Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit...

12
www.sciencemag.org/cgi/content/full/340/6129/157/DC1 Supplementary Materials for Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia Nicholas J. Strausfeld* and Frank Hirth* *Corresponding author. E-mail: [email protected] (N.J.S.); [email protected] (F.H.) Published 12 April 2013, Science 340, 157 (2013) DOI: 10.1126/science.1231828 This PDF file includes: Table S1 Fig. S1 References

Transcript of Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit...

Page 1: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

www.sciencemag.org/cgi/content/full/340/6129/157/DC1

Supplementary Materials for

Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia

Nicholas J. Strausfeld* and Frank Hirth*

*Corresponding author. E-mail: [email protected] (N.J.S.); [email protected] (F.H.)

Published 12 April 2013, Science 340, 157 (2013)

DOI: 10.1126/science.1231828

This PDF file includes:

Table S1

Fig. S1

References

Page 2: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

2

Table S1. Behaviors regulated by neuronal activity of vertebrate basal ganglia and insect central complex. Vertebrate Basal Ganglia Insect Central Complex Striatum, Globus Pallidus Protocerebral Bridge, Subthalamic nucleus, Fan-Shaped Body, Ellipsoid Body, Substantia nigra Lateral Accessory Lobe ___________________________________________________________________________________ Postural muscle tone (78) Coordinated locomotion (78) Coordinated locomotion (47) Goal-directed movement (79) Goal-directed movement (47) Saccadic eye movement (78)

Visual orientation and Visual orientation and space integration (80) space integration (25) Sleep (78) Sleep (39, 41, 82) Arousal (78) Arousal (39, 83) Attention (78) Attention (84) Courtship/sexual behavior (85) Sensorimotor learning (81) Place memory (86, 87) Habit learning (4, 81) Reward-seeking behavior (4, 80) Reward-seeking behavior (40, 43, 88) Emotional expression (78) ___________________________________________________________________________________

Page 3: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

3

Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central complex’s fan-shaped body. The 3-dimensional reconstruction (modified from ref. 47) illustrates the sequence of central complex synaptic neuropils and their spatial arrangements. Rostro-caudally these are: the protocerebral bridge (PB), the fan-shaped body (FB), the noduli (NO), the ellipsoid body (EB), and the lateral accessory complex (LX) comprising the lateral accessory lobe (LAL) and bulb (BU). In Drosophila, but not in other arthropods, the lateral margins of ellipsoid body meet at the midline to form an almost perfect torus.

Page 4: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

1

References

1. M. Stephenson-Jones, E. Samuelsson, J. Ericsson, B. Robertson, S. Grillner, Evolutionary

conservation of the basal ganglia as a common vertebrate mechanism for action selection.

Curr. Biol. 21, 1081 (2011). doi:10.1016/j.cub.2011.05.001 Medline

2. S. Grillner, J. Hellgren, A. Ménard, K. Saitoh, M. A. Wikström, Mechanisms for selection of

basic motor programs—roles for the striatum and pallidum. Trends Neurosci. 28, 364

(2005). doi:10.1016/j.tins.2005.05.004 Medline

3. A. M. Graybiel, The basal ganglia. Curr. Biol. 10, R509 (2000). doi:10.1016/S0960-

9822(00)00593-5 Medline

4. P. Redgrave et al., Goal-directed and habitual control in the basal ganglia: Implications for

Parkinson’s disease. Nat. Rev. Neurosci. 11, 760 (2010). doi:10.1038/nrn2915 Medline

5. N. J. Strausfeld, Arthropod Brains: Evolution, Functional Elegance, and Historical

Significance (Harvard Univ. Press, Cambridge, MA, 2012).

6. K. Furukubo-Tokunaga, Z. N. Ludlow, F. Hirth, in Memory Mechanisms in Health and

Disease, K. P. Giese, Ed. (World Scientific, Singapore, 2012), pp. 269–306.

