Spectral Shift Functions and some of their Applications in...

29
Spectral Shift Functions and some of their Applications in Mathematical Physics Fritz Gesztesy (University of Missouri, Columbia, USA) based on collaborations with A. Carey (Canberra), Y. Latushkin (Columbia–MO), K. Makarov (Columbia–MO), D. Potapov (Sydney), F. Sukochev (Sydney), Y. Tomilov (Torun) Quantum Spectra and Transport The Hebrew University of Jerusalem, Israel June 30–July 4, 2013 Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 1 / 29

Transcript of Spectral Shift Functions and some of their Applications in...

Page 1: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

Spectral Shift Functions and some of theirApplications in Mathematical Physics

Fritz Gesztesy (University of Missouri, Columbia, USA)

based on collaborations with

A. Carey (Canberra), Y. Latushkin (Columbia–MO),K. Makarov (Columbia–MO), D. Potapov (Sydney),

F. Sukochev (Sydney), Y. Tomilov (Torun)

Quantum Spectra and Transport

The Hebrew University of Jerusalem, Israel

June 30–July 4, 2013

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 1 / 29

Page 2: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

Outline

1 Krein–Lifshitz SSF

2 SSF Applications

3 Final Thoughts

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 2 / 29

Page 3: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

Krein–Lifshitz SSF

A short course on the spectral shift function ξ

Notation:

B(H) denotes the Banach space of all bounded operators on H (a complex,separable Hilbert space).

B∞(H) denotes the Banach space of all compact operators on H.

Bs(H), s ≥ 1, denote the usual Schatten–von Neumann trace ideals.

Given two self-adjoint operators H,H0 in H, we assume one of the following (wedenote V = [H − H0] whenever dom(H) = dom(H0)):

• Trace class assumption: V = [H − H0] ∈ B1(H).

• Relative trace class: V (H0 − zIH)−1 ∈ B1(H).

• Resolvent comparable:[(H − zIH)−1 − (H0 − zIH)−1

]∈ B1(H).

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 3 / 29

Page 4: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

Krein–Lifshitz SSF

A short course on the spectral shift function ξ

The Krein–Lifshitz spectral shift function ξ(λ; H,H0) is a real-valued functionon R that satisfies the trace formula: For appropriate functions f ,

trH(f (H)− f (H0)) =

∫R

f ′(λ) ξ(λ; H,H0) dλ.

For example, resolvents,

trH[(H − zIH)−1 − (H0 − zIH)−1

]= −

∫R

ξ(λ; H,H0) dλ

(λ− z)2,

semigroups (if H, H0 are bounded from below), etc.

E.g., for f ∈ C 1(R) with f ′(λ) =∫R e−iλsdσ(s) and dσ a finite signed measure;

f (λ) = (λ− z)−1; or f ∈ L1(R; (1 + |p|)dp) (implies f ∈ C 1(R)), etc.

V. Peller has necessary conditions on f , and also sufficient conditions on f interms of certain Besov spaces. These spaces are not that far apart .......

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 4 / 29

Page 5: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

Krein–Lifshitz SSF

A short course on the spectral shift function ξ

Generally, ξ(λ; H,H0) = trH(EH0(λ)− EH(λ)) is not correct (if dim(H) =∞)!

[EH0(λ)− EH(λ)] is NOT necessarily of trace class even for V = H − H0 of rankone!

Recall the Trace and the Determinant: Let λj(T ), j ∈ J (J ⊆ N an index set)denote the eigenvalues of T ∈ B1(H), counting algebraic multiplicity. Then∑

j∈J λj((T ∗T )1/2

)<∞ and

trH(T ) =∑j∈J

λj(K ), detH(IH − T ) =∏j∈J

[1− λj(T )].

The Perturbation Determinant: H and H0 self-adjoint in H, H = H0 + V ,

DH/H0(z) = detH

((H − zIH)(H0 − zIH)−1

)= detH

(IH + V (H0 − zIH)−1

).

