Spectroscopy and coherent Control of Defects in ... sessions/15pm-Quantum... · Jürgen Lisenfeld,...

30
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany www.kit.edu Spectroscopy and coherent Control of Defects in superconducting Films and Qubits Jürgen Lisenfeld, Alexander Bilmes, Jan Brehm, Georg Weiss, and A.V. Ustinov [email protected] Two-Level-Systems (TLS): a major source of noise in quantum devices Using superconducting Quantum Bits to study single TLS • TLS spectroscopy and mechanical strain tuning • mutual TLS interactions, noise spectroscopy • TLS - electron interaction

Transcript of Spectroscopy and coherent Control of Defects in ... sessions/15pm-Quantum... · Jürgen Lisenfeld,...

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany

www.kit.edu

Spectroscopy and coherent Control of Defectsin superconducting Films and QubitsJürgen Lisenfeld, Alexander Bilmes, Jan Brehm, Georg Weiss, and A.V. Ustinov

[email protected]

Two-Level-Systems (TLS): a major source of noise in quantum devices

Using superconducting Quantum Bitsto study single TLS• TLS spectroscopy and mechanical strain tuning• mutual TLS interactions, noise spectroscopy• TLS - electron interaction

IWSSD 2016Nov 15, 2016, Tsukuba, Japan2 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Two-Level-Systems (TLS)measurements on glasses revealed several peculiarities:

conclusion: glasses must contain intrinsic states having excitation energies < 1 K and which couple to both electric fields and phonons.

amorphous

cristalline

T∝3T∝sp

ecifi

c he

at (m

J/gK

)

temperature (K)

specific heat disagrees with Debye model(Zeller & Pohl 1971)

heater

thermometer

glassysample

• ultrasound attenuation• electric field response• microwave response• thermal conductivity• heat capacity …

glassysample

common signatures in amorphous materials

IWSSD 2016Nov 15, 2016, Tsukuba, Japan3 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Two-Level-Systems: Tunneling Atom Modelin amorphous materials, atoms may tunnel between two positions:

[1] W.A. Phillips, J. Low Temp. Phys. 7 351 (1972)[2] Anderson, Halperin, and Varma, Philosophical Mag. 25, 1 (1972)

• electric dipolemoment

• mechanical strain

these ”tunneling systems” couple via

ener

gy ∆

ε

E∆

tunnel energy

classical quantum

∆ε

22 ∆+=∆ εE

TLS asymmetry , strain

E∆

coordinate

[1,2]

IWSSD 2016Nov 15, 2016, Tsukuba, Japan4 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

TLS are found• in surface oxides• in / on the substrate• at interfaces• in tunnel junctions

TLS on surface oxides

in tunneljunctions

at interfacesTLS on substrate

TLS in microfabricated circuits and Josephson junctions

TLS generate noise & dissipation in• MOSFETs & single-electron transistors• micro-mechanical resonators• single-photon detectors, nanowires• superconducting resonators and qubits• …

Phys. Rev. Lett. 95, 210503 (2005)

PRL 95, 046805 (2005)

PRB 87, 144201 (2013)

Appl. Phys. Lett. 97, 252501 (2010)

PRB 84, 235102 (2011)

•hydroxide defects• dangling bonds• electrons trapped at interfaces:

Kondo- / Andreev Fluctuators

• phononically dressed electrons• tunneling atoms

E

in Josephson junctions:

IWSSD 2016Nov 15, 2016, Tsukuba, Japan5 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Complete circuit

EEE

ϕ

Qubit-states

0ext 9.0 Φ≈Φ

Hamilton-Operator

qubit manipulationvia Rabi oscillation

Potential for EJ >> Q2/2C:

The Phase Qubit J.M. Martinis et al., PRL 93, 077003 (2004)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan6 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Defect-Qubit - interaction

Φ̂

readoutSQUIDqubit

el. Field:V/m0001

ˆ≈=

CtQE

Qubit-TLS interaction: via TLS electrical dipole moment

Qubit:

JEC

QL

H ++Φ

=2

ˆ

2

ˆˆ22

Dipole interaction:

Epg

=⇒

p

MHz10⋅≈ h

for = 2 D = 2 ∙ 0.2 eÅp

qubit-TLS coupling strength

t=2

nm

IWSSD 2016Nov 15, 2016, Tsukuba, Japan7 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

f (GHz)

10 MHz

Defect – Qubit - Interactionfre

quen

cyf (

GH

z)

