State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of...

27
ETH - Ceramics http://ceramics.ethz.ch State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler

Transcript of State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of...

Page 1: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

State-Space Modeling of Electrochemical Processes

„Who uses up my battery power ?“

Michel Prestat

ETH-ZürichInstitute for Nonmetallic Materials

Head: Prof. L.J. Gauckler

Page 2: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Outline

Electrochemistry

Electrochemical Impedance Spectroscopy and State-Space Modeling

Oxygen reduction at solid oxide fuel cell cathodes

Comparison modeling – experiments

Summary

Page 3: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Electrochemistrycorrosion

electropolishing

coloration of titanium

batteries, fuel cells

Page 4: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Solid Oxide Fuel Cell (SOFC)

cathode

O2-

e-

e-

H2OH2

O2 O2

anode

electrolyte

O2 reduction

O2

O2-

½O2 + 2e- O2-

mechanism?rate-limiting steps?

fuel oxidation

O2-

H2 + O2- H2O + 2e-

mechanism?rate-limiting steps?

H2OH2

single cell

Sulzer Hexis SOFCmicrostructure

½O2 + 2e- O2-

H2 + O2- H2O + 2e-

overall: H2 + ½O2 → H2O

800-1000°C

Page 5: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Electrochemistry and Materials

cathode

O2-

O2 O2

electrolyte

O2 reduction

O2

O2-

O2 + 4e- 2O2-

mechanism?rate-limiting steps?

Overpotential η = E - Eeq

~ electrokinetic losses

Potential (V)

Current (A)

Eeq

La0.85Sr0.15MnO3 (LSM)

Au

ideal electrode:no kinetic losses

ηηLSM < ηAu

real electrode

η strongly dependant on the material

Aim:find the appropriate material to gethigh current and low overpotential(reduction of electrokinetic losses)

What limits the performanceof my system ?

Page 6: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Electrochemical Impedance Spectroscopy (EIS)

Page 7: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

EIS principle

Potential (V)

Current (A)

E~

I~

steady-stateoperating point

Small amplitude (5-10 mV) input signal→ Linearization

I =Z(jω)

1E~~

Admittance Transfer Function

Z = impedance

complex ( j2 = -1)

frequency dependant ( ω = 2π f )

Page 8: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

EIS spectra and equivalent circuits

Re (Z)

Im (Z)

R-6

-4

-2

00 2 4 6 8 10 12

Re (Z) / Ω

Im (Z

) /Ω

110

102103

104

f (Hz)

experimental EIS spectra

Re (Z)

Im (Z)

R

Cf = 12π RC

R

Re (Z)

Im (Z)

R2

C2

R1

How to interpretthe experimental equivalent circuit ??

Re (Z)

Im (Z)

R2

C2

R1 R3

C3

R1 R2+R3

Page 9: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Alternative approch: modeling the impedance

Re (Z)

Im (Z)

Re (Z)

Im (Z)

experimental impedance

reaction modelnew model

O2 Oads O2-O2 O2,ads O2-

state-space modeling

faradaic impedance

validation of the modelassessment of kinetics

Page 10: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

State-Space Modeling (SSM)

Page 11: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

State-Space Model

electrode potential

E (input)

faradaic current

IF (output)O2(g) Oads O2-

electrochemical system

Kb

KfKdes

Kads

K = model parameters (Kads, Kdes, Kf , Kb …)

θ = state variable (Oads concentration)

= f (θ , E, K) → state equation

IF = g (θ , E, K) → output equation

dθdtState-Space Model

Page 12: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

State-Space Modeling

time domain frequency domain

I

E

θ = Aθ +B E

IF = Cθ +D E

.

linearization

θ = 0.

steady-state analysis

ZF(jω)

Laplace transform varying ω

Re(ZF)*

* * * ** **

**

*Im(Z

F)θ = Kads(1- θ)2 +...

IF = -Kf θ e-fE + …

.

state-space model*

Simulink®: easy implementation of the model.

