Research Article Convolution Properties for Some ...1, which are analytic in the punctured unit disc...

7
Research Article Convolution Properties for Some Subclasses of Meromorphic Functions of Complex Order M. K. Aouf, 1 A. O. Mostafa, 1 and H. M. Zayed 2 1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt 2 Department of Mathematics, Faculty of Science, Menofia University, Shebin El Kom 32511, Egypt Correspondence should be addressed to H. M. Zayed; hanaa [email protected] Received 3 June 2015; Accepted 5 July 2015 Academic Editor: Allan Peterson Copyright Β© 2015 M. K. Aouf et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Making use of the operator L for functions of the form () = 1/ + βˆ‘ ∞ =1 βˆ’1 , which are analytic in the punctured unit disc U βˆ— = { : ∈ C and 0 < || < 1} = U \ {0}, we introduce two subclasses of meromorphic functions and investigate convolution properties, coefficient estimates, and containment properties for these subclasses. 1. Introduction Let Ξ£ denote the class of meromorphic functions of the form () = 1 + ∞ βˆ‘ =1 βˆ’1 , (1) which are analytic in the punctured unit disc U βˆ— = { : ∈ C and 0 < || < 1}= U \{0}. Let () ∈ Ξ£ be given by () = 1 + ∞ βˆ‘ =1 βˆ’1 ; (2) then, the Hadamard product (or convolution) of () and () is given by ( βˆ— ) () = 1 + ∞ βˆ‘ =1 = ( βˆ— ) () . (3) We recall some definitions which will be used in our paper. Definition 1. For two functions () and (), analytic in U, we say that the function () is subordinate to () in U and written () β‰Ί (), if there exists a Schwarz function (), analytic in U with (0)= 0 and |()| < 1 such that () = (()) ( ∈ U). Furthermore, if the function () is univalent in U, then we have the following equivalence (see [1]): () β‰Ί () ⇐⇒ (0)=(0), (U)βŠ‚(U). (4) Now, consider Bessel’s function of the first kind of order where is an unrestricted (real or complex) number, defined by (see Watson [2, page 40]) (see also Baricz [3, page 7]) () = ∞ βˆ‘ =0 (βˆ’1) Ξ“ ( + 1) Ξ“ ( + + 1) ( 2 ) 2+] , (5) which is a particular solution of the second order linear homogenous Bessel differential equation (see, e.g., Watson [2, page 38]) (see also Baricz [3, page 7]) 2 () + () + ( 2 βˆ’ 2 ) ()= 0. (6) Also, let us define L () = 2 Ξ“ ( + 1) /2+1 ( 1/2 ) = 1 + ∞ βˆ‘ =1 (βˆ’1) Ξ“ ( + 1) 4 Ξ“ ( + 1) Ξ“ ( + + 1) βˆ’1 ( ∈ U βˆ— ). (7) Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2015, Article ID 973613, 6 pages http://dx.doi.org/10.1155/2015/973613

Transcript of Research Article Convolution Properties for Some ...1, which are analytic in the punctured unit disc...

  • Research ArticleConvolution Properties for Some Subclasses of MeromorphicFunctions of Complex Order

    M. K. Aouf,1 A. O. Mostafa,1 and H. M. Zayed2

    1Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt2Department of Mathematics, Faculty of Science, Menofia University, Shebin El Kom 32511, Egypt

    Correspondence should be addressed to H. M. Zayed; hanaa [email protected]

    Received 3 June 2015; Accepted 5 July 2015

    Academic Editor: Allan Peterson

    Copyright Β© 2015 M. K. Aouf et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Making use of the operator L𝜐for functions of the form 𝑓(𝑧) = 1/𝑧 + βˆ‘βˆž

    π‘˜=1π‘Žπ‘˜π‘§π‘˜βˆ’1, which are analytic in the punctured unit disc

    Uβˆ— = {𝑧 : 𝑧 ∈ C and 0 < |𝑧| < 1} = U \ {0}, we introduce two subclasses of meromorphic functions and investigate convolutionproperties, coefficient estimates, and containment properties for these subclasses.

    1. Introduction

    Let Ξ£ denote the class of meromorphic functions of the form

    𝑓 (𝑧) =1𝑧+∞

    βˆ‘π‘˜=1π‘Žπ‘˜π‘§π‘˜βˆ’1, (1)

    which are analytic in the punctured unit discUβˆ— = {𝑧 : 𝑧 ∈ Cand 0 < |𝑧| < 1} = U \ {0}. Let 𝑔(𝑧) ∈ Ξ£ be given by

    𝑔 (𝑧) =1𝑧+∞

    βˆ‘π‘˜=1π‘π‘˜π‘§π‘˜βˆ’1; (2)

    then, the Hadamard product (or convolution) of 𝑓(𝑧) and𝑔(𝑧) is given by

    (𝑓 βˆ— 𝑔) (𝑧) =1𝑧+∞

    βˆ‘π‘˜=1π‘Žπ‘˜π‘π‘˜π‘§π‘˜ = (𝑔 βˆ— 𝑓) (𝑧) . (3)

    We recall some definitions which will be used in our paper.

