Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5...

124
CSL COORDINATED SCIENCE LABORATORY Synchronization of coupled oscillators is a game Prashant G. Mehta 1 1 Coordinated Science Laboratory Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign GERAD seminar, April 20, 2010 Acknowledgment: AFOSR, NSF

Transcript of Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5...

Page 1: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

CSLCOORDINATED SCIENCE LABORATORY

Synchronization of coupled oscillators is a game

Prashant G. Mehta1

1Coordinated Science LaboratoryDepartment of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

GERAD seminar, April 20, 2010

Acknowledgment: AFOSR, NSF

Page 2: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Huibing Yin Sean P. Meyn Uday V. Shanbhag

H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, “Synchronization of coupled oscillators is a game,” ACC 2010

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 2 / 75

Page 3: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Acknowledgement

Thanks to Minyi Huang, Roland P. Malhame, and Peter Caines

Minyi Huang Roland P. Malhame Peter Caines

M. Huang, P. Caines, and R. Malhame, “Large-population cost-coupled LQG problems with nonuniform agents:Individual-mass behavior and decentralized ε-nash equilibria ,” IEEE TAC, 2007

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 3 / 75

Page 4: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Millennium bridge

Video of London Millennium bridge from youtube

[11] S. H. Strogatz et al., Nature, 2005

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 4 / 75

Page 5: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Classical Kuramoto model

dθi(t) =

(ωi +

κ

N

N

∑j=1

sin(θj(t)−θi(t))

)dt +σ dξi(t), i = 1, . . . ,N

ωi taken from distribution g(ω) over [1− γ,1+ γ]γ — measures the heterogeneity of the population

κ — measures the strength of coupling

[6] Y. Kuramoto (1975)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 5 / 75

Page 6: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Classical Kuramoto model

dθi(t) =

(ωi +

κ

N

N

∑j=1

sin(θj(t)−θi(t))

)dt +σ dξi(t), i = 1, . . . ,N

ωi taken from distribution g(ω) over [1− γ,1+ γ]γ — measures the heterogeneity of the population

κ — measures the strength of coupling 1- 1+1

[6] Y. Kuramoto (1975)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 5 / 75

Page 7: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Classical Kuramoto model

dθi(t) =

(ωi +

κ

N

N

∑j=1

sin(θj(t)−θi(t))

)dt +σ dξi(t), i = 1, . . . ,N

ωi taken from distribution g(ω) over [1− γ,1+ γ]γ — measures the heterogeneity of the population

κ — measures the strength of coupling

[6] Y. Kuramoto (1975)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 5 / 75

Page 8: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Classical Kuramoto model

dθi(t) =

(ωi +

κ

N

N

∑j=1

sin(θj(t)−θi(t))

)dt +σ dξi(t), i = 1, . . . ,N

ωi taken from distribution g(ω) over [1− γ,1+ γ]γ — measures the heterogeneity of the population

κ — measures the strength of coupling

0 0.1 0.20.1

0.15

0.2

0.25

0.3 Locking

Incoherence

κ

κ < κc(γ)

R

γ

Synchrony

Incoherence

[6] Y. Kuramoto (1975)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 5 / 75

Page 9: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Movies of incoherence and synchrony solution

−1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

−1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Incoherence Synchrony

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 6 / 75

Page 10: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Problem statement

Dynamics of ith oscillator

dθi = (ωi +ui(t))dt +σ dξi, i = 1, . . . ,N, t ≥ 0

ui(t) — control 1- 1+1

ith oscillator seeks to minimize

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[ c(θi;θ−i)︸ ︷︷ ︸

cost of anarchy

+ 12 Ru2

i︸ ︷︷ ︸cost of control

]ds

θ−i = (θj)j6=iR — control penalty

c(·) — cost function

c(θi;θ−i) =1N ∑

j 6=ic•(θi,θj), c• ≥ 0

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 7 / 75

Page 11: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Problem statement

Dynamics of ith oscillator

dθi = (ωi +ui(t))dt +σ dξi, i = 1, . . . ,N, t ≥ 0

ui(t) — control 1- 1+1

ith oscillator seeks to minimize

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[ c(θi;θ−i)︸ ︷︷ ︸

cost of anarchy

+ 12 Ru2

i︸ ︷︷ ︸cost of control

]ds

θ−i = (θj)j6=iR — control penalty

c(·) — cost function

c(θi;θ−i) =1N ∑

j 6=ic•(θi,θj), c• ≥ 0

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 7 / 75

Page 12: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Problem statement

Dynamics of ith oscillator

dθi = (ωi +ui(t))dt +σ dξi, i = 1, . . . ,N, t ≥ 0

ui(t) — control 1- 1+1

ith oscillator seeks to minimize

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[ c(θi;θ−i)︸ ︷︷ ︸

cost of anarchy

+ 12 Ru2

i︸ ︷︷ ︸cost of control

]ds

θ−i = (θj)j6=iR — control penalty

c(·) — cost function

c(θi;θ−i) =1N ∑

j 6=ic•(θi,θj), c• ≥ 0

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 7 / 75

Page 13: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 14: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why a game?

Quiz

In the video you just watched, why were theindividuals walking strangely?

A. To show respect to the Queen.B. Anarchists in the crowd were trying to destabilize the bridge.C. They were stepping to the beat of the soundtrack "Walk Like an

Egyptian."D. The individuals were trying to maintain their balance.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 9 / 75

Page 15: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why a game?

Quiz

In the video you just watched, why were theindividuals walking strangely?

A. To show respect to the Queen.B. Anarchists in the crowd were trying to destabilize the bridge.C. They were stepping to the beat of the soundtrack "Walk Like an

Egyptian."D. The individuals were trying to maintain their balance.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 9 / 75

Page 16: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why a game?

Quiz

In the video you just watched, why were theindividuals walking strangely?

A. To show respect to the Queen.B. Anarchists in the crowd were trying to destabilize the bridge.C. They were stepping to the beat of the soundtrack "Walk Like an

Egyptian."D. The individuals were trying to maintain their balance.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 9 / 75

Page 17: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why a game?

Quiz

In the video you just watched, why were theindividuals walking strangely?

A. To show respect to the Queen.B. Anarchists in the crowd were trying to destabilize the bridge.C. They were stepping to the beat of the soundtrack "Walk Like an

Egyptian."D. The individuals were trying to maintain their balance.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 9 / 75

Page 18: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why a game?

Quiz

In the video you just watched, why were theindividuals walking strangely?

A. To show respect to the Queen.B. Anarchists in the crowd were trying to destabilize the bridge.C. They were stepping to the beat of the soundtrack "Walk Like an

Egyptian."D. The individuals were trying to maintain their balance.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 9 / 75

Page 19: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why a game?

“Rational irrationality”

“—behavior that, on the individual level, is perfectly reasonable butthat, when aggregated in the marketplace, produces calamity.”

ExamplesMillennium bridgeFinancial market

John Cassidy, “Rational Irrationality: The real reason that capitalism is so crash-prone,” The New Yorker, 2009

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 10 / 75

Page 20: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why a game?

“Rational irrationality”

“—behavior that, on the individual level, is perfectly reasonable butthat, when aggregated in the marketplace, produces calamity.”

ExamplesMillennium bridgeFinancial market

John Cassidy, “Rational Irrationality: The real reason that capitalism is so crash-prone,” The New Yorker, 2009

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 10 / 75

Page 21: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 22: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why Oscillators?

