Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139...

18
Acta Univ. Sapientiae, Mathematica, 9, 1 (2017) 122–139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal Department of Mathematics, University of Education, Pakistan email: [email protected] Maslina Darus School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia email: [email protected] Abstract. By making use of new linear fractional differential operator, we introduce and study certain subclasses of analytic functions associ- ated with Symmetric Conjugate Points and defined in the open unit disk U = {z : |z| <1}. Inclusion relationships are established and convolution properties of functions in these subclasses are discussed. 1 Introduction and preliminaries Let A denote the class of functions of the form f(z)= z + X k=2 a k z k , (1) which are analytic in the open unit disk U = {z : |z| <1} and normalized by f(0)= f 0 (0)- 1 = 0. A function f A is called starlike if and only if < zf 0 (z) f(z) 0, (z U). 2010 Mathematics Subject Classification: 30C45 Key words and phrases: starlike functions, symmetric conjugate points, inclusion rela- tionships 122

Transcript of Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139...

Page 1: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Acta Univ. Sapientiae, Mathematica, 9, 1 (2017) 122–139

DOI: 10.1515/ausm-2017-0008

Study on subclasses of analytic functions

Imran FaisalDepartment of Mathematics,

University of Education, Pakistanemail: [email protected]

Maslina DarusSchool of Mathematical Sciences,

Faculty of Science and Technology,Universiti Kebangsaan Malaysia,

Malaysiaemail: [email protected]

Abstract. By making use of new linear fractional differential operator,we introduce and study certain subclasses of analytic functions associ-ated with Symmetric Conjugate Points and defined in the open unit diskU = z : |z| < 1. Inclusion relationships are established and convolutionproperties of functions in these subclasses are discussed.

1 Introduction and preliminaries

Let A denote the class of functions of the form

f(z) = z+

∞∑k=2

akzk, (1)

which are analytic in the open unit disk U = z : |z| < 1 and normalized byf(0) = f ′(0) − 1 = 0.

A function f ∈ A is called starlike if and only if

<

(zf ′(z)

f(z)

)≥ 0, (z ∈ U).

2010 Mathematics Subject Classification: 30C45Key words and phrases: starlike functions, symmetric conjugate points, inclusion rela-tionships

122

Page 2: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 123

The class of starlike functions is denoted by S.A function f ∈ A is called convex if and only if

<

(1+

zf ′′(z)

f ′(z)

)≥ 0, (z ∈ U).

The class of convex functions is denoted by K.A function f ∈ A is called starlike of order ρ if and only if

<

(zf ′(z)

f(z)

)≥ ρ, (ρ > 0, z ∈ U). (2)

The class of starlike functions of order ρ is denoted by SV?(ρ).Similarly a function f ∈ A is called convex of order ρ if and only if

<

(1+

zf ′′(z)

f ′(z)

)≥ ρ, (ρ > 0, z ∈ U). (3)

The class of starlike functions of order ρ is denoted by KV(ρ).It follows from (2) and (3) that f ∈ KV(ρ) if and only if zf ′(z) ∈ SV?(ρ).Let f ∈ A and g ∈ SV?(ρ), then f ∈ A is called close-to-convex of order θ

and type ρ if and only if

<

(zf ′(z)

g(z)

)≥ θ, (0 ≤ θ, ρ < 1, z ∈ U).

The class of close-to-convex of order θ and type ρ is denoted by CV(θ, ρ).In 1959, Sakaguchi [1] introduced the following class of analytic functions:A function f ∈ A is called starlike with respect to symmetrical points, and

its class is denoted by SVs, if it satisfies the analytic criterion

<

(zf ′(z)

f(z) − f(−z)

)> 0, (z ∈ U).

For more details we refer to study Shanmugam et al. [2], Chand and Singh [3]and Das and Singh [4] respectively.

In 1987, El-Ashwah and Thomas [5] introduced the following class of analyticfunctions:

A function f ∈ A is called starlike with respect to symmetric conjugatepoints, and its class is denoted by SVsc, if it satisfies the analytic criterion

<

(zf ′(z)

f(z) − f(−z)

)> 0, (z ∈ U).

Page 3: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

124 I. Faisal, M. Darus

For two functions f and g analytic in U, we say that the function f issubordinate to g in U and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function w(z) which (by definition) is analytic in Uwith

w(0) = 0 and |w(z)| < 1,

such that

f(z) = g(w(z)) z ∈ U.

Indeed it is known that

f(z) ≺ g(z) z ∈ U⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the followingequivalence:

f(z) ≺ g(z) z ∈ U⇔ f(0) = g(0) and f(U) ⊂ g(U).

For functions f(z) = z+∞∑k=2

akzk and g(z) = z+

∞∑k=2

bkzk the Hadamard product

(or convolution) f ∗ g is defined as usual by

(f ∗ g)(z) = z+∞∑k=2

akbkzk.