Example. If H0 = −(d2/dx2), H = −(d2/dx2) + V (·) in L2(R; dx),V ∈ L1(R; (1 + |x |)dx), real-valued, then

DH/H0(z) = Jost function = Evans function.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 5 / 29

Page 6: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

Krein–Lifshitz SSF

A short course on the spectral shift function ξ

General Krein’s formula for the trace class V = [H − H0] ∈ B1(H):

ξ(λ; H,H0) =1

πlimε→0+

Im(ln(DH/H0(λ+ iε))) for a.e. λ ∈ R, (∗)

where

DH/H0(z) = detH

((H − zIH)(H0 − zIH)−1

)= detH

(IH + V (H0 − zIH)−1

).

Then∫R|ξ(λ; H,H0)| dλ 6 ‖H − H0‖B1(H) and

∫Rξ(λ; H,H0) dλ = tr(H − H0).

If dim(ran(EH0(a− ε, b + ε))) <∞, then

ξ(b − 0; H,H0)−ξ(a + 0; H,H0) = dim(ran(EH0(a, b)))−dim(ran(EH(a, b))). (∗∗)

Note. Formulas (∗) and (∗∗) remain valid in the relative trace class case,where V (H0 − zIH)−1 ∈ B1(H). =⇒ Eigenvalue counting function.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 6 / 29

Page 7: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

Krein–Lifshitz SSF

A short course on the spectral shift function ξ

Away from σess(H0) = σess(H), ξ(λ; H,H0) is piecewise constant:

Counting multiplicity: Suppose λ0 ∈ R\σess(H0). Then,

ξ(λ0 + 0; H,H0)− ξ(λ0 − 0; H,H0) = m(H0;λ0)−m(H;λ0),

where m(T , λ) ∈ N ∪ {0} denotes the multiplicity of λ ∈ σp(T ), T = T ∗.

Scattering theory: The Birman–Krein formula

Let S(H,H0) be the scattering operator for the pair (H,H0). Then

S(H,H0) =

∫ ⊕σac (H0)

S(λ; H,H0) dλ in H '∫ ⊕σac (H0)

K dλ,

where S(λ; H,H0) is the fixed energy scattering operator in K (assuming uniformspectral multiplicity of σac(H0), for simplicity). Then

ξ(λ; H,H0) = − 1

2πiln(detK(S(λ; H,H0)) for a.e. λ ∈ σac(H0).

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 7 / 29

Page 8: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices

Computing Fredholm indices: Consider the model operator

DA = (d/dt) + A, dom(DA) = dom(d/dt) ∩ dom(A−) in L2(R;H),

where dom(d/dt) = W 1,2(R;H), and

A =

∫ ⊕R

A(t) dt, A− =

∫ ⊕R

A− dt in L2(R;H) '∫ ⊕RH dt,

A± = limt→±∞

A(t) exist in norm resolvent sense and are boundedly

invertible, i.e., 0 ∈ ρ(A±),

and where we consider the case of relative trace class perturbations [A(t)−A−],

A(t) = A− + B(t), t ∈ R,

B(t)(A− − zIH)−1 ∈ B1(H), t ∈ R (plus quite a bit more −→ next page),

such that DA becomes a Fredholm operator in L2(R;H).

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 8 / 29

Page 9: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices

Just for clarity,

A =

∫ ⊕R

A(t) dt in L2(R;H) '∫ ⊕RH dt, H a separable, complex H-space,

denotes the operator in L2(R;H) defined by

(Af )(t) = A(t)f (t) for a.e. t ∈ R,

f ∈ dom(A) =

{g ∈ L2(R;H)

∣∣∣∣ g(t) ∈ dom(A(t)) for a.e. t ∈ R,

t 7→ A(t)g(t) is (weakly) measurable,

∫R‖A(t)g(t)‖2H dt <∞

}.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 9 / 29

Page 10: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices, contd.