Hodgkin-Huxley type Neuron model

CdVdt

=−gT ·m2∞(V) ·h · (V−ET)

−gh · r · (V−Eh)− . . . . . .

dhdt

=h∞(V)−h

τh(V)drdt

=r∞(V)− r

τr(V)2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

−150

−100

−50

0

50

100

Voltage

time

Neural spike train

[4] J. Guckenheimer, J. Math. Biol., 1975; [2] J. Moehlis et al., Neural Computation, 2004

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 12 / 75

Page 23: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why Oscillators?

Hodgkin-Huxley type Neuron model

CdVdt

=−gT ·m2∞(V) ·h · (V−ET)

−gh · r · (V−Eh)− . . . . . .

dhdt

=h∞(V)−h

τh(V)drdt

=r∞(V)− r

τr(V)2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

−150

−100

−50

0

50

100

Voltage

time

Neural spike train

[4] J. Guckenheimer, J. Math. Biol., 1975; [2] J. Moehlis et al., Neural Computation, 2004

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 12 / 75

Page 24: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why Oscillators?

Hodgkin-Huxley type Neuron model

CdVdt

=−gT ·m2∞(V) ·h · (V−ET)

−gh · r · (V−Eh)− . . . . . .

dhdt

=h∞(V)−h

τh(V)drdt

=r∞(V)− r

τr(V)2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

−150

−100

−50

0

50

100

Voltage

time

Neural spike train

−100

−50

0

50

100

0

0.2

0.4

0.6

0.8

10

0.1

0.2

0.3

0.4

Vh

r

Limit cyle

r

h v

[4] J. Guckenheimer, J. Math. Biol., 1975; [2] J. Moehlis et al., Neural Computation, 2004

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 12 / 75

Page 25: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Motivation Why Oscillators?

Hodgkin-Huxley type Neuron model

CdVdt

=−gT ·m2∞(V) ·h · (V−ET)

−gh · r · (V−Eh)− . . . . . .

dhdt

=h∞(V)−h

τh(V)drdt

=r∞(V)− r

τr(V)2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

−150

−100

−50

0

50

100

Voltage

time

Neural spike train

−100

−50

0

50

100

0

0.2

0.4

0.6

0.8

10

0.1

0.2

0.3

0.4

Vh

r

Limit cyle

r

h v

Normal form reduction−−−−−−−−−−−−−→

θi = ωi +ui ·Φ(θi)

[4] J. Guckenheimer, J. Math. Biol., 1975; [2] J. Moehlis et al., Neural Computation, 2004

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 12 / 75

Page 26: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 27: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Problems and results Problem statement

Finite oscillator model

Dynamics of ith oscillator

dθi = (ωi +ui(t))dt +σ dξi, i = 1, . . . ,N, t ≥ 0

ui(t) — control 1- 1+1

ith oscillator seeks to minimize

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[ c(θi;θ−i)︸ ︷︷ ︸

cost of anarchy

+ 12 Ru2

i︸ ︷︷ ︸cost of control

]ds

θ−i = (θj)j6=iR — control penaltyc(·) — cost function

c(θi;θ−i) =1N ∑

j 6=ic•(θi,θj), c• ≥ 0

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 14 / 75

Page 28: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 29: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Problems and results Main results

1. Synchronization is a solution of game

Locking

0 0.1 0.2

0.15

0.2

0.25

R−1/ 2

γγIncoherence

R > Rc(γ)

Synchrony

Incoherence

dθi = (ωi +ui)dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i ]ds

1- 1+1

Yin et al., ACC 2010 Strogatz et al., J. Stat. Phy., 1992

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 16 / 75

Page 30: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Problems and results Main results

1. Synchronization is a solution of game

Locking

0 0.1 0.2

0.15

0.2

0.25

R−1/ 2

γγIncoherence

R > Rc(γ)

Synchrony

Incoherence

dθi = (ωi +ui)dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i ]ds

0 0.1 0.20.1

0.15

0.2

0.25

0.3 Locking

Incoherence

κ

κ < κc(γ)

R

γ

Synchrony

Incoherence

dθi =

(ωi +

κ

N

N

∑j=1

sin(θj−θi)

)dt +σ dξi

Yin et al., ACC 2010 Strogatz et al., J. Stat. Phy., 1992

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 16 / 75

Page 31: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Problems and results Main results

2. Kuramoto control is approximately optimal

−0.2

0

0.2

0.4

0.6

ω = 1

Kuramoto

PopulationDensity

Control laws

0 π 2π θ

ui =−A∗iR

1N ∑

j 6=isin(θ −θj(t))

0 50 100 150 200 250 3002

2.5

3

3.5

4

4.5

5

5.5

6

t

k = 0.01; R = 1000

Ai

A*

Learning algorithm:dAi

dt=−ε . . .

Yin et.al. CDC 2010

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 17 / 75

Page 32: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 33: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model Overview

Overview of model derivation

dθi = (ωi +ui(t))dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi, t)+ 1

2 Ru2i ]ds

Influence

Influence

Mass

1 Mean-field approximationAssumption:

c(θi;θ−i(t)) =1N ∑

j6=ic•(θi,θj)

N→∞−−−−−−→ c(θ , t)

2 Optimal control of single oscillatorDecentralized control structure

[5] M. Huang, P. Caines, and R. Malhame, IEEE TAC, 2007 [HCM]

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 19 / 75

Page 34: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 35: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model Derivation steps

Single oscillator with given cost

Dynamics of the oscillator

dθi = (ωi +ui(t))dt +σ dξi, t ≥ 0

The cost function is assumed known

ηi(ui; c) = limT→∞

1T

∫ T

0E[ c(θi;θ−i) + 1

2 Ru2i (s)]ds

⇑c(θi(s),s)

HJB equation:

∂thi +ωi∂θ hi =1

2R(∂θ hi)2− c(θ , t)+η

∗i −

σ2

2∂

2θθ hi

Optimal control law: u∗i (t) = ϕi(θ , t) =− 1R

∂θ hi(θ , t)

[1] D. P. Bertsekas (1995); [9] S. P. Meyn, IEEE TAC, 1997

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 21 / 75

Page 36: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model Derivation steps

Single oscillator with optimal control

Dynamics of the oscillator

dθi(t) =(

ωi−1R

∂θ hi(θi, t))

dt +σ dξi(t)

Fokker-Planck equation for pdf p(θ , t,ωi)

FPK: ∂tp+ωi∂θ p =1R

∂θ [p(∂θ h)]+σ2

2∂

2θθ p

[7] A. Lasota and M. C. Mackey, “Chaos, Fractals and Noise,” Springer 1994

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 22 / 75

Page 37: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model Derivation steps

Mean-field Approximation

HJB equation for population

∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η(ω)− σ2

2∂

2θθ h h(θ , t,ω)

Population density

∂tp+ω∂θ p =1R

∂θ [p(∂θ h)]+σ2

2∂

2θθ p p(θ , t,ω)

Enforce cost consistency

c(θ , t) =∫

Ω

∫ 2π

0c•(θ ,ϑ)p(ϑ , t,ω)g(ω)dϑ dω

≈ 1N ∑

j 6=ic•(θ ,ϑ)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 23 / 75

Page 38: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 39: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