7. S. W. Wilson, J. L. Rubenstein, Induction and dorsoventral patterning of the telencephalon.

Neuron 28, 641 (2000). doi:10.1016/S0896-6273(00)00171-9 Medline

8. D. Carlin et al., Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by

promoting early expression of Foxg1a and repressing Wnt signaling. Development 139,

2614 (2012). doi:10.1242/dev.076018 Medline

9. A. Simeone, E. Puelles, D. Acampora, The Otx family. Curr. Opin. Genet. Dev. 12, 409

(2002). doi:10.1016/S0959-437X(02)00318-0 Medline

10. M. P. Smidt, J. P. Burbach, How to make a mesodiencephalic dopaminergic neuron. Nat.

Rev. Neurosci. 8, 21 (2007). doi:10.1038/nrn2039 Medline

11. F. Hirth, On the origin and evolution of the tripartite brain. Brain Behav. Evol. 76, 3 (2010).

doi:10.1159/000320218 Medline

Page 5: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

2

12. R. Urbach, G. M. Technau, Dorsoventral patterning of the brain: A comparative approach.

Adv. Exp. Med. Biol. 628, 42 (2008). doi:10.1007/978-0-387-78261-4_3 Medline

13. N. Posnien, N. D. Koniszewski, H. J. Hein, G. Bucher, Candidate gene screen in the red flour

beetle Tribolium reveals six3 as ancient regulator of anterior median head and central

complex development. PLoS Genet. 7, e1002416 (2011).

doi:10.1371/journal.pgen.1002416 Medline

14. F. Hirth et al., Developmental defects in brain segmentation caused by mutations of the

homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron 15, 769

(1995). doi:10.1016/0896-6273(95)90169-8 Medline

15. J. Blanco, R. Pandey, M. Wasser, G. Udolph, Orthodenticle is necessary for survival of a

cluster of clonally related dopaminergic neurons in the Drosophila larval and adult brain.

Neural Dev. 6, 34 (2011). doi:10.1186/1749-8104-6-34 Medline

16. P. Callaerts et al., Drosophila Pax-6/eyeless is essential for normal adult brain structure and

function. J. Neurobiol. 46, 73 (2001). doi:10.1002/1097-4695(20010205)46:2<73::AID-

NEU10>3.0.CO;2-N Medline

17. A. W. Flaherty, A. M. Graybiel, Input-output organization of the sensorimotor striatum in the

squirrel monkey. J. Neurosci. 14, 599 (1994). Medline

18. F. Eblen, A. M. Graybiel, Highly restricted origin of prefrontal cortical inputs to striosomes

in the macaque monkey. J. Neurosci. 15, 5999 (1995). Medline

19. A. M. Graybiel, T. Aosaki, A. W. Flaherty, M. Kimura, The basal ganglia and adaptive

motor control. Science 265, 1826 (1994). doi:10.1126/science.8091209 Medline

20. K.-I. Amemori, L. G. Gibb, A. M. Graybiel, Shifting responsibly: The importance of striatal

modularity to reinforcement learning in uncertain environments. Front. Hum. Neurosci.

5, 47 (2011). doi:10.3389/fnhum.2011.00047 Medline

21. U. Hanesch, K.-F. Fischbach, M. Heisenberg, Neuronal architecture of the central complex in

Drosophila melanogaster. Cell Tissue Res. 257, 343 (1989). doi:10.1007/BF00261838

22. K. Ito, T. Awasaki, Clonal unit architecture of the adult fly brain. Adv. Exp. Med. Biol. 628,

137 (2008). doi:10.1007/978-0-387-78261-4_9 Medline

Page 6: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

3

23. Z. Herbert et al., Developmental expression of neuromodulators in the central complex of the

grasshopper Schistocerca gregaria. J. Morphol. 271, 1509 (2010).

doi:10.1002/jmor.10895 Medline

24. G. Boyan, L. Williams, Embryonic development of the insect central complex: Insights from

lineages in the grasshopper and Drosophila. Arthropod Struct. Dev. 40, 334 (2011).

