isopropyl-3'-C-prenylchalcone (144)

160

48 MS spectrum of 2'-hydroxy-4',6'-dimethoxy-4-

isopropyl-3'-C-prenylchalcone (144)

161

xxii

49 IR spectrum of 2'-hydroxy-3,4,4',6'-tetramethoxy-

3'-C-prenylchalcone (145)

162

50 1H NMR spectrum of 2'-hydroxy-3,4,4',6'-

tetramethoxy-3'-C-prenylchalcone (145)

163

51 13

C NMR spectrum of 2'-hydroxy-3,4,4',6'-

tetramethoxy-3'-C-prenylchalcone (145)

164

52 HMQC spectrum of 2'-hydroxy-3,4,4',6'-

tetramethoxy-3'-C-prenylchalcone (145)

165

53 IR spectrum of 2'-hydroxy-4',6'-dimethoxy-4-

chloro-3'-C-prenylchalcone (146)

166

54 1H NMR spectrum of 2'-hydroxy-4',6'-dimethoxy-

4-chloro-3'-C-prenylchalcone (146)

167

55 13

C NMR spectrum of 2'-hydroxy-4',6'-dimethoxy-

4-chloro-3'-C-prenylchalcone (146)

168

56 DEPT spectra of 2'-hydroxy-4',6'-dimethoxy-4-

chloro-3-C-prenylchalcone (146)

169

57 IR spectrum of 2'-hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenyl-5,6-

chromanochalcone (152)

170

58 1H NMR spectrum of 2'-hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenyl-5,6-

chromanochalcone (152)

171

59 13

C NMR spectrum of 2'-hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenyl-5',6'-

chromanochalcone (152)

172

60 DEPT spectra of 2'-hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenyl-5',6'-

chromanochalcone (152)

173

61 HMQC spectrum of 2'-hydroxy-4-(N,N-

dimethyl)amino-4'-O-prenyl-5',6'-

chromanochalcone (152)

174

62 1H NMR spectrum as a result of grinding method

175

63 1H NMR spectrum as a result of synthesized

chalcone using piperidine

176

xxiii

64 1H NMR spectrum as a result of synthesized

chalcone using BF3.Et2O

177

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Flavonoids are abundance group of polyphenolic substances which can be

extracted in most plants and sometimes presence as glycosides [1]. Multiple

combination of substituent such as hydroxyl, oxygen, methyl groups and sugars

attached to these structures create the various classes of flavonoids (1), flavonols (2),

flavanones (3), flavones (4), flavan-3-ols (5), anthocyanidins (6) and isoflavones (7).

Flavonoids have shown capability as potential antitumor, antineoplastics activities,

antimicrobial and antimalarial agents [1].

OO O

O O O

A

B O

C1'

6'

5'

8

7

65 4

3

2 2'

4'

3'

1

(1)O

OH

O

OH

O

OOHOH

(2) (3) (4)

(7)(6)(5)

Chalcone is the simplest flavonoid with a fifteen-carbon skeleton (C6-C3-C6)

(8) which possessed two phenyl rings connected by three carbon bridges [2]. The

synthesized chalcones were obtained via Claisen-Schmidt condensation with

2

association of cross aldol condensation of appropriate aldehydes and ketones,

catalysed by base or acid and enclosed by dehydration [3].

O

A

B6

1

4

1'

3

2

5

3'

6'

2'

5'

4'

(8)

Chalcone (8) are intermediates in the biosynthesis of flavonoids that

widespread in plants and with an array of bioactivities [2]. Derivatives of chalcone

are physiologically active compounds and become the substrates for the valuation of

various organic syntheses [2]. Lipophilic prenyl side-chain attached to a chalcone

moiety has been attracting the attention of the scientific community because of their

myriad biological activities [4] which include O-prenylation, C-prenylation and

chroman group [5]. Natural prenylated chalcones such as xanthohumol (9) exhibit

numerous pharmacological properties such as antibacterial [6], antitumor [7],

antihistaminic [8], antioxidant [9], and antiplasmodial activity [10].

HO OCH3

OH O

OH

(9)

1.2 Problem Statement

Owing to their simple structures and ease of preparation, chalcones

intermediates for the synthesis of large number of derivatives of flavonoids. Besides

prenylation, the pharmacological properties of chalcones also related to the presence,

number and position of hydroxyl and methoxyl groups in both A and B ring. Hence,

3

the synthesis of prenylated derivatives which include O-prenyl, C-prenyl, and

chromane chalcones bearing hydroxyl and methoxyl substituents is undertaken. The

previous mentioned structural moieties are expected to display significant biological

activities.

