Sub-Doppler Spectroscopy of H 3 +

24
Sub-Doppler Spectroscopy of H 3 + James N. Hodges , Adam J. Perry, Brian M. Siller, Benjamin J. McCall

description

Sub-Doppler Spectroscopy of H 3 +. James N. Hodges , Adam J. Perry, Brian M. Siller , Benjamin J. McCall. Outline. Motivation Fundamental Physics Astronomy Instrument Description Transition Frequency Results Wavelength Calibration Testing. H 3 + Fundamental Benchmark. - PowerPoint PPT Presentation

Transcript of Sub-Doppler Spectroscopy of H 3 +

Page 1: Sub-Doppler Spectroscopy of H 3 +

Sub-Doppler Spectroscopy of H3+

James N. Hodges, Adam J. Perry, Brian M. Siller, Benjamin J. McCall

Page 2: Sub-Doppler Spectroscopy of H 3 +

Outline

• Motivation– Fundamental Physics– Astronomy

• Instrument Description• Transition Frequency Results• Wavelength Calibration Testing

Page 3: Sub-Doppler Spectroscopy of H 3 +

H3+ Fundamental Benchmark

• Simplest polyatomic ion• Benchmark for ab initio theory

– Accuracy of order 300 MHz @ low energy

• QED corrections are frontier– Accuracy of order 30 MHz @ low energy

• Requires higher precision data

O. L. Polyansky, J. Tennyson, J. Chem. Phys. (1999), 110, 5056-5064.J. Komasa, et al. J. Chem. Theor. Comp. (2011), 7, 3105-3115.

Page 4: Sub-Doppler Spectroscopy of H 3 +

H3+ Astronomically Important

• Abundant in Interstellar Medium• Deuterium Fractionation• Found in Ionospheres of Gas

Giants• Measure Speed of Auroral Winds • Limited by Laboratory Accuracy

T. R. Geballe and T. Oka, Nature (1996), 384, 334.P. Drossart et al. Nature (1989), 340, 539.D. Rego et al. Nature (1999), 399, 121.

Images From: http://solarsystem.nasa.gov/planets/profile.cfm?Object=Jupiterhttp://www.ucl.ac.uk/~ucaptss/work/publications/royalsoc/energy.htm

Page 5: Sub-Doppler Spectroscopy of H 3 +

Spectroscopic TechniqueLarge Signal

Low Noise

Ion Selectivity

Cavity Enhancement

Heterodyne Spectroscopy

Velocity Modulation

NICE-OHVMS

Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy

B. M. Siller, et al. Opt. Express (2011), 19, 24822-7.

Page 6: Sub-Doppler Spectroscopy of H 3 +

Instrumental Layout

OPO

YDFL

EOMLock-In

Amplifier

X & YSignal

Lock-In Amplifier

X & YSignal

Wave-meter

40 kHzPlasma

Frequency

80 MHz1 × Cavity Free Spectral Range

90o Phase Shift

IPS

2f

ni = np - ns

Freq. CombAOM

K. N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1-6.

Page 7: Sub-Doppler Spectroscopy of H 3 +

Comb Calibration

Wave-meter

Freq. CombAOM

[…]

Signal Pump

Page 8: Sub-Doppler Spectroscopy of H 3 +

Comb Calibration

Wave-meter

Freq. CombAOM

[…]

Signal Pump

Page 9: Sub-Doppler Spectroscopy of H 3 +

Comb Calibration

Wave-meter

Freq. CombAOM

[…]

Signal PumpSignal

Page 10: Sub-Doppler Spectroscopy of H 3 +

H3+ Spectra

Sig

nal

Signal

Doubly Degenerate n2 Band

H3+ Transition Notation

𝐺≡|𝑘− 𝑙|{𝑃∨𝑄∨𝑅 }( 𝐽 ,𝐺){𝑢∨𝑙 }

Page 11: Sub-Doppler Spectroscopy of H 3 +

Lamb Dips & Saturation• High Power Optical Saturation Lamb dips• Second Comb Calibrated Observation of Lamb dips

• In NICE-OHVMS fm-triplet causes many Lamb dips

H.-C. Chen et al. Phys. Rev. Lett. (2012), 109, 263002.K.N. Crabtree et al. Chem. Phys. Lett. (2012), 551, 1.

