Spaceborne hyperspectral imaging: Applications for the mining … · 2019. 7. 25. · Spaceborne...

17
Boesche, N. ([email protected]) Mielke, C., Rogass, C., Förster, S., Hollstein, A., Roessner, S., Segl, K., Brosinsky, A., Wulf, H., Bochow, M., Brell, M., Kaufmann, H., Chabrillat, S., Guanter, L. Spaceborne hyperspectral imaging: Applications for the mining industry

Transcript of Spaceborne hyperspectral imaging: Applications for the mining … · 2019. 7. 25. · Spaceborne...

  • Boesche, N. ([email protected])

    Mielke, C., Rogass, C., Förster, S., Hollstein, A.,

    Roessner, S., Segl, K., Brosinsky, A., Wulf, H., Bochow,

    M., Brell, M., Kaufmann, H., Chabrillat, S., Guanter, L.

    Spaceborne hyperspectral imaging:Applications for the mining industry

  • Spaceborne hyperspectral imaging

    Spectroscopy study of the interaction between matter and radiated energy

    specifically looking at what wavelengths of light are emitted or absorbed by an

    object in order to characterize materials.

  • Absorption bands of rock formingminerals

    Water

  • Absorption bands of rock formingminerals

    C-O

  • Absorption bands of rock formingminerals

    Al-OH

  • Absoprtion bands of Rare Earth Elements

    after Boesche 2015

    Peter Kuiper, 2000, Wikipedia public domain

  • How can

    hyperspectral

    earth observation

    contribute

    to the mining

    industry?

    What are the

    requirements for a

    future operational

    (Copernicus?)

    hyperspectral

    system?

    Imaging Spectroscopy

    after Boesche 2015

  • The EnMAP Program

    Environmental Mapping and Analysis Program

    (GFZ/DLR)

    German project, core funding from BMWi

    Conceived as an operational mission with scientific

    focus

    Currently under construction phase

    Launch ~2019, 5-year operational phase

    Open data policy for scientific users

    Guanter et al. (2016)

  • Fro

    m3

    0 to

    10

    00

    km

    30 km swath30 m

    pixel

    FWHM ~10 nm

    Data acquisition on demand

    Up to 4 days revisit time with tilted observation

    Ground segment distributing geometrically-

    corrected reflectance data

    Co-existence with Sentinel-2 & Landsat-8

    Guanter et al., Rem. Sens. (2015)

    Key mission characteristics for scientific use of EnMAP

  • Hyperspectral detection of rawmaterials

    Environment of formation

    Main spectrally active minerals Reference

    Hy

    dro

    therm

    al d

    ep

    osit

    s

    High sulfidation epithermal alunite, pyrophyllite, dickite, kaolinite,

    diaspore, zunyite, smectite, illite

    van der Meer et al.,

    2012 Low sulfidation epithermal sericite, illite, smectite, chlorite, carbonate van der Meer et al.,

    2012 Porphyry: Cu, Cu-Au biotite, anhydrite, chlorite, sericite,

    pyrophyllite, zeolite, smectite, carbonate, tourmaline, jarosite

    van der Meer et al., 2012; Mielke et al., 2016

    Volcanogenic massive

    sulfide

    sericite, chlorite, chloritoid,

    carbonates, anhydrite, gypsum, amphibole

    van der Meer et al.,

    2012

    Archean Lode Gold carbonate, talc, tremolite, muscovite, paragonite

    van der Meer et al., 2012

    Sed

    imen

    tary

    dep

    osit

    s

    Banded iron formation hematite, goethite Singh et al., 2015 Carlin-type Gold deposit illite, dickite, kaolinite van der Meer et al.,

    2012 Salt and brine deposit gypsum, bassinite, bloedite, epsomite,

    hexahydrite, leonhardite, sanderite, kieserite, bischofite, antarcticite, carnallite, trona, natron thermonatrite, nahcolite, mirabilite

    Crowley, 1991; Drake, 1995

    Skarn

    s

    Calcic skarn garnet, clinopyroxene, wollastonite, actinolite

    van der Meer et al., 2012

    Retrograde skarn calcite, chlorite, hematite, illite

    van der Meer et al., 2012

    Magnesium skarn fosterite, serpentine-talc, magnetite, calcite

    van der Meer et al., 2012

    Ign

    eo

    us

    dep

    osit

    s Carbonatite calcite, dolomite, ankerite, rare earth

    elements, chlorite, epidote, hematite Boesche, 2015; Turner, 2015

    Pegmatites kaolinite, mica, hematite

    Momose et al., 2011

    Raw materials:

    Cu, Au, Ag, Pb, Zn, Fe, Li, Salt, LREE, HREE, Nb, Ta

    Including 6 critical raw materials

    for emerging technologies 2016

    (Deutsche Rohstoffagentur, 2016)

  • Hyperspectral vs multispectralimaging

  • Simulation of spaceborne hyperspectral mapping (based on EnMAP characteristics)

    Thematic Map: Mine Waste Monitoring

    Proxy Mineral Map

    Thematic Map: Alteration Zonation Map

  • EnMAP BOX and EnGeoMAP

    EnMAPBOX

    EnSOMAP

    • Soil Mapper

    EnGEOMAP Base

    • Basic Mineral Mapping

    EnGEOMAP REE

    • Rare Earth Element Mapping

  • Proxy mineral mapping

  • Contribution of HSI to more effectivedecision-making

  • Spaceborne hyperspectral imaging:Applications for the mining industry

    German – European - Global Partners

    Nina Boesche ([email protected])

  • Requirements for a future operational hyperspectral system

    • Global coverage

    • Data availability of new exploration areas

    • Multitemporal coverage of sites -> scene overlap increases the image signal-to-

    noise

    • Higher spatial sampling distance

    • Delineation of lineaments and small geological features

    • Direct detection of hostrocks

    • Higher resolution of classifications of inhomogeneous orebodies

    • Higher spectral sampling distance

    • Increased separability of alteration indicative minerals

    • Separation between alteration and weathering