Summary

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

Mean-field approx.: c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

1 Bellman’s optimality principle (H,J,B)2 Propagation of chaos (F,P,K, Mckean, Vlasov,. . . )3 Mean-field approximation (Boltzmann, Kac,. . . )4 Connection to Nash game (Weintraub, HCM, Altman,. . . )

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 25 / 75

Page 40: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

Summary

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

Mean-field approx.: c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

1 Bellman’s optimality principle (H,J,B)2 Propagation of chaos (F,P,K, Mckean, Vlasov,. . . )3 Mean-field approximation (Boltzmann, Kac,. . . )4 Connection to Nash game (Weintraub, HCM, Altman,. . . )

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 25 / 75

Page 41: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

Summary

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

Mean-field approx.: c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

1 Bellman’s optimality principle (H,J,B)2 Propagation of chaos (F,P,K, Mckean, Vlasov,. . . )3 Mean-field approximation (Boltzmann, Kac,. . . )4 Connection to Nash game (Weintraub, HCM, Altman,. . . )

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 25 / 75

Page 42: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

Summary

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

Mean-field approx.: c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

1 Bellman’s optimality principle (H,J,B)2 Propagation of chaos (F,P,K, Mckean, Vlasov,. . . )3 Mean-field approximation (Boltzmann, Kac,. . . )4 Connection to Nash game (Weintraub, HCM, Altman,. . . )

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 25 / 75

Page 43: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

Summary

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

Mean-field approx.: c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

1 Bellman’s optimality principle (H,J,B)2 Propagation of chaos (F,P,K, Mckean, Vlasov,. . . )3 Mean-field approximation (Boltzmann, Kac,. . . )4 Connection to Nash game (Weintraub, HCM, Altman,. . . )

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 25 / 75

Page 44: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

1. Solution of PDE gives ε-Nash equilibrium

Optimal control law

uoi =− 1

R∂θ h(θ(t), t,ω)

∣∣ω=ωi

ε-Nash property (as N→ ∞)

ηi(uoi ;uo−i)≤ ηi(ui;uo

−i)+O(1√N

), i = 1, . . . ,N.

So, we look for solutions of PDEs.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 26 / 75

Page 45: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

1. Solution of PDE gives ε-Nash equilibrium

Optimal control law

uoi =− 1

R∂θ h(θ(t), t,ω)

∣∣ω=ωi

ε-Nash property (as N→ ∞)

ηi(uoi ;uo−i)≤ ηi(ui;uo

−i)+O(1√N

), i = 1, . . . ,N.

So, we look for solutions of PDEs.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 26 / 75

Page 46: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

1. Solution of PDE gives ε-Nash equilibrium

Optimal control law

uoi =− 1

R∂θ h(θ(t), t,ω)

∣∣ω=ωi

ε-Nash property (as N→ ∞)

ηi(uoi ;uo−i)≤ ηi(ui;uo

−i)+O(1√N

), i = 1, . . . ,N.

So, we look for solutions of PDEs.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 26 / 75

Page 47: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

2. Incoherence solution (PDE)

Incoherence solution

h(θ , t,ω) = h0(θ) := 0 p(θ , t,ω) = p0(θ) :=1

incoherence

h(θ , t,ω) = 0 ⇒ ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η

∗− σ2

2∂

2θθ h

∂tp+ω∂θ p =1R

∂θ [p(∂θ h)]+σ2

2∂

2θθ p

c(θ , t) =∫

Ω

∫ 2π

0c•(θ ,ϑ)p(ϑ , t,ω)g(ω)dϑ dω

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 27 / 75

Page 48: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

2. Incoherence solution (PDE)

Incoherence solution

h(θ , t,ω) = h0(θ) := 0 p(θ , t,ω) = p0(θ) :=1

incoherence

h(θ , t,ω) = 0⇒ ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η

∗− σ2

2∂

2θθ h

p(θ , t,ω) = 12π⇒ ∂tp+ω∂θ p =

1R

∂θ [p(∂θ h)]+σ2

2∂

2θθ p

c(θ , t) =∫

Ω

∫ 2π

0c•(θ ,ϑ)p(ϑ , t,ω)g(ω)dϑ dω

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 27 / 75

Page 49: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

2. Incoherence solution (PDE)

Assume c•(ϑ ,θ) = c•(ϑ −θ) = 12 sin2

(ϑ −θ

2

)Incoherence solution

h(θ , t,ω) = h0(θ) := 0 p(θ , t,ω) = p0(θ) :=1

Optimal control u =− 1R

∂θ h = 0

Average cost

c(θ , t) =∫

Ω

∫ 2π

0

12 sin2

(θ −ϑ

2

)1

2πg(ω)dϑ dω

η∗(ω) = c(θ , t) =

14

=: η0 for all ω ∈Ω

incoherence soln.

No cost of control

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 28 / 75

Page 50: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

2. Incoherence solution (Finite population)

Closed-loop dynamics dθi = (ωi + ui︸︷︷︸=0

)dt +σ dξi(t)

Average cost

ηi = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i︸ ︷︷ ︸

=0

]dt

= limT→∞

1N ∑

j 6=i

1T

∫ T

0E[ 1

2 sin2(

θi(t)−θj(t)2

)]dt

=1N ∑

j6=i

∫ 2π

0E[ 1

2 sin2(

θi(t)−ϑ

2

)]

12π

dϑ =N−1

Nη0

−1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

incoherence

ε-Nash property

ηi(uoi ;uo−i)≤ ηi(ui;uo

−i)+O(1√N

), i = 1, . . . ,N.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 29 / 75

Page 51: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

2. Incoherence solution (Finite population)

Closed-loop dynamics dθi = (ωi + ui︸︷︷︸=0

)dt +σ dξi(t)

Average cost

ηi = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i︸ ︷︷ ︸

=0

]dt

= limT→∞

1N ∑

j 6=i

1T

∫ T

0E[ 1

2 sin2(

θi(t)−θj(t)2

)]dt

=1N ∑

j6=i

∫ 2π

0E[ 1

2 sin2(

θi(t)−ϑ

2

)]

12π

dϑ =N−1

Nη0

−1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

incoherence

ε-Nash property

ηi(uoi ;uo−i)≤ ηi(ui;uo

−i)+O(1√N

), i = 1, . . . ,N.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 29 / 75

Page 52: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

3. Synchronization is a solution of game

Locking

0 0.1 0.2

0.15

0.2

0.25

R−1/ 2

γγIncoherence

R > Rc(γ)

Synchrony

IncoherenceR−1/ 2

η(ω)

0. 1 0.15 0. 2 0.25 0. 3 0.350. 1

0.15

0. 2

0.25

ω= 0.95

ω= 1

ω= 1.05

R > Rc

η(ω) = η0

R < R

c

η(ω) < η0

c

dθi = (ωi +ui)dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i ]ds η(ω) = min

uiηi(ui;uo

−i)

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1t = 38.24

Synchrony solution of

Yin et al., “Synchronization of oscillators is a game,” ACC2010P. G. Mehta (UIUC) GERAD Apr. 20, 2010 30 / 75

Page 53: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

3. Synchronization is a solution of game

Locking

0 0.1 0.2

0.15

0.2

0.25

R−1/ 2

γγIncoherence

R > Rc(γ)

Synchrony

IncoherenceR−1/ 2

η(ω)