doi:10.1016/j.asd.2011.02.005 Medline

25. U. Homberg, S. Heinze, K. Pfeiffer, M. Kinoshita, B. el Jundi, Central neural coding of sky

polarization in insects. Philos. Trans. R. Soc. London Ser. B 366, 680 (2011).

doi:10.1098/rstb.2010.0199 Medline

26. R. E. Ritzmann, A. L. Ridgel, A. J. Pollack, Multi-unit recording of antennal mechano-

sensitive units in the central complex of the cockroach, Blaberus discoidalis. J. Comp.

Physiol. A 194, 341 (2008). doi:10.1007/s00359-007-0310-2 Medline

27. P. Guo, R. E. Ritzmann, Neural activity in the central complex of the cockroach brain is

linked to turning behaviors. J. Exp. Biol. 216, 992 (2013). doi:10.1242/jeb.080473

Medline

28. H. Ghaffar, J. Larsen, G. Booth, R. Perkes, General morphology of the brain of the blind

cave beetle, Neaphaenops tellkampfii Erichson (Coleoptera: Carabidae). Int. J. Insect

Morphol. Embryol. 13, 357 (1984). doi:10.1016/0020-7322(84)90011-4

29. G. Liu et al., Distinct memory traces for two visual features in the Drosophila brain. Nature

439, 551 (2006). doi:10.1038/nature04381 Medline

30. J. Phillips-Portillo, The central complex of the flesh fly, Neobellieria bullata: Recordings and

morphologies of protocerebral inputs and small-field neurons. J. Comp. Neurol. 520,

3088 (2012). doi:10.1002/cne.23134 Medline

31. S. Kuntz, B. Poeck, M. B. Sokolowski, R. Strauss, The visual orientation memory of

Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the

central complex. Learn. Mem. 19, 337 (2012). doi:10.1101/lm.026369.112 Medline

32. U. Homberg, H. Vitzthum, M. Müller, U. Binkle, Immunocytochemistry of GABA in the

central complex of the locust Schistocerca gregaria: Identification of immunoreactive

Page 7: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

4

neurons and colocalization with neuropeptides. J. Comp. Neurol. 409, 495 (1999).

doi:10.1002/(SICI)1096-9861(19990705)409:3<495::AID-CNE12>3.0.CO;2-F Medline

33. L. Kahsai, M. A. Carlsson, A. M. Winther, D. R. Nässel, Distribution of metabotropic

receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the

central complex of Drosophila. Neuroscience 208, 11 (2012).

doi:10.1016/j.neuroscience.2012.02.007 Medline

34. L. Kahsai, A. M. Winther, Chemical neuroanatomy of the Drosophila central complex:

Distribution of multiple neuropeptides in relation to neurotransmitters. J. Comp. Neurol.

519, 290 (2011). doi:10.1002/cne.22520 Medline

35. J. P. Bolam, J. J. Hanley, P. A. Booth, M. D. Bevan, Synaptic organisation of the basal

ganglia. J. Anat. 196, 527 (2000). doi:10.1046/j.1469-7580.2000.19640527.x Medline

36. C. R. Gerfen, D. J. Surmeier, Modulation of striatal projection systems by dopamine. Annu.

Rev. Neurosci. 34, 441 (2011). doi:10.1146/annurev-neuro-061010-113641 Medline

37. Z. Mao, R. L. Davis, Eight different types of dopaminergic neurons innervate the Drosophila

mushroom body neuropil: Anatomical and physiological heterogeneity. Front. Neural