Matlab®: state-space calculations and computing

Page 13: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Oxygen Reduction

at

Solid Oxide Fuel Cell Cathodes

Page 14: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Reaction Models

Oads Oads (tpb)Surface diffusion:

Oads + 2e- O2-Charge transfer at the tpb:

O2(g) + 2s 2OadsDissociative adsorption:

s = adsorption site

electrolytexO2- ( Oo )

electrode

Oads

O2

Oads

O2

pO2 , [Oo] and [Vo] are constantx ..

Electrolyte = O2- conductor (Vo and Oo).. x

Typically YSZ (Y2O3 - ZrO2)

triple phase boundary (tpb)

Model 1: surface diffusion negligible

Model 2: with surface diffusion

Page 15: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Model 1 (without surf. diffusion)Dissociative adsorption:

O2(g) + 2s 2Oads

Kads

Kdes

O2- ( Oo )x

Oads

O2

electrolyte

electrode

θads

Charge transfer:

Oads + 2e- O2-

Kf(E)

Kb(E)

→ consecutive reaction steps

→ state variable θads = scalar

Kads pO2(1-θads) 2 – Kdesθads2 – Kf(E) θads + Kb(E) (1-θads)

IF = Ki [– Kf(E) θads + Kb(E) (1-θads)]

dθads

dt =→ state-space model

Page 16: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Model Implementation in Simulink®

Kads pO2(1-θads) 2 – Kdesθads2 – Kf(E) θads + Kb(E) (1-θads)

IF = Ki [– Kf(E) θads + Kb(E) (1-θads)]

dθads

dt =

+-

1

-++

Kads pO2

u2Kdes

x

x

-+

integrator

Einput

Ki IFoutput

kf exp(-2 β f E)

kb exp (2 (1-β) f E)

function Kf (E)

function Kb (E)

1-θadsθads

θads

u2

Page 17: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Model 2 (with surf. diffusion)

O2(g) + 2s 2Oads

Kads

Kdes

tpb

Oads reservoirθeq

electrolyte

diffusionlayer

θ1

θ2

θ3

O2- ( Oo )x

OadsO2

OadsO2

OadsO2

OadsO2

Oads Oads

Kdif

Oads + 2e- O2-

Kf(E)

Kb(E)

2

2θ θt

∂ ∂=

∂ ∂zDiffusion processes

2nd Fick‘s law:

→ Finite difference approach toestimate time and space derivatives

→ state variable θ (θ1, θ2, θ3) = vectorθ1 ≤ θ2 ≤ θ3

→ Parallel reaction pathways

Page 18: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Model Implementation in Simulink®Subsystems: as many as compartments

i( ) ( ) 2

i-12 2 dif i 1iads O i des i 2i-2

Kθ 2K 1 θ K θ θ ( + chg transfer kinetics)

t 3 32θθ +∂

= − − + − +∂

p

Einput

IFoutput

θ1

θ1

θ3

θ2θ2

θ2 θ3

tpb (1)

(2)(3)

in-port out-port

Page 19: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Model Implementation in Simulink®

Compartment n°2

( ) ( )2

2 2 dif 32 1ads O 2 des 2 2

K θθ 2θK 1 θ K θ θt 4 3 3

∂= − − + − +

∂p

+-

1

u2

-++

Kads pO2

u2Kdes

1s

Integrator (θ2)

θ2out-port to

compartment (1) and (3)

Kdif/4

-

+

+

1/3

2/3θ1

θ3

in-ports

Page 20: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Modeling results

Oads

Oads

O2

O2

O2-

electrode

electrolyte

ads. – diff. - charge transfer(model 2)

-0.6

-0.4

-0.2

02 2.5 3 3.5

Re(ZF) / Ω

Im(Z

F ) /

Ω

Oads

Oads

O2

O2

O2-

electrode

electrolyte

diffusion - charge transfer(model 2)

-0.6

-0.4

-0.2

02 2.5 3 3.5

Re(ZF) / Ω

Im(Z

F ) /

Ω

45°

Oads

Oads

O2

O2

O2-

electrode

electrolyte

adsorption - charge transfer(model 1 = diffusion slow)