1.3 Objectives of Study

The objectives of this study are:

1. To synthesis, purify and elucidate the acetophenone derivatives with O-

prenyl, C-prenyl and chromane as the side chains.

2. To synthesis, purify, elucidate the series of O-prenyl, C-prenyl and

chromanochalcones.

3. To screen the antibacterial and anti-inflammatory activities (LOX) of the

synthesized chalcones.

1.4 Scope of Study

The initial reactions were carried out by synthesizing O-prenyl, C-

prenylacetophenone and chromanacetophenone from 2,4-dihydroxyacetophenone

and 2,4,6-trihydroxyacetophenone using prenyl bromide in the presence of either 1,8-

diazabicycloundec-7-ene (DBU) or K2CO3 as base without the use of protecting

group. Mixtures of compounds were purified by recrystallization techniques or silica

gel column chromatography (CC). Structures of O-prenyl, C-prenyl and

chromanacetophenone were determined using IR and NMR (1D and 2D).

Acetophenone derivatives were subjected to methylation using methyl iodide in

K2CO3 followed by purification and structural elucidation. All characterized

acetophenone derivatives were subjected to Claisen-Schmidt reaction with

benzaldehyde derivatives which include benzaldehyde bearing substituents 4-(N,N-

dimethyl)amino, 2-methoxyl, 4-isopropyl, 3,4-dimethoxyl, and 4-chloro to form

4

chalcones. The reaction mixtures were purified by CC and the pure compounds were

elucidated spectroscopically by IR, NMR and MS. The synthesized chalcones were

screened for antibacterial and anti-inflammatory activities. Minimum inhibition

concentration (MIC) using microdilution method was used as the tool to determine

the antibacterial activity of the synthesized compounds against the Gram-positive

and Gram-negative bacteria. Lipoxygenase assay (LOX) was used to screen the anti-

inflammatory activity of the synthesized chalcones.

99

REFERENCES

1. Kumar, N., Kumar, S., Gupta, H., and Sharma, P. K. (2012). 3-Hydroxy-2-

(substituted phenyl)-4h-chromen-4-one derivatives-synthesis, spectral

characterization and pharmacological screening. World research Journal of

Biochemistry. 1, 3–7.

2. Narender, T., Khaliq, T., Shweta, Nishi, Goyal, N., Guota, Suman. (2005).

Synthesis of chromenochalcones and evaluation of their in vitro

antileishmanial activity. Bioorganic and Medicinal Chemistry. 13, 6543–50.

3. Ahmad, M. R., Sastry, V. G., Bano, N., and Anwar, S. (2011). Synthesis of

novel chalcone derivatives by conventional and microwave irradiation

methods and their pharmacological activities. Arabian Journal of Chemistry.

1–5.

4. Botta, B., Vitali, A., Menendez, P., Misiti, D., and Monache, D. G. (2005).

Prenylated flavonoids: pharmacology and biotechnology. Current Medicinal

Chemistry. 12, 717–739.

5. Grealis, J. P., Muller-Bunz, H., Casey, M., and McGlinchey, M. J. (2013).

Synthesis of isobavachalcone and some organometallic derivatives. European

Journal of Organic Chemistry. 332-347.

6. Karabin, M., Hudcova, T., Jelinek, L., and Dostalek, P. (2015).

Biotransformations and biological activities of hop flavonoids. Biotechnology

Advances. 33, 1063–1090.

7. Zhang, E. H., Wang, R. F., Guo, S. Z., and Liu, B. (2013). An update on

antitumor activity of naturally occurring chalcones. Evidence Based

Complementary and Alternative Medicine. 2013, 815621.

100

8. Mahapatra, D. K., Asati, V., and Bharti, S. K. (2015). Chalcones and their

therapeutic targets for the management of diabetes: Structural and

pharmacological perspectives. European Journal of Medicinal Chemistry. 92,

839–865.

9. Miranda, C. L., Stevens, J. F., Ivanov, V., McCall, M., Frei, B., Deinzer, M.

L., and Buhler, D. R. (2000). Antioxidant and prooxidant actions of

prenylated and nonprenylated chalcones and flavanones in vitro. Journal of

Agriculture and Food Chemistry. 48, 3876–84.