Circuits 3, 5 (2009). doi:10.3389/neuro.04.005.2009 Medline

38. K. E. White, D. M. Humphrey, F. Hirth, The dopaminergic system in the aging brain of

Drosophila. Front Neurosci 4, 205 (2010). doi:10.3389/fnins.2010.00205 Medline

39. T. Ueno et al., Identification of a dopamine pathway that regulates sleep and arousal in

Drosophila. Nat. Neurosci. 15, 1516 (2012). doi:10.1038/nn.3238 Medline

40. M. J. Krashes et al., A neural circuit mechanism integrating motivational state with memory

expression in Drosophila. Cell 139, 416 (2009). doi:10.1016/j.cell.2009.08.035 Medline

41. Q. Liu, S. Liu, L. Kodama, M. R. Driscoll, M. N. Wu, Two dopaminergic neurons signal to

the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114

(2012). doi:10.1016/j.cub.2012.09.008 Medline

42. Y. C. Kim, H. G. Lee, C. S. Seong, K. A. Han, Expression of a D1 dopamine receptor

dDA1/DmDOP1 in the central nervous system of Drosophila melanogaster. Gene Expr.

Patterns 3, 237 (2003). doi:10.1016/S1567-133X(02)00098-4 Medline

Page 8: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

5

43. E. C. Kong et al., A pair of dopamine neurons target the D1-like dopamine receptor DopR in

the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS ONE

5, e9954 (2010). doi:10.1371/journal.pone.0009954 Medline

44. T. J. Lewandowski, H. K. Lehman, S. C. Chamberlain, Immunoreactivity in Limulus: III.

Morphological and biochemical studies of FMRFamide-like immunoreactivity and

colocalized substance P-like immunoreactivity in the brain and lateral eye. J. Comp.

Neurol. 288, 136 (1989). doi:10.1002/cne.902880111 Medline

45. K. Langworthy, S. Helluy, J. Benton, B. Beltz, Amines and peptides in the brain of the

American lobster: Immunocytochemical localization patterns and implications for brain

function. Cell Tissue Res. 288, 191 (1997). doi:10.1007/s004410050806 Medline

46. H. Vitzthum, U. Homberg, Immunocytochemical demonstration of locustatachykinin-related

peptides in the central complex of the locust brain. J. Comp. Neurol. 390, 455 (1998).

doi:10.1002/(SICI)1096-9861(19980126)390:4<455::AID-CNE1>3.0.CO;2-# Medline

47. R. Strauss, The central complex and the genetic dissection of locomotor behaviour. Curr.

Opin. Neurobiol. 12, 633 (2002). doi:10.1016/S0959-4388(02)00385-9 Medline

48. E. Tupala, J. Tiihonen, Dopamine and alcoholism: Neurobiological basis of ethanol abuse.

Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 1221 (2004).

doi:10.1016/j.pnpbp.2004.06.022 Medline

49. T. Riemensperger et al., Behavioral consequences of dopamine deficiency in the Drosophila

central nervous system. Proc. Natl. Acad. Sci. U.S.A. 108, 834 (2011).

doi:10.1073/pnas.1010930108 Medline

50. F. Hirth, Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol.

Disord. Drug Targets 9, 504 (2010). doi:10.2174/187152710791556104 Medline

51. D. M. Humphrey et al., Alternative oxidase rescues mitochondria-mediated dopaminergic

cell loss in Drosophila. Hum. Mol. Genet. 21, 2698 (2012). doi:10.1093/hmg/dds096

Medline

52. G. Schumann et al., Genome-wide association and genetic functional studies identify autism

susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc.

Natl. Acad. Sci. U.S.A. 108, 7119 (2011). doi:10.1073/pnas.1017288108 Medline

Page 9: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

6

53. R. G. Northcutt, Evolution of centralized nervous systems: Two schools of evolutionary

thought. Proc. Natl. Acad. Sci. U.S.A. 109 (suppl. 1), 10626 (2012).

doi:10.1073/pnas.1201889109 Medline

54. F. Christodoulou et al., Ancient animal microRNAs and the evolution of tissue identity.

Nature 463, 1084 (2010). doi:10.1038/nature08744 Medline

55. J. Mallatt, C. W. Craig, M. J. Yoder, Nearly complete rRNA genes from 371 Animalia:

Updated structure-based alignment and detailed phylogenetic analysis. Mol. Phylogenet.