8

7.7

flux bias Φ

Frequency Domain:defects cause avoided level crossings

0

0.5

readoutSQUIDqubit

Φ̂

flux / readout

mw

el. Field:V/m0001

ˆ≈=

CtQE

Qubit-TLS interaction: via TLS electrical dipole moment

Qubit:

JEC

QL

H ++Φ

=2

ˆ

2

ˆˆ22

Dipole interaction:

Epg

=⇒

p

MHz10⋅≈ hqubit-TLS coupling strength

TLS

for = 2 D = 2 ∙ 0.2 eÅp

cf.: R.W. Simmonds, K.M. Lang, D.A. Hite, D.P. Pappas, and J.M. Martinis, PRL 93, 077003 (2004)Yoni Shalibo, Matthew Neeley, John M. Martinis, Nadav Katz et al., PRL 105, 177001 (2010).

IWSSD 2016Nov 15, 2016, Tsukuba, Japan8 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

7.988.10

0.3

f (GHz)

10 MHz

frequ

ency

f (G

Hz)

8

7.7

flux bias Φ

Frequency Domain:defects cause avoided level crossings

0

0.5

g2

Defect – Qubit - Interaction

readoutSQUIDqubit

Φ̂

flux / readout

mw

el. Field:

Qubit-TLS interaction: via TLS electrical dipole moment

Qubit:

JEC

QL

H ++Φ

=2

ˆ

2

ˆˆ22

Dipole interaction:

Epg

=⇒

p

MHz10⋅≈ hqubit-TLS coupling strengthV/m0001

ˆ≈=

CtQE

TLS

for = 2 D = 2 ∙ 0.2 eÅp

cf.: R.W. Simmonds, K.M. Lang, D.A. Hite, D.P. Pappas, and J.M. Martinis, PRL 93, 077003 (2004)Yoni Shalibo, Matthew Neeley, John M. Martinis, Nadav Katz et al., PRL 105, 177001 (2010).

IWSSD 2016Nov 15, 2016, Tsukuba, Japan9 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

7.988.10

0.3

f (GHz)

10 MHz

Time Domain:qubit decays due to energy relaxation

frequ

ency

f (G

Hz)

8

7.7

flux bias Φ

Frequency Domain:defects cause avoided level crossings

0

0.5

0.2

0.5

0 100 200

0

0.9

∆t (ns)

0 100

frequ

ency

∆t (ns)

ns1001 ≈Tg2

Defect – Qubit - Interaction

cf.: R.W. Simmonds, K.M. Lang, D.A. Hite, D.P. Pappas, and J.M. Martinis, PRL 93, 077003 (2004)Yoni Shalibo, Matthew Neeley, John M. Martinis, Nadav Katz et al., PRL 105, 177001 (2010).

IWSSD 2016Nov 15, 2016, Tsukuba, Japan10 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

7.988.10

0.3

f (GHz)

10 MHz

Time Domain:energy oscillates between qubit and defects

frequ

ency

f (G

Hz)

8

7.7

flux bias Φ

Frequency Domain:defects cause avoided level crossings

0

0.5

0.2

0.5

0 100 200

0

0.9

∆t (ns)

0 100

frequ

ency

∆t (ns)

g2 g/1

Defect – Qubit - Interaction

cf.: R.W. Simmonds, K.M. Lang, D.A. Hite, D.P. Pappas, and J.M. Martinis, PRL 93, 077003 (2004)Yoni Shalibo, Matthew Neeley, John M. Martinis, Nadav Katz et al., PRL 105, 177001 (2010).

IWSSD 2016Nov 15, 2016, Tsukuba, Japan11 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

7.988.10

0.3

f (GHz)

10 MHz

Time Domain:energy oscillates between qubit and defects

frequ

ency

f (G

Hz)

8

7.7

flux bias Φ

Frequency Domain:defects cause avoided level crossings

0

0.5

0.2

0.5

0 100 200∆t (ns)

0 10040 ∆t (ns)

: qubit population loss TLS signal

0 -0.3

TLS signals forfixed ∆t = 40 ns

0

0.9

Defect – Qubit - Interaction

⇔Pδ

IWSSD 2016Nov 15, 2016, Tsukuba, Japan12 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