Let

ϕ(a, c; z) = z2F(1, a; c; z) =

∞∑k=0

(a)k(c)k

zk−1, (z ∈ U; c 6= 0,−1,−2, .s),

where (a)k is the pochhammer symbol defined by

(a)k =Γ(k+ a)

Γ(a)=

1 if k = 0a(a+ 1)(a+ 2).s(a+ k− 1) if k ∈ N

.

In 1987, Owa and Srivastava [7] introduced the operator as follow

Ωαf(z) = Γ(2− α)zαDαz f(z) = ϕ(2, 2− α; z) ∗ f(z),α 6= 2, 3, 4, . . . . (4)

Page 4: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 125

Also note that Ω0f(z) = f(z) and Dαz f(z) is the fractional derivative of orderα given in [6].

For f ∈ A, we define the linear fractional differential operator as follow:

I0,νλ (α,β, µ)f(z) = f(z)

I1,νλ (α,β, µ)f(z) =

(ν− µ+ β− λ

ν+ β

)Ωαf(z) +

(µ+ λ

ν+ β

)z(Ωαf(z)) ′

I2,νλ (α,β, µ)f(z) = Iαλ (I1,νλ (α,β, µ)f(z))

...

In,νλ (α,β, µ)f(z) = Iαλ (In−1,νλ (α,β, µ)f(z)) .

(5)

If f(z) is given by (1) then from (5) we have

In,νλ (α,β, µ)f(z)

= z+

∞∑k=2

((Γ(k+ 1)Γ(2− α)

Γ(k+ 1− α)

)(ν+ (µ+ λ)(k− 1) + β

ν+ β

))nakz

k.(6)

Using (4) we conclude that

In,νλ (α,β, µ)f(z) = [ϕ(2, 2− α; z) ∗ gµ,νβ,λ(z).sϕ(2, 2− α; z) ∗ gµ,νβ,λ(z)]︸ ︷︷ ︸ ∗f(z), (7)

where

gµ,νβ,λ(z) =

z−(ν−µ+β−λν+β

)z2

(1− z)2

=

(z−

ν− µ+ β− λ

ν+ βz2)(1+ 2z+ 3z2 + · · · )

= z+

(1+

µ+ λ

ν+ β

)z2 +

(1+ 2

µ+ λ

ν+ β

)z3 + · · ·

...

gµ,νβ,λ(z) = z+

∞∑k=2

(ν+ (µ+ λ)(k− 1) + β

ν+ β

)zk.

(8)

ϕ(2, 2− α; z) ∗ gµ,νβ,λ(z).sϕ(2, 2− α; z) ∗ gµ,νβ,λ(z) = n-times product.

Page 5: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

126 I. Faisal, M. Darus

Similarly, we find the following:

gµβ,λ(z) = z+

∞∑k=2

(β+ (µ+ λ)(k− 1)

β

)zk. (9)

gνβ,λ(z) = z+

∞∑k=2

(ν+ λ(k− 1) + β

ν+ β

)zk. (10)

gνβ(z) = z+

∞∑k=2

(ν+ (k− 1) + β

ν+ β

)zk. (11)

gµλ(z) = z+

∞∑k=2

(1+ (µ+ λ)(k− 1)) zk. (12)

gλ(z) = z+

∞∑k=2

(1+ λ(k− 1)) zk. (13)

Further, a straightforward calculation reveals that many differential operatorsintroduced in other papers are special cases of the differential operator definedby (6) which generalizes some well known differential operators.

1. β = 1, µ = 0, α = 0, we obtain, Aouf et al. differential operator [8].

2. α = 0, we obtain differential operator of Darus and Faisal [29].

3. β = 0, α = 0, we obtain differential operator Darus and Faisal [30].

4. ν = 1, β = o, µ = 0, α = 0, we obtain, Al-Oboudi differential operator[9].

5. ν = 1, β = o, µ = 0, λ = 1, α = 0, we obtain, Salagean’s operator [10].

6. β = l, µ = 0, α = p, we obtain, A. Catas operator [26].

7. ν = 1, β = o, µ = 0, we obtain, Al-Oboudi–Al-Amoudi operator [14, 25].

8. β = 1, λ = 1, µ = 0, α = 0, we obtain, Cho–Srivastava operator [12, 13].

9. ν = 1, β = 1, λ = 1, µ = 0, α = 0, we obtain, Uralegaddi–Somanathaoperator [11].

10. ν = 1, β = o, µ = 0, λ = 0, n = 1, we obtain, Owa–Srivastava operator[7].

Page 6: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 127

11. β = l, µ = 0, α = p, λ = 1, we obtain, Kumar et al. and Srivastava etal. operators [27, 28].