Evol. 64, 603 (2012). doi:10.1016/j.ympev.2012.05.016 Medline

56. P. R. Steinmetz et al., Independent evolution of striated muscles in cnidarians and bilaterians.

Nature 487, 231 (2012). doi:10.1038/nature11180 Medline

57. X. Ma, X. Hou, G. D. Edgecombe, N. J. Strausfeld, Complex brain and optic lobes in an

early Cambrian arthropod. Nature 490, 258 (2012). doi:10.1038/nature11495 Medline

58. B. K. Hall, Descent with modification: The unity underlying homology and homoplasy as

seen through an analysis of development and evolution. Biol. Rev. Camb. Philos. Soc. 78,

409 (2003). doi:10.1017/S1464793102006097 Medline

59. D. M. Raup, A. Seilacher, Fossil foraging behavior: Computer simulation. Science 166, 994

(1969). doi:10.1126/science.166.3908.994 Medline

60. L. A. Buatois, M. G. Mángano, An Early Cambrian shallow-marine ichnofauna from the

Puncoviscana Formation of Northwest Argentina: The interplay between sophisticated

feeding behaviors, matgrounds and sea-level changes. J. Paleontol. 86, 7 (2012).

doi:10.1666/11-001.1

61. R. Tomer, A. S. Denes, K. Tessmar-Raible, D. Arendt, Profiling by image registration

reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142,

800 (2010). doi:10.1016/j.cell.2010.07.043 Medline

62. J. L. Rubenstein, K. Shimamura, S. Martinez, L. Puelles, Regionalization of the

prosencephalic neural plate. Annu. Rev. Neurosci. 21, 445 (1998).

doi:10.1146/annurev.neuro.21.1.445 Medline

Page 10: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

7

63. W. Ye, K. Shimamura, J. L. Rubenstein, M. A. Hynes, A. Rosenthal, FGF and Shh signals

control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755

(1998). doi:10.1016/S0092-8674(00)81437-3 Medline

64. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, Loss of Nkx2.1 homeobox gene function

results in a ventral to dorsal molecular respecification within the basal telencephalon:

Evidence for a transformation of the pallidum into the striatum. Development 126, 3359

(1999). Medline

65. T. Mueller, M. F. Wullimann, S. Guo, Early teleostean basal ganglia development visualized

by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. J. Comp.

Neurol. 507, 1245 (2008). doi:10.1002/cne.21604 Medline

66. H. Toresson, K. A. Campbell, A role for Gsh1 in the developing striatum and olfactory bulb

of Gsh2 mutant mice. Development 128, 4769 (2001). Medline

67. L. Muzio et al., Conversion of cerebral cortex into basal ganglia in Emx2(-/-) Pax6(Sey/Sey)

double-mutant mice. Nat. Neurosci. 5, 737 (2002). Medline

68. A. Abeliovich, R. Hammond, Midbrain dopamine neuron differentiation: Factors and fates.

Dev. Biol. 304, 447 (2007). doi:10.1016/j.ydbio.2007.01.032 Medline

69. S. T. Philips, R. L. Albin, D. M. Martin, Exp. Neurol. 192, 320 (2005).

70. D. M. Martin et al., PITX2 is required for normal development of neurons in the mouse

subthalamic nucleus and midbrain. Dev. Biol. 267, 93 (2004).

doi:10.1016/j.ydbio.2003.10.035 Medline

71. F. Hirth, H. Reichert, in Evolution of Nervous Systems, Vol. I, T. H. Bullock et al., Eds.

(Elsevier, London, 2005), pp. 55–72.