    Definition 1. For two functions 𝑓(𝑧) and 𝑔(𝑧), analytic in U,we say that the function 𝑓(𝑧) is subordinate to 𝑔(𝑧) in Uand written 𝑓(𝑧) β‰Ί 𝑔(𝑧), if there exists a Schwarz function𝑀(𝑧), analytic in U with 𝑀(0) = 0 and |𝑀(𝑧)| < 1 such that𝑓(𝑧) = 𝑔(𝑀(𝑧)) (𝑧 ∈ U). Furthermore, if the function 𝑔(𝑧) is

    univalent in U, then we have the following equivalence (see[1]):

    𝑓 (𝑧) β‰Ί 𝑔 (𝑧)

    ⇐⇒ 𝑓 (0) = 𝑔 (0) ,

    𝑓 (U) βŠ‚ 𝑔 (U) .

    (4)

    Now, consider Bessel’s function of the first kind of order 𝜐where 𝜐 is an unrestricted (real or complex) number, definedby (see Watson [2, page 40]) (see also Baricz [3, page 7])

    𝐽𝜐(𝑧) =

    ∞

    βˆ‘π‘˜=0

    (βˆ’1)π‘˜

    Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)(𝑧

    2)2π‘˜+]

    , (5)

    which is a particular solution of the second order linearhomogenous Bessel differential equation (see, e.g.,Watson [2,page 38]) (see also Baricz [3, page 7])

    𝑧2𝑀 (𝑧) + 𝑧𝑀

    (𝑧) + (𝑧2 βˆ’ 𝜐2)𝑀 (𝑧) = 0. (6)

    Also, let us define

    L𝜐(𝑧) =

    2πœΞ“ (𝜐 + 1)π‘§πœ/2+1

    𝐽𝜐(𝑧1/2)

    =1𝑧+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘§π‘˜βˆ’1

    (𝑧 ∈ Uβˆ—) .

    (7)

    Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2015, Article ID 973613, 6 pageshttp://dx.doi.org/10.1155/2015/973613

  • 2 Abstract and Applied Analysis

    The operatorL𝜐is a modification of the operator introduced

    by Szász and Kupán [4] for analytic functions.By using the Hadamard product (or convolution), we

    define the operatorL𝜐as follows:

    (Lπœπ‘“) (𝑧) = L

    𝜐(𝑧) βˆ— 𝑓 (𝑧)

    =1𝑧+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜π‘§π‘˜βˆ’1.

    (8)

    It is easy to verify from (8) that

    𝑧 ((L𝜐+1𝑓) (𝑧))

    = (𝜐 + 1) (Lπœπ‘“) (𝑧)

    βˆ’ (𝜐 + 2) (L𝜐+1𝑓) (𝑧) .

    (9)

    Definition 2. For 0 ≀ πœ† < 1, βˆ’1 ≀ 𝐡 < 𝐴 ≀ 1, and 𝑏 ∈Cβˆ— = C \ {0}, let Ξ£Sβˆ—

    πœ†[𝑏; 𝐴, 𝐡] be the subclass of Ξ£ consisting

    of function 𝑓(𝑧) of the form (1) and satisfying the analyticcriterion

    1+ 1𝑏[

    βˆ’π‘§π‘“ (𝑧)

    (1 βˆ’ πœ†) 𝑓 (𝑧) βˆ’ πœ†π‘§π‘“ (𝑧)βˆ’ 1] β‰Ί 1 + 𝐴𝑧

    1 + 𝐡𝑧. (10)

    Also, let Ξ£Kπœ†[𝑏; 𝐴, 𝐡] be the subclass of Ξ£ consisting of

    function 𝑓(𝑧) of the form (1) and satisfying the analyticcriterion

    1+ 1𝑏[

    [

    βˆ’π‘§ (𝑧𝑓 (𝑧))

    (1 βˆ’ πœ†) 𝑧𝑓 (𝑧) βˆ’ πœ†π‘§ (𝑧𝑓 (𝑧))βˆ’ 1]

    ]

    β‰Ί1 + 𝐴𝑧1 + 𝐡𝑧

    .

    (11)

    It is easy to verify from (10) and (11) that

    𝑓 (𝑧) ∈ Ξ£Kπœ†[𝑏; 𝐴, 𝐡]

    ⇐⇒ βˆ’π‘§π‘“ (𝑧) ∈ Ξ£Sβˆ—

    πœ†[𝑏; 𝐴, 𝐡] .