• electric dipolemoment

• mechanical strain

TLS Strain Spectroscopy

0 100

0 -0.3

TLS signals forfixed ∆t = 40 ns

by deforming the sample using a piezo

qubit chippiezo

TLS strain tuning

- tiny deformations

(compress 1 nm by 10-16 m)

change TLS asymmetry:MHz/V200≈ε

/V10 7−≈∆LL

V

piezo voltage V / strain ε

freq

uenc

y(G

Hz)

6

9

40 ∆t (ns)

TLS

freq

uenc

10

∆ε

2210

∆= +εω

TLS asymmetry , strain

G. Grabovskij, J. Lisenfeld, G. Weiss, A.V. Ustinov et al., Science 338, 232 (2012)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan13 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

TLS Strain Spectroscopy

9

7

frequ

ency

(GH

z)

8

-25 strain / piezo voltage (V)0 50 75

G. Grabovskij, J. Lisenfeld, G. Weiss, A.V. Ustinov et al., Science 338, 232 (2012) J. Lisenfeld, G. Grabovskij, J. Cole, C. Müller, G. Weiss, and A.V. Ustinov, Nature Commun. 6, 6182 (2015)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan14 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

TLS Strain SpectroscopyG. Grabovskij, J. Lisenfeld, G. Weiss, A.V. Ustinov et al., Science 338, 232 (2012) J. Lisenfeld, G. Grabovskij, J. Cole, C. Müller, G. Weiss, and A.V. Ustinov, Nature Commun. 6, 6182 (2015)

two coherentlycoupled TLS

telegraphicswitching

irreversible shift

IWSSD 2016Nov 15, 2016, Tsukuba, Japan15 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

J. Lisenfeld, G. Grabovskij, C. Müller, J.H. Cole, G. Weiss,and A.V. Ustinov, Nature Communications 6, 6182 (2015)

-40 0-20

strain / piezo voltage (V)20

6.8

6.0

frequ

ency

(GH

z)

6.40.7

0.15

signature in defect spectroscopy

coherently interacting defects

strain / piezo voltage (V)

8

4

0

frequ

ency

(GH

z)

simulated spectrum of 2 coupled TLSs

-40 0-20

IWSSD 2016Nov 15, 2016, Tsukuba, Japan16 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

-40 0-20

strain / piezo voltage (V)20

6.8

6.0

frequ

ency

(GH

z)

6.40.7

0.15

coherently interacting defects

strain / piezo voltage (V)

8

4

0

frequ

ency

(GH

z)

-40 0-20

minor contributions

rotate to eigenbasis by angle , where

interaction Hamiltonian:

J. Lisenfeld, G. Weiss, A.V. Ustinov et al.,Nature Communications 6, 6182 (2015)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan17 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

coherent control of individual TLS

0

0.5)( 1P

bias flux [arb. units]

frequ

ency

[GH

z]

7.8

8.0

TLS resonantly absorbs photonsvia a Raman transition involvinga virtual qubit excitation

J. Lisenfeld et al., Phys. Rev. B 81, 100511 (2010)

full NMR-like TLS control viamicrowave pulse sequencesTLS operation not degraded byqubit decoherence

IWSSD 2016Nov 15, 2016, Tsukuba, Japan18 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Strain-dependence of TLS coherence timesJ. Lisenfeld, G. Schön, A. Shnirman, G. Weiss, A.V. Ustinov et al., Scientific Reports 6, 23786 (2015)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan19 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Strain-dependence of TLS coherence times

energy relaxation(1/T1)

symmetric pattern in Γ1 can notoriginate in mutual TLS interactions

several TLS have a common maximumin Γ1 around 7.4 GHz

golden rule: ( )10

2

221 ωε

S⋅

+∆

∆∝Γ

)( 10ωS∝

(MH

z)

possibly coupling to same phonon mode

J. Lisenfeld, G. Schön, A. Shnirman, G. Weiss, A.V. Ustinov et al., Scientific Reports 6, 23786 (2015)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan20 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Ramsey (T2)

energy relaxation

Strain-dependence of TLS coherence timesJ. Lisenfeld, G. Schön, A. Shnirman, G. Weiss, A.V. Ustinov et al., Scientific Reports 6, 23786 (2015)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan21 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Spin echo (T2*)

Strain-dependence of TLS coherence times

Ramsey (T2)

energy relaxation

J. Lisenfeld, G. Schön, A. Shnirman, G. Weiss, A.V. Ustinov et al., Scientific Reports 6, 23786 (2015)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan22 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

J. Lisenfeld et al., Phys. Rev. Lett. 105, 230504 (2010)Temperature dependence of TLS coherence

temperature (K)

Γ1 decay rate

quasiparticlesT)E/2kcoth( B∆∝

400

200

(ns)

0

T1excited statelife time

T)E/2kcoth( B∆∝

TLS energy relaxation rate exceeds phonon contribution

TLS decay at higher temperatures [1] causedby quasiparticles ?

test :

1) generate quasiparticles by injectionor by raising the sample temperature

2) calibrate QP density using the qubit

3) measure TLS coherence times

c.f. J. L. Black, Glassy Metals I, Topics in Applied Physics 46, 167 (1981).