10. Frolich, S., Schubert, C., Bienzle, U., and Jenett-Siems, K. (2005). In vitro

antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus

lupulus) and their interaction with haemin. Journal of Antimicrobial

Chemotherapy. 55, 883–887.

11. Terao, J., and Mukai, R. (2014). Prenylation modulates the bioavailability

and bioaccumulation of dietary flavonoids. Archives of Biochemistry

Biophysics. 559, 12–16.

12. Dixon, R. A., and Pasinetti, G. M. (2010). Flavonoids and isoflavonoids:

from plant biology to agriculture and neuroscience. Plant Physiology. 154,

453–457.

13. Yang, D. S., Li, Z. L., Peng, W. B., Yang, Y. P., Wang, X., Liu, K., Li, X.,

Xioa, W. (2015). Three new prenylated flavonoids from Macaranga

denticulata and their anticancer effects. Fitoterapia. 103, 165–170.

14. Masuoka, N., Matsuda, M., and Kubo, I. (2012). Characterisation of the

antioxidant activity of flavonoids. Food Chemistry. 131, 541–545.

15. Garritano, S., Pinto, B., Giachi, I., Pistelli, L., and Reali, D. (2005).

Assessment of estrogenic activity of flavonoids from Mediterranean plants

using an in vitro short-term test. Phytomedicine. 12, 143–7.

16. Selepe, M. A., Van Heerden, F.R. (2013). Application of the Suzuki-Miyaura

reaction in the synthesis of flavonoids. Molecules. 18, 4739–65.

101

17. Stevenson, D. E., and Hurst, R. D. (2007). Polyphenolic phytochemicals–just

antioxidants or much more?. Cellullar and Molecular Life Sciences. 64,

2900–2916.

18. Putignani, L., Massa, O., and Alisi, A. (2013). Engineered Escherichia coli as

new source of flavonoids and terpenoids. Food Research Intstitute. 54, 1084–

1095.

19. Rahman, M. A. (2011). Chalcone: A Valuable Insight into the Recent

Advances and Potential Pharmacological Activities. Chemical Sciences

Journal. 2011, 1–16.

20. Bohm, B. A. (1998). Introduction to Flavonoids (2nd

ed.). Vancouver,

Canada. Harwood Academic Publisher.

21. Abe, I., Morita, H., Nomura, A., and Noguchi, H. (2000). Substrate

Specificity of Chalcone Synthase: Enzymatic Formation of Unnatural

Polyketides from Synthetic Cinnamoyl-CoA Analogues. Journal of American

Chemical Society. 122, 11242–11243.

22. Jez, J. M., Ferrer, J. L., Bowman, M. E., Dixon, R. A., and Noel, J. P. (2000).

Dissection of malonyl-coenzyme A decarboxylation from polyketide

formation in the reaction mechanism of a plant polyketide synthase.

Biochemistry. 39, 890–902.

23. Sasaki, Y., Nagano, Y. (2004). Plant acetyl-CoA carboxylase: structure,

biosynthesis, regulation, and gene manipulation for plant breeding.

Bioscience, Biotechnology and Biochemistry. 68, 1175–1184.

24. Stafford, H.A. Flavonoid Metabolism. Florida, United States: CRS Press

Incorporated. 1990.

25. Harbone, J. B. The Flavonoids. vol. 53. Drodretch: Chapman and Hall

Publisher. 1989.

102

26. Chuankui Song (2015). Biosynthesis of Acylphloroglucinol Glucosides in

Strawberry Fruit. Doctor Philosophy, Technische Universitat Munchen.

27. Blangetti, M., Rosso, H., Prandi, C., Deagostino, A., and Venturello, P.

(2013). Suzuki-miyaura cross-coupling in acylation reactions, scope and

recent developments. Molecules. 18, 1188–1213.

28. Heide, L. (2009). Prenyl transfer to aromatic substrates: genetics and

enzymology. Current Opinion in Chemical Biology. 13, 171–179.

29. Haslam, E. The Shikimate Pathway. London: Butterworth and Co

(Publishers) Ltd. 1974.

30. Smejkal, K. (2014). Cytotoxic potential of C-prenylated flavonoids.

Phytochemistry. 13, 2014.