    (12)

    We note that

    (i) Ξ£Sβˆ—0 [𝑏; 𝐴, 𝐡] = Ξ£Sβˆ—[𝑏; 𝐴, 𝐡] and Ξ£K0[𝑏; 𝐴, 𝐡] =

    Ξ£K[𝑏; 𝐴, 𝐡] (see BulboacaΜ† et al. [5]);(ii) Ξ£Sβˆ—0 [𝑏; 1, βˆ’1] = Ξ£S(𝑏) and Ξ£K0[𝑏; 1, βˆ’1] = Ξ£K(𝑏)

    (see Aouf [6]);(iii) Ξ£Sβˆ—0 [(1 βˆ’ 𝛼)𝑒

    βˆ’π‘–πœ‡cosπœ‡; 1, βˆ’1] = Ξ£Sπœ‡(𝛼) and Ξ£K0[(1 βˆ’π›Ό)π‘’βˆ’π‘–πœ‡cosπœ‡; 1, βˆ’1] = Ξ£Kπœ‡(𝛼) (πœ‡ ∈ R, |πœ‡| ≀ πœ‹/2, 0 ≀𝛼 < 1) (see Ravichandran et al. [7, with 𝑝 = 1]).

    Definition 3. For 0 ≀ πœ† < 1, βˆ’1 ≀ 𝐡 < 𝐴 ≀ 1, 𝑏 ∈ Cβˆ— and 𝜐is an unrestricted (real or complex) number, let

    Ξ£Sβˆ—πœ†,𝜐[𝑏; 𝐴, 𝐡]

    = {𝑓 (𝑧) ∈ Ξ£ : (Lπœπ‘“) (𝑧) ∈ Ξ£S

    βˆ—

    πœ†[𝑏; 𝐴, 𝐡]} ,

    Ξ£Kπœ†,𝜐[𝑏; 𝐴, 𝐡]

    = {𝑓 (𝑧) ∈ Ξ£ : (Lπœπ‘“) (𝑧) ∈ Ξ£K

    πœ†[𝑏; 𝐴, 𝐡]} .

    (13)

    It is easy to show that

    𝑓 (𝑧) ∈ Ξ£Kπœ†,𝜐[𝑏; 𝐴, 𝐡]

    ⇐⇒ βˆ’π‘§π‘“ (𝑧) ∈ Ξ£Sβˆ—

    πœ†,𝜐[𝑏; 𝐴, 𝐡] .

    (14)

    The object of the present paper is to investigatesome convolution properties, coefficient estimates, and con-tainment properties for the subclasses Ξ£Sβˆ—

    πœ†,𝜐[𝑏; 𝐴, 𝐡] and

    Ξ£Kπœ†,𝜐[𝑏; 𝐴, 𝐡].

    2. Main Results

    Unless otherwise mentioned, we assume throughout thispaper that 0 ≀ πœ† < 1, βˆ’1 ≀ 𝐡 < 𝐴 ≀ 1, 𝑏 ∈ Cβˆ— and 𝜐 isan unrestricted (real or complex) number.

    Theorem 4. If 𝑓(𝑧) ∈ Ξ£, then 𝑓(𝑧) ∈ Ξ£Sβˆ—πœ†[𝑏; 𝐴, 𝐡] if and only

    if

    𝑧 [𝑓 (𝑧) βˆ—1 βˆ’ [(πœ† βˆ’ 1)𝑀 + (πœ† + 1)] 𝑧

    𝑧 (1 βˆ’ 𝑧)2] ΜΈ= 0

    π‘“π‘œπ‘Ÿ 𝑧 ∈ U,

    (15)

    where𝑀 = π‘€πœƒ= (π‘’βˆ’π‘–πœƒ + 𝐡)/(𝐴 βˆ’ 𝐡)𝑏, πœƒ ∈ [0, 2πœ‹), and also

    𝑀 = 0.

    Proof. It is easy to verify that

    𝑓 (𝑧) βˆ—1

    𝑧 (1 βˆ’ 𝑧)= 𝑓 (𝑧) ,

    𝑓 (𝑧) βˆ— [1

    𝑧 (1 βˆ’ 𝑧)2βˆ’

    2(1 βˆ’ 𝑧)2

    ] = βˆ’ 𝑧𝑓 (𝑧)

    βˆ€π‘§ ∈ Uβˆ—; 𝑓 ∈ Ξ£.

