Sparsity Methods for Systems and Control

90
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sparsity Methods for Systems and Control Curve Fitting and Sparse Optimization Masaaki Nagahara 1 1 The University of Kitakyushu [email protected] M. Nagahara (Univ of Kitakyushu) Sparsity Methods 1 / 35

Transcript of Sparsity Methods for Systems and Control

Page 1: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparsity Methods for Systems and ControlCurve Fitting and Sparse Optimization

Masaaki Nagahara1

1The University of [email protected]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 1 / 35

Page 2: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Least Squares and Regularization

2 Sparse Polynomial and ℓ1-norm Optimization

3 Numerical Optimization by CVX

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 2 / 35

Page 3: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Least Squares and Regularization

2 Sparse Polynomial and ℓ1-norm Optimization

3 Numerical Optimization by CVX

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 3 / 35

Page 4: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum-ℓ2 solution

Linear equation: y � Φxy ∈ Rm is givenΦ ∈ Rm×n is givenx ∈ Rn is unknown

Assume m < n and Φ has full row rank, i.e. rank(Φ) � m.

ℓ2 optimization problem

minimizex∈Rn

12 ∥x∥2

2 subject to Φx � y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 35

Page 5: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum-ℓ2 solution

Linear equation: y � Φxy ∈ Rm is givenΦ ∈ Rm×n is givenx ∈ Rn is unknown

Assume m < n and Φ has full row rank, i.e. rank(Φ) � m.

ℓ2 optimization problem

minimizex∈Rn

12 ∥x∥2

2 subject to Φx � y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 35

Page 6: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum-ℓ2 solution

Linear equation: y � Φxy ∈ Rm is givenΦ ∈ Rm×n is givenx ∈ Rn is unknown

Assume m < n and Φ has full row rank, i.e. rank(Φ) � m.

ℓ2 optimization problem

minimizex∈Rn

12 ∥x∥2

2 subject to Φx � y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 35

Page 7: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum-ℓ2 solution

Linear equation: y � Φxy ∈ Rm is givenΦ ∈ Rm×n is givenx ∈ Rn is unknown

Assume m < n and Φ has full row rank, i.e. rank(Φ) � m.

ℓ2 optimization problem

minimizex∈Rn

12 ∥x∥2

2 subject to Φx � y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 35

Page 8: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum-ℓ2 solution

Linear equation: y � Φxy ∈ Rm is givenΦ ∈ Rm×n is givenx ∈ Rn is unknown

Assume m < n and Φ has full row rank, i.e. rank(Φ) � m.

ℓ2 optimization problem

minimizex∈Rn

12 ∥x∥2

2 subject to Φx � y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 35

Page 9: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum-ℓ2 solution

Linear equation: y � Φxy ∈ Rm is givenΦ ∈ Rm×n is givenx ∈ Rn is unknown

Assume m < n and Φ has full row rank, i.e. rank(Φ) � m.

ℓ2 optimization problem

minimizex∈Rn

12 ∥x∥2

2 subject to Φx � y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 35

Page 10: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solution of ℓ2 optimization problem

Lagrangian

L(x , λ) � 12 x⊤x + λ⊤(Φx − y).

Differentiate L by x

∂L∂x

�∂∂x

(12 x⊤x + λ⊤Φx

)� x +Φ⊤λ.

The stationary point equation

x∗+Φ⊤λ∗ � 0. (i)

Also, x∗ satisfies the equation Φx � y, we have

Φx∗� y (ii)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 35

Page 11: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solution of ℓ2 optimization problem

Lagrangian

L(x , λ) � 12 x⊤x + λ⊤(Φx − y).

Differentiate L by x

∂L∂x

�∂∂x

(12 x⊤x + λ⊤Φx

)� x +Φ⊤λ.

The stationary point equation

x∗+Φ⊤λ∗ � 0. (i)

Also, x∗ satisfies the equation Φx � y, we have

Φx∗� y (ii)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 35

Page 12: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solution of ℓ2 optimization problem

Lagrangian

L(x , λ) � 12 x⊤x + λ⊤(Φx − y).

Differentiate L by x

∂L∂x

�∂∂x

(12 x⊤x + λ⊤Φx

)� x +Φ⊤λ.

The stationary point equation

x∗+Φ⊤λ∗ � 0. (i)

Also, x∗ satisfies the equation Φx � y, we have

Φx∗� y (ii)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 35

Page 13: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solution of ℓ2 optimization problem

Lagrangian

L(x , λ) � 12 x⊤x + λ⊤(Φx − y).

