Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki...

87
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sparsity Methods for Systems and Control What is Sparsity? Masaaki Nagahara 1 1 The University of Kitakyushu [email protected] M. Nagahara (Univ of Kitakyushu) Sparsity Methods 1 / 31

Transcript of Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki...

Page 1: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparsity Methods for Systems and ControlWhat is Sparsity?

Masaaki Nagahara1

1The University of [email protected]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 1 / 31

Page 2: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Redundant Dictionary

2 Underdetermined Systems

3 The ℓ0 Norm

4 Exhaustive Search

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 2 / 31

Page 3: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Redundant Dictionary

2 Underdetermined Systems

3 The ℓ0 Norm

4 Exhaustive Search

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 3 / 31

Page 4: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Standard basis for R3

Standard basis {e1 , e2 , e3}:

e1 �

100

, e2 �

010

, e3 �

001

.e3

e2

e1

1

1

1

x1

x2

x3

0

Any vector y ∈ R3 can be represented as

y �

y1y2y3

� y1e1 + y2e2 + y3e3.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 31

Page 5: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Standard basis for R3

Standard basis {e1 , e2 , e3}:

e1 �

100

, e2 �

010

, e3 �

001

.e3

e2

e1

1

1

1

x1

x2

x3

0

Any vector y ∈ R3 can be represented as

y �

y1y2y3

� y1e1 + y2e2 + y3e3.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 31

Page 6: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

General basis for R3

Any three linearly independent vectors ϕ1, ϕ2, and ϕ3 in R3 forma basis for R3.Any vector y ∈ R3 can be represented as

y � β1ϕ1 + β2ϕ2 + β3ϕ3

The coefficients β1 , β2 , β3 are uniquely determined.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 31

Page 7: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

General basis for R3

Any three linearly independent vectors ϕ1, ϕ2, and ϕ3 in R3 forma basis for R3.Any vector y ∈ R3 can be represented as

y � β1ϕ1 + β2ϕ2 + β3ϕ3

The coefficients β1 , β2 , β3 are uniquely determined.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 31

Page 8: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

General basis for R3

Any three linearly independent vectors ϕ1, ϕ2, and ϕ3 in R3 forma basis for R3.Any vector y ∈ R3 can be represented as

y � β1ϕ1 + β2ϕ2 + β3ϕ3

The coefficients β1 , β2 , β3 are uniquely determined.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 31

Page 9: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant basis

Three linearly independent vectors:

ϕ1 � e1 + e2 �

110

, ϕ2 � e2 + e3 �

011

, ϕ3 � e3 + e1 �

101

.Set of 6 vectors (redundant basis)

{e1 , e2 , e3 ,ϕ1 ,ϕ2 ,ϕ3}

φ1

φ2

φ3

e3

e2

e1

1

1

1

x1

x2

x3

0

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 31

Page 10: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant basis

Three linearly independent vectors:

ϕ1 � e1 + e2 �

110

, ϕ2 � e2 + e3 �

011

, ϕ3 � e3 + e1 �

101

.Set of 6 vectors (redundant basis)

{e1 , e2 , e3 ,ϕ1 ,ϕ2 ,ϕ3}

φ1

φ2

φ3

e3

e2

e1

1

1

1

x1

x2

x3

0

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 31

Page 11: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant basis

For a vector y ∈ R3, we want a signal representation (redundantrepresentation):

y �

3∑i�1αi e i +

3∑i�1βiϕi .

There are infinitely many solutions for αi and βi (i � 1, 2, 3).

(α1 , α2 , α3 , β1 , β2 , β3) � (y1 , y2 , y3 , 0, 0, 0),

(α1 , α2 , α3 , β1 , β2 , β3) � (−y3 ,−y1 ,−y2 , y1 , y2 , y3).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 7 / 31

Page 12: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant basis

For a vector y ∈ R3, we want a signal representation (redundantrepresentation):

y �

3∑i�1αi e i +

3∑i�1βiϕi .

There are infinitely many solutions for αi and βi (i � 1, 2, 3).

(α1 , α2 , α3 , β1 , β2 , β3) � (y1 , y2 , y3 , 0, 0, 0),

(α1 , α2 , α3 , β1 , β2 , β3) � (−y3 ,−y1 ,−y2 , y1 , y2 , y3).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 7 / 31

Page 13: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse representation

A vector y � (1, 1, 1)⊤ on the plane spanned by e1 and ϕ2.A coefficient set is obtained as

(α1 , α2 , α3 , β1 , β2 , β3) � (1, 0, 0, 0, 1, 0).

This is a sparse representation of y � (1, 1, 1)⊤ since it containsmany zeros.

φ1

φ2

φ3

e3

e2

e1

1

1

1

x1

x2

x3

0

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 8 / 31

Page 14: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse representation

A vector y � (1, 1, 1)⊤ on the plane spanned by e1 and ϕ2.A coefficient set is obtained as

(α1 , α2 , α3 , β1 , β2 , β3) � (1, 0, 0, 0, 1, 0).