    (16)

    (i) In view of (10), 𝑓(𝑧) ∈ Ξ£Sβˆ—πœ†[𝑏; 𝐴, 𝐡] if and only if (10)

    holds. Since the function (1 + [𝐡 + (𝐴 βˆ’ 𝐡)𝑏]𝑧)/(1 + 𝐡𝑧) isanalytic in U, it follows that (1 βˆ’ πœ†)𝑓(𝑧) βˆ’ πœ†π‘§π‘“(𝑧) ΜΈ= 0 for𝑧 ∈ Uβˆ— or 𝑧[(1 βˆ’ πœ†)𝑓(𝑧) βˆ’ πœ†π‘§π‘“(𝑧)] ΜΈ= 0 for 𝑧 ∈ U; this isequivalent to (15) holdding for 𝑀 = 0. To prove (15) for all𝑀 ΜΈ= 0, we write (10) by using the principle of subordinationas

    βˆ’π‘§π‘“ (𝑧)

    (1 βˆ’ πœ†) 𝑓 (𝑧) βˆ’ πœ†π‘§π‘“ (𝑧)=1 + [𝐡 + (𝐴 βˆ’ 𝐡) 𝑏]𝑀 (𝑧)

    1 + 𝐡𝑀 (𝑧), (17)

    where 𝑀(𝑧) is Schwarz function, analytic in U with 𝑀(0) = 0and |𝑀(𝑧)| < 1; hence,

    𝑧 [βˆ’π‘§π‘“ (𝑧) (1+π΅π‘’π‘–πœƒ) βˆ’ [(1βˆ’πœ†) 𝑓 (𝑧) βˆ’ πœ†π‘§π‘“ (𝑧)]

    β‹… [1+ [𝐡+ (π΄βˆ’π΅) 𝑏] π‘’π‘–πœƒ]] ΜΈ= 0

    for 𝑧 ∈ U, πœƒ ∈ [0, 2πœ‹) .

    (18)

  • Abstract and Applied Analysis 3

    Using (16), (18) may be written as

    𝑧 [𝑓 (𝑧)

    βˆ—1 βˆ’ [(πœ† βˆ’ 1) ((π‘’βˆ’π‘–πœƒ + 𝐡) / (𝐴 βˆ’ 𝐡) 𝑏) + (πœ† + 1)] 𝑧

    𝑧 (1 βˆ’ 𝑧)2]

    ΜΈ= 0 for 𝑧 ∈ U.

    (19)

    Thus, the first part of Theorem 4 was proved.(ii) Reversely, because assumption (15) holds for𝑀 = 0,

    it follows that 𝑧[(1 βˆ’ πœ†)𝑓(𝑧) βˆ’ πœ†π‘§π‘“(𝑧)] ΜΈ= 0 for 𝑧 ∈ U. Thisimplies thatπœ‘(𝑧) = βˆ’π‘§π‘“(𝑧)/((1βˆ’πœ†)𝑓(𝑧)βˆ’πœ†π‘§π‘“(𝑧)) is analyticin U (i.e., it is regular in 𝑧 = 0, with πœ‘(0) = 1).

    Since it was shown in the first part of the proof thatassumption (18) is equivalent to (15), we obtain that

    βˆ’π‘§π‘“ (𝑧)

    (1 βˆ’ πœ†) 𝑓 (𝑧) βˆ’ πœ†π‘§π‘“ (𝑧)ΜΈ=1 + [𝐡 + (𝐴 βˆ’ 𝐡) 𝑏] π‘’π‘–πœƒ

    1 + π΅π‘’π‘–πœƒ

    for 𝑧 ∈ U, πœƒ ∈ [0, 2πœ‹) .

    (20)

    Assume that

    πœ“ (𝑧) =1 + [𝐡 + (𝐴 βˆ’ 𝐡) 𝑏] π‘’π‘–πœƒ

    1 + π΅π‘’π‘–πœƒ. (21)

    Relation (20) means that πœ‘(U) ∩ πœ“(πœ•U) = 0. Thus, the simplyconnected domain is included in a connected component ofC \ πœ“(πœ•U). From this, using the fact that πœ‘(0) = πœ“(0) andthe univalence of the function πœ“, it follows that πœ‘(𝑧) β‰Ί πœ“(𝑧);this implies that 𝑓(𝑧) ∈ Ξ£Sβˆ—

    πœ†,𝜐[𝑏; 𝐴, 𝐡]. Thus, the proof of

    Theorem 4 is completed.

    Remark 5. (i) Putting πœ† = 0 in Theorem 4, we obtain theresult obtained by BulboacaΜ† et al. [5, Theorem 1].

    (ii) Putting πœ† = 0, 𝑏 = 1, and π‘’π‘–πœƒ = π‘₯ in Theorem 4, weobtain the result obtained by Ponnusamy [8, Theorem 2.1].