Differentiate L by x

∂L∂x

�∂∂x

(12 x⊤x + λ⊤Φx

)� x +Φ⊤λ.

The stationary point equation

x∗+Φ⊤λ∗ � 0. (i)

Also, x∗ satisfies the equation Φx � y, we have

Φx∗� y (ii)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 35

Page 14: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solution of ℓ2 optimization problem

Inserting (i) into (ii) gives

−ΦΦ⊤λ∗ � y

Since rank(Φ) � m, ΦΦ⊤ is invertible and

λ∗ � −(ΦΦ⊤)−1 y.

Finally, we obtain the solution from (i) as

x∗� Φ⊤(ΦΦ⊤)−1 y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 35

Page 15: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solution of ℓ2 optimization problem

Inserting (i) into (ii) gives

−ΦΦ⊤λ∗ � y

Since rank(Φ) � m, ΦΦ⊤ is invertible and

λ∗ � −(ΦΦ⊤)−1 y.

Finally, we obtain the solution from (i) as

x∗� Φ⊤(ΦΦ⊤)−1 y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 35

Page 16: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solution of ℓ2 optimization problem

Inserting (i) into (ii) gives

−ΦΦ⊤λ∗ � y

Since rank(Φ) � m, ΦΦ⊤ is invertible and

λ∗ � −(ΦΦ⊤)−1 y.

Finally, we obtain the solution from (i) as

x∗� Φ⊤(ΦΦ⊤)−1 y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 35

Page 17: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Polynomial curve fitting

Two-dimensional data:

D � {(t1 , y1), (t2 , y2), . . . , (tm , ym)}.

Polynomial curve fitting

y � f (t) � an−1tn−1+ an−2tn−2

+ · · · + a1t + a0.

to find coefficients a0 , a1 , . . . , an−1 with which the polynomialcurve has the best fit to the m-point data.

t1 t2 t3 t5

y = f(t)

y

t4

t

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 7 / 35

Page 18: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Polynomial curve fitting

Two-dimensional data:

D � {(t1 , y1), (t2 , y2), . . . , (tm , ym)}.

Polynomial curve fitting

y � f (t) � an−1tn−1+ an−2tn−2

+ · · · + a1t + a0.

to find coefficients a0 , a1 , . . . , an−1 with which the polynomialcurve has the best fit to the m-point data.

t1 t2 t3 t5

y = f(t)

y

t4

t

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 7 / 35

Page 19: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Interpolating polynomial

The polynomial curve

y � f (t) � an−1tn−1+ an−2tn−2

+ · · · + a1t + a0.

goes through the data points.linear equations with for unknown coefficients

an−1tn−11 + an−2tn−2

1 + · · · + a1t1 + a0 � y1 ,

an−1tn−12 + an−2tn−2

2 + · · · + a1t2 + a0 � y2 ,

· · ·an−1tn−1

m + an−2tn−2m + · · · + a1tm + a0 � ym .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 8 / 35

Page 20: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Interpolating polynomial

The polynomial curve

y � f (t) � an−1tn−1+ an−2tn−2

+ · · · + a1t + a0.

goes through the data points.linear equations with for unknown coefficients

an−1tn−11 + an−2tn−2

1 + · · · + a1t1 + a0 � y1 ,

an−1tn−12 + an−2tn−2

2 + · · · + a1t2 + a0 � y2 ,

· · ·an−1tn−1

m + an−2tn−2m + · · · + a1tm + a0 � ym .

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 8 / 35

Page 21: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Vandermonde’s matrix

Define

Φ ≜

tn−11 tn−2

1 . . . t1 1tn−12 tn−2

2 . . . t2 1...

.... . .

...tn−1

m tn−2m . . . tm 1

∈ Rm×n ,

x ≜

an−1an−2...

a1a0

∈ Rn , y ≜

y1y2...

ym

∈ Rm .

Then the linear equations becomes Φx � y.Φ is called Vandermonde’s matrix.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 35

Page 22: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Vandermonde’s matrix

Define

Φ ≜

tn−11 tn−2

1 . . . t1 1tn−12 tn−2

2 . . . t2 1...

.... . .