31. Crozier, A., Clifford, M. N., and Ashihara, H. (2006). Plant Secondary

Metabolites Occurrence, Structure and Role in the Human Diet. Oxford, UK.

Blackwell Publishing Ltd.

32. Stevens, J. F., and Page, J. E. (2004). Xanthohumol and related

prenylflavonoids from hops and beer: to your good health. Phytochemistry.

65, 1317–30.

33. Yazaki, K., Sasaki, K., and Tsurumaru, Y. (2009). Prenylation of aromatic

compounds, a key diversification of plant secondary metabolites.

Phytochemistry. 70, 1739–1745.

34. Dong, X., Liu, Y., Yan, J., Jiang, C., Chen, J., Liu, T., and Hu, Y. (2008).

Identification of SVM-based classification model, synthesis and evaluation of

prenylated flavonoids as vasorelaxant agents. Bioorganic and Medicinal

Chemistry. 16, 8151–60.

35. Shah, B. N., Panchal, M. A., Gohil, N., Nayak, B. S., and Modi, D. C. (2010).

Phyto-pharmacological profile of Humulus lupulus. Pharmacologyonline

Newsletter. 736, 719–736.

103

36. Dat, N. T., Binh, P. T. X., Quynh, L. T. P., Minh, C. V., Huong, H. T., and

Lee, J. J. (2010). Cytotoxic prenylated flavonoids from Morus alba.

Fitoterapia. 81, 1224–7.

37. Stevens, J. F., Taylor, A. W., Nickerson, G. B., Ivancic, M., Henning, J.,

Haunold, A., and Deinzer, M. L. (2000). Prenylflavonoid variation in

Humulus lupulus: Distribution and taxonomic significance of xanthogalenol

and 4'-O-methylxanthohumol. Phytochemistry. 53, 759–775.

38. Vogel, S., Ohmayer, S., Brunner, G., and Heilmann, J. (2008). Natural and

non-natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative

activity. Bioorganic and Medicinal Chemistry. 16, 4286–93.

39. Ugwu, D. I., Ezema, B. E., Eze, F. U., Onoabedje, E. A., Ezema, C. G., Ekoh,

O. C., and Ayogu, J. I. (2014). Synthesis and antimalarial activities of

chalcone derivatives. International Journal of ChemTech Research. 7 (4),

1966–1984.

40. Li, Y. P., Yang, Y. C., Li, Y. K., Jiang, Z. Y., Huang, X. Z., Wang, W. G.,

Gao, X. M., and Hu, Q. F. (2014). Five new prenylated chalcones from

Desmodium renifolium. Fitoterapia. 9, 41–45.

41. Kathiravan, M. K., Salake, A. B., Chothe, A. S., Dudhe, P. B., Watode, R. P.,

Mukta, M. S., and Gadhwe, S. (2012). The biology and chemistry of

antifungal agents: a review. Bioorganic of Medicinal Chemistry. 20, 5678–98.

42. Rial, E., Rodríguez-Sánchez, L., Aller, P., Guisado, A., Gonzalez-Barroso,

M., Gallardo-Vara, E., Redondo-Horcajo, M., Castellanos, E., Pradilla, R. F.,

and Viso, A. (2011). Development of chromanes as novel inhibitors of the

uncoupling proteins. Chemistry and Biology. 18, 264–274.

43. Macone, A., Lendaro, E., Comandini, A., Rovardi, I., Matarese, R. M.,

Carraturo, A., and Bonamore, A. (2009). Chromane derivatives of small

aromatic molecules: Chemoenzymatic synthesis and growth inhibitory

activity on human tumor cell line LoVo WT. Bioorganic and Medicinal

Chemistry. 17, 6003–7.

104

44. Lourens, A. C. U., Viljoen, A. M., and Heerden, F. R. V. (2008). South

African Helichrysum species: A review of the traditional uses, biological

activity and phytochemistry. Journal of Ethnopharmacology. 119, 630–652.

45. Su, X. H., Li, C. Y., Zhong, Y. J., Yuan, Z. P., Fang, L. Y. and Bing, L.

(2012). A new prenylated chalcone from the seeds of Millettia pachycarpa.

Chinese Journal of Natural Medicine. 10, 222–225.

46. Lee, Y. R., Wang, X., and Xia, L. (2007). An efficient and rapid synthetic

route to biologically interesting pyranochalcone natural products. Molecules.