    (iii) Putting πœ† = 0, 𝑏 = (1 βˆ’ 𝛼)π‘’βˆ’π‘–πœ‡cosπœ‡ (πœ‡ ∈ R, |πœ‡| β‰€πœ‹/2, 0 ≀ 𝛼 < 1),𝐴 = 1, 𝐡 = βˆ’1, and π‘’π‘–πœƒ = π‘₯ inTheorem 4, weobtain the result obtained by Ravichandran et al. [7,Theorem1.2 with 𝑝 = 1].

    Theorem 6. If 𝑓(𝑧) ∈ Ξ£, then 𝑓(𝑧) ∈ Ξ£Kπœ†[𝑏; 𝐴, 𝐡] if and

    only if

    𝑧 [𝑓 (𝑧) βˆ—1 βˆ’ 3𝑧 + 2 [(πœ† βˆ’ 1)𝑀 + (πœ† + 1)] 𝑧2

    𝑧 (1 βˆ’ 𝑧)3] ΜΈ= 0

    π‘“π‘œπ‘Ÿ 𝑧 ∈ U,

    (22)

    where𝑀 = π‘€πœƒ= (π‘’βˆ’π‘–πœƒ + 𝐡)/(𝐴 βˆ’ 𝐡)𝑏, πœƒ ∈ [0, 2πœ‹), and also

    𝑀 = 0.

    Proof. Putting

    𝑔 (𝑧) =1 βˆ’ [(πœ† βˆ’ 1)𝑀 + (πœ† + 1)] 𝑧

    𝑧 (1 βˆ’ 𝑧)2, (23)

    then

    βˆ’ 𝑧𝑔 (𝑧) =1 βˆ’ 3𝑧 + 2 [(πœ† βˆ’ 1)𝑀 + (πœ† + 1)] 𝑧2

    𝑧 (1 βˆ’ 𝑧)3. (24)

    From (12) and using the identity

    [βˆ’π‘§π‘“ (𝑧)] βˆ— 𝑔 (𝑧) = 𝑓 (𝑧) βˆ— [βˆ’π‘§π‘”

    (𝑧)] , (25)

    we obtain the required result fromTheorem 4.

    Remark 7. (i) Puttingπœ† = 0 inTheorem6,we obtain the resultobtained by BulboacaΜ† et al. [5, Theorem 2].

    (ii) Putting πœ† = 0, 𝑏 = 1, and π‘’π‘–πœƒ = π‘₯ in Theorem 4, weobtain the result obtained by Ponnusamy [8, Theorem 2.2].

    Theorem 8. If 𝑓(𝑧) ∈ Ξ£, then 𝑓(𝑧) ∈ Ξ£Sβˆ—πœ†,𝜐[𝑏; 𝐴, 𝐡] if and

    only if

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ (1 βˆ’ π‘˜πœ†) Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜π‘§π‘˜ ΜΈ= 0, (26)

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ Ξ“ (𝜐 + 1)

    β‹… [(1 βˆ’ π‘˜πœ†) (𝐴 βˆ’ 𝐡) 𝑏

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    βˆ’βˆ’π‘˜ (πœ† βˆ’ 1) (π‘’βˆ’π‘–πœƒ + 𝐡)

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)] π‘Žπ‘˜π‘§π‘˜ ΜΈ= 0,

    (27)

    for all πœƒ ∈ [0, 2πœ‹).

    Proof. If 𝑓(𝑧) ∈ Ξ£, from Theorem 4, we have 𝑓(𝑧) ∈ΣSβˆ—πœ†,𝜐[𝑏; 𝐴, 𝐡] if and only if

    𝑧 [(Lπœπ‘“) (𝑧) βˆ—

    1 βˆ’ [(πœ† βˆ’ 1)𝑀 + (πœ† + 1)] 𝑧𝑧 (1 βˆ’ 𝑧)2

    ] ΜΈ= 0

    for 𝑧 ∈ U,(28)

    where𝑀 = π‘€πœƒ= (π‘’βˆ’π‘–πœƒ + 𝐡)/(𝐴 βˆ’ 𝐡)𝑏, πœƒ ∈ [0, 2πœ‹), and also

    𝑀 = 0. Since

    1 βˆ’ (πœ† + 1) 𝑧𝑧 (1 βˆ’ 𝑧)2

    =1𝑧+∞

    βˆ‘π‘˜=1

    (1βˆ’ π‘˜πœ†) π‘§π‘˜βˆ’1, 𝑧 ∈ Uβˆ—, (29)

    it is easy to show that (28) holds for𝑀 = 0 if and only if (26)holds. Also,

    1 βˆ’ [(πœ† βˆ’ 1)𝑀 + (πœ† + 1)] 𝑧𝑧 (1 βˆ’ 𝑧)2

    =1𝑧+∞

    βˆ‘π‘˜=1

    [(1βˆ’ π‘˜πœ†) βˆ’ π‘˜ (πœ† βˆ’ 1)𝑀] π‘§π‘˜βˆ’1, 𝑧 ∈ Uβˆ—;(30)

    we may easily check that (28) is equivalent to (27). Thiscompletes the proof of Theorem 8.