This is a sparse representation of y � (1, 1, 1)⊤ since it containsmany zeros.

φ1

φ2

φ3

e3

e2

e1

1

1

1

x1

x2

x3

0

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 8 / 31

Page 15: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant dictionary

How do you explain this picture by using words in a smalldictionary that does not have the word "elephant"?

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 31

Page 16: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant dictionary

A set of vectors {ϕ1 ,ϕ2 , . . . ,ϕn} in Rm .If m < n and m vectors in this set are linearly independent, thenthis is called a redundant dictionary.The elements ϕ1 ,ϕ2 , . . . ,ϕn in the dictionary is called atoms (not“words”).For a vector y ∈ Rm , we find coefficients α1 , α2 , . . . , αn such that

y �

n∑i�1αiϕi .

If the dictionary is more redundant, then we may obtain a sparsercoefficient set.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 31

Page 17: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant dictionary

A set of vectors {ϕ1 ,ϕ2 , . . . ,ϕn} in Rm .If m < n and m vectors in this set are linearly independent, thenthis is called a redundant dictionary.The elements ϕ1 ,ϕ2 , . . . ,ϕn in the dictionary is called atoms (not“words”).For a vector y ∈ Rm , we find coefficients α1 , α2 , . . . , αn such that

y �

n∑i�1αiϕi .

If the dictionary is more redundant, then we may obtain a sparsercoefficient set.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 31

Page 18: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant dictionary

A set of vectors {ϕ1 ,ϕ2 , . . . ,ϕn} in Rm .If m < n and m vectors in this set are linearly independent, thenthis is called a redundant dictionary.The elements ϕ1 ,ϕ2 , . . . ,ϕn in the dictionary is called atoms (not“words”).For a vector y ∈ Rm , we find coefficients α1 , α2 , . . . , αn such that

y �

n∑i�1αiϕi .

If the dictionary is more redundant, then we may obtain a sparsercoefficient set.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 31

Page 19: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant dictionary

A set of vectors {ϕ1 ,ϕ2 , . . . ,ϕn} in Rm .If m < n and m vectors in this set are linearly independent, thenthis is called a redundant dictionary.The elements ϕ1 ,ϕ2 , . . . ,ϕn in the dictionary is called atoms (not“words”).For a vector y ∈ Rm , we find coefficients α1 , α2 , . . . , αn such that

y �

n∑i�1αiϕi .

If the dictionary is more redundant, then we may obtain a sparsercoefficient set.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 31

Page 20: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Redundant dictionary

A set of vectors {ϕ1 ,ϕ2 , . . . ,ϕn} in Rm .If m < n and m vectors in this set are linearly independent, thenthis is called a redundant dictionary.The elements ϕ1 ,ϕ2 , . . . ,ϕn in the dictionary is called atoms (not“words”).For a vector y ∈ Rm , we find coefficients α1 , α2 , . . . , αn such that

y �

n∑i�1αiϕi .

If the dictionary is more redundant, then we may obtain a sparsercoefficient set.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 31

Page 21: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse representation

Define a matrix Φ and a vector x as

Φ ≜[ϕ1 ϕ2 . . . ϕn

]∈ Rm×n , x ≜

α1α2...αn

∈ Rn .

Then the relation

y �

n∑i�1αiϕi .

is compactly rewritten as

y � Φx.

The matrix Φ is called a dictionary matrix or measurement matrix.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 31

Page 22: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse representation

Define a matrix Φ and a vector x as

Φ ≜[ϕ1 ϕ2 . . . ϕn

]∈ Rm×n , x ≜

α1α2...αn

∈ Rn .

Then the relation

y �

n∑i�1αiϕi .

is compactly rewritten as

y � Φx.

The matrix Φ is called a dictionary matrix or measurement matrix.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 31

Page 23: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparse representation

Define a matrix Φ and a vector x as

Φ ≜[ϕ1 ϕ2 . . . ϕn

]∈ Rm×n , x ≜

α1α2...αn

∈ Rn .

Then the relation

y �

n∑i�1αiϕi .

is compactly rewritten as

y � Φx.

The matrix Φ is called a dictionary matrix or measurement matrix.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 31

Page 24: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The problem of sparse representation

Problem (Sparse Representation)Given a vector y ∈ Rm and a dictionary matrix Φ ∈ Rm×n with m < n.Find the simplest (i.e. sparsest) representation of y that satisfies

y � Φx.

This problem is also known as compressed sensing, where Φmodels an oversampling sensor.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 31

Page 25: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The problem of sparse representation

Problem (Sparse Representation)Given a vector y ∈ Rm and a dictionary matrix Φ ∈ Rm×n with m < n.Find the simplest (i.e. sparsest) representation of y that satisfies

y � Φx.

