Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made...

85
Atomic clocks Martin Fraas Avronfest, July 2013

Transcript of Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made...

Page 1: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Atomic clocks

Martin Fraas

Avronfest, July 2013

Page 2: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock
Page 3: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

” For example, a clock, with a running time of a day and anaccuracy of 10−8 second, must weigh almost a gram—for reasonsstemming solely from uncertainty principles and similarconsiderations.”

Page 4: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

” For example, a clock, with a running time of a day and anaccuracy of 10−8 second, must weigh almost a gram—for reasonsstemming solely from uncertainty principles and similarconsiderations.”

Page 5: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Accuracy of Clocks

Frequency ω(t) = ω0 + ϕ(t)

Clocktime tclock = 1ω0

∫ t0 ω(s)ds

Clocktime variance (∆t)2 = 〈(tclock − t)2〉

log(∆tt )

Random walkof frequency

Quartz

Atomic clock

1 100 104 106�12

�10

�8

�6

�4

t[s]

Page 6: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Accuracy of Clocks

Frequency ω(t) = ω0 + ϕ(t)

Clocktime tclock = 1ω0

∫ t0 ω(s)ds

Clocktime variance (∆t)2 = 〈(tclock − t)2〉

log(∆tt )

Random walkof frequency

Quartz

Atomic clock

1 100 104 106�12

�10

�8

�6

�4

t[s]

Page 7: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Accuracy of Clocks

Frequency ω(t) = ω0 + ϕ(t)

Clocktime tclock = 1ω0

∫ t0 ω(s)ds

Clocktime variance (∆t)2 = 〈(tclock − t)2〉

log(∆tt )

Random walkof frequency

Quartz

Atomic clock

1 100 104 106�12

�10

�8

�6

�4

t[s]

Page 8: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Accuracy of Clocks

Frequency ω(t) = ω0 + ϕ(t)

Clocktime tclock = 1ω0

∫ t0 ω(s)ds

Clocktime variance (∆t)2 = 〈(tclock − t)2〉

log(∆tt )

Random walkof frequency

Quartz

Atomic clock

1 100 104 106�12

�10

�8

�6

�4

t[s]

Page 9: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Accuracy of Clocks

Frequency ω(t) = ω0 + ϕ(t)

Clocktime tclock = 1ω0

∫ t0 ω(s)ds

Clocktime variance (∆t)2 = 〈(tclock − t)2〉

log(∆tt )

Random walkof frequency

Quartz

Atomic clock

1 100 104 106�12

�10

�8

�6

�4

t[s]

Page 10: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Brief history of man made clocks

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Page 11: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Brief history of man made clocks

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Page 12: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Brief history of man made clocks

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Page 13: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Brief history of man made clocks

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Page 14: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Brief history of man made clocks

Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )Year Clock Accuracy

1761

1930

1955

2010

Harrison’s H4

Quartz

Cs Atomic Clock

AI+ Optical Clock

0.2 s

500 µs

10 µs

10−6 µs

( ∆tday )

Page 15: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Theoretical Challenges

I Improvement of atomic clocksI Employment of entangled states [Bollinger et. al. 96]

I Quantum logic spectroscopy [Schmidt et. al. 05]

I Fighting noise

I Limits of the atomic clock accuracy [Itano et. al. 93]I Inclusion of decoherence [Huelga et. al. 97]

I Limits on size, mass, power, etc.

Page 16: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Theoretical Challenges

I Improvement of atomic clocksI Employment of entangled states [Bollinger et. al. 96]

I Quantum logic spectroscopy [Schmidt et. al. 05]

I Fighting noise

I Limits of the atomic clock accuracy [Itano et. al. 93]I Inclusion of decoherence [Huelga et. al. 97]

I Limits on size, mass, power, etc.

Page 17: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Theoretical Challenges

I Improvement of atomic clocksI Employment of entangled states [Bollinger et. al. 96]

I Quantum logic spectroscopy [Schmidt et. al. 05]

I Fighting noise

I Limits of the atomic clock accuracy [Itano et. al. 93]I Inclusion of decoherence [Huelga et. al. 97]

I Limits on size, mass, power, etc.