  • 4 Abstract and Applied Analysis

    Theorem 9. If 𝑓(𝑧) ∈ Ξ£, then 𝑓(𝑧) ∈ Ξ£Kπœ†,𝜐[𝑏; 𝐴, 𝐡] if and

    only if

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ (π‘˜πœ† βˆ’ 1) (π‘˜ βˆ’ 1) Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜π‘§π‘˜ ΜΈ= 0, (31)

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ (π‘˜ βˆ’ 1) Ξ“ (𝜐 + 1)

    β‹… [(π‘˜πœ† βˆ’ 1) (𝐴 βˆ’ 𝐡) 𝑏

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    +π‘˜ (πœ† βˆ’ 1) (π‘’βˆ’π‘–πœƒ + 𝐡)

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)] π‘Žπ‘˜π‘§π‘˜ ΜΈ= 0,

    (32)

    for all πœƒ ∈ [0, 2πœ‹).

    Proof. If 𝑓(𝑧) ∈ Ξ£, from Theorem 6, we have 𝑓(𝑧) ∈ΣKπœ†,𝜐[𝑏; 𝐴, 𝐡] if and only if

    𝑧 [(Lπœπ‘“) (𝑧) βˆ—

    1 βˆ’ 3𝑧 + 2 [(πœ† βˆ’ 1)𝑀 + (πœ† + 1)] 𝑧2

    𝑧 (1 βˆ’ 𝑧)3]

    ΜΈ= 0 for 𝑧 ∈ U,

    (33)

    where𝑀 = π‘€πœƒ= (π‘’βˆ’π‘–πœƒ + 𝐡)/(𝐴 βˆ’ 𝐡)𝑏, πœƒ ∈ [0, 2πœ‹), and also

    𝑀 = 0. Since

    1 βˆ’ 3𝑧 + 2 (πœ† + 1) 𝑧2

    𝑧 (1 βˆ’ 𝑧)3=1𝑧+∞

    βˆ‘π‘˜=1

    (π‘˜πœ† βˆ’ 1) (π‘˜ βˆ’ 1) π‘§π‘˜βˆ’1,

    𝑧 ∈ Uβˆ—,

    (34)

    it is easy to show that (33) holds for𝑀 = 0 if and only if (31)holds. Also,

    1 βˆ’ 3𝑧 + 2 [(πœ† βˆ’ 1)𝑀 + (πœ† + 1)] 𝑧2

    𝑧 (1 βˆ’ 𝑧)3

    =1𝑧+∞

    βˆ‘π‘˜=1

    (π‘˜ βˆ’ 1) [π‘˜ (πœ† βˆ’ 1)𝑀+ (π‘˜πœ† βˆ’ 1)] π‘§π‘˜βˆ’1;(35)

    for 𝑧 ∈ Uβˆ—, we may easily check that (33) is equivalent to (32).This completes the proof of Theorem 9.

    Unless otherwise mentioned, we assume throughout theremainder of this section that 𝜐 is a real number (𝜐 > βˆ’1).

    Theorem 10. If 𝑓(𝑧) ∈ Ξ£ satisfies inequalities∞

    βˆ‘π‘˜=1

    |π‘˜πœ† βˆ’ 1| Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜ < 1, (36)

    ∞

    βˆ‘π‘˜=1

    [(|1 βˆ’ π‘˜πœ†|) (𝐴 βˆ’ 𝐡) |𝑏| + π‘˜ (1 βˆ’ πœ†) (1 + |𝐡|)] Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜

    < (π΄βˆ’π΅) |𝑏| ,

    (37)

    then 𝑓(𝑧) ∈ Ξ£Sβˆ—πœ†,𝜐[𝑏; 𝐴, 𝐡].