Main Hypotheses (we’re aiming at A(t) = A− + B(t) ........):

• A− – self-adjoint on dom(A−) ⊆ H, H a complex, separable Hilbert space.

• B(t), t ∈ R, – closed, symmetric, in H, dom(B(t)) ⊇ dom(A−).

• There exists a family B ′(t), t ∈ R, – closed, symmetric, in H, with

dom(B ′(t)) ⊇ dom(A−), such that

B(t)(|A−|+ IH)−1, t ∈ R, is weakly locally a.c. and for a.e. t ∈ R,

d

dt

(g ,B(t)(|A−|+ IH)−1h

)H =

(g ,B ′(t)(|A−|+ IH)−1h

)H, g , h ∈ H.

• B ′(·)(|A−|+ IH)−1 ∈ B1(H), t ∈ R,∫R∥∥B ′(t)(|A−|+ IH)−1

∥∥B1(H)

dt <∞.

•{

(|B(t)|2 + IH)−1}t∈R and

{(|B ′(t)|2 + IH)−1

}t∈R are weakly measurable.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 10 / 29

Page 11: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices, contd.

Consequences of these hypotheses:

A(t) = A− + B(t), dom(A(t)) = dom(A−), t ∈ R.

There exists A+ = A(+∞) = A− + B(+∞), dom(A+) = dom(A−),

n-limt→±∞(A(t)− zIH)−1 = (A± − zIH)−1,

(A+ − A−)(A− − zIH)−1 ∈ B1(H),[(A(t)− zIH)−1 − (A± − zIH)−1

]∈ B1(H), t ∈ R,[

(A+ − zIH)−1 − (A− − zIH)−1]∈ B1(H),

σess(A(t)) = σess(A+) = σess(A−), t ∈ R.

Lemma.

Under these assumptions, and if 0 ∈ ρ(A+) ∩ ρ(A−), ←→ Fredholm Property

then DA = ddt + A on dom(DA) = dom(d/dt) ∩ dom(A−), is closed and a

Fredholm operator in L2(R;H).

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 11 / 29

Page 12: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices, contd.

The following is proved in

F.G., Y. Latushkin, K. Makarov, F. Sukochev, and Y. Tomilov, Adv. Math.227, 319–420 (2011):

Theorem.

Under these assumptions, and if 0 ∈ ρ(A+) ∩ ρ(A−), ←→ Fredholm Property

ind(DA) = dim(ker(DA))− dim(ker(D∗A)) Fredholm Index

= ξ(0+; H2,H1) H1 = D∗ADA, H2 = DAD∗A

= SpFlow({A(t)}∞t=−∞) Spectral Flow

= ξ(0; A+,A−) internal SSF A± = A(±∞), 0 ∈ ρ(A±)

= π−1 limε↓0

Im(ln(detH

((A+ − iεIH)(A− − iεIH)−1

))Path Independence

H1 = D∗ADA = − d2

dt2 +q V1, V1 = A2−A′, “+q” abbreviates the form sum,

H2 = DAD∗A = − d2

dt2 +q V2, V2 = A2 + A′. T =∫ ⊕R T (t) dt.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 12 / 29

Page 13: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices, contd.

Two key elements in the proof:

Theorem (Trace Identity).

trL2(R;H)

((H2 − z I)−1 − (H1 − z I)−1

)=

1

2ztrH(gz(A+)− gz(A−)),

where gz(x) = x√x2−z , z ∈ C\[0,∞), x ∈ R, a smoothed-out sign fct.

Theorem (Pushnitski’s Formula, an Abel-Type Transform).

ξ(λ; H2,H1) =1

π

∫ λ1/2

−λ1/2

ξ(ν; A+,A−) dν

(λ− ν2)1/2for a.e. λ > 0.