For f ∈ A, we define fm by

fm(z) =1

2m

m−1∑k=0

[ω−kf(ωkz) +ωkf(ωkz)

], (14)

where m be a positive integer and ω = exp(2π/(m)).A function f ∈ A is called λ-starlike with respect to 2m-symmetric conjugate

points and its class is denoted by SVm(λ), if it satisfy the analytic criterion

<

((1− λ)zf ′(z) + λ(zf ′(z)) ′

(1− λ)fm(z) + λzf ′m(z)

)> 0, (z ∈ U, λ ≥ 0),

where fm is given by (14). For details about SVm(λ), we refer to study [15, 16,17, 18].

By using (14), we have

fm(z) =1

2m

m−1∑k=0

ω−kf(ωkz) +ωkf(ωkz)

, implies

In,νλ (α,β, µ)fm(z) =1

2m

m−1∑k=0

ω−kIn,νλ (α,β, µ)f(ωkz)

+ωkIn,νλ (α,β, µ)f(ωkz),

z(In,νλ (α,β, µ)fm(z))′ =

1

2m

m−1∑k=0

ω−kz(In,νλ (α,β, µ)f(ωkz)) ′

+ωkz(Dn,νλ (α,β, µ)f(ωkz)) ′,

In,νλ (α,β, µ)(zf ′m(z)) =1

2m

m−1∑k=0

In,νλ (α,β, µ)(zf ′(ωkz))

+ In,νλ (α,β, µ)(zf ′(ωkz),

In,νλ (α,β, µ)fm(ωjz) = ωjIn,νλ (α,β, µ)fm(z),

In,νλ (α,β, µ)fm(z) = In,νλ (α,β, µ)fm(z).

(15)

Next we introduce new subclasses of analytic functions in U associated withlinear fractional differential operator In,νλ (α,β, µ)f(z), as follow;

Page 7: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

128 I. Faisal, M. Darus

Definition 1 For n ∈ N∪0,m ∈ N and α,β, λ, µ, ν ≥ 0, let SVn,νm,λ(α,β, µ)(h)denote the class of functions f defined by (1) and satisfying the analytic cri-terion

z(In,νλ (α,β, µ)f(z)) ′

In,νλ (α,β, µ)fm(z)≺ h(z), z ∈ U,

where h is a convex function in U with h(0) = 1.

Definition 2 Let KVn,νm,λ(α,β, µ)(h) denote the class of functions f defined by

(1) and satisfying the analytic criterion ifIn,νλ (α,β,µ)gm(z)

z 6= 0 and

z(In,νλ (α,β, µ)f(z)) ′

In,νλ (α,β, µ)gm(z)≺ h(z), z ∈ U,

for some g ∈ SVn,νm,λ(α,β, µ)(h).

Remark 1 In 2010, F. M. Al-oboudi [25], introduced certain subclasses ofanalytic functions which contains only functions of the form given in (13),but there were infinite analytic functions in the open unit disk U, of the formgiven in (8), (9), (10), (11) and (12) respectively, which were out of range ofthe classes given in [25]. Therefore it was necessary to find out or to intro-duce a new differential operator of the form (6). We introduce the subclassesSVn,νm,λ(α,β, µ)(h) and KVn,νm,λ(α,β, µ)(h) of analytic functions by using suchdifferential operator, with a different approach that includes all functions ofthe form given in (8) to (13).

2 Main results

In this section, we have discussed inclusion relations as well as convolutionproperties for the function belonging to the classes SVn,νm,λ(α,β, µ)(h) andKVn,νm,λ(α,β, µ)(h) respectively.

Lemma 1 [19] Let f and g be starlike functions of order 1/2 then so is f ∗ g .

Lemma 2 [20] Let P be a complex function in U with <(P(z)) > 0 for z ∈ Uand let h be a convex function in U. If p is analytic in U with p(0) = h(0)and if

p(z) + P(z)zp ′(z) ≺ h(z),

then p(z) ≺ h(z).

Page 8: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 129

Lemma 3 [21] Let c > −1 and let Ic : A→ A be the integral operator definedby F = Ic(f), where

F(z) =c+ 1

zc

∫ z0

tc−1f(t)dt.

Let h be a convex function, with h(0) = 1 and then <(h(z) + c) > 0, z ∈ U. If

f ∈ A and zf ′(z)f(z) ≺ h(z), then

zF ′(z)

F(z)≺ q(z) ≺ h(z),

where q is univalent and satisfies the differential equation

q(z) +zq ′(z)

q(z) + c= h(z).

Lemma 4 [22] Let f and g, respectively be in the classes K and S, then forevery function F ∈ A, we have

(f(z) ∗ g(z)F(z))(f(z) ∗ g(z))

∈ co(F(U)), z ∈ U,

where co denotes the closed convex hull.

Lemma 5 [22] Let f and g be univalent starlike of order 12 for every function

F ∈ A, we have

(f(z) ∗ g(z)F(z))(f(z) ∗ g(z))

∈ co(F(U)), z ∈ U,

where co denotes the closed convex hull.