...tn−1

m tn−2m . . . tm 1

∈ Rm×n ,

x ≜

an−1an−2...

a1a0

∈ Rn , y ≜

y1y2...

ym

∈ Rm .

Then the linear equations becomes Φx � y.Φ is called Vandermonde’s matrix.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 35

Page 23: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Vandermonde’s matrix

Define

Φ ≜

tn−11 tn−2

1 . . . t1 1tn−12 tn−2

2 . . . t2 1...

.... . .

...tn−1

m tn−2m . . . tm 1

∈ Rm×n ,

x ≜

an−1an−2...

a1a0

∈ Rn , y ≜

y1y2...

ym

∈ Rm .

Then the linear equations becomes Φx � y.Φ is called Vandermonde’s matrix.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 35

Page 24: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Vandermonde’s matrix

If m � n, then the determinant of Φ is given by

det(Φ) �∏

1≤i< j≤m

(ti − t j) � (t1 − t2)(t1 − t3) · · · (tm−1 − tm).

If ti , t j for all i , j such that i , j, then Φ is invertible and thecoefficients of the interpolating polynomial are obtained by

x∗� Φ−1 y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 35

Page 25: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Vandermonde’s matrix

If m � n, then the determinant of Φ is given by

det(Φ) �∏

1≤i< j≤m

(ti − t j) � (t1 − t2)(t1 − t3) · · · (tm−1 − tm).

If ti , t j for all i , j such that i , j, then Φ is invertible and thecoefficients of the interpolating polynomial are obtained by

x∗� Φ−1 y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 35

Page 26: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATLAB Simulation

Data:t 1 2 3 . . . 14 15y 2 4 6 . . . 28 30

→ y � 2tResult:x =

2.274746684520826e-24-5.565271161256770e-219.137367918505765e-19-9.452887691357992e-18-3.658098129966092e-16-1.608088662230500e-153.569367024169878e-14-6.021849685566849e-135.346834086594754e-13-1.267963511963899e-114.878586423728848e-112.088995643134695e-121.366515789413825e-101.999999999995282e+00 <---4.014566457044566e-12

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 35

Page 27: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATLAB Simulation

Data:t 1 2 3 . . . 14 15y 2 4 6 . . . 28 30

→ y � 2tResult:x =

2.274746684520826e-24-5.565271161256770e-219.137367918505765e-19-9.452887691357992e-18-3.658098129966092e-16-1.608088662230500e-153.569367024169878e-14-6.021849685566849e-135.346834086594754e-13-1.267963511963899e-114.878586423728848e-112.088995643134695e-121.366515789413825e-101.999999999995282e+00 <---4.014566457044566e-12

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 35

Page 28: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATLAB Simulation

Data:t 1 2 3 . . . 14 15y 2 4 6 . . . 28 30

→ y � 2tResult:x =

2.274746684520826e-24-5.565271161256770e-219.137367918505765e-19-9.452887691357992e-18-3.658098129966092e-16-1.608088662230500e-153.569367024169878e-14-6.021849685566849e-135.346834086594754e-13-1.267963511963899e-114.878586423728848e-112.088995643134695e-121.366515789413825e-101.999999999995282e+00 <---4.014566457044566e-12

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 35

Page 29: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATLAB Simulation

Add Gaussian noise with mean 0 and variance 0.52 to the data y.Curve fitting via Vandermonde’s matrix inversion Φ−1 y.

0 5 10 15

t

0

10

20

30

40

50

60

70

y

This is known as overfitting.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 35

Page 30: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATLAB Simulation

Add Gaussian noise with mean 0 and variance 0.52 to the data y.Curve fitting via Vandermonde’s matrix inversion Φ−1 y.

0 5 10 15

t

0

10

20

30

40

50

60

70

y

This is known as overfitting.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 35

Page 31: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATLAB Simulation

Add Gaussian noise with mean 0 and variance 0.52 to the data y.Curve fitting via Vandermonde’s matrix inversion Φ−1 y.