0. 1 0.15 0. 2 0.25 0. 3 0.350. 1

0.15

0. 2

0.25

ω= 0.95

ω= 1

ω= 1.05

R > Rc

η(ω) = η0

R < R

c

η(ω) < η0

c

incoherence soln.

dθi = (ωi +ui)dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i ]ds η(ω) = min

uiηi(ui;uo

−i)

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1t = 38.24

Synchrony solution of

Yin et al., “Synchronization of oscillators is a game,” ACC2010P. G. Mehta (UIUC) GERAD Apr. 20, 2010 30 / 75

Page 54: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Derivation of model PDE model

3. Synchronization is a solution of game

Locking

0 0.1 0.2

0.15

0.2

0.25

R−1/ 2

γγIncoherence

R > Rc(γ)

Synchrony

IncoherenceR−1/ 2

η(ω)

0. 1 0.15 0. 2 0.25 0. 3 0.350. 1

0.15

0. 2

0.25

ω= 0.95

ω= 1

ω= 1.05

R > Rc

η(ω) = η0

R < R

c

η(ω) < η0

c

synchrony soln.

dθi = (ωi +ui)dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i ]ds η(ω) = min

uiηi(ui;uo

−i)

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1t = 38.24

Synchrony solution of

Yin et al., “Synchronization of oscillators is a game,” ACC2010P. G. Mehta (UIUC) GERAD Apr. 20, 2010 30 / 75

Page 55: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 56: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Incoherence solution

Overview of the steps

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

Assume c•(ϑ ,θ) = c•(ϑ −θ) = 12 sin2

(ϑ −θ

2

)Incoherence solution

h(θ , t,ω) = h0(θ) := 0 p(θ , t,ω) = p0(θ) :=1

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 32 / 75

Page 57: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 58: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Bifurcation analysis

Linearization and spectra

Linearized PDE (about incoherence solution)

∂ tz(θ , t,ω) =

(−ω∂θ h− c− σ2

2 ∂ 2θθ

h−ω∂θ p+ 1

2πR ∂ 2θθ

h+ σ2

2 ∂ 2θθ

p

)=: LRz(θ , t,ω)

Spectrum of the linear operator1 Continuous spectrum S(k)+∞

k=−∞

S(k) :=λ ∈ C

∣∣λ =±σ2

2k2− kωi for all ω ∈Ω

2 Discrete spectrum

Characteristic eqn:1

8R

∫Ω

g(ω)

(λ − σ2

2 +ωi)(λ + σ2

2 +ωi)dω +1 = 0.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 34 / 75

Page 59: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Bifurcation analysis

Linearization and spectra

Linearized PDE (about incoherence solution)

∂ tz(θ , t,ω) =

(−ω∂θ h− c− σ2

2 ∂ 2θθ

h−ω∂θ p+ 1

2πR ∂ 2θθ

h+ σ2

2 ∂ 2θθ

p

)=: LRz(θ , t,ω)

Spectrum of the linear operator1 Continuous spectrum S(k)+∞

k=−∞

S(k) :=λ ∈ C

∣∣λ =±σ2

2k2− kωi for all ω ∈Ω

2 Discrete spectrum

Characteristic eqn:1

8R

∫Ω

g(ω)

(λ − σ2

2 +ωi)(λ + σ2

2 +ωi)dω +1 = 0.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 34 / 75

Page 60: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Bifurcation analysis

Linearization and spectra

Linearized PDE (about incoherence solution)

∂ tz(θ , t,ω) =

(−ω∂θ h− c− σ2

2 ∂ 2θθ

h−ω∂θ p+ 1

2πR ∂ 2θθ

h+ σ2

2 ∂ 2θθ

p

)=: LRz(θ , t,ω)

Spectrum of the linear operator1 Continuous spectrum S(k)+∞

k=−∞

S(k) :=λ ∈ C

∣∣λ =±σ2

2k2− kωi for all ω ∈Ω

−0.2 −0.1 0 0.1 0.2 0.3

−3

−2

−1

0

1

2

3

real

ima

g

γ = 0.1

R decreases

k=2 k=2

k=1 k=1

2 Discrete spectrum

Characteristic eqn:1

8R

∫Ω

g(ω)

(λ − σ2

2 +ωi)(λ + σ2

2 +ωi)dω +1 = 0.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 34 / 75

Page 61: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Bifurcation analysis

Linearization and spectra

Linearized PDE (about incoherence solution)

∂ tz(θ , t,ω) =

(−ω∂θ h− c− σ2

2 ∂ 2θθ

h−ω∂θ p+ 1

2πR ∂ 2θθ

h+ σ2

2 ∂ 2θθ

p

)=: LRz(θ , t,ω)

Spectrum of the linear operator1 Continuous spectrum S(k)+∞

k=−∞

S(k) :=λ ∈ C

∣∣λ =±σ2

2k2− kωi for all ω ∈Ω

−0.2 −0.1 0 0.1 0.2 0.3

−3

−2

−1

0

1

2

3

real

ima

g

γ = 0.1

R decreases

k=2 k=2

k=1 k=1

2 Discrete spectrum

Characteristic eqn:1

8R

∫Ω

g(ω)

(λ − σ2

2 +ωi)(λ + σ2

2 +ωi)dω +1 = 0.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 34 / 75

Page 62: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Bifurcation analysis

Bifurcation diagram (Hamiltonian Hopf)

Characteristic eqn:1

8R

∫Ω

g(ω)

(λ − σ2

2 +ωi)(λ + σ2

2 +ωi)dω +1 = 0.

Stability proof

[3] Dellnitz et al., Int. Series Num. Math., 1992

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 35 / 75

Page 63: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Bifurcation analysis

Bifurcation diagram (Hamiltonian Hopf)

Characteristic eqn:1

8R

∫Ω

g(ω)

(λ − σ2

2 +ωi)(λ + σ2

2 +ωi)dω +1 = 0.

Stability proof

−0.2 −0.1 0 0.1 0.2

-0.6

-0.8

-1

-1.2

-1.4

real

imag

(a)

Cont. spectrum; ind. of RDisc. spectrum; fn. of R

Bifurcation point

[3] Dellnitz et al., Int. Series Num. Math., 1992

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 35 / 75

Page 64: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Bifurcation analysis

Bifurcation diagram (Hamiltonian Hopf)

Characteristic eqn:1

8R

∫Ω

g(ω)

(λ − σ2

2 +ωi)(λ + σ2

2 +ωi)dω +1 = 0.