Theorem 1 Let h be a convex function in U with h(0) = 1, h(z) = h(z) andlet µ+ λ ≥ ν+ β, if f ∈ SVn,νm,λ(α,β, µ)(h) then

z(In,νλ (α,β, µ)fm(z))′

In,νλ (α,β, µ)fm(z)≺ h(z), z ∈ U. (16)

Moreover, if <(h(z) + ν+β−µ−λ

µ+λ

)> 0 in U then

z(In−1,νλ (α,β, µ((Ωαfm(z))

) ′In−1,νλ (α,β, µ)(Ωαfm(z))

≺ q(z) ≺ h(z), z ∈ U. (17)

Page 9: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

130 I. Faisal, M. Darus

Where q is the univalent solution of the differential equation

q(z) +zq ′(z)

h(z) + ν+β−µ−λµ+λ

= h(z), q(0) = 1. (18)

Proof. Because

SVn,νm,λ(α,β, µ)(h) =f ∈ A :

z(In,νλ (α,β, µ)f(z)) ′

In,νλ (α,β, µ)fm(z)≺ h(z), z ∈ U

.

It is remaining to show that fm ∈ SVn,νm,λ(α,β, µ), since

fm(z) =1

2m

m−1∑k=0

ω−kf(ωkz) +ωkf(ωkz)

.

As

f ∈ SVn,νm,λ(α,β, µ)⇒ z(In,νλ (α,β, µ)f(z)) ′

In,νλ (α,β, µ)fm(z)≺ h(z)

⇒ (Dn,νλ (α,β, µ)zf ′(z))

In,νλ (α,β, µ)fm(z)≺ h(z).

After replacing z by ωjz and ωjz, we get

ω−j (In,νλ (α,β, µ)zf ′(ωjz))

In,νλ (α,β, µ)fm(z)≺ h(z), and ωj

(In,νλ (α,β, µ)zf ′(ωjz))

In,νλ (α,β, µ)fm(z)≺ h(z), (19)

because

h(z) = h(z), In,νλ (α,β, µ)fm(z) = In,νλ (α,β, µ)fm(z), and

In,νλ (α,β, µ)fm(ωjz) = ωjIn,νλ (α,β, µ)fm(z).

Using (19) we have

1

2m

k−1∑k=0

ω−j (In,νλ (α,β, µ)zf ′(ωjz))

In,νλ (α,β, µ)fm(z)+ωj

(In,νλ (α,β, µ)zf ′(ωjz))

In,νλ (α,β, µ)fm(z)≺ h(z),

implies

1

2m

k−1∑k=0

ω−j z(In,νλ (α,β, µ)f(ωjz)) ′

In,νλ (α,β, µ)fm(z)+ωj

z(In,νλ (α,β, µ)f(ωjz)) ′

In,νλ (α,β, µ)fm(z)≺ h(z),

Page 10: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 131

since we have

z(In,νλ (α,β, µ)fm(z))′

=1

2m

m−1∑k=0

ω−kz(In,νλ (α,β, µ)f(ωkz)) ′ +ωkz(In,νλ (α,β, µ)f(ωkz)) ′

and this implies

1

2m

k−1∑k=0

ω−j z(In,νλ (α,β, µ)f(ωjz)) ′

In,νλ (α,β, µ)fm(z)+ωj

z(In,νλ (α,β, µ)f(ωjz)) ′

In,νλ (α,β, µ)fm(z)

=z(In,νλ (α,β, µ)fm(z))

In,νλ (α,β, µ)fm(z),

therefore

z(In,νλ (α,β, µ)fm(z))′

In,νλ (α,β, µ)fm(z)≺ h(z).

Hence (16) is satisfied.From (5) we have

In,νλ (α,β, µ)f(z) = Iαλ (In−1,νλ (α,β, µ)f(z)),

implies

In,νλ (α,β, µ)fm(z) =

(ν− µ+ β− λ

ν+ β

)(In−1,νλ (α,β, µ)(Ωαfm(z))

+

(µ+ λ

ν+ β

)z(In−1,νλ (α,β, µ)(Ωαfm(z))

′,

implies

(In−1,νλ (α,β, µ)(Ωαfm(z)) =ν+ β

(µ+ λ)z(µ+λν+β

)−1

∫ z0

t( µ+λν+β

)−1In,νλ (α,β, µ)fm(t)dt.

Applying Lemma 3, we have

f(z) = In,νλ (α,β, µ)fm(z), F(z) = (In−1,νλ (α,β, µ)(Ωαfm(z)),

and

zf ′(z)

f(z)=z(In,νλ (α,β, µ)fm(z))

In,νλ (α,β, µ)fm(z)≺ h(z)(proved)

Page 11: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

132 I. Faisal, M. Darus

with

<(h(z) +

ν+ β− µ− λ

µ+ λ

)> 0.

Therefore

z(In−1,νλ (α,β, µ((Ωαfm(z))

) ′In−1,νλ (α,β, µ)(Ωαfm(z))

≺ q(z),

and q satisfied the equation

q(z) +zq ′(z)

h(z) + ν+β−µ−λµ+λ

= h(z).