IWSSD 2016Nov 15, 2016, Tsukuba, Japan23 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

DC-SQUID

qubit loop

injection of quasiparticles

100 µm

drive 2nd on-chip DC-SQUID with current

generated QPs diffuse to qubit’s Josephson junctionwhere they interact with TLS

we expect a difference in QP density on thetwo JJ electrodes because of the sample layout

Cb II >

cf. M. Lenander et al., PRB 84, 024501 (2011)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan24 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Korringa-like QP-TLS-interaction:

QP-induced decoherence of Two-Level Systems

fit [1]

A. Bilmes, J. Lisenfeld, G. Weiss, A.V. Ustinov et al., arXiv:1609.06173

we observe:

QP-TLS couplingdepends on TLS location

QP densities differin injection experiment:

estimation of TLS location

TLS1TLS2

Imb=Xqp(L)/Xqp

(R)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan25 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

coupling TLS to a transmission-line resonatorJ. Brehm, A. Bilmes, J. Lisenfeld, to be published (2016)

network analyzer

)(2||

||capres

res

CChf

tp

Ephg+

≈=

pFCpFC capres 2.0,4.1 ≈≈

coupling strength resonator-TLS g:

choose a dielectric volume to have~1 TLS within 1-MHz-window

33 10)/(TLS100 µmVGHzµm ≈⇒⋅≈ρ

AlOx fabricated using anodizationt =50 nm, area 10µm x (5/10/15)µm

10 µm

5/10/15 µm

IWSSD 2016Nov 15, 2016, Tsukuba, Japan26 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

TLS coupled to a resonator: strain-spectroscopy

[1] E. Rephaeli et al., ‘Few-photon single-atom cavity QED withinput-output formalism in Fock space, arXiv:1208.6053 (2012)

J. Brehm, A. Bilmes, J. Lisenfeld, to be published (2016)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan27 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

TLS coupled to a resonator: strain-spectroscopy

[1] E. Rephaeli et al., ‘Few-photon single-atom cavity QED withinput-output formalism in Fock space, arXiv:1208.6053 (2012)

J. Brehm, A. Bilmes, J. Lisenfeld, to be published (2016)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan28 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

85.76 87.0

TLS coupled to a resonator: strain-spectroscopy

individual TLS are resolveddouble-peaks in resonance with strongly coupled TLS

fit to model provides TLS parameters [1]:• T1 = 1.6 µs, energy relaxation rate • g = 540 kHz, coupling strength• p|| = 1.0 eÅ, dipole moment

example:

[1] E. Rephaeli et al., ‘Few-photon single-atom cavity QED withinput-output formalism in Fock space, arXiv:1208.6053 (2012)

J. Brehm, A. Bilmes, J. Lisenfeld, to be published (2016)

IWSSD 2016Nov 15, 2016, Tsukuba, Japan29 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

mechanical-strain tuning of TLS: setup

piezohousing

sample box

RF-chokesIR-filters low-pass filters isolators

steel-powder filters [2]Mu-metal box lid

[1] design and assembly by A. Bilmes, PhD Thesis (KIT, 2018)[2] A. Lukashenko and A.V. Ustinov, Rev. Sci. Instr. 79, 014701 (2008)

[1]

piezo housing

IWSSD 2016Nov 15, 2016, Tsukuba, Japan30 J. Lisenfeld • Spectroscopy and coherent control of TLS-Defects with superconducting Qubits

Summary: exploring TLS with superconducting Qubits

Superconducting qubits (and resonators) are ideal tools for thecharacterization of materials and defect properties.

TLS are a major decoherence sourcewhich affects various microfabricated devices

TLS strain spectroscopy

frequ

ency

strain

it is now possible to address single TLScoherently with superconducting circuits

it is vitally important to understandemergence of TLS in fabrication

coherently coupled TLS TLS quantum dynamics