Stability proof

−0.2 −0.1 0 0.1 0.2

-0.6

-0.8

-1

-1.2

-1.4

real

imag

(a)

Cont. spectrum; ind. of RDisc. spectrum; fn. of R

Bifurcation point

0 0.05 0.1 0.15 0.215

20

25

30

35

40

45

50

Incoherence

R > RR

c(γ

γ

) (c))

Synchrony

0.05

[3] Dellnitz et al., Int. Series Num. Math., 1992

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 35 / 75

Page 65: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 66: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Numerical solution of PDEs

Incoherence; R = 60incoherence

incoherence

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 37 / 75

Page 67: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Numerical solution of PDEs

Incoherence; R = 60incoherence

incoherence

Synchrony; R = 10

synchrony

synchrony

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 37 / 75

Page 68: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Bifurcation diagram

Locking

0 0.1 0.2

0.15

0.2

0.25

R−1/ 2

γγIncoherence

R > Rc(γ)

Synchrony

Incoherence R−1/2

η(ω)

0. 1 0.15 0. 2 0.25 0. 3 0.35

0. 1

0.15

0. 2

0.25

ω = 0.95

ω = 1

ω = 1.05

R > Rc

η(ω) = η0

R < Rc

η(ω) < η0

dθi = (ωi +ui)dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i ]ds

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 38 / 75

Page 69: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Bifurcation diagram

Locking

0 0.1 0.2

0.15

0.2

0.25

R−1/ 2

γγIncoherence

R > Rc(γ)

Synchrony

Incoherence R−1/2

η(ω)

0. 1 0.15 0. 2 0.25 0. 3 0.35

0. 1

0.15

0. 2

0.25

ω = 0.95

ω = 1

ω = 1.05

R > Rc

η(ω) = η0

R < Rc

η(ω) < η0

incoherence soln.

dθi = (ωi +ui)dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i ]ds

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 38 / 75

Page 70: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Bifurcation diagram

Locking

0 0.1 0.2

0.15

0.2

0.25

R−1/ 2

γγIncoherence

R > Rc(γ)

Synchrony

Incoherence R−1/2

η(ω)

0. 1 0.15 0. 2 0.25 0. 3 0.35

0. 1

0.15

0. 2

0.25

ω = 0.95

ω = 1

ω = 1.05

R > Rc

η(ω) = η0

R < Rc

η(ω) < η0

synchrony soln.

dθi = (ωi +ui)dt +σ dξi

ηi(ui;u−i) = limT→∞

1T

∫ T

0E[c(θi;θ−i)+ 1

2 Ru2i ]ds

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 38 / 75

Page 71: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Bifurcation diagram with another cost

c•(θ ,ϑ) = 0.25(1− cos(θ −ϑ))

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

R−1/2

0 1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

p

R = 23.8359

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 39 / 75

Page 72: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Bifurcation diagram with another cost

c•(θ ,ϑ) = 0.25(1− cos(θ −ϑ))

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

R−1/2

0 1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

p

R = 23.8359

0 1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

p

R = 23.8359

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 39 / 75

Page 73: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Bifurcation diagram with another cost

c•(θ ,ϑ) = 0.25(1− cos(θ −ϑ))

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

R−1/2

0 1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

p

R = 23.8359

c•(θ ,ϑ) = 1− cos(θ −ϑ)− cos3(θ −ϑ)

0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

R−1/2

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 40 / 75

Page 74: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Analysis of phase transition Numerics

Bifurcation diagram with another cost

c•(θ ,ϑ) = 0.25(1− cos(θ −ϑ))

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

R−1/2

0 1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

p

R = 23.8359

c•(θ ,ϑ) = 1− cos(θ −ϑ)− cos3(θ −ϑ)

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

θ

p

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 40 / 75

Page 75: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 76: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Q-function approximation

Comparison to Kuramoto law

Control law u = ϕ(θ , t,ω) =− 1R

∂θ h(θ , t,ω)

−0.2

0

0.2

0.4

0.6

ω = 0.95

ω = 1

ω = 1.05

PopulationDensity

Control laws

0 π 2π θ

Equivalent control law in Kuramoto oscillator

u(Kur)i =

κ

N

N

∑j=1

sin(θj(t)−θi)N→∞≈ κ0 sin(ϑ0 + t−θi)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 42 / 75

Page 77: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Q-function approximation

Comparison to Kuramoto law

Control law u = ϕ(θ , t,ω) =− 1R

∂θ h(θ , t,ω)

−0.2

0

0.2

0.4

0.6

ω = 0.95

ω = 1

ω = 1.05

Kuramoto

Population

Density

Control laws

0 π 2π θ

Equivalent control law in Kuramoto oscillator

u(Kur)i =

κ

N

N

∑j=1

sin(θj(t)−θi)N→∞≈ κ0 sin(ϑ0 + t−θi)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 42 / 75

Page 78: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Q-function approximation

Optimality equation minuic(θ ;θ−i(t))+ 1

2 Ru2i +Duihi(θ , t)︸ ︷︷ ︸

=: Hi(θ ,ui;θ−i(t))

= η∗i

Optimal control law Kuramoto law

u∗i =− 1R

∂θ hi(θ , t) u(Kur)i =−κ

N ∑j 6=i

sin(θi−θj(t))

Parameterization:

H(Ai,φi)i (θ ,ui;θ−i(t))= c(θ ;θ−i(t))+ 1

2 Ru2i +(ωi−1+ui)AiS(φi)+

σ2

2AiC(φi)

where

S(φ)(θ ,θ−i) =1N ∑

j 6=isin(θ −θj−φ), C(φ)(θ ,θ−i) =

1N ∑

j 6=icos(θ −θj−φ)

Approx. optimal control:

u(Ai,φi)i = argmin

ui

H(Ai,φi)i (θ ,ui;θ−i(t))=−Ai

RS(φi)(θ ,θ−i)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 43 / 75

Page 79: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Q-function approximation

Optimality equation minuic(θ ;θ−i(t))+ 1

2 Ru2i +Duihi(θ , t)︸ ︷︷ ︸

=: Hi(θ ,ui;θ−i(t))

= η∗i

Optimal control law Kuramoto law

u∗i =− 1R

∂θ hi(θ , t) u(Kur)i =−κ

N ∑j 6=i

sin(θi−θj(t))

Parameterization:

H(Ai,φi)i (θ ,ui;θ−i(t))= c(θ ;θ−i(t))+ 1

2 Ru2i +(ωi−1+ui)AiS(φi)+

σ2

2AiC(φi)

where

S(φ)(θ ,θ−i) =1N ∑

j 6=isin(θ −θj−φ), C(φ)(θ ,θ−i) =

1N ∑

j 6=icos(θ −θj−φ)

Approx. optimal control:

u(Ai,φi)i = argmin

ui

H(Ai,φi)i (θ ,ui;θ−i(t))=−Ai

RS(φi)(θ ,θ−i)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 43 / 75

Page 80: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Q-function approximation

Optimality equation minuic(θ ;θ−i(t))+ 1

2 Ru2i +Duihi(θ , t)︸ ︷︷ ︸

=: Hi(θ ,ui;θ−i(t))

= η∗i

Optimal control law Kuramoto law

u∗i =− 1R

∂θ hi(θ , t) u(Kur)i =−κ

N ∑j 6=i

sin(θi−θj(t))

Parameterization:

H(Ai,φi)i (θ ,ui;θ−i(t))= c(θ ;θ−i(t))+ 1

2 Ru2i +(ωi−1+ui)AiS(φi)+

σ2

2AiC(φi)

where

S(φ)(θ ,θ−i) =1N ∑

j 6=isin(θ −θj−φ), C(φ)(θ ,θ−i) =

1N ∑

j 6=icos(θ −θj−φ)

Approx. optimal control:

u(Ai,φi)i = argmin

ui

H(Ai,φi)i (θ ,ui;θ−i(t))=−Ai

RS(φi)(θ ,θ−i)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 43 / 75

Page 81: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Q-function approximation

Optimality equation minuic(θ ;θ−i(t))+ 1

2 Ru2i +Duihi(θ , t)︸ ︷︷ ︸

=: Hi(θ ,ui;θ−i(t))