Hence proved.

Corollary 1 Let <(h(z)

)> 0, if f ∈ SVn,νm,λ(α,β, µ)(h) then In,νλ (α,β, µ)fm ∈

S and hence In,νλ (α,β, µ)f is close to convex function.

Theorem 2 Let <(h(z)> 0 and h(z) = h(z) then the following inclusions

hold

SVn+1,νm,λ (α,β, µ)(h) ⊆ SVn,νm,λ(α,β, µ)(h) ⊆ SVn−1,νm,λ (α,β, µ)(h).

Proof. Let f ∈ SVn+1,νm,λ (α,β, µ)(h). To prove SVn+1,νm,λ (α,β, µ)(h) ⊆ SVn,νm,λ(α,β, µ)(h), it is enough to show that f ∈ SVn,νm,λ(α,β, µ)(h).

Applying Theorem 1, if f ∈ SVn+1,νm,λ (α,β, µ)(h) then

z(In+1,νλ (α,β, µ)fm(z))′

In+1,νλ (α,β, µ)fm(z)≺ h(z), z ∈ U,

if Moreover, if <(h(z) + ν+β−µ−λ

µ+λ

)> 0 in U then

z(In,νλ (α,β, µ((Ωαfm(z))

) ′In,νλ (α,β, µ)(Ωαfm(z))

≺ q(z) ≺ h(z), z ∈ U,

and <(q(z) + ν+β−µ−λ

µ+λ

)> 0 in U. Let

p(z) =z(In,νλ (α,β, µ((Ωαf(z))

) ′In,νλ (α,β, µ)(Ωαfm(z))

.

Page 12: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 133

Then p is analytic in U and satisfies

p(z) +zp ′(z)

q(z) + ν+β−µ−λµ+λ

≺ h(z),

by using Lemma 2 p(z) ≺ h(z), implies Ωαf(z) ∈ SVn,νm,λ(α,β, µ)(h), applyingTheorem 4 implies f(z) ∈ SVn,νm,λ(α,β, µ)(h). Hence

SVn+1,νm,λ (α,β, µ)(h) ⊆ SVn,νm,λ(α,β, µ)(h).

Similarly we can show that SVn,νm,λ(α,β, µ)(h) ⊆ SVn−1,νm,λ (α,β, µ)(h), andSVn−1,νm,λ (α,β, µ)(h) ⊆ SVn−2,νm,λ (α,β, µ)(h) and so on, therefore

SVn+1,νm,λ (α,β, µ)(h) ⊆ SVn,νm,λ(α,β, µ)(h) ⊆ SVn−1,νm,λ (α,β, µ)(h).s,

which generalized the Al-Amiri et al. [16] results.

Corollary 2 Taking h(z) = 1+z1−z , in Theorem 2, then

SVn+1,νm,λ (α,β, µ)(1+ z

1− z) ⊆ SVn,νm,λ(α,β, µ)(

1+ z

1− z) ⊆ SVn−1,νm,λ (α,β, µ)(

1+ z

1− z).

Implies that SVn,νm,λ(α,β, µ)( 1+z1−z) are starlike functions with respect to symmet-ric conjugate points.

Theorem 3 If f ∈ SVn,νm,λ(α,β, µ)(h) then f ∗ g ∈ SVn,νm,λ(α,β, µ)(h) where<(h(z)

)> 0 and g is a convex function with real coefficients in U.

Proof. Since f ∈ SVn,νm,λ(α,β, µ)(h), applying Theorem 1, we get In,νλ (α,β, µ)fm(z) ∈ S. Using the convolution properties we have

z(In,νλ (α,β, µ)(f ∗ g)(z)) ′

In,νλ (α,β, µ)(fm ∗ g)(z)=z(In,νλ (α,β, µ)(f(z) ∗ g(z))) ′

In,νλ (α,β, µ)(fm(z) ∗ g(z))

=g(z) ∗ (z(In,νλ (α,β, µ)f(z)) ′

g(z) ∗ In,νλ (α,β, µ)fm(z)

=g(z) ∗ (z(In,νλ (α,β, µ)f(z)) ′/In,νλ (α,β, µ)fm(z))I

n,νλ (α,β, µ)fm(z)

g(z) ∗ In,νλ (α,β, µ)fm(z)

=g(z) ∗ In,νλ (α,β, µ)fm(z)(z(I

n,νλ (α,β, µ)f(z)) ′/In,νλ (α,β, µ)fm(z))

g(z) ∗ In,νλ (α,β, µ)fm(z).

Page 13: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

134 I. Faisal, M. Darus

Implies that

z(In,νλ (α,β, µ)(f ∗ g)(z)) ′

In,νλ (α,β, µ)(fm ∗ g)(z)∈ co

(z(In,νλ (α,β, µ)f) ′

In,νλ (α,β, µ)fm(U)

)⊆ h(U), z ∈ U.

