Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High...

17
1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti 3 C 2 MXene Quantum Dots Quan Xu, a* Lan Ding, a Yangyang Wen, a Wenjing Yang, a Hongjun Zhou, a Xingzhu Chen, b Jason Street, c Aiguo Zhou, d Wee-Jun Ong, e Neng Li, b* AUTHOR ADDRESS: a. State Key Laboratory of Heavy Oil Processing, China University of petroleum(Beijing), 102249, China b. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei, 430070, China c. Department of Sustainable Bioproducts, Mississippi State University, 39762, USA d. School of Materials Science and Engineering, Henan Polytechnic University, 454003, China e. Department of Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Transcript of Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High...

Page 1: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

1

Supporting Information

High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2

MXene Quantum Dots

Quan Xu,a* Lan Ding, a Yangyang Wen, a Wenjing Yang, a Hongjun Zhou, a Xingzhu Chen, b

Jason Street, c Aiguo Zhou, d Wee-Jun Ong, e Neng Li, b*

AUTHOR ADDRESS:

a. State Key Laboratory of Heavy Oil Processing, China University of petroleum(Beijing),

102249, China

b. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of

Technology, Hubei, 430070, China

c. Department of Sustainable Bioproducts, Mississippi State University, 39762, USA

d. School of Materials Science and Engineering, Henan Polytechnic University, 454003, China

e. Department of Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar

Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.This journal is © The Royal Society of Chemistry 2019

Page 2: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

2

Table S1. The quantum yields up of the as-prepared N-MQDs and other material.

Samples quantum yields up (%) Ref

N-MQDs (160°C) 18.7 This paper

Ti3C2 QDs 10 [18]

Ti3C2 QDs

MoS2 QDs

7.13

4.4

[19]

[20]

Page 3: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

3

Table S2. Nitrogen atomic percentage of various chemical states in the as-prepared N-MQDs

(from N1s high-resolution XPS).

Samples N-H (%) pyrrole-like nitrogen (%) graphitic nitrogen (%) Ti-N (%)

N-MQDs (120°C) 65.2 34.8 0 2.5

N-MQDs (160°C) 0 51.6 45.7 2.7

N-MQDs (200°C) 0 14.2 82.8 3

Page 4: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

4

Fig. S1. Diagram of the energy levels and charge-transfer processes inside the MQDs and N-

MQDs materials.

Figure S2. SEM image of the pristine Ti3C2.

Page 5: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

5

Figure S3. (a-c) TEM-EDS elemental mapping images of the pristine Ti3C2 sheet.

(a) (b) (c)

Page 6: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

6

Figure S4. (a) TEM and (b) HRTEM images of the treated Ti3C2 (suspended in concentrated

sulphuric acid in an oil bath at 100°C for 24 h).

(a) (b)

Page 7: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

7

Figure S5. Diameter size distribution of N-MQDs of different hydrothermal temperature

treatments: (a) 120oC, (b) 160oC, and (c) 200oC.

(a)

2 3 4 5 6 7 8 9 100

10

20

30

40

Per

cen

tag

e (%

)

Diamater (nm)

Page 8: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

8

Figure S6. Thickness distribution of the prepared N-MQDs treated at (a) 120oC, (b) 160oC, and

(c) 200oC.

(a) (b) (c)

Page 9: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

9

Figure S7. AFM images of the prepared N-MQDs treated at (a) 120oC, (b) 160oC, and (c)

200oC.

(a) (b) (c)

Page 10: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

10

Figure S8. (a) XRD spectra of N-MQDs (160°C), pristine Ti3C2 and Ti3AlC2. (b) Normalized

GIXRD patterns of pristine Ti3C2 and N-MQDs.

10 15 20

2 (degree)

No

rma

lize

d I

nte

ns

ity

(a

.u.) (0

04)

(002)

N-MQDs (160°C)

N-MQDs (200°C)

N-MQDs (120°C)

Pristine Ti3C

2

d-spacing0.04nm

(a) (b)

10 20 30 40 50 60

TiO2

(00

2)

(10

9)

(10

9)

(10

9)

(00

2)

In

ten

sity

(a

.u.)