Page 12: Sub-Doppler Spectroscopy of H 3 +

Lamb Dips & Saturation• High Power Optical Saturation Lamb dips• Second Comb Calibrated Observation of Lamb dips

• In NICE-OHVMS fm-triplet causes many Lamb dips

H.-C. Chen et al. Phys. Rev. Lett. (2012), 109, 263002.K.N. Crabtree et al. Chem. Phys. Lett. (2012), 551, 1.

Page 13: Sub-Doppler Spectroscopy of H 3 +

Lamb Dips & Saturation• High Power Optical Saturation Lamb dips• Second Comb Calibrated Observation of Lamb dips

• In NICE-OHVMS fm-triplet causes many Lamb dips

H.-C. Chen et al. Phys. Rev. Lett. (2012), 109, 263002.K.N. Crabtree et al. Chem. Phys. Lett. (2012), 551, 1.

Page 14: Sub-Doppler Spectroscopy of H 3 +

Lamb Dips & Saturation• High Power Optical Saturation Lamb dips• Second Comb Calibrated Observation of Lamb dips

• In NICE-OHVMS fm-triplet causes many Lamb dips

H.-C. Chen et al. Phys. Rev. Lett. (2012), 109, 263002.K.N. Crabtree et al. Chem. Phys. Lett. (2012), 551, 1.

Page 15: Sub-Doppler Spectroscopy of H 3 +

Lamb Dips and Fits

R(2,2)l Transition

Page 16: Sub-Doppler Spectroscopy of H 3 +

Transition Frequencies

𝜎 𝜇=𝜎√𝑛

St. Err. = St. Dev. Of Mean

Page 17: Sub-Doppler Spectroscopy of H 3 +

Lamb Dip Signal-to-Noise-RatioLamb Dip SNR:

𝑆𝑁𝑅=𝑆𝑖𝑔𝑛𝑎𝑙𝑝𝑘−𝑝𝑘𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Page 18: Sub-Doppler Spectroscopy of H 3 +

Lamb Dip Signal-to-Noise-Ratio

R(1,0)R(3,2)l

Page 19: Sub-Doppler Spectroscopy of H 3 +

Frequency Calibration Test

• First use of a comb with this instrument• Need to ensure proper calibration• Lamb dips of methane

Page 20: Sub-Doppler Spectroscopy of H 3 +

Instrumental Layout

OPO

YDFL

EOMLock-In

Amplifier

X & YSignal

Lock-In Amplifier

X & YSignal

Wave-meter

40 kHzPlasma

Frequency

80 MHz1 × Cavity Free Spectral Range

90o Phase Shift

IPS

2f

ni = np - ns

Freq. CombAOM

1.4 kHzModulationFrequency

3f

Page 21: Sub-Doppler Spectroscopy of H 3 +

Frequency Calibration Test

• First use of a comb with this instrument• Need to ensure proper calibration• Lamb dips of methane• Acquired Lamb dips for F1

(2) component of P(7) transition of n3 band

Page 22: Sub-Doppler Spectroscopy of H 3 +

Frequency Calibration Test

Lamb dip of methaneFit with 2nd derivative of Lorentzian

5 kHz diff. from Takahata et al. ~30 kHz st. dev. from fit

K. Takahata et al. Phys. Rev. A. (2009) 80, 032518.

Page 23: Sub-Doppler Spectroscopy of H 3 +

ConclusionsComb calibrated H3

+ transitions reported

Higher S/N lines have sub-MHz precision

Methane used to validate comb calibration

Values differ than Chen et al. H.-C. Chen et al. Phys. Rev. Lett. (2012), 109, 263002.

Page 24: Sub-Doppler Spectroscopy of H 3 +

Acknowledgements

Springborn FellowshipNSF GRF (DGE 11-44245 FLLW)