This problem is also known as compressed sensing, where Φmodels an oversampling sensor.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 31

Page 26: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Redundant Dictionary

2 Underdetermined Systems

3 The ℓ0 Norm

4 Exhaustive Search

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 31

Page 27: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations

linear equations with unknowns x1, x2, and x3:

x1 + x2 + x3 � 3x1 − x3 � 0

There are infinitely many solutionsAll solutions

x1 � t , x2 � −2t + 3, x3 � t ,

where t ∈ R is a parameter.Such a system of equations is called an underdetermined system.How can we specify one unique vector among these?

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 31

Page 28: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations

linear equations with unknowns x1, x2, and x3:

x1 + x2 + x3 � 3x1 − x3 � 0

There are infinitely many solutionsAll solutions

x1 � t , x2 � −2t + 3, x3 � t ,

where t ∈ R is a parameter.Such a system of equations is called an underdetermined system.How can we specify one unique vector among these?

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 31

Page 29: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations

linear equations with unknowns x1, x2, and x3:

x1 + x2 + x3 � 3x1 − x3 � 0

There are infinitely many solutionsAll solutions

x1 � t , x2 � −2t + 3, x3 � t ,

where t ∈ R is a parameter.Such a system of equations is called an underdetermined system.How can we specify one unique vector among these?

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 31

Page 30: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations

linear equations with unknowns x1, x2, and x3:

x1 + x2 + x3 � 3x1 − x3 � 0

There are infinitely many solutionsAll solutions

x1 � t , x2 � −2t + 3, x3 � t ,

where t ∈ R is a parameter.Such a system of equations is called an underdetermined system.How can we specify one unique vector among these?

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 31

Page 31: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations

linear equations with unknowns x1, x2, and x3:

x1 + x2 + x3 � 3x1 − x3 � 0

There are infinitely many solutionsAll solutions

x1 � t , x2 � −2t + 3, x3 � t ,

where t ∈ R is a parameter.Such a system of equations is called an underdetermined system.How can we specify one unique vector among these?

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 31

Page 32: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum solution

Let us consider a detective, like Edogawa Conan1, who solve thisproblem.The two proofs (equations) are insufficient and he should seek onemore independent proof.If he gets one more proof saying the criminal is the smallest oneamong the suspects.The ℓ2-norm

∥x∥22 � x2

1 + x22 + x2

3

� t2+ (−2t + 3)2 + t2

� 6(t − 1)2 + 3.

is minimized by t � 1.The unique solution is (x1 , x2 , x3) � (1, 1, 1).

1See: https://en.wikipedia.org/wiki/Case_ClosedM. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 31

Page 33: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum solution

Let us consider a detective, like Edogawa Conan1, who solve thisproblem.The two proofs (equations) are insufficient and he should seek onemore independent proof.If he gets one more proof saying the criminal is the smallest oneamong the suspects.The ℓ2-norm

∥x∥22 � x2

1 + x22 + x2

3

� t2+ (−2t + 3)2 + t2

� 6(t − 1)2 + 3.

is minimized by t � 1.The unique solution is (x1 , x2 , x3) � (1, 1, 1).

1See: https://en.wikipedia.org/wiki/Case_ClosedM. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 31

Page 34: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum solution

Let us consider a detective, like Edogawa Conan1, who solve thisproblem.The two proofs (equations) are insufficient and he should seek onemore independent proof.If he gets one more proof saying the criminal is the smallest oneamong the suspects.The ℓ2-norm

∥x∥22 � x2

1 + x22 + x2

3

� t2+ (−2t + 3)2 + t2

� 6(t − 1)2 + 3.

is minimized by t � 1.The unique solution is (x1 , x2 , x3) � (1, 1, 1).

1See: https://en.wikipedia.org/wiki/Case_ClosedM. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 31

Page 35: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum solution

Let us consider a detective, like Edogawa Conan1, who solve thisproblem.The two proofs (equations) are insufficient and he should seek onemore independent proof.If he gets one more proof saying the criminal is the smallest oneamong the suspects.The ℓ2-norm

∥x∥22 � x2

1 + x22 + x2

3

� t2+ (−2t + 3)2 + t2

� 6(t − 1)2 + 3.

is minimized by t � 1.The unique solution is (x1 , x2 , x3) � (1, 1, 1).

1See: https://en.wikipedia.org/wiki/Case_ClosedM. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 31

Page 36: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimum solution

Let us consider a detective, like Edogawa Conan1, who solve thisproblem.The two proofs (equations) are insufficient and he should seek onemore independent proof.If he gets one more proof saying the criminal is the smallest oneamong the suspects.The ℓ2-norm

∥x∥22 � x2

1 + x22 + x2

3

� t2+ (−2t + 3)2 + t2

� 6(t − 1)2 + 3.

is minimized by t � 1.The unique solution is (x1 , x2 , x3) � (1, 1, 1).

1See: https://en.wikipedia.org/wiki/Case_ClosedM. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 31

Page 37: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations in matrix form

Linear equations in a matrix form:

Φx � y.