Page 18: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Theoretical Challenges

I Improvement of atomic clocksI Employment of entangled states [Bollinger et. al. 96]

I Quantum logic spectroscopy [Schmidt et. al. 05]

I Fighting noise

I Limits of the atomic clock accuracy [Itano et. al. 93]I Inclusion of decoherence [Huelga et. al. 97]

I Limits on size, mass, power, etc.

Page 19: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The operation of a Cesium Atomic Clock

Classical oscillator ω(t) = ω0 + ϕ(t)︸︷︷︸frequency error

Quantum oscillator ω0 − frequency reference

Main idea: want to adjust ω(t) to ω0 (i.e. make ϕ(t) small)

by means of repeated synchronization.

.A B

C

D

Cesiumbeam

Detector

Quartz crystal

Cavity

Page 20: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The operation of a Cesium Atomic Clock

Classical oscillator ω(t) = ω0 + ϕ(t)︸︷︷︸

frequency error

Quantum oscillator ω0 − frequency reference

Main idea: want to adjust ω(t) to ω0 (i.e. make ϕ(t) small)

by means of repeated synchronization.

.A B

C

D

Cesiumbeam

Detector

Quartz crystal

Cavity

Page 21: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The operation of a Cesium Atomic Clock

Classical oscillator ω(t) = ω0 + ϕ(t)︸︷︷︸frequency error

Quantum oscillator ω0 − frequency reference

Main idea: want to adjust ω(t) to ω0 (i.e. make ϕ(t) small)

by means of repeated synchronization.

.A B

C

D

Cesiumbeam

Detector

Quartz crystal

Cavity

Page 22: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The operation of a Cesium Atomic Clock

Classical oscillator ω(t) = ω0 + ϕ(t)︸︷︷︸frequency error

Quantum oscillator ω0

− frequency reference

Main idea: want to adjust ω(t) to ω0 (i.e. make ϕ(t) small)

by means of repeated synchronization.

.A B

C

D

Cesiumbeam

Detector

Quartz crystal

Cavity

Page 23: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The operation of a Cesium Atomic Clock

Classical oscillator ω(t) = ω0 + ϕ(t)︸︷︷︸frequency error

Quantum oscillator ω0 − frequency reference

Main idea: want to adjust ω(t) to ω0 (i.e. make ϕ(t) small)

by means of repeated synchronization.

.A B

C

D

Cesiumbeam

Detector

Quartz crystal

Cavity

Page 24: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The operation of a Cesium Atomic Clock

Classical oscillator ω(t) = ω0 + ϕ(t)︸︷︷︸frequency error

Quantum oscillator ω0 − frequency reference

Main idea: want to adjust ω(t) to ω0 (i.e. make ϕ(t) small)

by means of repeated synchronization.

.A B

C

D

Cesiumbeam

Detector

Quartz crystal

Cavity

Page 25: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The operation of a Cesium Atomic Clock

Classical oscillator ω(t) = ω0 + ϕ(t)︸︷︷︸frequency error

Quantum oscillator ω0 − frequency reference

Main idea: want to adjust ω(t) to ω0 (i.e. make ϕ(t) small)

by means of repeated synchronization.

.A B

C

D

Cesiumbeam

Detector

Quartz crystal

Cavity

Page 26: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 27: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 28: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 29: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 30: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 31: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 32: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 33: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρ

depends on the accumulated frequency error ϕτ :=∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 34: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 35: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Ramsey interferometry

A BC

D

. . .

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

ρρ0

ω(t) = ω0 + ϕ(t)

A BC

D

Cesiumbeam

. . .

Quartz crystal

.

.

|g�

|e�

�τ

Relative evolution of the state for time τ : ρ0 7→ ρdepends on the accumulated frequency error ϕτ :=

∫ τ0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0eiϕτH

Page 36: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Detection and feedback

C

D

.B

ω(t) = ω0 + ϕnew(t)

ϕτ

x

POVM

ϕ̂

A POVM measurement on the final state Rπ2ρ

assigns a measurement outcome x to the accumulated frequency error ϕτ .

ϕ̂ is an estimation of ϕτ , based on the measurement outcome x .

A feedback uses ϕ̂ to adjust the original frequency error ϕ.

Page 37: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Detection and feedback

C

D

.B

ω(t) = ω0 + ϕnew(t)

ϕτ

x

POVM

ϕ̂

A POVM measurement on the final state Rπ2ρ

assigns a measurement outcome x to the accumulated frequency error ϕτ .