Relating the external SSF, ξ( · ; H2,H1) and internal SSF, ξ( · ; A+,A−):

Recalling, DA = (d/dt) + A, A =∫ ⊕R A(t) dt in L2(R;H),

H1 = D∗ADA, H2 = DAD∗A, A(t) −→t±∞

A±, etc.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 13 / 29

Page 14: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices, contd.

There’s nothing special about resolvent differences of H2 and H1 on the l.h.s. ofthe trace identity!Under appropriate conditions on f one obtains

trL2(R;H)

(f (H2)− f (H1)

)= trH

(F (A+)− F (A−)

),

where F is determined by f via

F (ν) = −2−1f (0) sgn(ν) + ν2π

∫[ν2,∞)

f (λ) dλλ(λ−ν2)1/2

,

respectively, by F ′(ν) = 1π

∫[ν2,∞)

f ′(λ) dλ(λ−ν2)1/2

.

A Besov space consideration yields that[F (A+)− F (A−)

]∈ B1(H) if

(1 + ν2)3/4F ′ ∈ L2(R; dν), (1 + ν2)9/4∣∣F ′′ + 3ν(1 + ν2)−1F ′

∣∣ ∈ L2(R; dν),

and F ′ ∈ L∞(R; dν). Here’s the corresponding heat kernel version:

f (λ) = e−sλ, F (ν) = − 12 erf

(s1/2ν

), s ∈ (0,∞),

where erf(x) = 2π1/2

∫ x

0dy e−y

2

, x ∈ R.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 14 / 29

Page 15: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices, contd.

Note: DA = (d/dt) + A in L2(R;H) is a model operator: It arises in connectionwith Dirac-type operators (on compact and noncompact manifolds), the Maslovindex, Morse theory (index), Floer homology, winding numbers, Sturm oscillationtheory, dynamical systems, etc.

The literature on the spectral flow and index theory is endless:

M. F. Atiyah, N. Azamov, M.-T. Benameur, B. Booss-Bavnbek,

N. V. Borisov, C. Callias, A. Carey, P. Dodds, K. Furutani, P. Kirk,

M. Lesch, W. Muller, N. Nicolaescu, J. Phillips, V. Patodi, A. Pushnitski,

P. Rabier, A. Rennie, J. Robin, D. Salamon, R. Schrader, I. Singer,

F. Sukochev, C. Wahl, K. P. Wojciechowski, etc.

Just scratching the surface ....

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 15 / 29

Page 16: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: Fredholm Indices, contd.

Just a few selections:

C. Callias, Axial anomalies and index theorems on open spaces, Commun. Math.Phys. 62, 213–234 (1978). Started an avalanche in Supersymmetric QM.

D. Bolle, F.G., H. Grosse, W. Schweiger, and B. Simon, Witten index, axialanomaly, and Krein’s spectral shift function in supersymmetric quantummechanics, J. Math. Phys. 28, 1512–1525 (1987).

This treats the scalar case when A(t) is a scalar function and hence dim(H) = 1(humble beginnings!). The Krein–Lifshitz spectral shift function is linked toindex theory. See also,

R. W. Carey and J. D. Pincus, Proc. Symp. Pure Math. 44, 149–161 (1986),

W. Muller, Springer Lecture Notes in Math. Vol. 1244 (1987).

J. Robbin and D. Salamon, The spectral flow and the Maslov index,Bull. London Math. Soc. 27, 1–33 (1995). A very influential paper.

A. Pushnitski, The spectral flow, the Fredholm index, and the spectral shiftfunction, in Spectral Theory of Differential Operators: M. Sh. Birman 80thBirthday Collection, AMS, 2008, pp. 141–155. Motivated our recent work.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 16 / 29

Page 17: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index

Non-Fredholm case: We will not assume 0 ∈ ρ(A+) ∩ ρ(A−) and drop the

requirement that DA is Fredholm:

Definition.