Φ is an m × n matrix where m < n (we call this a fat matrix).Assume Φ has full row rank, that is,

rank(Φ) � m.

For any vector y ∈ Rm , there exists at least one solution x thatsatisfies Φx � y.In fact, there are infinitely many solutions.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 31

Page 38: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations in matrix form

Linear equations in a matrix form:

Φx � y.

Φ is an m × n matrix where m < n (we call this a fat matrix).Assume Φ has full row rank, that is,

rank(Φ) � m.

For any vector y ∈ Rm , there exists at least one solution x thatsatisfies Φx � y.In fact, there are infinitely many solutions.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 31

Page 39: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations in matrix form

Linear equations in a matrix form:

Φx � y.

Φ is an m × n matrix where m < n (we call this a fat matrix).Assume Φ has full row rank, that is,

rank(Φ) � m.

For any vector y ∈ Rm , there exists at least one solution x thatsatisfies Φx � y.In fact, there are infinitely many solutions.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 31

Page 40: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations in matrix form

Linear equations in a matrix form:

Φx � y.

Φ is an m × n matrix where m < n (we call this a fat matrix).Assume Φ has full row rank, that is,

rank(Φ) � m.

For any vector y ∈ Rm , there exists at least one solution x thatsatisfies Φx � y.In fact, there are infinitely many solutions.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 31

Page 41: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear equations in matrix form

Linear equations in a matrix form:

Φx � y.

Φ is an m × n matrix where m < n (we call this a fat matrix).Assume Φ has full row rank, that is,

rank(Φ) � m.

For any vector y ∈ Rm , there exists at least one solution x thatsatisfies Φx � y.In fact, there are infinitely many solutions.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 31

Page 42: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Redundant Dictionary

2 Underdetermined Systems

3 The ℓ0 Norm

4 Exhaustive Search

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 17 / 31

Page 43: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Norms in Rn

NormA norm in Rn should satisfy

1 For any vector x ∈ Rn and any number α ∈ R, ∥αx∥ � |α |∥x∥.2 For any x , y ∈ Rn , ∥x + y∥ ≤ ∥x∥ + ∥y∥.3 ∥x∥ � 0 ⇐⇒ x � 0.

The ℓ2 norm (or Euclidean norm)

∥x∥2 ≜√

x21 + x2

2 + · · · + x2n .

The ℓ1 norm∥x∥1 ≜ |x1 | + |x2 | + . . . + |xn |.

The ℓ∞ norm (or maximum norm)

∥x∥∞ ≜ max{|x1 |, |x2 |, . . . , |xn |}

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 18 / 31

Page 44: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Norms in Rn

NormA norm in Rn should satisfy

1 For any vector x ∈ Rn and any number α ∈ R, ∥αx∥ � |α |∥x∥.2 For any x , y ∈ Rn , ∥x + y∥ ≤ ∥x∥ + ∥y∥.3 ∥x∥ � 0 ⇐⇒ x � 0.

The ℓ2 norm (or Euclidean norm)

∥x∥2 ≜√

x21 + x2

2 + · · · + x2n .

The ℓ1 norm∥x∥1 ≜ |x1 | + |x2 | + . . . + |xn |.

The ℓ∞ norm (or maximum norm)

∥x∥∞ ≜ max{|x1 |, |x2 |, . . . , |xn |}

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 18 / 31

Page 45: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Norms in Rn

NormA norm in Rn should satisfy

1 For any vector x ∈ Rn and any number α ∈ R, ∥αx∥ � |α |∥x∥.2 For any x , y ∈ Rn , ∥x + y∥ ≤ ∥x∥ + ∥y∥.3 ∥x∥ � 0 ⇐⇒ x � 0.

The ℓ2 norm (or Euclidean norm)

∥x∥2 ≜√

x21 + x2

2 + · · · + x2n .

The ℓ1 norm∥x∥1 ≜ |x1 | + |x2 | + . . . + |xn |.

The ℓ∞ norm (or maximum norm)

∥x∥∞ ≜ max{|x1 |, |x2 |, . . . , |xn |}

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 18 / 31

Page 46: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Norms in Rn

NormA norm in Rn should satisfy

1 For any vector x ∈ Rn and any number α ∈ R, ∥αx∥ � |α |∥x∥.2 For any x , y ∈ Rn , ∥x + y∥ ≤ ∥x∥ + ∥y∥.3 ∥x∥ � 0 ⇐⇒ x � 0.

The ℓ2 norm (or Euclidean norm)

∥x∥2 ≜√

x21 + x2

2 + · · · + x2n .

The ℓ1 norm∥x∥1 ≜ |x1 | + |x2 | + . . . + |xn |.

The ℓ∞ norm (or maximum norm)

∥x∥∞ ≜ max{|x1 |, |x2 |, . . . , |xn |}

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 18 / 31

Page 47: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Norms in Rn

Contour curves (∥x∥p � 1) of ℓ1, ℓ2, ℓ∞ norms.