12, 1420–9.

47. Wang, G., Peng, F., Cao, D., Yang, Z., Han, X., Liu, J., Wu, W., He, L., Ma,

L., Chen, J., Sang, Y., Xiang, M., Peng, A., Wei, Y., and Chen, L. (2013).

Design, synthesis and biological evaluation of millepachine derivatives as a

new class of tubulin polymerization inhibitors. Bioorganic and Medicinal

Chemistry. 21, 6844–6854.

48. Guida, A., Lhouty, M. H., Tichit, D., Figueras, F., and Geneste, P. (1997).

Hydrotalcites as base catalysts. Kinetics of Claisen-schmidt condensation,

intramolecular condensation of acetonylacetone and synthesis of chalcone.

Applied Catalysis. 164, 251–264.

49. Sashidhara, K. V., Kumar, M., and Kumar, A. (2012). A novel route to

synthesis of flavones from salicylaldehyde and acetophenone derivatives.

Tetrahedron Letters. 53, 2355–2359.

50. Dev, S., and Dhaneshwar, S. R. (2013). A solvent-free protocol for the green

synthesis of heterocyclic chalcones. Der Pharmacia Lettre. 5, 219–223.

51. Jarag, K. J., Pinjari, D. V., Pandit, A. B., and Shankarling, G. S. (2011).

Synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-

one): advantage of sonochemical method over conventional method.

Ultrasonics Sonochemistry. 18, 617–623.

105

52. Neves, M. P., Lima, R. T., Choosang, K., Pakkong, P., Nasciment, M.,

Vasconcelos, M. H., Pinto, Madalena., Silva, A. M. S. and Cidade, H. (2012).

Synthesis of a natural chalcone and its prenyl analogs--evaluation of tumor

cell growth-inhibitory activities, and effects on cell cycle and apoptosis.

Chemistry and Biodiversity. 9, 1133–43.

53. Narender, T., Venkateswarlu, K., Nayak, B. V., and Sarkar, S. (2011). A new

chemical access for 3'-acetyl-4'-hydroxychalcones using borontrifluoride-

etherate via a regioselective Claisen-Schmidt condensation and its application

in the synthesis of chalcone hybrids. Tetrahedron Letters. 52, 5794–5798.

54. Jung, D. H., Lee, Y. R., and Kim, S. H. (2010). New synthetic routes to

biologically interesting geranylated flavanones and geranylated chalcones:

first total synthesis of (±)-prostratol f, xanthoangelol, and (±)-lespeol.

Helvetica Chimica Acta. 93, 635–647.

55. Raj, G. (2004). Organic Name Reactions and Molecular Rearrangements

Meerut. Gurdeep Raj, Krishna Prakashan Media (P) Ltd.

56. Fox, M. A., and Whitesell, J. K. Organic Chemistry. Sudbury, Massachusetts:

Jones and Bartlett Publishers International. 2004.

57. Narender, T., and Reddy, K. P. (2007). BF3.Et2O mediated biogenetic type

synthesis of chromanochalcones from prenylated chalcones via a

regioselective cyclization reaction. Tetrahedron Letters. 48, 7628–7632.

58. Boyer, J., Krum, J., Myers, M., Fazal, A. N., and Wigal, C. (2000). Synthetic

utility and mechanistic implications of the Fries rearrangement of

hydroquinone diesters in boron trifluoride complexes. Journal of Organic

Chemistry. 65, 4712–4.

59. Narender, T., and Reddy, P. K. (2007). A simple and highly efficient method

for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron

Letters. 48, 3177–3180.

60. Sugamoto, K., Matsusita, Y., Matsui, K., Kurogi, C., and Matsui, T. (2011).

106

Synthesis and antibacterial activity of chalcones bearing prenyl or geranyl

groups from Angelica keiskei. Tetrahedron. 67, 5346–5359.

61. Xin, Y., Jiang, H., Zhao, J., and Zhu, S. (2008) BF3-promoted cyclization

reaction of imines and salicylaldehyde with silyl enol ethers: unexpected

formation of dioxaspiro compounds. Tetrahedron. 64, 9315–9319.

62. Pandurangan, N., Bose, C., Banerji, A. (2011). Synthesis and antioxygenic

activities of seabuckthorn flavone-3-ols and analogs. Bioorganic of Medicinal

Chemistry Letters. 21, 5328–5330.