Let T be a closed, linear, densely defined operator in H and suppose that forsome z ∈ C\[0,∞),

(TT ∗ − z IH)−1 − (T ∗T − z IH)−1 ∈ B1(H).

Introduce the resolvent regularization

∆(T , z) = z trH((TT ∗ − z IH)−1 − (T ∗T − z IH)−1

), z ∈ C\[0,∞),

and sectors Sϕ := {z ∈ C | | arg(z)| < ϕ}. Fix ϕ ∈ (0, π/2), then the Wittenindex Wr (T ) of T is defined by

Wr (T ) = limz→0, z∈C\Sϕ∆(T , z),

whenever this limit exists.

The subscript “r” indicates the use of the resolvent regularization.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 17 / 29

Page 18: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index

Analogously we could use a heat kernel regularization, replacing ∆(T , z) by[e−tTT

∗ − e−tT∗T], t > 0, and study the limit t →∞.

For brevity, we’ll restrict ourselves to the resolvent regularization in this talk.

Consistency with the Fredholm index:

Theorem.

Suppose that T is a Fredholm operator in H. Then the Witten index Wr (T )exists, equals the Fredholm index, ind(T ), of T , and

Wr (T ) = ind(T ) = ξ(0+; TT ∗,T ∗T ).

Note. In general (i.e., if T is not Fredholm), Wr (T ) is not integer-valued, it canbe any real number. In concrete 2d magnetic field systems it can have themeaning of (non-quantized) magnetic flux F ∈ R.

F.G. and B. Simon, Topological invariance of the Witten index, J. Funct. Anal.79, 91–102 (1988), showed that Wr (T ) has stability properties w.r.t. additiveperturbations similar to the Fredholm index, replacing the relative compactnessassumption on the perturbation by appropriate relative trace class conditions.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 18 / 29

Page 19: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) <∞

Now we return to the model operator DA = (d/dt) + A in L2(R;H):

(1) Special Case: dim(H) <∞.

• Assume A− is a self-adjoint matrix in H.

• Suppose there exist families of self-adjoint matrices {B(t)}t∈R such that B(·) islocally absolutely continuous on R.

• Assume that∫R dt

∥∥B ′(t)∥∥B(H)

<∞.

In the special case dim(H) <∞ a complete picture emerges:

First, we note

Lemma.

Under the new set of hypotheses for dim(H) <∞, DA (equivalently, D∗A) isFredholm if and only if 0 /∈ {σ(A+) ∪ σ(A−)}.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 19 / 29

Page 20: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) <∞

The non-Fredholm case if dim(H) <∞:

Theorem. (A. Carey, F.G., D. Potapov, F. Sukochev, Y. Tomilov, in prep.)

Assume the new set of hypotheses for dim(H) <∞. Then ξ( · ; H2,H1) has acontinuous representative on the interval (0,∞), ξ( · ; A+,A−) is piecewiseconstant a.e. on R, the Witten index Wr (DA) exists, and

Wr (DA) = ξ(0+; H2,H1)

= [ξ(0+; A+,A−) + ξ(0−; A+,A−)]/2

= 12 [#>(A+)−#>(A−)]− 1

2 [#<(A+)−#<(A−)].

In particular, in the finite-dimensional context, dim(H) <∞, Wr (DA) is either aninteger, or a half-integer (i.e., a Levinson-type theorem in scattering theory).

Here #>(A) (resp. #<(A)) denotes the number of strictly positive (resp., strictlynegative) eigenvalues of a self-adjoint operator A in H, counting multiplicity.

Details rely on scattering theoretic techniques.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 20 / 29

Page 21: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) =∞

(2) General Case: dim(H) =∞. Back to our Main Hypotheses:

• A− – self-adjoint on dom(A−) ⊆ H, H a complex, separable Hilbert space.

• B(t), t ∈ R, – closed, symmetric, in H, dom(B(t)) ⊇ dom(A−).