ϕ̂ is an estimation of ϕτ , based on the measurement outcome x .

A feedback uses ϕ̂ to adjust the original frequency error ϕ.

Page 38: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Detection and feedback

C

D

.B

ω(t) = ω0 + ϕnew(t)

ϕτ

x

POVM

ϕ̂

A POVM measurement on the final state Rπ2ρ

assigns a measurement outcome x to the accumulated frequency error ϕτ .

ϕ̂ is an estimation of ϕτ , based on the measurement outcome x .

A feedback uses ϕ̂ to adjust the original frequency error ϕ.

Page 39: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Detection and feedback

C

D

.B

ω(t) = ω0 + ϕnew(t)

ϕτ

x

POVM

ϕ̂

A POVM measurement on the final state Rπ2ρ

assigns a measurement outcome x to the accumulated frequency error ϕτ .

ϕ̂ is an estimation of ϕτ , based on the measurement outcome x .

A feedback uses ϕ̂ to adjust the original frequency error ϕ.

Page 40: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Detection and feedback

C

D

.B

ω(t) = ω0 + ϕnew(t)

ϕτ

x

POVM

ϕ̂

A POVM measurement on the final state Rπ2ρ

assigns a measurement outcome x to the accumulated frequency error ϕτ .

ϕ̂ is an estimation of ϕτ , based on the measurement outcome x .

A feedback uses ϕ̂ to adjust the original frequency error ϕ.

Page 41: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The Mathematical Model

I The evolution of ϕ(t) in absence of synchronization:

ϕ(t + s) := ϕ(t) +√

2D Ws︸︷︷︸Wiener process

I Two fixed time scales:

Ttime between two consecutive synchronizations

≥ τinterrogation time

I A function ϕτ 7→ ρ(ϕτ )

I An estimation strategy {ρ(ϕτ ) 7→ x , x 7→ ϕ̂}.

I A linear feedback ϕ(t) 7→ ϕ(t)− ϕ̂.

Page 42: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The Mathematical Model

I The evolution of ϕ(t) in absence of synchronization:

ϕ(t + s) := ϕ(t) +√

2D Ws︸︷︷︸Wiener process

I Two fixed time scales:

Ttime between two consecutive synchronizations

≥ τinterrogation time

I A function ϕτ 7→ ρ(ϕτ )

I An estimation strategy {ρ(ϕτ ) 7→ x , x 7→ ϕ̂}.

I A linear feedback ϕ(t) 7→ ϕ(t)− ϕ̂.

Page 43: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The Mathematical Model

I The evolution of ϕ(t) in absence of synchronization:

ϕ(t + s) := ϕ(t) +√

2D Ws︸︷︷︸Wiener process

I Two fixed time scales:

Ttime between two consecutive synchronizations

≥ τinterrogation time

I A function ϕτ 7→ ρ(ϕτ )

I An estimation strategy {ρ(ϕτ ) 7→ x , x 7→ ϕ̂}.

I A linear feedback ϕ(t) 7→ ϕ(t)− ϕ̂.

Page 44: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The Mathematical Model

I The evolution of ϕ(t) in absence of synchronization:

ϕ(t + s) := ϕ(t) +√

2D Ws︸︷︷︸Wiener process

I Two fixed time scales:

Ttime between two consecutive synchronizations

≥ τinterrogation time

I A function ϕτ 7→ ρ(ϕτ )

I An estimation strategy {ρ(ϕτ ) 7→ x , x 7→ ϕ̂}.

I A linear feedback ϕ(t) 7→ ϕ(t)− ϕ̂.

Page 45: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The Mathematical Model

I The evolution of ϕ(t) in absence of synchronization:

ϕ(t + s) := ϕ(t) +√

2D Ws︸︷︷︸Wiener process

I Two fixed time scales:

Ttime between two consecutive synchronizations

≥ τinterrogation time

I A function ϕτ 7→ ρ(ϕτ )

I An estimation strategy {ρ(ϕτ ) 7→ x , x 7→ ϕ̂}.

I A linear feedback ϕ(t) 7→ ϕ(t)− ϕ̂.