63. Rullah, K., Mohd Aluwi, M. F. F., Yamin, B. M., Bahari, A. M. N., Wei, L.

S., Ahmad, S., Abas, F., Ismail, N. H., Jantan, I., and Wai, K. (2014).

Inhibition of prostaglandin E2 production by synthetic minor prenylated

chalcones and flavonoids: Synthesis, biological activity, crystal structure, and

in silico evaluation. Bioorganic of Medicinal Chemistry Letters. 24, 3826–

3834.

64. Arai, M. A., and Kittaka, A. (2006). Novel 2-alkyl-1α,25-dihydroxy-19-

norvitamin D3: efficient synthesis with Julia olefination, evaluation of

biological activity and development of new analyzing system for co-activator

recruitment. Anticancer Research. 26, 2621–31.

65. Sundberg, R. J., and Francis, A. C. (2007). Advance Organic Chemistry. Part

B: Reactions and Synthesis. Charlottesville, Virginia. Springer.

66. Bonifait, L., Marquis, A., Genovese, S., Epifano, F., and Grenier, D. (2012)

Synthesis and antimicrobial activity of geranyloxy- and farnesyloxy-

acetophenone derivatives against oral pathogens. Fitoterapia. 83, 996–999.

67. Gavara, L., Petit, C., and Montchamp, J. L. (2012). DBU-promoted alkylation

of alkyl phosphinates and H-phosphonates. Tetrahedron Letter. 53, 5000–

5003.

68. Pan, Y., Chen, Y., Li, Q., Yu, X., Wang, J., and Zheng, J. (2013). The

synthesis and evaluation of novel hydroxyl substituted chalcone analogs with

107

in vitro anti-free radicals pharmacological activity and in vivo anti-oxidation

activity in a free radical-injury Alzheimer’s model. Molecules. 18, 1693–

1703.

69. Kumar, D., Kumar, N. M., Akamatsu, K., Kusaka, E., Harada, H., and Ito, T.

(2010). Synthesis and biological evaluation of indolyl chalcones as antitumor

agents. Bioorganic of Medicinal Chemistry Letters. 20, 3916–3919.

70. Ning, J. J., Wang, J. F., Ren, Z. G., Young, D. J., and Lang, J. P. (2015).

Versatile palladium(II)-catalyzed Suzuki–Miyaura coupling in ethanol with a

novel, stabilizing ligand. Tetrahedron. 71, 4000–4006.

71. Rateb, N. M., and Zohdi, H. F. (2009). Atom-Efficient, Solvent-Free, Green

Synthesis of Chalcones by Grinding. Synthetic Communication. 39, 2789–

2794.

72. Sarda, S. R., Jadhav, W. N., Bhusare, S. R., Wasmatkar, S. K., Dake, S. A.,

and Pawar, R. P. (2009). Solvent-free NaOH-Al2O3 supported synthesis of

1,3-diaryl-2-propene-1-ones. International Journal of Chemtech Research. 1,

265–269.

73. Epifano, F., Genovese, S., Menghini, L., and Curini, M. (2007). Chemistry

and pharmacology of oxyprenylated secondary plant metabolites.

Phytochemistry. 68, 939–953.

74. Feldman, M., Tanabe, S., Epifano, F., Genovese, S., Curini, M., and Grenier,

D. (2011). Antibacterial and Anti-inflammatory Activities of 4-

Hydroxycordoin: Potential Therapeutic Benefits. Journal of Natural Product.

26–31.

75. Reddy, N. P., Aparoy, P., Reddy, T. C. M., Achari, C., Sridhar, P. R., and

Reddanna, P. (2010). Design, synthesis, and biological evaluation of

prenylated chalcones as 5-LOX inhibitors. Bioorganic and Medicinal

Chemistry. 18, 5807–15.

76. Basabe, P., De Roman, M., Marcos, I.S., Diez, D., Blanco, A., Bodero, O,

108

Mollinedo, F., Sierra, B. G., and Urones, J. G. (2010). Prenylflavonoids and

prenyl/alkyl-phloroacetophenones: Synthesis and antitumour biological

evaluation. European Journal of Medicinal Chemistry. 45, 4258–4269.

77. Chinthala, Y., Thakur, S., Tirunagari, S., Chinde, S., Kumar, K., Khan, F.,

Tiwari, A., and Grover, P. (2015). European Journal of Medicinal Chemistry

Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-

cancer and anti-diabetic activity. European Journal of Medicinal Chemistry.