= η∗i

Optimal control law Kuramoto law

u∗i =− 1R

∂θ hi(θ , t) u(Kur)i =−κ

N ∑j 6=i

sin(θi−θj(t))

Parameterization:

H(Ai,φi)i (θ ,ui;θ−i(t))= c(θ ;θ−i(t))+ 1

2 Ru2i +(ωi−1+ui)AiS(φi)+

σ2

2AiC(φi)

where

S(φ)(θ ,θ−i) =1N ∑

j 6=isin(θ −θj−φ), C(φ)(θ ,θ−i) =

1N ∑

j 6=icos(θ −θj−φ)

Approx. optimal control:

u(Ai,φi)i = argmin

ui

H(Ai,φi)i (θ ,ui;θ−i(t))=−Ai

RS(φi)(θ ,θ−i)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 43 / 75

Page 82: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

1 MotivationWhy a game?Why Oscillators?

2 Problems and resultsProblem statementMain results

3 Derivation of modelOverviewDerivation stepsPDE model

4 Analysis of phase transitionIncoherence solutionBifurcation analysisNumerics

5 LearningQ-function approximationSteepest descent algorithm

Page 83: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Steepest descent algorithm

Bellman error:

Pointwise: L (Ai,φi)(θ , t) = minuiH(Ai,φi)

i −η(A∗i ,φ

∗i )

i

Simple gradient descent algorithm

e(Ai,φi) =2

∑k=1|〈L (Ai,φi), ϕk(θ)〉|2

dAi

dt=−ε

de(Ai,φi)dAi

,dφi

dt=−ε

de(Ai,φi)dφi

(∗)

Theorem (Convergence)

Assume population is in synchrony. The ith oscillator updatesaccording to (∗). Then

Ai(t)→ A∗ =1

2σ2

The pointwise Bellman error L (Ai,0)(θ , t) = ε(R)cos2(θ − t)

where ε(R) =1

16Rσ4

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 45 / 75

Page 84: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Steepest descent algorithm

Phase transition

Suppose all oscillators use approx. optimal control law:

ui =−A∗

R1N ∑

j 6=isin(θi−θj(t))

then the phase transition boundary is

Rc(γ) =

1

2σ4 if γ = 01

4σ2γtan−1

(2γ

σ2

)if γ > 0

0 50 100 150 200 250 3002

2.5

3

3.5

4

4.5

5

5.5

6

t

k = 0.01; R = 1000

Ai

A*

0 0.05 0.1 0.15 0.215

20

25

30

35

40

45

50

γ

R

PDE

Learning

Incoherence

Synchrony

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 46 / 75

Page 85: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Steepest descent algorithm

Comparison of control laws

From PDE: ui = ϕ(θ , t,ω)∣∣∣∣ω=ωi

=− 1R

∂θ h(θ , t,ω)∣∣∣∣ω=ωi

From learning: ui =−A∗

R1N ∑

j6=isin(θi−θj(t)−φi)

θθ

Population

Density

Population

Density

0 π 2π 0 π 2π

ω = 0.95

ω = 0.1

Control laws

PDE

Learning

ω = 1.05

ω = 0.95

ω = 0.1

ω = 1.05

0.20.1 0.2

0.6

0.4

0.2

0

-0.4

-0.2

0.1

0

-0.1

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 47 / 75

Page 86: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Learning Steepest descent algorithm

Comparison of average cost

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

PDE Learning

ω = 0.95

ω = 0.1

ω = 1.05

Average Cost

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 48 / 75

Page 87: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Thank you!

Website: http://www.mechse.illinois.edu/research/mehtapg

Huibing Yin Sean P. Meyn Uday V. Shanbhag

H. Yin, P. G. Mehta, S. P. Meyn and U. V. Shanbhag, “Synchronization of coupled oscillators is a game,” ACC 2010

Page 88: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Part I

Apendix

Page 89: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

6 AppendixGame-theoretic results (ε-Nash)StabilityNumericsLinearization/SpectraModelingMultiple oscillatorsLearningThe New Yorker excerpt

7 Bibliography

Page 90: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Game-theoretic results (ε-Nash)

Infinit population limit

Recall the PDE model

∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η

∗− σ2

2∂

2θθ h

∂tp+ω∂θ p =1R

∂θ [p(∂θ h)]+σ2

2∂

2θθ p

c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ)p(θ , t,ω)g(ω)dθ dω

Solution h(θ , t,ω)

Control uoi (t) :=− 1

R∂θ h(θ , t,ω)

∣∣ω=ωi

By construction:ηi(uo

i ; c)≤ ηi(ui; c)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 52 / 75

Page 91: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Game-theoretic results (ε-Nash)

Finite population

Finite population cost

c(N)i (ϑ , t) := E

[1N ∑

j 6=ic•(θi(t);θ

o−i(t)

∣∣θi(t) = ϑ)]

θo−i = (θ o

1 , . . . ,θ oi−1,θ

oi+1, . . . ,θ

oN) with θ

oi (t) obtained from dynamics

with control ui = uoi (t)

Lemma 1: for each i = 1, . . . ,N

maxϑ∈[0,2π]

[limsup

T→∞

1T

∫ T

0|c(ϑ ,s)− c(N)

i (ϑ ,s)|ds]

= O(1√N

)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 53 / 75

Page 92: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Game-theoretic results (ε-Nash)

ε-Nash equilibrium

Theorem

The control uoi (t) =− 1

R∂θ h(θ(t), t,ω)

∣∣ω=ωiN

i=1 is an ε-Nash

equilibrium with respect to the finite population cost

η(POP)i (ui;uo

−i) = limT→∞

1T

∫ T

0c(N)

i + 12 Ru2

i ds;

i.e., for any adapted control ui,

η(POP)i (uo

i ;uo−i)≤ η

(POP)i (ui;uo

−i)+O(1√N

), i = 1, . . . ,N.

c(N)i (ϑ , t) := E[c(θi(t);θ

o−i(t))|θi(t) = ϑ ]

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 54 / 75

Page 93: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

6 AppendixGame-theoretic results (ε-Nash)StabilityNumericsLinearization/SpectraModelingMultiple oscillatorsLearningThe New Yorker excerpt

7 Bibliography

Page 94: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Stability

Stability proofdxdt

=−ax+by, a > 0 ⇐ FPK eqn

dydt

= cx+ay, bc < 0 ⇐ HJB eqn

with boundary conditions x(0) = x0 and y(∞) = 0

x(t) = eatx0 +b∫ t

0e−a(t−τ)y(τ)dτ,

y(t) =−c∫

tea(t−τ)x(τ)dτ.