Hence

f ∗ g ∈ SVn,νm,λ(α,β, µ)(h).

Theorem 4 If Ωαf(z) ∈ SVn,νm,λ(α,β, µ)(h) then f(z) ∈ SVn,νm,λ(α,β, µ)(h),where <

(h(z)

)> 0, h(z) = h(z).

Proof. Let Ωαf(z) ∈ SVn,νm,λ(α,β, µ)(h), applying Theorem 1, implies

z(In,νλ (α,β, µ)Ωαfm(z))′

In,νλ (α,β, µ)Ωαfm(z)≺ h(z),

or

(In,νλ (α,β, µ)Ωαfm(z) ∈ S.

Because

Ωαf(z) = ϕ(2, 2− α; z) ∗ f(z)

and

In,νλ (α,β, µ)f(z) = [ϕ(2, 2− α; z) ∗ gµ,νβ,λ(z).sϕ(2, 2− α; z) ∗ gµ,νβ,λ(z)]︸ ︷︷ ︸ ∗f(z),

therefore we can write that

In,νλ (α,β, µ)fm(z) = ϕ(2− α, 2; z) ∗Dn,νλ (α,β, µ)(Ωαfm(z))

z(In,νλ (α,β, µ)f(z)) ′ = ϕ(2− α, 2; z) ∗ z(In,νλ (α,β, µ)(Ωαf(z)) ′,(20)

where ϕ(2− α, 2; z) ∈ K.Using (20) we have

z(In,νλ (α,β, µ)f(z)) ′

In,νλ (α,β, µ)fm(z)=ϕ(2− α, 2; z) ∗ z(In,νλ (α,β, µ)(Ωαf(z))) ′

ϕ(2− α, 2; z) ∗ In,νλ (α,β, µ)(Ωαfm(z)),

z(In,νλ (α,β, µ)f(z)) ′

In,νλ (α,β, µ)fm(z)

=ϕ(2− α, 2; z) ∗ In,νλ (α,β, µ)(Ωαfm(z))

(z(In,νλ (α,β,µ)(Ωαf(z))) ′

In,νλ (α,β,µ)(Ωαfm(z))

ϕ(2− α, 2; z) ∗ In,νλ (α,β, µ)(Ωαfm(z)),

z(In,νλ (α,β, µ)f(z)) ′

In,νλ (α,β, µ)fm(z)∈ co

(z(In,νλ (α,β, µ)Ωαf) ′

In,νλ (α,β, µ)Ωαfm(U))⊆ h(U), z ∈ U.

(21)

Page 14: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 135

Hence

f(z) ∈ SVn,νm,λ(α,β, µ)(h).

Theorem 5 Let 0 ≤ α1 < α < 1, and Re(h(z)) > 12 , then the following

inclusions hold

SVn,νm,λ(α,β, µ)(h) ⊆ SVn,νm,λ(α1, β, µ)(h) .

Proof. Let f(z) ∈ SVn,νm,λ(α,β, µ)(h), from (7) we have

In,νλ (α,β, µ)f(z) = [ϕ(2, 2− α; z) ∗ gµ,νβ,λ(z).sϕ(2, 2− α; z) ∗ gµ,νβ,λ(z)]︸ ︷︷ ︸ ∗f(z),

implies

In,νλ (α1, β, µ)f(z) = [ϕ(2, 2− α1; z) ∗ gµ,νβ,λ(z).sϕ(2, 2− α1; z) ∗ gµ,νβ,λ(z)]︸ ︷︷ ︸ ∗f(z),

In,νλ (α1, β, µ)f(z) = [ϕ(2− α, 2− α1; z) ∗ .s ∗ϕ(2− α, 2− α1; z)]︸ ︷︷ ︸∗ In,νλ (α,β, µ)f(z),

implies that

z(In,νλ (α1, β, µ)f(z))′ = [ϕ(2− α, 2− α1; z) ∗ .s ∗ϕ(2− α, 2− α1; z)]︸ ︷︷ ︸∗ z(In,νλ (α,β, µ)f(z)) ′,

applying same technique, we have

In,νλ (α1, β, µ)fm(z) = [ϕ(2− α, 2− α1; z) ∗ .s ∗ϕ(2− α, 2− α1; z)]︸ ︷︷ ︸∗ In,νλ (α,β, µ)fm(z),

since Y. Ling and S. Ding [24] already proved that ϕ(2−α, 2−α1; z) ∈ S(1/2),therefore by Lemma 1 we get [ϕ(2−α, 2−α1; z)∗.s∗ϕ(2−α, 2−α1; z)] ∈ S(1/2).