93, 564–573.

78. Lee, Y. R., Li, X., Lee, S. W., Yong, C. S., Hwang, M., and Lyoo, W. S.

(2008). Concise Total Synthesis of Biologically Interesting Prenylated

Chalcone Natural Products: 4'-O-Methylxanthohumol, Xanthohumol E, and

Sericone. Bulletin Korean Chemical Society. 29, 1205–1210.

79. Parker, A. J. (1981) The effects of solvation on the properties of anions in

dipolar aprotic solvents. Quarterly Review of the Chemical Society. 16, 163-

187.

80. Furniss, B. S., Hannaford, A. J., Smith, P. W. G., and Tatchell, A. R. Vogel’s

Textbook of Practical Organic Chemistry. New York: John Wiley & Sons,

Inc. 1979.

81. Ramirez, R. E., Garcia-Martinez, C., and Mendez, F. (2013). Understanding

the nucleophilic character and stability of the carbanions and alkoxides of 1-

(9-anthryl)ethanol and derivatives. Molecules. 18, 10254-10265.

82. Orlikova, B., Tasdemir, D., Golais, F., Dicato, M., and Diederich, M. (2011).

Dietary chalcones with chemopreventive and chemotherapeutic potential.

Genes and Nutrition. 6, 125–147.

83. Patil, C. B., Mahajan, S. K., and Katti, S. A. (2009). Chalcone: A versatile

molecule. Journal of Pharmaceutical Sciences and Research. 1, 11–22.

84. Bhasker, N., and Reddy, M. K. (2011). Synthesis and characterization of new

series of prenyloxy chalcones, prenyloxy aurones and screening for anti-

109

bacterial activity. International Journal of Research in Pharmaceutical and

Biomedical Sciences. 2, 1266–1272.

85. Field, L. D., Sternhell, S., and Kalman, J. R.. Organic Structures from

Spectra. West Sussex, UK. A John Wiley & Sons, Ltd, Publication. 2013.

86. Yadav, L. D. S. Organic Spectroscopy. New Delhi: Kluwer Academic

Publisher. 2005.

87. Wu, J., Wheeldon, I., Guo, Y., Lu, T., Yanan, D., Wang, B., He, J., Hu, Y.,

and Khademhosseini, A. (2010). A sandwiched microarray platform for

benchtop cell-based high throughput screening. Biomaterials. 32, 841–848.

88. Howard, J. A. K., Slovokhotov, Y. L., and Batsanov, A.S. (2007). Molecular

van der Waals symmetry affecting bulk properties of condensed phases:

melting and boiling points. Structural Chemistry. 18, 477–491.

89. Daley, R. F., and Daley, S. J. Organic Chemistry (1st ed.). Daley Publication.

2013.

90. Wade, L. G. Organic Chemistry (6th

ed.). Walla Walla, Washington: Prentice

Hall Publication. 2009.

91. Vh, E. S., Matsjeh, S., and Wahyuningsih, T. D. (2014) Improved synthesis

of 2',6'-dihydroxy-3,4-dimethoxychalcone by grinding technique to

synthesize 5-hydroxy-3', 4'-dimethoxyflavone. Indonesian Journal of

Chemistry. 14 (2), 174–178.

92. Niazi, S. K. Handbook of Preformulation: Chemical, Biological and

Botanical Drugs. Illinois, US: CRC Press. 2007.

93. Pessini, G. L., Filho, B. P. D., Nakamura, C. V., and Cortez, D. A. G. (2003).

Antibacterial activity of extracts and neolignans from piper. Memorias do

Instituto Oswaldo Cruz. 98 (8), 1115–1120.

94. Kromann, H., Larsen, M., Boesen, T., Schonning, K., and Nielsen, S. F.

(2004) Synthesis of prenylated benzaldehydes and their use in the synthesis

110

of analogues of licochalcone A. European Journal of Medicinal Chemistry.

39, 993–1000.

95. Yamaguchi, N., Satoh-Yamaguchi, K., and Ono, M. (2009). In vitro

evaluation of antibacterial, anticollagenase, and antioxidant activities of hop

components (Humulus lupulus) addressing acne vulgaris. Phytomedicine. 16,

369–376.