    Proof. We have

    1βˆ’βˆž

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ (π‘˜πœ† βˆ’ 1) Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜π‘§π‘˜

    β‰₯ 1βˆ’

    ∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ (π‘˜πœ† βˆ’ 1) Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜π‘§π‘˜

    β‰₯ 1βˆ’βˆž

    βˆ‘π‘˜=1

    |π‘˜πœ† βˆ’ 1| Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜π‘§π‘˜

    β‰₯ 1βˆ’βˆž

    βˆ‘π‘˜=1

    |π‘˜πœ† βˆ’ 1| Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜

    > 0, for 𝑧 ∈ U,

    (38)

    which implies inequality (36). Also,

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ Ξ“ (𝜐 + 1)

    β‹… [(1 βˆ’ π‘˜πœ†) (𝐴 βˆ’ 𝐡) 𝑏

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    βˆ’π‘˜ (πœ† βˆ’ 1) (π‘’βˆ’π‘–πœƒ + 𝐡)

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)] π‘Žπ‘˜π‘§π‘˜

    β‰₯ 1

    βˆ’

    ∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ Ξ“ (𝜐 + 1)

    β‹… [(1 βˆ’ π‘˜πœ†) (𝐴 βˆ’ 𝐡) 𝑏

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    βˆ’π‘˜ (πœ† βˆ’ 1) (π‘’βˆ’π‘–πœƒ + 𝐡)

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)] π‘Žπ‘˜π‘§π‘˜

    β‰₯ 1

    βˆ’βˆž

    βˆ‘π‘˜=1Ξ“ (𝜐 + 1)

    β‹… [|1 βˆ’ π‘˜πœ†| (𝐴 βˆ’ 𝐡) |𝑏|

    4π‘˜ (𝐴 βˆ’ 𝐡) |𝑏| Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    +π‘˜ (1 βˆ’ πœ†) (1 + |𝐡|)

    4π‘˜ (𝐴 βˆ’ 𝐡) |𝑏| Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)]π‘Žπ‘˜π‘§π‘˜

    β‰₯ 1βˆ’βˆž

    βˆ‘π‘˜=1Ξ“ (𝜐 + 1)

    β‹… [|1 βˆ’ π‘˜πœ†| (𝐴 βˆ’ 𝐡) |𝑏|

    4π‘˜ (𝐴 βˆ’ 𝐡) |𝑏| Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    +π‘˜ (1 βˆ’ πœ†) (1 + |𝐡|)

    4π‘˜ (𝐴 βˆ’ 𝐡) |𝑏| Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)]π‘Žπ‘˜ > 0,

    for 𝑧 ∈ U,

    (39)

  • Abstract and Applied Analysis 5

    which implies inequality (37). Thus, the proof of Theorem 10is completed.

    Using similar arguments to those in the proof of Theo-rem 10, we obtain the following theorem.

    Theorem 11. If 𝑓(𝑧) ∈ Ξ£ satisfies inequalities∞

    βˆ‘π‘˜=1

    |π‘˜πœ† βˆ’ 1| (π‘˜ βˆ’ 1) Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜ < 1,

    ∞

    βˆ‘π‘˜=1

    (π‘˜ βˆ’ 1) Ξ“ (𝜐 + 1) [ (|π‘˜πœ† βˆ’ 1|) (𝐴 βˆ’ 𝐡) |𝑏|4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    +π‘˜ (1 βˆ’ πœ†) (1 + |𝐡|)

    4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)]π‘Žπ‘˜ < (π΄βˆ’π΅) |𝑏| ,

    (40)

    then 𝑓(𝑧) ∈ Ξ£Kπœ†,𝜐[𝑏; 𝐴, 𝐡].

    Now, using themethod due toAhuja [9], wewill prove thecontainment relations for the subclasses Ξ£Sβˆ—

    πœ†,𝜐[𝑏; 𝐴, 𝐡] and

    Ξ£Kπœ†,𝜐[𝑏; 𝐴, 𝐡].

    Theorem 12. For 𝜐 > βˆ’1, we have Ξ£Sβˆ—πœ†,𝜐+1[𝑏; 𝐴, 𝐡] βŠ‚

    Ξ£Sβˆ—πœ†,𝜐[𝑏; 𝐴, 𝐡].

    Proof. Since 𝑓(𝑧) ∈ Ξ£Sβˆ—πœ†,𝜐+1[𝑏; 𝐴, 𝐡], we see fromTheorem 8

    that

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ (1 βˆ’ π‘˜πœ†) Ξ“ (𝜐 + 2)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 2)

    π‘Žπ‘˜π‘§π‘˜ ΜΈ= 0,

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ Ξ“ (𝜐 + 2)

    β‹… [(1 βˆ’ π‘˜πœ†) (𝐴 βˆ’ 𝐡) 𝑏

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 2)

    βˆ’π‘˜ (πœ† βˆ’ 1) (π‘’βˆ’π‘–πœƒ + 𝐡)

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 2)] π‘Žπ‘˜π‘§π‘˜ ΜΈ= 0.