0 5 10 15

t

0

10

20

30

40

50

60

70

y

This is known as overfitting.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 35

Page 32: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Least squares method

The order of the polynomial was too large.We can first assume a first-order polynomial y � a1t + a0.The line does not interpolate the noisy data.Find a polynomial that minimizes the ℓ2 error:

minimizex∈Rn

12 ∥Φx − y∥2

2 ,

This is called the least squares method.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 35

Page 33: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Least squares method

The order of the polynomial was too large.We can first assume a first-order polynomial y � a1t + a0.The line does not interpolate the noisy data.Find a polynomial that minimizes the ℓ2 error:

minimizex∈Rn

12 ∥Φx − y∥2

2 ,

This is called the least squares method.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 35

Page 34: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Least squares method

The order of the polynomial was too large.We can first assume a first-order polynomial y � a1t + a0.The line does not interpolate the noisy data.Find a polynomial that minimizes the ℓ2 error:

minimizex∈Rn

12 ∥Φx − y∥2

2 ,

This is called the least squares method.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 35

Page 35: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Least squares method

The order of the polynomial was too large.We can first assume a first-order polynomial y � a1t + a0.The line does not interpolate the noisy data.Find a polynomial that minimizes the ℓ2 error:

minimizex∈Rn

12 ∥Φx − y∥2

2 ,

This is called the least squares method.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 35

Page 36: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Least squares method

The order of the polynomial was too large.We can first assume a first-order polynomial y � a1t + a0.The line does not interpolate the noisy data.Find a polynomial that minimizes the ℓ2 error:

minimizex∈Rn

12 ∥Φx − y∥2

2 ,

This is called the least squares method.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 35

Page 37: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The least squares solution

The error function

E(x) � 12 ∥Φx − y∥2

2 �12 (Φx − y)⊤(Φx − y)

�12 x⊤Φ⊤Φx − y⊤Φx +

12 y⊤y.

Φ is m × n with m > n (a tall matrix).If ti , t j for all i , j such that i , j, then Φ has full column rank,and Φ⊤Φ > 0 (positive definite).The minimizer x∗ satisfies

∂E∂x

(x∗) � (Φ⊤Φ)x∗ −Φ⊤y � 0.

The solutionx∗

� (Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 35

Page 38: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The least squares solution

The error function

E(x) � 12 ∥Φx − y∥2

2 �12 (Φx − y)⊤(Φx − y)

�12 x⊤Φ⊤Φx − y⊤Φx +

12 y⊤y.

Φ is m × n with m > n (a tall matrix).If ti , t j for all i , j such that i , j, then Φ has full column rank,and Φ⊤Φ > 0 (positive definite).The minimizer x∗ satisfies

∂E∂x

(x∗) � (Φ⊤Φ)x∗ −Φ⊤y � 0.

The solutionx∗

� (Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 35

Page 39: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The least squares solution

The error function

E(x) � 12 ∥Φx − y∥2

2 �12 (Φx − y)⊤(Φx − y)

�12 x⊤Φ⊤Φx − y⊤Φx +

12 y⊤y.

Φ is m × n with m > n (a tall matrix).If ti , t j for all i , j such that i , j, then Φ has full column rank,and Φ⊤Φ > 0 (positive definite).The minimizer x∗ satisfies

∂E∂x

(x∗) � (Φ⊤Φ)x∗ −Φ⊤y � 0.

The solutionx∗

� (Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 35

Page 40: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The least squares solution

The error function

E(x) � 12 ∥Φx − y∥2

2 �12 (Φx − y)⊤(Φx − y)

�12 x⊤Φ⊤Φx − y⊤Φx +

12 y⊤y.

Φ is m × n with m > n (a tall matrix).If ti , t j for all i , j such that i , j, then Φ has full column rank,and Φ⊤Φ > 0 (positive definite).The minimizer x∗ satisfies

∂E∂x

(x∗) � (Φ⊤Φ)x∗ −Φ⊤y � 0.

The solutionx∗

� (Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 35

Page 41: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The least squares solution

The error function

E(x) � 12 ∥Φx − y∥2

2 �12 (Φx − y)⊤(Φx − y)

�12 x⊤Φ⊤Φx − y⊤Φx +

12 y⊤y.

Φ is m × n with m > n (a tall matrix).If ti , t j for all i , j such that i , j, then Φ has full column rank,and Φ⊤Φ > 0 (positive definite).The minimizer x∗ satisfies

∂E∂x

(x∗) � (Φ⊤Φ)x∗ −Φ⊤y � 0.

The solutionx∗

� (Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 35

Page 42: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MATLAB Simulation

Assume the curve is a first-order polynomial.The data is noisy.