For x0 = 0, equilibrium solution x(t)≡ 0, y(t)≡ 0Characteristic equation σ

2 = a2 +bc.Stable in the sense that

The equilibrium solution is asymptotically stable if for any initialperturbation x0, the solution x(t)→ 0 as t→ ∞. Return to spectrum

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 56 / 75

Page 95: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

6 AppendixGame-theoretic results (ε-Nash)StabilityNumericsLinearization/SpectraModelingMultiple oscillatorsLearningThe New Yorker excerpt

7 Bibliography

Page 96: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Numerics

Algorithm for solving PDEs

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

V(θ , t,ω) = h(θ ,T− s,ω) Iterative algorithm

s

tForward time

Backward time

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 58 / 75

Page 97: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Numerics

Algorithm for solving PDEs

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

V(θ , t,ω) = h(θ ,T− s,ω) Iterative algorithm

s

tForward time

Backward time

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 58 / 75

Page 98: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Numerics

Algorithm for solving PDEs

HJB: ∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t) +η

∗− σ2

2∂

2θθ h ⇒ h(θ , t,ω)

FPK: ∂tp+ω∂θ p =1R

∂θ [p( ∂θ h )]+σ2

2∂

2θθ p ⇒ p(θ , t,ω)

c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ) p(θ , t,ω) g(ω)dθ dω

V(θ , t,ω) = h(θ ,T− s,ω) Iterative algorithm

s

tForward time

Backward time

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 58 / 75

Page 99: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Numerics

Numerical solution of PDEs

Incoherence; R = 60incoherence

0 0.05 0.1 0.15 0.215

20

25

30

35

40

45

50

Incoherence

R > RR

c(γ

γ

) (c))

Synchrony

0.05

p(θ , t,ω) at given position θ

0 20 40 60 80 100 120 140 160 180 2000.1

0.12

0.14

0.16

0.18

0.2

t

p(θ

,t,ω

)

γ = 0.01; Iter = 1

100 105 110 115 120 125 130 135 140 145 1500.1634

0.1636

0.1638

0.164

0.1642

t

p(θ

,t,ω

)

0 20 40 60 80 100 120 140 160 180 2000.1

0.12

0.14

0.16

0.18

0.2

t

p(θ

,t,ω

)

γ = 0.01; Iter = 4

100 105 110 115 120 125 130 135 140 145 1500.162

0.164

0.166

0.168

t

p(θ

,t,ω

)

0 20 40 60 80 100 120 140 160 180 2000.1

0.12

0.14

0.16

0.18

0.2

t

p(θ

,t,ω

)

γ = 0.01; Iter = 19

100 105 110 115 120 125 130 135 140 145 1500.155

0.16

0.165

0.17

t

p(θ

,t,ω

)

Iter = 1 Iter=4 Iter=19

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 59 / 75

Page 100: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Numerics

Numerical solution of PDEs

Synchrony; R = 10

synchrony

synchrony

p(θ , t,ω) at given position θ

0 20 40 60 80 100 120 140 160 180 2000.1

0.15

0.2

0.25

t

p(θ

,t,ω

)

γ = 0.01; Iter = 1

100 105 110 115 120 125 130 135 140 145 1500.154

0.1542

0.1544

0.1546

t

p(θ

,t,ω

)

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

t

p(θ

,t,ω

)

γ = 0.01; Iter = 4

100 105 110 115 120 125 130 135 140 145 1500.05

0.1

0.15

0.2

0.25

t

p(θ

,t,ω

)

0 20 40 60 80 100 120 140 160 180 200−0.5

0

0.5

1

t

p(θ

,t,ω

)

γ = 0.01; Iter = 19

100 105 110 115 120 125 130 135 140 145 150−0.5

0

0.5

1

t

p(θ

,t,ω

)Iter = 1 Iter=4 Iter=19

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 59 / 75

Page 101: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

6 AppendixGame-theoretic results (ε-Nash)StabilityNumericsLinearization/SpectraModelingMultiple oscillatorsLearningThe New Yorker excerpt

7 Bibliography

Page 102: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Linearization/Spectra

Linearization

∂ tz(θ , t,ω) =

(−ω∂θ h− c− σ2

2 ∂ 2θθ

h−ω∂θ p+ 1

2πR ∂ 2θθ

h+ σ2

2 ∂ 2θθ

p

)

Eigenvector problem λZ = LRZ

Fourier series expansion with respect to θ

H =+∞

∑k=−∞

Hk(ω)eikθ , P =+∞

∑k=−∞

Pk(ω)eikθ

Decomposition of the linear operator LR =⊕kL(k)

R

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 61 / 75

Page 103: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Linearization/Spectra

Linearization (cont.)

Individual operator

L(1)

R :=

(σ2

2 −ωi π

4∫

Ω·g(ω)dω

− 12πR −σ2

2 −ωi

)

L(k)

R :=

(σ2

2 k2− kωi 0− k2

2πR −σ2

2 k2− kωi

), k ≥ 2

L(−k)

R = L(k)

RContinuous spectrum S(k)+∞

k=−∞

S(k) :=

λ ∈ C∣∣λ =±σ2

2k2− kωi for all ω ∈Ω

Discrete spectrum coincides with the discrete spectrum of L

(±1)R

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 62 / 75

Page 104: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

6 AppendixGame-theoretic results (ε-Nash)StabilityNumericsLinearization/SpectraModelingMultiple oscillatorsLearningThe New Yorker excerpt

7 Bibliography

Page 105: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Modeling

Neuron

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 64 / 75

Page 106: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Modeling

Neuron

Equivalent circuits

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 64 / 75

Page 107: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Modeling

Finite oscillator model

Dynamics of ith oscillator [10]:

dθi = (ωi +ui(t))dt +σ dξi, i = 1, . . . ,N, t ≥ 0 (1)

θi— phase of the oscillatorξi— mutually independent Wiener processesωi — constant and chosen independently according to a fixeddistribution with density gui(t) — control

1- 1+1

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 65 / 75

Page 108: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Modeling

Finite oscillator model (cont.)

ith oscillator seeks to minimize

η(POP)i (ui;u−i) = lim

T→∞

1T

∫ T

0E[ c(θi;θ−i)︸ ︷︷ ︸

cost of anarchy

+ 12 Ru2

i︸ ︷︷ ︸cost of control

]ds

θ−i = (θj)j6=iR — control penaltyc(·) — cost function

c(θi;θ−i) =1N ∑

j 6=ic•(θi,θj), c• ≥ 0

u∗i Ni=1 Nash equilibrium if

u∗i minimizes η(POP)i (ui;u∗−i), for i = 1, . . . ,N.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 66 / 75

Page 109: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Modeling

Intuition

ith oscillator seeks to minimize

η(POP)i (ui;u−i) = lim

T→∞

1T

∫ T

0E[ c(θi;θ−i)︸ ︷︷ ︸

cost of anarchy

+ 12 Ru2

i︸ ︷︷ ︸cost of control

]ds

Trade-off between reducing the two costs

Cost associated with θi 6= θj: c(θi;θ−i) =1N ∑

j6=ic•(θi−θj)

Cost associated with control: 12 Ru2

i

Qualitative macro-behavior change when R varies

0 0.05 0.1 0.15 0.215

20

25

30

35

40

45

50

Incoherence

R > RR

c(γ

γ

) (c))

Synchrony

0.05

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 67 / 75

Page 110: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

6 AppendixGame-theoretic results (ε-Nash)StabilityNumericsLinearization/SpectraModelingMultiple oscillatorsLearningThe New Yorker excerpt

7 Bibliography

Page 111: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Multiple oscillators

PDE model (as N→ ∞)

HJB equation⇒ obtain optimal control

∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η

∗− σ2

2∂

2θθ h (2)

h(θ , t,ω)— relative value functionη∗(ω)— average optimal cost

Optimal feed-back control law ϕ(θ , t,ω) :=− 1R

∂θ h(θ , t,ω)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 69 / 75

Page 112: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Multiple oscillators

PDE model (as N→ ∞)