From last two equations we get

z(In,νλ (α1, β, µ)f(z))′

In,νλ (α1, β, µ)fm(z)=

[ϕ(2 − α, 2 − α1; z) ∗ .s ∗ϕ(2 − α, 2 − α1; z)]︸ ︷︷ ︸ ∗z(In,νλ (α, β, µ)f(z)) ′

[ϕ(2 − α, 2 − α1; z) ∗ .s ∗ϕ(2 − α, 2 − α1; z)]︸ ︷︷ ︸ ∗In,νλ (α, β, µ)fm(z),

Page 15: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

136 I. Faisal, M. Darus

after simplification and using Lemma 5 we deduce that

z(In,νλ (α1, β, µ)f(z))′

In,νλ (α1, β, µ)fm(z)∈ co

(z(In,νλ (α,β, µ)f) ′

In,νλ (α,β, µ)fm(U))⊆ h(U), z ∈ U,

therefore

f ∈ SVn,νm,λ(α1, β, µ)(h).

Hence proved.

Remark 2 1. When ν = 1, µ = β = 0, SVn,1m,λ(α, 0, 0)(h) = SVnm,λ(α)(h),the classes of functions related to starlike functions with respect to sym-metric conjugate points, defined and studied by M. K. Al-Oboudi [25].

2. For n = m = ν = 1, µ = β = 0,and h(z) = 1+z1−z , SV

1,11,λ(α, 0, 0)

(1+z1−z

)=

SVλ,α(1+z1−z

), the class of λ-starlike functions with respect to conjugate

points, defined and studied by Radha [23].

3. For n = m = ν = λ = 1, α = µ = β = 0,and h(z) = 1+z1−z , SV

1,11,1(0, 0, 0)(

1+z1−z

)= SV

(1+z1−z

), the class of starlike functions with respect to conjugate

points, defined and studied by El-Ashwah and Thomas [5].

4. For n = ν = 1, α = µ = β = 0,and h(z) = 1+z1−z , SV

1,1m,λ(0, 0, 0)

(1+z1−z

)=

SVm,λ(1+z1−z

), the class of λ-starlike functions with respect to 2m-symmetric

conjugate points, defined and studied by Al-Amiri et al. [15, 16].

5. For m = ν = 1, n = µ = β = 0, SV0,11,λ(α, 0, 0)(h) = SV(α)(h), the classof functions related to starlike functions with respect to conjugate points,defined and studied by Ravichandran [31].

6. For m = n = ν = 1, α = µ = β = 0 and h(z) = 1+z1−z , SV

1,11,λ(0, 0, 0)

(1+z1−z

)=

SVλ(1+z1−z

), the class of λ-starlike functions with respect to conjugate

points, defined and studied by Radha [23].

7. For λ = n = ν = 1, α = µ = β = 0 and h(z) = 1+z1−z , SV

1,1m,1(0, 0, 0)(h) =

SVm(1+z1−z

), the class of starlike functions with respect to 2m-symmetric

conjugate points, defined by Al-Amiri et al. [16].

8. For ν = 1, µ = β = 0, KVn,1m,λ(α, 0, 0)(h) = KVm,nλ (α)(h), the classes offunctions related to starlike functions with respect to symmetric conju-gate points, defined and studied by M.K. Al-Oboudi [25].

Page 16: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 137

9. For n = ν = 1, α = µ = β = 0 and h(z) = 1+z1−z , KV

1,1m,λ(0, 0, 0)

(1+z1−z

)=

KVmλ(1+z1−z

), the class of λ-close to convex functions with respect to sym-

metric conjugate points, defined and studied by Al-Amiri et al. [16].

10. For m = n = ν = 1, α = µ = β = 0 and h(z) = 1+z1−z , KV

1,11,λ(0, 0, 0)

(1+z1−z

)=

KVλ(1+z1−z

), the class of λ-close to convex functions with respect to sym-

metric conjugate points, defined and studied by Radha [23].

Acknowledgments

The work presented here was fully supported by UKM-AP-2013-09.

References

[1] K. Sakaguchi, On certain univalent mappings, J. Math. Soc. Japan, 11(1959), 72–75.

[2] T. N. Shanmugam, C. Ramachandran, V. Ravichandran, Fekete-Szegoproblem for subclasses of starlike functions with respect to symmetricpoints, Bull. Korean Math. Soc., 43 (2006), 589–598.

[3] R. Chand, P. Singh, On certain schlicht mappings, J. Pure Appl. Math.,10(9) (1979), 1167–1174.

[4] R. N. Das, P. Singh, On subclasses of schlicht mapping, Indian J. PureAppl. Math., 8 (8) (1977), 864–872.

[5] M. El-Ashwah, D. K. Thomas, Some subclasses of close-to-convex func-tions, J. Ramanujan Math. Soc., 2 (1) (1987), 85–100.

[6] S. Owa, On the distortion theorems, I. Kyungpook Math J., 18 (1) (1978),53–59.

[7] S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeo-metric functions, Canad. J. Math., 39 (5) (1987), 1057–1077.

[8] M. K. Aouf, R. M. El-Ashwah, S. M. El-Deeb, Some inequalities forcertain p-valent functions involving extended multiplier transformations,Proc. Pak. Acad. Sci., 46 (4) (2009), 217–221.