0 5 10 15

t

0

10

20

30

40

y

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 35

Page 43: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

How can we know a proper order of the polynomial?It is often difficult.Data set

D � {(t1 , y1), (t2 , y2), . . . , (tm , ym)},where yi � sin(ti) + ϵi , with ti � i − 1, i � 1, 2, . . . , 11 and ϵi isGaussian noise.The data:

ti 0 1 2 3 4 5yi -0.0343 1.0081 0.8326 0.4047 -0.7585 -0.9285ti 6 7 8 9 10yi -0.2110 0.6626 0.8492 0.2761 -0.6962

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 35

Page 44: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

How can we know a proper order of the polynomial?It is often difficult.Data set

D � {(t1 , y1), (t2 , y2), . . . , (tm , ym)},where yi � sin(ti) + ϵi , with ti � i − 1, i � 1, 2, . . . , 11 and ϵi isGaussian noise.The data:

ti 0 1 2 3 4 5yi -0.0343 1.0081 0.8326 0.4047 -0.7585 -0.9285ti 6 7 8 9 10yi -0.2110 0.6626 0.8492 0.2761 -0.6962

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 35

Page 45: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

How can we know a proper order of the polynomial?It is often difficult.Data set

D � {(t1 , y1), (t2 , y2), . . . , (tm , ym)},where yi � sin(ti) + ϵi , with ti � i − 1, i � 1, 2, . . . , 11 and ϵi isGaussian noise.The data:

ti 0 1 2 3 4 5yi -0.0343 1.0081 0.8326 0.4047 -0.7585 -0.9285ti 6 7 8 9 10yi -0.2110 0.6626 0.8492 0.2761 -0.6962

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 35

Page 46: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

How can we know a proper order of the polynomial?It is often difficult.Data set

D � {(t1 , y1), (t2 , y2), . . . , (tm , ym)},where yi � sin(ti) + ϵi , with ti � i − 1, i � 1, 2, . . . , 11 and ϵi isGaussian noise.The data:

ti 0 1 2 3 4 5yi -0.0343 1.0081 0.8326 0.4047 -0.7585 -0.9285ti 6 7 8 9 10yi -0.2110 0.6626 0.8492 0.2761 -0.6962

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 35

Page 47: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

10th order interpolating polynomial

0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

1

1.5

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 17 / 35

Page 48: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

6th order polynomial by the least squares method

0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

1

1.5

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 18 / 35

Page 49: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

What is the difference?The coefficients:

x10 �

−0.034316.2400

−38.098437.8369

−20.28426.5035

−1.31000.1677

−0.01330.0006

−0.0000

, x6 �

−0.02601.06360.3067

−0.52250.1426

−0.01460.0005

,

x10 is “bigger” than x6.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 19 / 35

Page 50: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

What is the difference?The coefficients:

x10 �

−0.034316.2400

−38.098437.8369

−20.28426.5035

−1.31000.1677

−0.01330.0006

−0.0000

, x6 �

−0.02601.06360.3067

−0.52250.1426

−0.01460.0005

,

x10 is “bigger” than x6.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 19 / 35

Page 51: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Another example

What is the difference?The coefficients:

x10 �

−0.034316.2400

−38.098437.8369

−20.28426.5035

−1.31000.1677

−0.01330.0006

−0.0000

, x6 �

−0.02601.06360.3067

−0.52250.1426

−0.01460.0005

,

x10 is “bigger” than x6.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 19 / 35

Page 52: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regularized least squares

Idea: keep the polynomial order high and reduce the norm of thecoefficient vectorThat is,

minimizex∈Rn

12 ∥Φx − y∥2

2 +λ2 ∥x∥2

2 .

with λ > 0.This is called the regularized least squares.The solution is obtained by

x∗� (λI +Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 35

Page 53: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regularized least squares

Idea: keep the polynomial order high and reduce the norm of thecoefficient vectorThat is,

minimizex∈Rn

12 ∥Φx − y∥2

2 +λ2 ∥x∥2

2 .

with λ > 0.This is called the regularized least squares.The solution is obtained by

x∗� (λI +Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 35

Page 54: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regularized least squares

Idea: keep the polynomial order high and reduce the norm of thecoefficient vectorThat is,

minimizex∈Rn

12 ∥Φx − y∥2

2 +λ2 ∥x∥2

2 .

with λ > 0.This is called the regularized least squares.The solution is obtained by

x∗� (λI +Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 35

Page 55: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regularized least squares

Idea: keep the polynomial order high and reduce the norm of thecoefficient vectorThat is,

minimizex∈Rn

12 ∥Φx − y∥2

2 +λ2 ∥x∥2

2 .

with λ > 0.This is called the regularized least squares.The solution is obtained by

x∗� (λI +Φ⊤Φ)−1Φ⊤y.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 35

Page 56: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regularized least squares

10th order polynomial by the regularized least squares.