• There exists a family B ′(t), t ∈ R, – closed, symmetric, in H, with

dom(B ′(t)) ⊇ dom(A−), such that

B(t)(|A−|+ IH)−1, t ∈ R, is weakly locally a.c. and for a.e. t ∈ R,

d

dt

(g ,B(t)(|A−|+ IH)−1h

)H =

(g ,B ′(t)(|A−|+ IH)−1h

)H, g , h ∈ H.

• B ′(·)(|A−|+ IH)−1 ∈ B1(H), t ∈ R,∫R∥∥B ′(t)(|A−|+ IH)−1

∥∥B1(H)

dt <∞.

•{

(|B(t)|2 + IH)−1}t∈R and

{(|B ′(t)|2 + IH)−1

}t∈R are weakly measurable.

Principal objects: A(t) = A− + B(t), t ∈ R, and A =∫ ⊕R A(t) dt in L2(R;H).

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 21 / 29

Page 22: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) =∞

The non-Fredholm case if dim(H) =∞:

A first fact:

For ϕ ∈ (0, π/2) we introduce the sector

Sϕ := {z ∈ C | | arg(z)| < ϕ}. (3.1)

Theorem. (A. Carey, F.G., D. Potapov, F. Sukochev, Y. Tomilov, in prep.)

Assume the general hypotheses for dim(H) =∞ and let ϕ ∈ (0, π/2) be fixed. If0 is a right and left Lebesgue point of ξ( · ; A+,A−), then

Wr (DA) = limz→0, z∈C\Sϕ

z trL2(R;H)

((H2 − z I)−1 − (H1 − z I)−1

)= − lim

z→0, z∈C\Sϕ

z

∫R

ξ(ν; A+,A−) dν

(ν2 − z)3/2

=1

2[ξ(0+; A+,A−) + ξ(0−; A+,A−)].

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 22 / 29

Page 23: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) =∞

Naturally, the proof relies on a series of careful estimates employing Pushnitski’sformula,

ξ(λ; H2,H1) =1

π

∫ λ1/2

−λ1/2

ξ(ν; A+,A−) dν

(λ− ν2)1/2for a.e. λ > 0,

and the trace identity,

trL2(R;H)

((H2 − z I)−1 − (H1 − z I)−1

)=

1

2ztrH(gz(A+)− gz(A−)),

where gz(x) = x√x2−z , z ∈ C\[0,∞), x ∈ R, a smoothed-out sign fct.

Neither formula depends on the Fredholm property of DA.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 23 / 29

Page 24: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) =∞Lebesgue points: Let f ∈ L1

loc(R; dx).

Then x0 ∈ R is a right Lebesgue point of f if there exists an α+ ∈ C such that

limh↓0

1

h

∫ x0+h

x0

|f (x)− α+| dx = 0. One then defines f (x0,+) = α+.

Similarly, x0 ∈ R is a left Lebesgue point of f if there exists an α− ∈ C suchthat

limh↓0

1

h

∫ x0

x0−h|f (x)− α−| dx = 0. One then defines f (x0,−) = α−.

Finally, x0 ∈ R is a Lebesgue point of f if there exist α ∈ C such that

limh↓0

1

2h

∫ x0+h

x0−h|f (x)− α| dx = 0. One then defines f (x0) = α.

That is, x0 ∈ R is a Lebesgue point of f if and only if it is a left and a rightLebesgue point and α+ = α− = α.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 24 / 29

Page 25: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) =∞

A second fact:

Theorem. (A. Carey, F.G., D. Potapov, F. Sukochev, Y. Tomilov, in prep.)

Assume the general hypotheses for dim(H) =∞. If 0 is a right and leftLebesgue point of ξ( · ; A+,A−), then it is a right Lebesgue point ofξ( · ; H2,H1) and

ξ(0+; H2,H1) =1

2[ξ(0+; A+,A−) + ξ(0−; A+,A−)].