1

1

−1

−1

0

x1

x2

ℓ1ℓ

ℓ2

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 19 / 31

Page 48: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Norms in Rn

Contour curves (∥x∥p � 1) of ℓ1, ℓ2, ℓ∞ norms.

1

1

−1

−1

0

x1

x2

ℓ1ℓ

ℓ2

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 20 / 31

Page 49: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ0 norm

Consider a vector x � [x1 , x2 , . . . , xn]⊤ ∈ Rn .The ℓ0 norm of x is defined by

∥x∥0 ≜ |supp(x)|,

wheresupp is the support of x, namely,

supp(x) ≜{

i ∈ {1, 2, . . . , n} : xi , 0},

| · | denotes the number of elements.The ℓ0 norm counts the number of non-zero elements in x.The ℓ0 norm does not satisfy the first property in the definition ofnorm, and it is sometimes called the ℓ0 pseudo-norm.

∥2x∥0 � ∥x∥0 , 2∥x∥0.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 31

Page 50: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ0 norm

Consider a vector x � [x1 , x2 , . . . , xn]⊤ ∈ Rn .The ℓ0 norm of x is defined by

∥x∥0 ≜ |supp(x)|,

wheresupp is the support of x, namely,

supp(x) ≜{

i ∈ {1, 2, . . . , n} : xi , 0},

| · | denotes the number of elements.The ℓ0 norm counts the number of non-zero elements in x.The ℓ0 norm does not satisfy the first property in the definition ofnorm, and it is sometimes called the ℓ0 pseudo-norm.

∥2x∥0 � ∥x∥0 , 2∥x∥0.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 31

Page 51: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ0 norm

Consider a vector x � [x1 , x2 , . . . , xn]⊤ ∈ Rn .The ℓ0 norm of x is defined by

∥x∥0 ≜ |supp(x)|,

wheresupp is the support of x, namely,

supp(x) ≜{

i ∈ {1, 2, . . . , n} : xi , 0},

| · | denotes the number of elements.The ℓ0 norm counts the number of non-zero elements in x.The ℓ0 norm does not satisfy the first property in the definition ofnorm, and it is sometimes called the ℓ0 pseudo-norm.

∥2x∥0 � ∥x∥0 , 2∥x∥0.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 31

Page 52: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ0 norm

Consider a vector x � [x1 , x2 , . . . , xn]⊤ ∈ Rn .The ℓ0 norm of x is defined by

∥x∥0 ≜ |supp(x)|,

wheresupp is the support of x, namely,

supp(x) ≜{

i ∈ {1, 2, . . . , n} : xi , 0},

| · | denotes the number of elements.The ℓ0 norm counts the number of non-zero elements in x.The ℓ0 norm does not satisfy the first property in the definition ofnorm, and it is sometimes called the ℓ0 pseudo-norm.

∥2x∥0 � ∥x∥0 , 2∥x∥0.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 31

Page 53: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ0 norm

Consider a vector x � [x1 , x2 , . . . , xn]⊤ ∈ Rn .The ℓ0 norm of x is defined by

∥x∥0 ≜ |supp(x)|,

wheresupp is the support of x, namely,

supp(x) ≜{

i ∈ {1, 2, . . . , n} : xi , 0},

| · | denotes the number of elements.The ℓ0 norm counts the number of non-zero elements in x.The ℓ0 norm does not satisfy the first property in the definition ofnorm, and it is sometimes called the ℓ0 pseudo-norm.

∥2x∥0 � ∥x∥0 , 2∥x∥0.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 31

Page 54: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ0 norm

Consider a vector x � [x1 , x2 , . . . , xn]⊤ ∈ Rn .The ℓ0 norm of x is defined by

∥x∥0 ≜ |supp(x)|,

wheresupp is the support of x, namely,

supp(x) ≜{

i ∈ {1, 2, . . . , n} : xi , 0},

| · | denotes the number of elements.The ℓ0 norm counts the number of non-zero elements in x.The ℓ0 norm does not satisfy the first property in the definition ofnorm, and it is sometimes called the ℓ0 pseudo-norm.

∥2x∥0 � ∥x∥0 , 2∥x∥0.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 21 / 31

Page 55: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ℓ0 optimization problem

Now the problem of sparse representation is formulated as follows:

ℓ0 optimization problemGiven a vector y ∈ Rm and a full-row-rank matrix Φ ∈ Rm×n withm < n. Find the optimizer x∗ of the optimization problem:

minimizex∈Rn

∥x∥0 subject to y � Φx.

This problem is called the ℓ0 optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 22 / 31

Page 56: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Redundant Dictionary

2 Underdetermined Systems

3 The ℓ0 Norm

4 Exhaustive Search

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 23 / 31

Page 57: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to solve it?

ℓ0 optimization problemGiven a vector y ∈ Rm and a full-row-rank matrix Φ ∈ Rm×n withm < n. Find the optimizer x∗ of the optimization problem:

minimizex∈Rn

∥x∥0 subject to y � Φx.