0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

1

1.5

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 35

Page 57: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Polynomial curve fitting: summary

dataD � {(t1 , y1), (t2 , y2), . . . , (tm , ym)}.

polynomial

y � f (t) � an−1tn−1+ an−2tn−2

+ · · · + a1t + a0 ,

Problem Matrix size Opt. problem Solutionmin ℓ2 norm m < n min

x12 ∥x∥2

2 s.t. y � Φx Φ⊤(ΦΦ⊤)−1 y

least squares (LS) m > n minx

12 ∥y −Φx∥2

2 (Φ⊤Φ)−1Φ⊤y

regularized LS any m and n minx

12 ∥y −Φx∥2

2 +λ2 ∥x∥2

2 Φ⊤(λI +ΦΦ⊤)−1 y

� (λI +Φ⊤Φ)−1Φ⊤y

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 35

Page 58: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Polynomial curve fitting: summary

dataD � {(t1 , y1), (t2 , y2), . . . , (tm , ym)}.

polynomial

y � f (t) � an−1tn−1+ an−2tn−2

+ · · · + a1t + a0 ,

Problem Matrix size Opt. problem Solutionmin ℓ2 norm m < n min

x12 ∥x∥2

2 s.t. y � Φx Φ⊤(ΦΦ⊤)−1 y

least squares (LS) m > n minx

12 ∥y −Φx∥2

2 (Φ⊤Φ)−1Φ⊤y

regularized LS any m and n minx

12 ∥y −Φx∥2

2 +λ2 ∥x∥2

2 Φ⊤(λI +ΦΦ⊤)−1 y

� (λI +Φ⊤Φ)−1Φ⊤y

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 35

Page 59: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Least Squares and Regularization

2 Sparse Polynomial and ℓ1-norm Optimization

3 Numerical Optimization by CVX

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 23 / 35

Page 60: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

An example

80th-order polynomial

y � −t80+ t .

Generate data from this polynomial

D � {(t1 , y1), (t2 , y2), . . . , (t11 , y11)}, yi � −t80i + ti .

ont1 � 0, t2 � 0.1, t3 � 0.2, . . . , t11 � 1.

Can we reconstruct the 80th-order polynomial (n � 80) from these11 points (m � 11)?Idea: the polynomial is sparse (i.e. almost all coefficients are zero).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 24 / 35

Page 61: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

An example

80th-order polynomial

y � −t80+ t .

Generate data from this polynomial

D � {(t1 , y1), (t2 , y2), . . . , (t11 , y11)}, yi � −t80i + ti .

ont1 � 0, t2 � 0.1, t3 � 0.2, . . . , t11 � 1.

Can we reconstruct the 80th-order polynomial (n � 80) from these11 points (m � 11)?Idea: the polynomial is sparse (i.e. almost all coefficients are zero).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 24 / 35

Page 62: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

An example

80th-order polynomial

y � −t80+ t .

Generate data from this polynomial

D � {(t1 , y1), (t2 , y2), . . . , (t11 , y11)}, yi � −t80i + ti .

ont1 � 0, t2 � 0.1, t3 � 0.2, . . . , t11 � 1.

Can we reconstruct the 80th-order polynomial (n � 80) from these11 points (m � 11)?Idea: the polynomial is sparse (i.e. almost all coefficients are zero).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 24 / 35

Page 63: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

An example

80th-order polynomial

y � −t80+ t .

Generate data from this polynomial

D � {(t1 , y1), (t2 , y2), . . . , (t11 , y11)}, yi � −t80i + ti .

ont1 � 0, t2 � 0.1, t3 � 0.2, . . . , t11 � 1.

Can we reconstruct the 80th-order polynomial (n � 80) from these11 points (m � 11)?Idea: the polynomial is sparse (i.e. almost all coefficients are zero).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 24 / 35

Page 64: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

An example

We assume we know the order is at most 80.There are infinitely many interpolating polynomials

Vandermonde’s matrix Φ is a 11 × 81 fat matrix.

We also assume we know the original polynomial is sparse.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 35

Page 65: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

An example

We assume we know the order is at most 80.There are infinitely many interpolating polynomials

Vandermonde’s matrix Φ is a 11 × 81 fat matrix.