HJB equation⇒ obtain optimal control

∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η

∗− σ2

2∂

2θθ h (2)

h(θ , t,ω)— relative value functionη∗(ω)— average optimal cost

Optimal feed-back control law ϕ(θ , t,ω) :=− 1R

∂θ h(θ , t,ω)

Fokker-Planck-Kolmogorov (FPK) equation

dθi(t) = (ωi +ui(t))dt +σ dξi, i = 1, . . . ,N

replaced by: ∂tp+∂θ

((ω + ϕ )p

)=

σ2

2∂

2θθ p

p(θ , t,ω) — probability density function

[10] Strogatz et al., Journal of Statistical Physics, 1991

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 69 / 75

Page 113: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Multiple oscillators

PDE model (as N→ ∞)

HJB equation⇒ obtain optimal control

∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η

∗− σ2

2∂

2θθ h (2)

h(θ , t,ω)— relative value functionη∗(ω)— average optimal cost

Optimal feed-back control law ϕ(θ , t,ω) :=− 1R

∂θ h(θ , t,ω)

Fokker-Planck-Kolmogorov (FPK) equation

dθi(t) = (ωi +ui(t))dt +σ dξi, i = 1, . . . ,N

replaced by: ∂tp+∂θ

((ω + ϕ )p

)=

σ2

2∂

2θθ p

p(θ , t,ω) — probability density function

[10] Strogatz et al., Journal of Statistical Physics, 1991

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 69 / 75

Page 114: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Multiple oscillators

PDE model (as N→ ∞)

HJB equation⇒ obtain optimal control

∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η

∗− σ2

2∂

2θθ h (2)

h(θ , t,ω)— relative value functionη∗(ω)— average optimal cost

Optimal feed-back control law ϕ(θ , t,ω) :=− 1R

∂θ h(θ , t,ω)

FPK equation⇒ evolution of population phase angles

∂tp+ω∂θ p =1R

∂θ [p(∂θ h)]+σ2

2∂

2θθ p (3)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 69 / 75

Page 115: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Multiple oscillators

PDE model (as N→ ∞)

HJB equation⇒ obtain optimal control

∂th+ω∂θ h =1

2R(∂θ h)2− c(θ , t)+η

∗− σ2

2∂

2θθ h (2)

h(θ , t,ω)— relative value functionη∗(ω)— average optimal cost

Optimal feed-back control law ϕ(θ , t,ω) :=− 1R

∂θ h(θ , t,ω)

FPK equation⇒ evolution of population phase angles

∂tp+ω∂θ p =1R

∂θ [p(∂θ h)]+σ2

2∂

2θθ p ⇒ (3)

Generate cost:∫

Ω

∫ 2π

0c•(ϑ ,θ)p(θ , t,ω)g(ω)dθ dω

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 69 / 75

Page 116: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Multiple oscillators

Consistency

Consistency requirement on deterministic mass influence

c(ϑ , t) =∫

Ω

∫ 2π

0c•(ϑ ,θ)p(θ , t,ω)g(ω)dθ dω

Recall: c(θi;θ−i) =1N ∑

j 6=ic•(θi,θj)

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 70 / 75

Page 117: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

6 AppendixGame-theoretic results (ε-Nash)StabilityNumericsLinearization/SpectraModelingMultiple oscillatorsLearningThe New Yorker excerpt

7 Bibliography

Page 118: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Learning

Q-learning

Dynamics of ith agentddt

xi = aixi +biui

ith agent seeks to minimize

ηi = limT→∞

∫ T

0e−γs ((xi(s)− z(s))2 +u2

i (s))

ds

Control ui =−kixxi− ki

zz

0 1 2 3 4 5 6 7 8 9 10

−0.0

0.0

0

1

-1

(indi

vidu

al st

ate)

(ens

embl

e st

ate)

Agent 4

[8] P. Mehta and S. Meyn, CDC, 2009

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 72 / 75

Page 119: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix Learning

Control comparison

0.1 0.12 0.14 0.16 0.18 0.2

-0.5

0

-1

0.5

1

0.1 0.12 0.14 0.16 0.18 0.20

0.1

0.2

0.3

0.4

0.5

PDE Learning

ω = 0.95

ω = 0.1

ω = 1.05

Control Amplitude Control Phase

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 73 / 75

Page 120: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

6 AppendixGame-theoretic results (ε-Nash)StabilityNumericsLinearization/SpectraModelingMultiple oscillatorsLearningThe New Yorker excerpt

7 Bibliography

Page 121: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Appendix The New Yorker excerpt

Rational irrationality

The Prisoner’s Dilemma is the obverse of Adam Smith’s theory of theinvisible hand, in which the free market coördinates the behavior ofself-seeking individuals to the benefit of all. Each businessman“intends only his own gain,” Smith wrote in “The Wealth of Nations,”“and he is in this, as in many other cases, led by an invisible hand topromote an end which was no part of his intention.” But in a marketenvironment the individual pursuit of self-interest, however rational,can give way to collective disaster. The invisible hand becomes a fist.

John Cassidy, “Rational Irrationality: The real reason that capitalism is so crash-prone,” The New Yorker, 2009

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 75 / 75

Page 122: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Bibliography

Dimitri P. Bertsekas.Dynamic Programming and Optimal Control, volume 1.Athena Scientific, Belmont, Massachusetts, 1995.

Eric Brown, Jeff Moehlis, and Philip Holmes.On the phase reduction and response dynamics of neuraloscillator populations.Neural Computation, 16(4):673–715, 2004.

M. Dellnitz, J.E. Marsden, I. Melbourne, and J. Scheurle.Generic bifurcations of pendula.Int. Series Num. Math., 104:111–122, 1992.

J. Guckenheimer.Isochrons and phaseless sets.J. Math. Biol., 1:259–273, 1975.

Minyi Huang, Peter E. Caines, and Roland P. Malhame.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 75 / 75

Page 123: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Bibliography

Large-population cost-coupled LQG problems with nonuniformagents: Individual-mass behavior and decentralized ε-nashequilibria.IEEE transactions on automatic control, 52(9):1560–1571, 2007.

Y. Kuramoto.International Symposium on Mathematical Problems in TheoreticalPhysics, volume 39 of Lecture Notes in Physics.Springer-Verlag, 1975.

Andrzej Lasota and Michael C. Mackey.Chaos, Fractals and Noise.Springer, 1994.

P. Mehta and S. Meyn.Q-learning and Pontryagin’s Minimum Principle.To appear, 48th IEEE Conference on Decision and Control,December 16-18 2009.

Sean P. Meyn.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 75 / 75

Page 124: Synchronization of coupled oscillators is a game2. Kuramoto control is approximately optimal i 5 3.5 u i = A i R 1 N å j6=i sin(q q j(t)) 0 50 100 150 200 250 300 2 2.5 3 4 4.5 5.5

Bibliography

The policy iteration algorithm for average reward markov decisionprocesses with general state space.IEEE Transactions on Automatic Control, 42(12):1663–1680,December 1997.

S. H. Strogatz and R. E. Mirollo.Stability of incoherence in a population of coupled oscillators.Journal of Statistical Physics, 63:613–635, May 1991.

Steven H. Strogatz, Daniel M. Abrams, Bruno Eckhardt, andEdward Ott.Theoretical mechanics: Crowd synchrony on the millenniumbridge.Nature, 438:43–44, 2005.

P. G. Mehta (UIUC) GERAD Apr. 20, 2010 75 / 75