Page 46: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

The Mathematical Model

I The evolution of ϕ(t) in absence of synchronization:

ϕ(t + s) := ϕ(t) +√

2D Ws︸︷︷︸Wiener process

I Two fixed time scales:

Ttime between two consecutive synchronizations

≥ τinterrogation time

I A function ϕτ 7→ ρ(ϕτ )

I An estimation strategy {ρ(ϕτ ) 7→ x , x 7→ ϕ̂}.

I A linear feedback ϕ(t) 7→ ϕ(t)− ϕ̂.

Page 47: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Repeated Synchronization

←→τ

nT (n + 1)T

ϕn ϕn+1

Notation: ϕn := ϕ((n + 1)T−).

Equation for the jump:

ϕn+1 = ϕn − ϕ̂n +√

2DWT

I The equation defines a non-linear Markovian process;

I We aim to study its stationary solutions;

I ϕn provides ϕ(t), which gives the clock time;

Page 48: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Repeated Synchronization

←→τ

nT (n + 1)T

ϕn ϕn+1

Notation: ϕn := ϕ((n + 1)T−).

Equation for the jump:

ϕn+1 = ϕn − ϕ̂n +√

2DWT

I The equation defines a non-linear Markovian process;

I We aim to study its stationary solutions;

I ϕn provides ϕ(t), which gives the clock time;

Page 49: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Repeated Synchronization

←→τ

nT (n + 1)T

ϕn ϕn+1

Notation: ϕn := ϕ((n + 1)T−).

Equation for the jump:

ϕn+1 = ϕn − ϕ̂n +√

2DWT

I The equation defines a non-linear Markovian process;

I We aim to study its stationary solutions;

I ϕn provides ϕ(t), which gives the clock time;

Page 50: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Repeated Synchronization

←→τ

nT (n + 1)T

ϕn ϕn+1

Notation: ϕn := ϕ((n + 1)T−).

Equation for the jump:

ϕn+1 = ϕn − ϕ̂n +√

2DWT

I The equation defines a non-linear Markovian process;

I We aim to study its stationary solutions;

I ϕn provides ϕ(t), which gives the clock time;

Page 51: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Repeated Synchronization

←→τ

nT (n + 1)T

ϕn ϕn+1

Notation: ϕn := ϕ((n + 1)T−).

Equation for the jump:

ϕn+1 = ϕn − ϕ̂n +√

2DWT

I The equation defines a non-linear Markovian process;

I We aim to study its stationary solutions;

I ϕn provides ϕ(t), which gives the clock time;

Page 52: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Repeated Synchronization

←→τ

nT (n + 1)T

ϕn ϕn+1

Notation: ϕn := ϕ((n + 1)T−).

Equation for the jump:

ϕn+1 = ϕn − ϕ̂n +√

2DWT

I The equation defines a non-linear Markovian process;

I We aim to study its stationary solutions;

I ϕn provides ϕ(t), which gives the clock time;

Page 53: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Unbiased clock

Unbiased clock is accurate in average, E[tclock ] = t.

E[ϕ(s)] = 0 provided E[ϕ(0)] = 0.

(variational argument) ⇓ (variational argument)

For some ζ ∈ R, E[ϕ− ϕ̂|ϕ] = ζϕ.

Definition (ζ-unbiased clock)

The clock is ζ-unbiased if the estimation procedure satisfies

E[ϕ− ϕ̂|ϕ] = ζϕ, |ζ| < 1.

Page 54: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Unbiased clock

Unbiased clock is accurate in average, E[tclock ] = t.

E[ϕ(s)] = 0 provided E[ϕ(0)] = 0.

(variational argument) ⇓ (variational argument)

For some ζ ∈ R, E[ϕ− ϕ̂|ϕ] = ζϕ.

Definition (ζ-unbiased clock)

The clock is ζ-unbiased if the estimation procedure satisfies

E[ϕ− ϕ̂|ϕ] = ζϕ, |ζ| < 1.

Page 55: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Unbiased clock

Unbiased clock is accurate in average, E[tclock ] = t.

E[ϕ(s)] = 0 provided E[ϕ(0)] = 0.

(variational argument) ⇓ (variational argument)

For some ζ ∈ R, E[ϕ− ϕ̂|ϕ] = ζϕ.

Definition (ζ-unbiased clock)

The clock is ζ-unbiased if the estimation procedure satisfies

E[ϕ− ϕ̂|ϕ] = ζϕ, |ζ| < 1.