    (41)

    We can write (41) as

    [1+∞

    βˆ‘π‘˜=1

    𝜐 + 1π‘˜ + 𝜐 + 1

    π‘§π‘˜] βˆ— [1

    +∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ (1 βˆ’ π‘˜πœ†) Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜π‘§π‘˜] ΜΈ= 0,

    [1+∞

    βˆ‘π‘˜=1

    𝜐 + 1π‘˜ + 𝜐 + 1

    π‘§π‘˜] βˆ— [1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ Ξ“ (𝜐 + 1)

    β‹… [(1 βˆ’ π‘˜πœ†) (𝐴 βˆ’ 𝐡) 𝑏

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    βˆ’π‘˜ (πœ† βˆ’ 1) (π‘’βˆ’π‘–πœƒ + 𝐡)

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)] π‘Žπ‘˜π‘§π‘˜] ΜΈ= 0,

    (42)

    since

    [1+∞

    βˆ‘π‘˜=1

    𝜐 + 1π‘˜ + 𝜐 + 1

    π‘§π‘˜] βˆ— [1+∞

    βˆ‘π‘˜=1

    π‘˜ + 𝜐 + 1𝜐 + 1

    π‘§π‘˜]

    = 1+∞

    βˆ‘π‘˜=1π‘§π‘˜.

    (43)

    By using the property, if𝑓 ΜΈ= 0 andπ‘”βˆ—β„Ž ΜΈ= 0, thenπ‘“βˆ—(π‘”βˆ—β„Ž) ΜΈ=0; (42) can be written as

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ (1 βˆ’ π‘˜πœ†) Ξ“ (𝜐 + 1)4π‘˜Ξ“ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    π‘Žπ‘˜π‘§π‘˜ ΜΈ= 0,

    1+∞

    βˆ‘π‘˜=1

    (βˆ’1)π‘˜ Ξ“ (𝜐 + 1)

    β‹… [(1 βˆ’ π‘˜πœ†) (𝐴 βˆ’ 𝐡) 𝑏

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)

    βˆ’π‘˜ (πœ† βˆ’ 1) (π‘’βˆ’π‘–πœƒ + 𝐡)

    4π‘˜ (𝐴 βˆ’ 𝐡) 𝑏Γ (π‘˜ + 1) Ξ“ (π‘˜ + 𝜐 + 1)] π‘Žπ‘˜π‘§π‘˜ ΜΈ= 0,

    (44)

    which means that 𝑓(𝑧) ∈ Ξ£Sβˆ—πœ†,𝜐[𝑏; 𝐴, 𝐡]. This completes the

    proof of Theorem 12.

    Using the same arguments as in the proof of Theorem 12,we obtain the following theorem.

    Theorem 13. For 𝜐 > βˆ’1, we have Ξ£Kπœ†,𝜐+1[𝑏; 𝐴, 𝐡] βŠ‚

    Ξ£Kπœ†,𝜐[𝑏; 𝐴, 𝐡].

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

    References

    [1] S. S.Miller andP. T.Mocanu,Differential Subordinations:Theoryand Applications, vol. 225 ofMonographs and Textbooks in Pureand Applied Mathematics, Marcel Dekker, New York, NY, USA,2000.

    [2] G. N. Watson, A Treatise on the Theory of Bessel Functions,Cambridge University Press, Cambridge, UK, 1944.

    [3] A. Baricz, Generalized Bessel Functions of the First Kind, vol.1994 of Lecture Notes in Mathematics, Springer, Berlin, Ger-many, 2010.

    [4] R. Szász and P. A. Kupán, β€œAbout the univalence of the Besselfunctions,” StudiaUniversitatis BabesΜ§-Bolyaiβ€”SeriesMathemat-ica, vol. 54, no. 1, pp. 127–132, 2009.

    [5] T. BulboacaΜ†, M. K. Aouf, and R. M. El-Ashwah, β€œConvolutionproperties for subclasses of meromorphic univalent functionsof complex order,” Filomat, vol. 26, no. 1, pp. 153–163, 2012.

    [6] M. K. Aouf, β€œCoefficient results for some classes of meromor-phic functions,”The Journal of Natural Sciences and Mathemat-ics, vol. 27, no. 2, pp. 81–97, 1987.

  • 6 Abstract and Applied Analysis

    [7] V. Ravichandran, S. S. Kumar, and K. G. Subramanian, β€œConvo-lution conditions for spirallikeness and convex spirallikenesss ofcertain p-valentmeromorphic functions,” Journal of Inequalitiesin Pure and Applied Mathematics, vol. 5, no. 1, pp. 1–7, 2004.

    [8] S. Ponnusamy, β€œConvolution properties of some classes ofmeromorphic univalent functions,” Proceedings of the IndianAcademy of Sciencesβ€”Mathematical Sciences, vol. 103, no. 1, pp.73–89, 1993.

    [9] O. P. Ahuja, β€œFamilies of analytic functions related toRuscheweyh derivatives and subordinate to convex functions,”Yokohama Mathematical Journal, vol. 41, no. 1, pp. 39–50, 1993.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of