We can try an exhaustive search for this optimization.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 24 / 31

Page 58: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive search: example

Find the minimum-ℓ0 solution (x1 , x2 , x3) that satisfies

x1 + x2 + x3 � 3x1 − x3 � 0

First, try (x1 , x2 , x3) � (0, 0, 0). This is not a solution.Second, try (x1 , 0, 0), (0, x2 , 0), and (0, 0, x3).

1 If (x1 , 0, 0) is a solution, then x1 � 3 and x1 � 0. This is not asolution.

2 If (0, x2 , 0) is a solution, then x2 � 3. This is a solution.3 If (0, 0, x3) is a solution, then x3 � 3 and x3 � 0. This is not a

solution.

The solution to the ℓ0 optimization is (0, 3, 0).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 31

Page 59: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive search: example

Find the minimum-ℓ0 solution (x1 , x2 , x3) that satisfies

x1 + x2 + x3 � 3x1 − x3 � 0

First, try (x1 , x2 , x3) � (0, 0, 0). This is not a solution.Second, try (x1 , 0, 0), (0, x2 , 0), and (0, 0, x3).

1 If (x1 , 0, 0) is a solution, then x1 � 3 and x1 � 0. This is not asolution.

2 If (0, x2 , 0) is a solution, then x2 � 3. This is a solution.3 If (0, 0, x3) is a solution, then x3 � 3 and x3 � 0. This is not a

solution.

The solution to the ℓ0 optimization is (0, 3, 0).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 31

Page 60: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive search: example

Find the minimum-ℓ0 solution (x1 , x2 , x3) that satisfies

x1 + x2 + x3 � 3x1 − x3 � 0

First, try (x1 , x2 , x3) � (0, 0, 0). This is not a solution.Second, try (x1 , 0, 0), (0, x2 , 0), and (0, 0, x3).

1 If (x1 , 0, 0) is a solution, then x1 � 3 and x1 � 0. This is not asolution.

2 If (0, x2 , 0) is a solution, then x2 � 3. This is a solution.3 If (0, 0, x3) is a solution, then x3 � 3 and x3 � 0. This is not a

solution.

The solution to the ℓ0 optimization is (0, 3, 0).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 31

Page 61: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive search: example

Find the minimum-ℓ0 solution (x1 , x2 , x3) that satisfies

x1 + x2 + x3 � 3x1 − x3 � 0

First, try (x1 , x2 , x3) � (0, 0, 0). This is not a solution.Second, try (x1 , 0, 0), (0, x2 , 0), and (0, 0, x3).

1 If (x1 , 0, 0) is a solution, then x1 � 3 and x1 � 0. This is not asolution.

2 If (0, x2 , 0) is a solution, then x2 � 3. This is a solution.3 If (0, 0, x3) is a solution, then x3 � 3 and x3 � 0. This is not a

solution.

The solution to the ℓ0 optimization is (0, 3, 0).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 31

Page 62: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive search: example

Find the minimum-ℓ0 solution (x1 , x2 , x3) that satisfies

x1 + x2 + x3 � 3x1 − x3 � 0

First, try (x1 , x2 , x3) � (0, 0, 0). This is not a solution.Second, try (x1 , 0, 0), (0, x2 , 0), and (0, 0, x3).

1 If (x1 , 0, 0) is a solution, then x1 � 3 and x1 � 0. This is not asolution.

2 If (0, x2 , 0) is a solution, then x2 � 3. This is a solution.3 If (0, 0, x3) is a solution, then x3 � 3 and x3 � 0. This is not a

solution.

The solution to the ℓ0 optimization is (0, 3, 0).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 31

Page 63: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive search: example

Find the minimum-ℓ0 solution (x1 , x2 , x3) that satisfies

x1 + x2 + x3 � 3x1 − x3 � 0

First, try (x1 , x2 , x3) � (0, 0, 0). This is not a solution.Second, try (x1 , 0, 0), (0, x2 , 0), and (0, 0, x3).

1 If (x1 , 0, 0) is a solution, then x1 � 3 and x1 � 0. This is not asolution.

2 If (0, x2 , 0) is a solution, then x2 � 3. This is a solution.3 If (0, 0, x3) is a solution, then x3 � 3 and x3 � 0. This is not a

solution.

The solution to the ℓ0 optimization is (0, 3, 0).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 31

Page 64: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive search: example

Find the minimum-ℓ0 solution (x1 , x2 , x3) that satisfies

x1 + x2 + x3 � 3x1 − x3 � 0

First, try (x1 , x2 , x3) � (0, 0, 0). This is not a solution.Second, try (x1 , 0, 0), (0, x2 , 0), and (0, 0, x3).

1 If (x1 , 0, 0) is a solution, then x1 � 3 and x1 � 0. This is not asolution.

2 If (0, x2 , 0) is a solution, then x2 � 3. This is a solution.3 If (0, 0, x3) is a solution, then x3 � 3 and x3 � 0. This is not a

solution.