[9] F. M. Al-Oboudi, On univalent functions defined by a generalizedSalagean operator, Int. J. Math. Math. Sci., (2004), 1419–1436.

Page 17: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

138 I. Faisal, M. Darus

[10] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math-ematics 1013, Springer-Verlag, 1983.

[11] B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions,In: Current Topics in Analytic Function Theory, Eds. Srivastava, H. M.and Owa, S., World Scientific Publishing Company, Singapore, 1992.

[12] N. E. Cho, H. M. Srivastava, Argument estimates of certain analytic func-tions defined by a class of multiplier transformations, Math. Comput.Modeling, 37 (2003), 39–49.

[13] N. E. Cho, T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (2003), 399–410.

[14] F. M. Al-Oboudi, K.A . Al-Amoudi, On classes of analytic functions re-lated to conic domains, J. Math. Anal. Appl., 399 (2008), 655–667.

[15] H. S. Al-Amiri, D. Coman, P. T. Mocanu, Some properties of starlike func-tions with respect to symmetric- conjugate points, Int. J. Math. Math.Sci., 18 (3) (1995), 467–474.

[16] H. S. Al-Amiri, B. Green, D. Coman, P. T. Mocanu, Starlike and close-to-convex functions with respect to symmetric-conjugate points, Glas. Math.III. Ser., 30 (2) (1995), 209–219.

[17] P. T. Mocanu, On starlike functions with respect to symmetric points,Bull. Math. Soc. Sci. Math. Roum. Nouv. Sr., 28 (1) (1984), 47–50.

[18] P. T. Mocanu, Certain classes of starlike functions with respect to sym-metric points, Mathematica (Cluj), 32 (55) (1990), 153–157.

[19] St. Ruscheweyh, Sheil-Small, Hadamard products of schlicht functionsand the Polya-Schoenberg conjecture, Comment. Math. Helv., 48 (1973),119–135.

[20] S. S Miller, P. T. Mocanu, General second order inequalities in the com-plex plane, Babes-Bolyai Univ. Fac. of Math. Research Seminars, Seminaron Geometric Function Theory, 4 (1982), 96-114.

[21] S. S Miller, P. T. Mocanu, Differnetial Subordination Theory and Appli-cations, Marcel Dekker Inc. New York, 2000.

[22] St. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math.Su., vol. 83. Presses Univ. de Montreal, 1982.

Page 18: Study on subclasses of analytic functionsActa Univ. Sapientiae, Mathematica, 9, 1 (2017) 122{139 DOI: 10.1515/ausm-2017-0008 Study on subclasses of analytic functions Imran Faisal

Study on subclasses of analytic functions 139

[23] S. Radha, On α-starlike and α-close-to-convex functions with respect toconjugate points, Bull. Inst. Math. Acad. Sinica, 18 (1990), 41–47.

[24] Y. Ling, S. Ding, A class of analytic functions defined by fractional deriva-tive, J. Math. Anal. Appl., 186 (1994), 504–513.

[25] F. M. Al-Oboudi, On classes of functions related to starlike functions withrespect to symmetric conjugate points defined by a fractional differentialoperator, Complex Anal. Oper. Theory, DOI 10.1007/s11785-010-0069-2.

[26] A. Catas, On certain classes of p-valent functions defined by multipliertransformations, in: S. Owa, Y. Polatoglu (Eds.), Proceedings of the In-ternational Symposium on Geometric Function Theory and Applications:,GFTA 2007 Proceedings, Istanbul, Turkey, 20–24 August 2007, vol. 91,TC Istanbul Kultur University Publications, TC Istanbul Kultur Univer-sity, Istanbul, Turkey, 2008.

[27] S. S. Kumar, H. C. Taneja, V. Ravichandran, Classes multivalent func-tions defined by Dziok–Srivastava linear operaor and multiplier transfor-mations, Kyungpook Math. J., 46 (2006), 97–109.

[28] H. M. Srivastava, K. Suchithra, B. Adolf Stephen, S. Sivasubramanian,Inclusion and neighborhood properties of certain subclasses of multivalentfunctions of complex order, J. Ineq. Pure Appl. Math., 5 (7) (2006), 1–8.

[29] M. Darus, I. Faisal, A different approach to normalized analytic aunctionsthrough meromorphic functions defined by extended multiplier transfor-mations operator, Int. J. App. Math. Stat., 23 (11) (2011), 112–121.

[30] M. Darus, I. Faisal, Characrerization properties for a class of analyticaunctions defined by generalized Cho and Srivastava operator, In Proc.2nd Inter. Conf. Math. Sci., Kuala Lumpur, Malaysia, (2010), 1106–1113.

[31] V. Ravichandran, Starlike and convex functions with respect to conjugatepoints, Acta Mathematica Academiae Paedagogicae Nyiregyaziensis 20(2004), 31–37.

Received: March 21, 2016