Page 56: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Unbiased clock

Unbiased clock is accurate in average, E[tclock ] = t.

E[ϕ(s)] = 0 provided E[ϕ(0)] = 0.

(variational argument) ⇓ (variational argument)

For some ζ ∈ R, E[ϕ− ϕ̂|ϕ] = ζϕ.

Definition (ζ-unbiased clock)

The clock is ζ-unbiased if the estimation procedure satisfies

E[ϕ− ϕ̂|ϕ] = ζϕ, |ζ| < 1.

Page 57: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=F 1/4

(2π)1/4exp

(−F

4(x − ϕ)2

)Fisher information is inversely proportional to the width .

Page 58: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=F 1/4

(2π)1/4exp

(−F

4(x − ϕ)2

)Fisher information is inversely proportional to the width .

Page 59: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=F 1/4

(2π)1/4exp

(−F

4(x − ϕ)2

)Fisher information is inversely proportional to the width .

Page 60: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=F 1/4

(2π)1/4exp

(−F

4(x − ϕ)2

)Fisher information is inversely proportional to the width .

Page 61: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=F 1/4

(2π)1/4exp

(−F

4(x − ϕ)2

)Fisher information is inversely proportional to the width .

Page 62: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=F 1/4

(2π)1/4exp

(−F

4(x − ϕ)2

)Fisher information is inversely proportional to the width .

Page 63: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=F 1/4

(2π)1/4exp

(−F

4(x − ϕ)2

)

Fisher information is inversely proportional to the width .

Page 64: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=F 1/4

(2π)1/4exp

(−F

4(x − ϕ)2

)Fisher information is inversely proportional to the width .

Page 65: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Stationary states

TheoremLet ϕn be a stationary state of an ζ-unbiased clock. Then

E[ϕ2n]

≥ 1

τ2F

1− ζ1 + ζ

+2DT

1− ζ2 g(ζ,τ

T),

E[(tclock − t)2] ≥ tT

ω20

(1

τ2F+

2DT

3(1− ζ)2f (ζ,

τ

T)

),

where

g(ζ, x) = ζ2 +1 + ζ − 2ζ2

3x ,

f (ζ, x) = 1 + ζ + ζ2 + (1 + 2ζ)(1− ζ)x + (1− ζ)2x2,

1

F= E

[1

F (τϕn)

].

Page 66: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Stationary states

TheoremLet ϕn be a stationary state of an ζ-unbiased clock.

Then

E[ϕ2n]

≥ 1

τ2F

1− ζ1 + ζ

+2DT

1− ζ2 g(ζ,τ

T),

E[(tclock − t)2] ≥ tT

ω20

(1

τ2F+

2DT

3(1− ζ)2f (ζ,

τ

T)

),

where

g(ζ, x) = ζ2 +1 + ζ − 2ζ2

3x ,

f (ζ, x) = 1 + ζ + ζ2 + (1 + 2ζ)(1− ζ)x + (1− ζ)2x2,

1

F= E

[1

F (τϕn)

].

Page 67: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Stationary states

TheoremLet ϕn be a stationary state of an ζ-unbiased clock. Then

E[ϕ2n] ≥ 1

τ2F

1− ζ1 + ζ

+

2DT

1− ζ2 g(ζ,τ

T),

E[(tclock − t)2] ≥ tT

ω20

(1

τ2F+

2DT

3(1− ζ)2f (ζ,

τ

T)

),

where

g(ζ, x) = ζ2 +1 + ζ − 2ζ2

3x ,

f (ζ, x) = 1 + ζ + ζ2 + (1 + 2ζ)(1− ζ)x + (1− ζ)2x2,

1

F= E

[1

F (τϕn)

].

Page 68: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Stationary states

TheoremLet ϕn be a stationary state of an ζ-unbiased clock. Then

E[ϕ2n] ≥ 1

τ2F

1− ζ1 + ζ

+2DT

1− ζ2 g(ζ,τ

T),

E[(tclock − t)2] ≥ tT

ω20

(1

τ2F+

2DT

3(1− ζ)2f (ζ,

τ

T)

),

where

g(ζ, x) = ζ2 +1 + ζ − 2ζ2

3x ,

f (ζ, x) = 1 + ζ + ζ2 + (1 + 2ζ)(1− ζ)x + (1− ζ)2x2,

1

F= E

[1

F (τϕn)

].