96. Aparoy, P., Reddy, K. K., and Reddanna, P. (2012). Structure and ligand

based drug design strategies in the development of novel 5- LOX inhibitors.

Current Medicinal Chemistry. 19, 3763–3778.

97. Sharma, V., and Kumar, V. (2015). Pharmacophore mapping studies on

indolizine derivatives as 15-LOX inhibitors. Bulletin Faculty of Pharmacy,

Cairo University. 53, 63–68.

98. Sogawa, S., Nihro, Y., Ueda, H., and Izumi, A. (1993). 3,4-

Dihydroxychalcones as potent 5-lipoxygenase and cyclooxygenase inhibitors.

Journal of Medicinal Chemistry. 36, 3904–3909.

99. Armstrong, M. M., Freedman, C. J., Eun, J., Zheng, Y., Kalyanaraman, C.,

Jacobson, M. P., Simeonov, A., Maloney, D. J., Leyen, K. V., Jadhav, A., and

Holman, T. R. (2016). Bioorganic & medicinal chemistry a potent and

selective inhibitor targeting human and murine. Bioorganic and Medicinal

Chemistry. 24, 1183–1190.

100. Kim, Y. P., Ban, H. S., Lim, S. S., Kimura, N., Jung, S. H., Ji, J., Lee, S.,

Ryu, N., Keum, S. R., Shin, K. H., and Ohuchi, K. (2001). Inhibition of

prostaglandin E2 production by 2'-hydroxychalcone derivatives and the

mechanism of action. Journal of Pharmacy and Pharmacology. 53, 1295–

1302.

101. Keese, R., Brandle, M. P., and Toube, T. P. Practical Organic Synthesis: A

Student’s Guide (6th

ed.). West Sussex, US: John Wiley & Sons, Ltd. 2006.

102. Helesbeux, J. J., Duval, O., Guilet, D., Seraphin, D., Rondeau, D., and

111

Richomme, P. (2003). Regioselectivity in the ene reaction of singlet oxygen

with ortho-prenylphenol derivatives. Tetrahedron. 59, 5091–5104.

103. Narender, T., and Reddy, K. P. (2009). BF3.Et2O-Mediated One-Pot

Synthesis of Acetylchromans from polyhydroxyacetophenones and

isoprene/allyl alcohol. Synthetic Communications. 39, 384–394.

104. Hossain, M. A., and Islam, A. (1993). Claisen rearrangement of 2'-hydroxy-

4'-benzyloxy-4'-prenyloxychalcone and 2'-hydroxy-3,4-dimethoxy-4'-

prenyloxychalcone. Indian Journal of Chemistry. 32.

105. Bhasker, N., Prashanthi, Y., and Subba, R. B. V. (2015). Piperidine mediated

synthesis of new series of prenyloxy chalcones, flavanones and comparative

cytotoxic study. Der Pharmacia Lettre. 7 (1), 8–13.

106. Kitawat, B. S., and Singh, M. (2014). Synthesis, characterization,

antibacterial, antioxidant, DNA binding and SAR study of a novel pyrazine

moiety bearing 2-pyrazoline derivatives. New Journal of Chemistry. 38,

4290–4299.

107. Islam, M. M., Masum, S. M., and Mahbub, K. R. (2011). In vitro antibacterial

activity of shrimp chitosan against Salmonela paratyphi and Staphylococcus

aureus. Journal of Bangladesh Chemical Society. 24 (2), 185–190.

108. Odeyemi, O. A., and Ahmad, A. (2015). Antibiotic resistance profiling and

phenotyping of Aeromonas species isolated from aquatic sources. Saudi

Journal of Biological Sciences. 1319-562X.

109. Detsi, A., Majdalani, M., Kontogiorgis, C. A., Hadjipavlou-Litina, D., and

Kefalas, P. (2009). Natural and synthetic 2'-hydroxy-chalcones and aurones:

Synthesis, characterization and evaluation of the antioxidant and soybean

lipoxygenase inhibitory activity. Bioorganic and Medicinal Chemistry. 17,

8073–8085.

110. Shaveta, Singh, A., Kaur, M., Sharma, S., Bhatti, R., and Singh, P. (2014).

Rational design, synthesis and evaluation of chromone-indole and chromone-

112

pyrazole based conjugates: identification of a lead for anti-inflammatory

drug. European Journal of Medicinal Chemistry. 77, 185–92.