-0.6

-0.4

-0.2

02 2.5 3 3.5

Re(ZF) / Ω

Im(Z

F ) /

Ω

R2

C2

R1

Oads

Oads

O2

O2

O2-

electrode

electrolyte

charge transfer(model 1 = diffusion slow)

-0.6

-0.4

-0.2

02 2.5 3 3.5

Re(ZF) / Ω

Im(Z

F ) /

ΩR1

Page 21: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Comparison Modeling - Experiments

Page 22: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Electrode / electrolyte interfaces

porous

industrial application~10-30 µm

dense

~100 nm -1 µm

control of theelectrode dimensions

microstructured ~20 µm -100 µm

top view

Page 23: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Experimental

E+E~

I+I~

potentiostat(DC)

workingelectrode

frequencyresponseanalyzer

(AC)counter

electrode

referenceelectrode

ZF

ZTOT =R2

CF

R1RΩ

CDL

0 2 3 4 5Re (ZTOT) / Ω

1

-1

-2

-3

0Im

(ZTO

T) / Ω

CDL high CDL moderate CDL=0(ZF)

CDL may mask ZF → Berthier‘s method in Corrosion 51 (1995) 105

Page 24: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Comparison modeling - experiments

Kdif << Kads, Kf

slow surface diffusion = Model 1

-1.5

-1

-0.5

02 3 4 5

Re(ZEXP) / Ω

Im(Z

EXP)

/ Ω

La0.85Sr0.15MnO3 @ 800°Cη= -270mV, I =150 mA.cm-2

102

103

104

- (RΩ, CDL)

Oads

Oads

O2

O2

O2-

electrode

electrolyte

mixed controladsorption - charge transfer

-1.5

-1

-0.5

00 1 2 3

Re(ZF) / Ω

Im(Z

F) /

Ω

La0.85Sr0.15MnO3 @ 800°Cη= -270mV, 150 mA.cm-2

Page 25: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Ongoing SOFC projects

Mixed ionic-electronic electrodes Modeling the whole SOFC

cathode

O2-

anode

electrolyte

½O2 + 2e- O2-

H2 + O2- H2O + 2e-

electrolyteO2-

Oads

Oads

O2

electrodeO2-

O2-

O2-

Additional reaction pathway throughthe electrode bulk.

Oxygen reduction, fuel oxidation, transport in the electrolyte.

Intermediate T° SOFC (600-800°C).

Typical material: LaxSr1-xCoyFe1-yO3(LSCF).

Page 26: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Summary

• electrochemical reactions yield sophisticated impedance behavior⇒ necessity of a modeling approach (analytical or numerical).

• SSM (with modern computation tools) enables to simulate the faradaic impedance of such reactions.⇒ “fingerprint” of reaction models.

• SSM approach applicable to any other field of electrochemistry.

Page 27: State-Space Modeling of Electrochemical Processes · ETH - Ceramics State-Space Modeling of Electrochemical Processes „Who uses up my battery power ?“ Michel Prestat ETH-Zürich

ETH - Ceramics http://ceramics.ethz.ch

Many thanks to ...

SOFC group Prof. L.J. Gauckler

References

M. Prestat and L.J. Gauckler, Solid State Ionics, submitted (2003)Faradaic impedance of oxygen reduction at solid oxide fuel cell cathodesPart I: adsorption and charge transfer limited reactions

M. Prestat and L.J. Gauckler, Solid State Ionics, submitted (2003)Faradaic impedance of oxygen reduction at solid oxide fuel cell cathodesPart Ii: surface diffusion limited reactions

A. Bieberle and L.J. Gauckler, Solid State Ionics, 146 (2002) 23State-Space Modeling of the anodic SOFC system Ni, H2-H2O|YSZ

A. Mitterdorfer and L.J. Gauckler, Solid State Ionics, 117 (1999) 187Identification of the reaction mechanism of the Pt, O2 (g)|Yttria-Stabilized Zirconia system,Part I: general framework, modelling and structural investigation

A. Mitterdorfer and L.J. Gauckler, Solid State Ionics, 117 (1999) 203Identification of the reaction mechanism of the Pt, O2 (g)|Yttria-Stabilized Zirconia system,Part II: model implementation, parameter estimation and model validation