The solution to the ℓ0 optimization is (0, 3, 0).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 25 / 31

Page 65: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 1)

If y � 0, then output x∗ � 0 as the optimal solution and quit.Otherwise, proceed to the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 26 / 31

Page 66: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 2)

Find a vector x with ∥x∥0 � 1 that satisfies the equation y � Φx.That is, set

x1 ≜

x10...0

, x2 ≜

0x20...0

, . . . , xn ≜

0...0

xn

and search xi ∈ R (i � 1, 2, . . . , n) that satisfies

y � Φx i � xiϕi .

If a solution exists for some i, output x∗ � x i as the solution andquit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 31

Page 67: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 2)

Find a vector x with ∥x∥0 � 1 that satisfies the equation y � Φx.That is, set

x1 ≜

x10...0

, x2 ≜

0x20...0

, . . . , xn ≜

0...0

xn

and search xi ∈ R (i � 1, 2, . . . , n) that satisfies

y � Φx i � xiϕi .

If a solution exists for some i, output x∗ � x i as the solution andquit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 31

Page 68: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 2)

Find a vector x with ∥x∥0 � 1 that satisfies the equation y � Φx.That is, set

x1 ≜

x10...0

, x2 ≜

0x20...0

, . . . , xn ≜

0...0

xn

and search xi ∈ R (i � 1, 2, . . . , n) that satisfies

y � Φx i � xiϕi .

If a solution exists for some i, output x∗ � x i as the solution andquit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 31

Page 69: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 2)

Find a vector x with ∥x∥0 � 1 that satisfies the equation y � Φx.That is, set

x1 ≜

x10...0

, x2 ≜

0x20...0

, . . . , xn ≜

0...0

xn

and search xi ∈ R (i � 1, 2, . . . , n) that satisfies

y � Φx i � xiϕi .

If a solution exists for some i, output x∗ � x i as the solution andquit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 31

Page 70: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 2)

Find a vector x with ∥x∥0 � 1 that satisfies the equation y � Φx.That is, set

x1 ≜

x10...0

, x2 ≜

0x20...0

, . . . , xn ≜

0...0

xn

and search xi ∈ R (i � 1, 2, . . . , n) that satisfies

y � Φx i � xiϕi .

If a solution exists for some i, output x∗ � x i as the solution andquit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 27 / 31

Page 71: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 3)

Find a vector x with ∥x∥0 � 2 that satisfies the equation y � Φx.That is, set

x1,2 ≜

x1x20...0

, x1,3 ≜

x10x30...0

, . . . , xn−1,n ≜

0...0

xn−1xn

and search xi , x j ∈ R (i , j � 1, 2, . . . , n) that satisfies

y � Φx i , j � xiϕi + x jϕ j .

If a solution exists for some i , j, then output x∗ � x i , j and quit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 31

Page 72: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 3)

Find a vector x with ∥x∥0 � 2 that satisfies the equation y � Φx.That is, set

x1,2 ≜

x1x20...0

, x1,3 ≜

x10x30...0

, . . . , xn−1,n ≜

0...0

xn−1xn

and search xi , x j ∈ R (i , j � 1, 2, . . . , n) that satisfies

y � Φx i , j � xiϕi + x jϕ j .

If a solution exists for some i , j, then output x∗ � x i , j and quit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 31

Page 73: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 3)

Find a vector x with ∥x∥0 � 2 that satisfies the equation y � Φx.That is, set

x1,2 ≜

x1x20...0

, x1,3 ≜

x10x30...0

, . . . , xn−1,n ≜

0...0

xn−1xn

and search xi , x j ∈ R (i , j � 1, 2, . . . , n) that satisfies

y � Φx i , j � xiϕi + x jϕ j .

If a solution exists for some i , j, then output x∗ � x i , j and quit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 31

Page 74: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 3)

Find a vector x with ∥x∥0 � 2 that satisfies the equation y � Φx.That is, set

x1,2 ≜

x1x20...0

, x1,3 ≜

x10x30...0

, . . . , xn−1,n ≜

0...0

xn−1xn

and search xi , x j ∈ R (i , j � 1, 2, . . . , n) that satisfies

y � Φx i , j � xiϕi + x jϕ j .

If a solution exists for some i , j, then output x∗ � x i , j and quit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 31

Page 75: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step 3)

Find a vector x with ∥x∥0 � 2 that satisfies the equation y � Φx.That is, set

x1,2 ≜

x1x20...0

, x1,3 ≜

x10x30...0

, . . . , xn−1,n ≜

0...0

xn−1xn

and search xi , x j ∈ R (i , j � 1, 2, . . . , n) that satisfies

y � Φx i , j � xiϕi + x jϕ j .

If a solution exists for some i , j, then output x∗ � x i , j and quit.Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 28 / 31

Page 76: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exhaustive Search (step k)

Do similar procedures for ∥x∥0 � k, k � 3, 4, . . . ,m.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 29 / 31

Page 77: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Is exhaustive search useful?