2 (degree)

N-MQDs

Pristine Ti3C

2

Ti3AlC

2

(00

2)

(00

4)

(00

4)

(00

4)

Ti

3C

2

Page 11: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

11

Figure S9. (a) Wide-scan XPS spectra for pristine Ti3C2 and N-MQDs. High-resolution XPS

spectra of (b) C1s, (c) N1s, and (d) O1s XPS spectra for the pristine Ti3C2 and N-MQDs.

(b) (c) (d)

(a)

538 536 534 532 530 528 526

Ti-O-H

Ti-O-Ti

Co

un

ts (

a.u

.)

Binding energy (eV)

C-O

C=O

C-OH Ti-O

N-MQDs (200°C)

N-MQDs (160°C)

N-MQDs (120°C)

Pristine Ti3C

2

410 408 406 404 402 400 398 396

N-H

N-MQDs (200°C)

N-MQDs (160°C)

N-MQDs (120°C)

Cou

nts

(a.u

.)

C-N C=NN-Ti

Pristine Ti3C

2

Binding energy (eV)294 292 290 288 286 284 282 280

Binding energy (eV)

C=O C-O

C-N-H

C=O

Co

un

ts (

a.u

.)

C=NC-N

C-C

N-Ti3C

2 QDs (200°C)

N-Ti3C

2 QDs (160°C)

N-Ti3C

2 QDs (120°C)

Pristine Ti3C

2

Ti-C

Page 12: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

12

Figure S10. Work function of pristine Ti3C2 QDs (MQDs) and N-MQDs.

Page 13: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

13

Figure S11. Photoluminescence spectra of the N-MQDs treated at different hydrothermal

reaction temperatures: (a) 120oC, (b) 160oC, and (c) 200oC. (d) Photoluminescence spectra (UV

light 360 nm) of N-MQDs, ethanediamine (160°C, 12h) and Ti3C2 (160°C, 12h, without acid

treated).

400 450 500 550 600 6500.0

0.5

1.0

1.5

2.0

2.5

Cou

nts

(1

05)

Wavelength (nm)

360 370

380 390

400 410

420 430

440 450

460 470

480 490

(b)

(c)

(a)

400 450 500 550 600 650

0

1

2

3

Wavelength (nm)

Co

un

ts (

10

5)

360 370

380 390

400 410

420 430

440 450

460 470

480 490

400 450 500 550 600 650

0

1

2

3

Co

un

ts (

10

5)

Wavelength (nm)

N-MQDs (120°C)

N-MQDs (160°C)

N-MQDs (200°C)

ethanediamine (160°C)

Ti3C2 (160°C)

(d)

Page 14: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

14

Figure S12. Lifetime of N-MQDs as a function of hydrothermal reaction temperature.

Page 15: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

15

Figure S13. The fluorescence intensity of N-MQDs at 447 nm excited at 360 nm as a function

of pH.

Page 16: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

16

Figure S14. (a) Time-dependent fluorescence intensity and (b) absorption changes of the N-

MQDs (160oC).

200 300 400 500 600 700-0.2

0.0

0.2

0.4

0 min

1 min

3 min

10 min

30 min

60 min

120 min

240 min

480 min

Ab

sorp

tion

(a.u

.)

Wavelength(nm)

(b)

Page 17: Supporting Information High Photoluminescence Quantum ... · 1 Supporting Information High Photoluminescence Quantum Yield of 18.7% by Nitrogen-Doped Ti3C2 MXene Quantum Dots Quan

17

Figure S15. Time-dependent fluorescence intensity of N-MQDs in (a) 50 μM of H2O2 solution

and (b) 50 μM of Fe2+ solution. (c) The degree of diversity (ΔF) of the N-MQDs with change

over time in the presence of H2O2 (50 μM) and Fe2+ (50 μM) added simultaneously.