Page 69: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Stationary states

TheoremLet ϕn be a stationary state of an ζ-unbiased clock. Then

E[ϕ2n] ≥ 1

τ2F

1− ζ1 + ζ

+2DT

1− ζ2 g(ζ,τ

T),

E[(tclock − t)2] ≥ tT

ω20

(1

τ2F+

2DT

3(1− ζ)2f (ζ,

τ

T)

),

where

g(ζ, x) = ζ2 +1 + ζ − 2ζ2

3x ,

f (ζ, x) = 1 + ζ + ζ2 + (1 + 2ζ)(1− ζ)x + (1− ζ)2x2,

1

F= E

[1

F (τϕn)

].

Page 70: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Stationary states

TheoremLet ϕn be a stationary state of an ζ-unbiased clock. Then

E[ϕ2n] ≥ 1

τ2F

1− ζ1 + ζ

+2DT

1− ζ2 g(ζ,τ

T),

E[(tclock − t)2] ≥ tT

ω20

(1

τ2F+

2DT

3(1− ζ)2f (ζ,

τ

T)

),

where

g(ζ, x) = ζ2 +1 + ζ − 2ζ2

3x ,

f (ζ, x) = 1 + ζ + ζ2 + (1 + 2ζ)(1− ζ)x + (1− ζ)2x2,

1

F= E

[1

F (τϕn)

].

Page 71: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Stationary states

TheoremLet ϕn be a stationary state of an ζ-unbiased clock. Then

E[ϕ2n] ≥ 1

τ2F

1− ζ1 + ζ

+2DT

1− ζ2 g(ζ,τ

T),

E[(tclock − t)2] ≥ tT

ω20

(1

τ2F+

2DT

3(1− ζ)2f (ζ,

τ

T)

),

where

g(ζ, x) = ζ2 +1 + ζ − 2ζ2

3x ,

f (ζ, x) = 1 + ζ + ζ2 + (1 + 2ζ)(1− ζ)x + (1− ζ)2x2,

1

F= E

[1

F (τϕn)

].

Page 72: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Analysis of the clock operation

Qualitative analysis of the stationary state:

I The clock time diffuses;

I For D = 0 the diffusion does not depend on the correlationlength ζ;

Quantitative analysis, the case T = τ :

I The optimal interrogation time is determined by a balance ofthe dissipation and estimation precision. For fixed ζ:

4DT = (1− ζ)21

FT 2.

I For the optimal time, ζ ≈ 0.35 minimize the variance of thestationary state;

Page 73: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Analysis of the clock operation

Qualitative analysis of the stationary state:

I The clock time diffuses;

I For D = 0 the diffusion does not depend on the correlationlength ζ;

Quantitative analysis, the case T = τ :

I The optimal interrogation time is determined by a balance ofthe dissipation and estimation precision. For fixed ζ:

4DT = (1− ζ)21

FT 2.

I For the optimal time, ζ ≈ 0.35 minimize the variance of thestationary state;

Page 74: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Analysis of the clock operation

Qualitative analysis of the stationary state:

I The clock time diffuses;

I For D = 0 the diffusion does not depend on the correlationlength ζ;

Quantitative analysis, the case T = τ :

I The optimal interrogation time is determined by a balance ofthe dissipation and estimation precision. For fixed ζ:

4DT = (1− ζ)21

FT 2.

I For the optimal time, ζ ≈ 0.35 minimize the variance of thestationary state;

Page 75: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Pieces of the Proof

I ϕn is a supermartingale =⇒ existence of a stationary state;

I Cramer-Rao type inequality: Suppose E[ϕϕ̂] = ζE[ϕ2] then

E[(ϕ− ϕ̂)2] ≥ (1− ζ)21

F+ ζ2E[ϕ2];

Local CR, ζ = 0 Global CR, infζ = 1/(F + E[ϕ2]−1)

I Compute covariance of ϕ(t), e.g. E[ϕn+hϕn] = ζhE[ϕ2n].

Integration gives variance of the clock time.