We also assume we know the original polynomial is sparse.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 35

Page 66: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

An example

We assume we know the order is at most 80.There are infinitely many interpolating polynomials

Vandermonde’s matrix Φ is a 11 × 81 fat matrix.

We also assume we know the original polynomial is sparse.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 35

Page 67: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse polynomial interpolation

Consider the ℓ0 optimization problem

minimizex∈Rn

∥x∥0 subject to Φx � y.

This is difficult to solve.

The idea: adopt convex relaxation by using the ℓ1 norm

minimizex∈Rn

∥x∥1 subject to Φx � y.

This is a convex optimization called the basis pursuit.The solution can be obtained much faster than the exhaustivesearch for the ℓ0 optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 26 / 35

Page 68: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse polynomial interpolation

Consider the ℓ0 optimization problem

minimizex∈Rn

∥x∥0 subject to Φx � y.

This is difficult to solve.

The idea: adopt convex relaxation by using the ℓ1 norm

minimizex∈Rn

∥x∥1 subject to Φx � y.

This is a convex optimization called the basis pursuit.The solution can be obtained much faster than the exhaustivesearch for the ℓ0 optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 26 / 35

Page 69: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse polynomial interpolation

Consider the ℓ0 optimization problem

minimizex∈Rn

∥x∥0 subject to Φx � y.

This is difficult to solve.

The idea: adopt convex relaxation by using the ℓ1 norm

minimizex∈Rn

∥x∥1 subject to Φx � y.

This is a convex optimization called the basis pursuit.The solution can be obtained much faster than the exhaustivesearch for the ℓ0 optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 26 / 35

Page 70: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse polynomial interpolation

Consider the ℓ0 optimization problem

minimizex∈Rn

∥x∥0 subject to Φx � y.

This is difficult to solve.

The idea: adopt convex relaxation by using the ℓ1 norm

minimizex∈Rn

∥x∥1 subject to Φx � y.

This is a convex optimization called the basis pursuit.The solution can be obtained much faster than the exhaustivesearch for the ℓ0 optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 26 / 35

Page 71: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse polynomial interpolation

Consider the ℓ0 optimization problem

minimizex∈Rn

∥x∥0 subject to Φx � y.

This is difficult to solve.

The idea: adopt convex relaxation by using the ℓ1 norm

minimizex∈Rn

∥x∥1 subject to Φx � y.

This is a convex optimization called the basis pursuit.The solution can be obtained much faster than the exhaustivesearch for the ℓ0 optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 26 / 35

Page 72: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization and sparsity

Consider ℓ1 optimization in R2

minimizex∈R2

∥x∥1 subject to Φx � y.

The contour {x : ∥x∥1 � c} touches the linear subspace{x : Φx � y} on one of the corners that are on axes.

x∗ = (0, x∗

2)

x1

x2

Φx = y

‖x‖1 = c

0

The optimal solution has one 0 element → sparse.From this example, one can intuitively say that ℓ1 optimizationcan promote sparsity.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 35

Page 73: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization and sparsity

Consider ℓ1 optimization in R2

minimizex∈R2

∥x∥1 subject to Φx � y.

The contour {x : ∥x∥1 � c} touches the linear subspace{x : Φx � y} on one of the corners that are on axes.

x∗ = (0, x∗

2)

x1

x2

Φx = y

‖x‖1 = c

0

The optimal solution has one 0 element → sparse.From this example, one can intuitively say that ℓ1 optimizationcan promote sparsity.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 35

Page 74: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization and sparsity

Consider ℓ1 optimization in R2

minimizex∈R2

∥x∥1 subject to Φx � y.

The contour {x : ∥x∥1 � c} touches the linear subspace{x : Φx � y} on one of the corners that are on axes.

x∗ = (0, x∗

2)

x1

x2

Φx = y

‖x‖1 = c

0

The optimal solution has one 0 element → sparse.From this example, one can intuitively say that ℓ1 optimizationcan promote sparsity.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 35

Page 75: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization and sparsity

Consider ℓ1 optimization in R2

minimizex∈R2

∥x∥1 subject to Φx � y.