72. B. Poeck, T. Triphan, K. Neuser, R. Strauss, Locomotor control by the central complex in

Drosophila—An analysis of the tay bridge mutant. Dev. Neurobiol. 68, 1046 (2008).

doi:10.1002/dneu.20643 Medline

73. M. Desban, C. Gauchy, M. L. Kemel, M. J. Besson, J. Glowinski, Three-dimensional

organization of the striosomal compartment and patchy distribution of striatonigral

Page 11: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

8

projections in the matrix of the cat caudate nucleus. Neuroscience 29, 551 (1989).

doi:10.1016/0306-4522(89)90130-9 Medline

74. K. Ito et al., The organization of extrinsic neurons and their implications in the functional

roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn. Mem. 5, 52

(1998). Medline

75. M. Iwano et al., Neurons associated with the flip-flop activity in the lateral accessory lobe

and ventral protocerebrum of the silkworm moth brain. J. Comp. Neurol. 518, 366

(2010). doi:10.1002/cne.22224 Medline

76. M. W. Shiflett, B. W. Balleine, Molecular substrates of action control in cortico-striatal

circuits. Prog. Neurobiol. 95, 1 (2011). doi:10.1016/j.pneurobio.2011.05.007 Medline

77. W. Gronenberg, N. J. Strausfeld, Premotor descending neurons responding selectively to

local visual stimuli in flies. J. Comp. Neurol. 316, 87 (1992). doi:10.1002/cne.903160108

Medline

78. K. Takakusaki, K. Saitoh, H. Harada, M. Kashiwayanagi, Role of basal ganglia-brainstem

pathways in the control of motor behaviors. Neurosci. Res. 50, 137 (2004).

doi:10.1016/j.neures.2004.06.015 Medline

79. K. P. Bhatia, C. D. Marsden, The behavioural and motor consequences of focal lesions of the

basal ganglia in man. Brain 117, 859 (1994). doi:10.1093/brain/117.4.859 Medline

80. M. D. Humphries, T. J. Prescott, The ventral basal ganglia, a selection mechanism at the

crossroads of space, strategy, and reward. Prog. Neurobiol. 90, 385 (2010).

doi:10.1016/j.pneurobio.2009.11.003 Medline

81. A. M. Graybiel, Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359

(2008). doi:10.1146/annurev.neuro.29.051605.112851 Medline

82. J. M. Donlea, M. S. Thimgan, Y. Suzuki, L. Gottschalk, P. J. Shaw, Inducing sleep by remote

control facilitates memory consolidation in Drosophila. Science 332, 1571 (2011).

doi:10.1126/science.1202249 Medline

Page 12: Supplementary Materials for · 3 Fig. S1. Frontal autofluorescent section of the brain of the fruit fly, Drosophila melanogaster showing the mid-line position (box) of the central

9

83. T. Lebestky et al., Two different forms of arousal in Drosophila are oppositely regulated by

the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64, 522

(2009). doi:10.1016/j.neuron.2009.09.031 Medline

84. B. Van Swinderen, R. Andretic, Dopamine in Drosophila: Setting arousal thresholds in a

miniature brain. Proc. Biol. Sci. 278, 906 (2011). doi:10.1098/rspb.2010.2564 Medline

85. T. Sakai, T. Kitamoto, Differential roles of two major brain structures, mushroom bodies and

central complex, for Drosophila male courtship behavior. J. Neurobiol. 66, 821 (2006).

doi:10.1002/neu.20262 Medline

86. K. Neuser, T. Triphan, M. Mronz, B. Poeck, R. Strauss, Analysis of a spatial orientation

memory in Drosophila. Nature 453, 1244 (2008). doi:10.1038/nature07003 Medline

87. T. A. Ofstad, C. S. Zuker, M. B. Reiser, Visual place learning in Drosophila melanogaster.

Nature 474, 204 (2011). doi:10.1038/nature10131 Medline

88. A. Claridge-Chang et al., Writing memories with light-addressable reinforcement circuitry.

Cell 139, 405 (2009). doi:10.1016/j.cell.2009.08.034 Medline