It is easily implemented.The computation time to find a solution grows exponentially withproblem size m.Suppose m � 100.

Then it roughly takes 2100 ≈ 1.3 × 1030 iterations (at the worst).If we can do one iteration in 10−15 seconds (by a super computer),then we obtain the solution after 1.3 × 1015 seconds, or 30 millionyears.

The study of sparse representation is to solve such a big problemin a reasonable time.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 31

Page 78: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Is exhaustive search useful?

It is easily implemented.The computation time to find a solution grows exponentially withproblem size m.Suppose m � 100.

Then it roughly takes 2100 ≈ 1.3 × 1030 iterations (at the worst).If we can do one iteration in 10−15 seconds (by a super computer),then we obtain the solution after 1.3 × 1015 seconds, or 30 millionyears.

The study of sparse representation is to solve such a big problemin a reasonable time.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 31

Page 79: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Is exhaustive search useful?

It is easily implemented.The computation time to find a solution grows exponentially withproblem size m.Suppose m � 100.

Then it roughly takes 2100 ≈ 1.3 × 1030 iterations (at the worst).If we can do one iteration in 10−15 seconds (by a super computer),then we obtain the solution after 1.3 × 1015 seconds, or 30 millionyears.

The study of sparse representation is to solve such a big problemin a reasonable time.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 31

Page 80: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Is exhaustive search useful?

It is easily implemented.The computation time to find a solution grows exponentially withproblem size m.Suppose m � 100.

Then it roughly takes 2100 ≈ 1.3 × 1030 iterations (at the worst).If we can do one iteration in 10−15 seconds (by a super computer),then we obtain the solution after 1.3 × 1015 seconds, or 30 millionyears.

The study of sparse representation is to solve such a big problemin a reasonable time.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 31

Page 81: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Is exhaustive search useful?

It is easily implemented.The computation time to find a solution grows exponentially withproblem size m.Suppose m � 100.

Then it roughly takes 2100 ≈ 1.3 × 1030 iterations (at the worst).If we can do one iteration in 10−15 seconds (by a super computer),then we obtain the solution after 1.3 × 1015 seconds, or 30 millionyears.

The study of sparse representation is to solve such a big problemin a reasonable time.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 31

Page 82: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Is exhaustive search useful?

It is easily implemented.The computation time to find a solution grows exponentially withproblem size m.Suppose m � 100.

Then it roughly takes 2100 ≈ 1.3 × 1030 iterations (at the worst).If we can do one iteration in 10−15 seconds (by a super computer),then we obtain the solution after 1.3 × 1015 seconds, or 30 millionyears.

The study of sparse representation is to solve such a big problemin a reasonable time.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 31

Page 83: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Is exhaustive search useful?

It is easily implemented.The computation time to find a solution grows exponentially withproblem size m.Suppose m � 100.

Then it roughly takes 2100 ≈ 1.3 × 1030 iterations (at the worst).If we can do one iteration in 10−15 seconds (by a super computer),then we obtain the solution after 1.3 × 1015 seconds, or 30 millionyears.

The study of sparse representation is to solve such a big problemin a reasonable time.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 30 / 31

Page 84: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusion

Sparsity of a vector is measured by its ℓ0 norm.In sparse representation, a redundant dictionary of vectors is used.In sparse representation, the smallest number of vectors areautomatically chosen from a redundant dictionary that represent agiven vector (ℓ0 optimization).The exhaustive search to solve ℓ0 optimization requirescomputational time that exponentially increases as the problemsize increases.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 31

Page 85: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusion

Sparsity of a vector is measured by its ℓ0 norm.In sparse representation, a redundant dictionary of vectors is used.In sparse representation, the smallest number of vectors areautomatically chosen from a redundant dictionary that represent agiven vector (ℓ0 optimization).The exhaustive search to solve ℓ0 optimization requirescomputational time that exponentially increases as the problemsize increases.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 31

Page 86: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusion

Sparsity of a vector is measured by its ℓ0 norm.In sparse representation, a redundant dictionary of vectors is used.In sparse representation, the smallest number of vectors areautomatically chosen from a redundant dictionary that represent agiven vector (ℓ0 optimization).The exhaustive search to solve ℓ0 optimization requirescomputational time that exponentially increases as the problemsize increases.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 31

Page 87: Sparsity Methods for Systems and Control - What is Sparsity? - … · 2021. 1. 21. · Masaaki Nagahara1 1The University of Kitakyushu nagahara@ieee.org M. Nagahara (Univ of Kitakyushu)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusion

Sparsity of a vector is measured by its ℓ0 norm.In sparse representation, a redundant dictionary of vectors is used.In sparse representation, the smallest number of vectors areautomatically chosen from a redundant dictionary that represent agiven vector (ℓ0 optimization).The exhaustive search to solve ℓ0 optimization requirescomputational time that exponentially increases as the problemsize increases.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 31 / 31