Page 76: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Pieces of the Proof

I ϕn is a supermartingale =⇒ existence of a stationary state;

I Cramer-Rao type inequality: Suppose E[ϕϕ̂] = ζE[ϕ2] then

E[(ϕ− ϕ̂)2] ≥ (1− ζ)21

F+ ζ2E[ϕ2];

Local CR, ζ = 0 Global CR, infζ = 1/(F + E[ϕ2]−1)

I Compute covariance of ϕ(t), e.g. E[ϕn+hϕn] = ζhE[ϕ2n].

Integration gives variance of the clock time.

Page 77: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Pieces of the Proof

I ϕn is a supermartingale =⇒ existence of a stationary state;

I Cramer-Rao type inequality: Suppose E[ϕϕ̂] = ζE[ϕ2] then

E[(ϕ− ϕ̂)2] ≥ (1− ζ)21

F+ ζ2E[ϕ2];

Local CR, ζ = 0 Global CR, infζ = 1/(F + E[ϕ2]−1)

I Compute covariance of ϕ(t), e.g. E[ϕn+hϕn] = ζhE[ϕ2n].

Integration gives variance of the clock time.

Page 78: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Pieces of the Proof

I ϕn is a supermartingale =⇒ existence of a stationary state;

I Cramer-Rao type inequality: Suppose E[ϕϕ̂] = ζE[ϕ2] then

E[(ϕ− ϕ̂)2] ≥ (1− ζ)21

F+ ζ2E[ϕ2];

Local CR, ζ = 0

Global CR, infζ = 1/(F + E[ϕ2]−1)

I Compute covariance of ϕ(t), e.g. E[ϕn+hϕn] = ζhE[ϕ2n].

Integration gives variance of the clock time.

Page 79: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Pieces of the Proof

I ϕn is a supermartingale =⇒ existence of a stationary state;

I Cramer-Rao type inequality: Suppose E[ϕϕ̂] = ζE[ϕ2] then

E[(ϕ− ϕ̂)2] ≥ (1− ζ)21

F+ ζ2E[ϕ2];

Local CR, ζ = 0 Global CR, infζ = 1/(F + E[ϕ2]−1)

I Compute covariance of ϕ(t), e.g. E[ϕn+hϕn] = ζhE[ϕ2n].

Integration gives variance of the clock time.

Page 80: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Pieces of the Proof

I ϕn is a supermartingale =⇒ existence of a stationary state;

I Cramer-Rao type inequality: Suppose E[ϕϕ̂] = ζE[ϕ2] then

E[(ϕ− ϕ̂)2] ≥ (1− ζ)21

F+ ζ2E[ϕ2];

Local CR, ζ = 0 Global CR, infζ = 1/(F + E[ϕ2]−1)

I Compute covariance of ϕ(t), e.g. E[ϕn+hϕn] = ζhE[ϕ2n].

Integration gives variance of the clock time.

Page 81: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Pieces of the Proof

I ϕn is a supermartingale =⇒ existence of a stationary state;

I Cramer-Rao type inequality: Suppose E[ϕϕ̂] = ζE[ϕ2] then

E[(ϕ− ϕ̂)2] ≥ (1− ζ)21

F+ ζ2E[ϕ2];

Local CR, ζ = 0 Global CR, infζ = 1/(F + E[ϕ2]−1)

I Compute covariance of ϕ(t), e.g. E[ϕn+hϕn] = ζhE[ϕ2n].

Integration gives variance of the clock time.

Page 82: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Conclusions & Outlooks

Conclusions:

I Mathematically minded model of atomic clocks;

I Analysis of the stationary state;

Outlooks:

I ”Central limit theorem“;

I Beyond unbiased clock, unbiased stationary state;

I Entropy production;

Page 83: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Conclusions & Outlooks

Conclusions:

I Mathematically minded model of atomic clocks;

I Analysis of the stationary state;

Outlooks:

I ”Central limit theorem“;

I Beyond unbiased clock, unbiased stationary state;

I Entropy production;

Page 84: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Conclusions & Outlooks

Conclusions:

I Mathematically minded model of atomic clocks;

I Analysis of the stationary state;

Outlooks:

I ”Central limit theorem“;

I Beyond unbiased clock, unbiased stationary state;

I Entropy production;

Page 85: Atomic clocks - huji.ac.ilmath.huji.ac.il › ~avronfest › Fraas.pdfBrief history of man made clocks Year Clock Accuracy 1761 1930 1955 2010 HarrisonÕs H4 Quartz Cs Atomic Clock

Happy Birthday

Yosi!