The proof employs Pushnitski’s formula,

ξ(λ; H2,H1) =1

π

∫ λ1/2

−λ1/2

ξ(ν; A+,A−) dν

(λ− ν2)1/2for a.e. λ > 0,

and combines the right/left Lebesgue point property of ξ( · ; A+,A−) at 0 withFubini’s theorem:

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 25 / 29

Page 26: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) =∞

Sketch of Proof.

Since χ[−√λ,√λ](ν) 1

λ−ν2 is even w.r.t. ν ∈ R, and thus

ξ(λ; H2,H1)− 1

2[ξ(0+; A+,A−) + ξ(0−; A+,A−)]

=1

π

∫ √λ−√λ

ξ(t; A+,A−) dν√λ− ν2

− 1

2[ξ(0+; A+,A−) + ξ(0−; A+,A−)]

=1

π

∫ √λ0

[ξ(ν; A+,A−)− ξ(0−; A+,A−)] + [ξ(−ν,A+,A−)− ξ(0−; A+,A−)]√λ− ν2

dν.

Next, let 0 be a right and a left Lebesgue point of ξ( · ; A+,A−), thenabbreviating

f±(ν) := ξ(±ν; A+,A−)− ξ(0±; A+,A−), ν ∈ R,

and applying Fubini’s theorem yields,

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 26 / 29

Page 27: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) =∞

limh↓0+

1

h

∫ h

0

∣∣∣∣ξ(λ; H2,H1)− 1

2[ξ(0+; A+,A−) + ξ(0−; A+,A−)]

∣∣∣∣ dλ

= limh↓0+

1

πh

∫ h

0

∣∣∣∣ ∫√λ

0

[f+(ν) + f−(ν)] dν√λ− ν2

∣∣∣∣dλ≤ lim

h↓0+

1

πh

∫ h

0

(∫ √λ0

[|f+(ν)|+ |f−(ν)|] dν√λ− ν2

)dλ

= limh↓0+

1

πh

∫ √h

0

[|f+(ν)|+ |f−(ν)|](∫ h

ν2

dλ√λ− ν2

)dν

= limh↓0+

2

πh

∫ √h

0

[|f+(ν)|+ |f−(ν)|]√

h − ν2 dν

= limh↓0+

2

π√

h

∫ √h

0

[|f+(ν)|+ |f−(ν)|]√

1− [ν2/h] dν

≤ limh↓0+

2

π√

h

∫ √h

0

[|f+(ν)|+ |f−(ν)|] dν = 0 by the right/left L-point hyp.

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 27 / 29

Page 28: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

SSF Applications

Applications: The Witten Index, contd., dim(H) =∞

Combining these results yields:

Theorem. (A. Carey, F.G., D. Potapov, F. Sukochev, Y. Tomilov, in prep.)

Assume the general hypotheses for dim(H) =∞ and that 0 is a right and leftLebesgue point of ξ( · ; A+,A−) (and hence a right Lebesgue point ofξ( · ; H2,H1)). Then, for fixed ϕ ∈ (0, π/2),

Wr (DA) = limz→0, z∈C\Sϕ

z trL2(R;H)

((H2 − z I)−1 − (H1 − z I)−1

)= ξ(0+; H2,H1)

= − limz→0, z∈C\Sϕ

z

∫R

ξ(ν; A+,A−) dν

(ν2 − z)3/2

=1

2[ξ(0+; A+,A−) + ξ(0−; A+,A−)].

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 28 / 29

Page 29: Spectral Shift Functions and some of their Applications in ...math.huji.ac.il/~avronfest/Gesztesy.pdf · Spectral Shift Functions and some of their Applications in Mathematical Physics

Final Thoughts

Final Thoughts:

A VERY HAPPY (belated)

BIRTHDAY, YOSI!

Fritz Gesztesy (Univ. of Missouri, Columbia) The Spectral Shift Function Jerusalem, June 30, 2013 29 / 29