The contour {x : ∥x∥1 � c} touches the linear subspace{x : Φx � y} on one of the corners that are on axes.

x∗ = (0, x∗

2)

x1

x2

Φx = y

‖x‖1 = c

0

The optimal solution has one 0 element → sparse.From this example, one can intuitively say that ℓ1 optimizationcan promote sparsity.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 35

Page 76: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Relation between ℓ0 and ℓ1

The ℓ0 norm

∥x∥0 �

n∑i�1

|xi |0

The ℓ1 norm

∥x∥1 �

n∑i�1

|xi |

−1 0 1

1|x|

|x|0

x

∥x∥1 has the minimum exponent p � 1 among all ℓp norms thatare convex.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 35

Page 77: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Relation between ℓ0 and ℓ1

The ℓ0 norm

∥x∥0 �

n∑i�1

|xi |0

The ℓ1 norm

∥x∥1 �

n∑i�1

|xi |

−1 0 1

1|x|

|x|0

x

∥x∥1 has the minimum exponent p � 1 among all ℓp norms thatare convex.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 35

Page 78: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Relation between ℓ0 and ℓ1

The ℓ0 norm

∥x∥0 �

n∑i�1

|xi |0

The ℓ1 norm

∥x∥1 �

n∑i�1

|xi |

−1 0 1

1|x|

|x|0

x

∥x∥1 has the minimum exponent p � 1 among all ℓp norms thatare convex.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 35

Page 79: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 Regularization (LASSO)

For noisy data, we consider ℓ0 regularization:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥0.

to obtain a sparse solution.ℓ1 relaxation

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1

This is called the ℓ1 regularization, or LASSO (Least AbsoluteShrinkage and Selection Operator).This is a convex optimization problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 29 / 35

Page 80: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 Regularization (LASSO)

For noisy data, we consider ℓ0 regularization:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥0.

to obtain a sparse solution.ℓ1 relaxation

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1

This is called the ℓ1 regularization, or LASSO (Least AbsoluteShrinkage and Selection Operator).This is a convex optimization problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 29 / 35

Page 81: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 Regularization (LASSO)

For noisy data, we consider ℓ0 regularization:

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥0.

to obtain a sparse solution.ℓ1 relaxation

minimizex∈Rn

12 ∥Φx − y∥2

2 + λ∥x∥1

This is called the ℓ1 regularization, or LASSO (Least AbsoluteShrinkage and Selection Operator).This is a convex optimization problem.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 29 / 35

Page 82: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Least Squares and Regularization

2 Sparse Polynomial and ℓ1-norm Optimization

3 Numerical Optimization by CVX

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 35

Page 83: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization by CVX

ℓ1 Optimization

minimizex∈Rn

∥x∥1 subject to Φx � y.

The MATLAB CVX1 code

cvx_beginvariable x(n)minimize( norm(x, 1) )subject to

y == Phi * xcvx_end

1M. Grant & S. Boyd, http://cvxr.com/cvx, 2013.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 35

Page 84: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ1 optimization by CVX

ℓ1 Optimization

minimizex∈Rn

∥x∥1 subject to Φx � y.

The MATLAB CVX1 code

cvx_beginvariable x(n)minimize( norm(x, 1) )subject to

y == Phi * xcvx_end

1M. Grant & S. Boyd, http://cvxr.com/cvx, 2013.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 35

Page 85: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse polynomial interpolation y � t80 − 1

10th-order interpolating polynomial

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 32 / 35

Page 86: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse polynomial interpolation y � t80 − 1

regularized least squares (10th order)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 33 / 35

Page 87: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse polynomial interpolation y � t80 − 1

ℓ1 optimization (80th order)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 34 / 35

Page 88: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary

Curve fitting is formulated as an optimization problem to chooseone solution among (infinitely many) candidates.Regularization is used for avoiding over fitting.Sparse optimization is reduced to ℓ1 optimization, which is convexand efficiently solved by numerical optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 35 / 35

Page 89: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary

Curve fitting is formulated as an optimization problem to chooseone solution among (infinitely many) candidates.Regularization is used for avoiding over fitting.Sparse optimization is reduced to ℓ1 optimization, which is convexand efficiently solved by numerical optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 35 / 35

Page 90: Sparsity Methods for Systems and Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary

Curve fitting is formulated as an optimization problem to chooseone solution among (infinitely many) candidates.Regularization is used for avoiding over fitting.Sparse optimization is reduced to ℓ1 optimization, which is convexand efficiently solved by numerical optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 35 / 35