Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From...

59
Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz, Prof. Wei Jiang and Dr. Quan Zhao IMS, 2 May, 2018 Wang Yan (CSRC) Solid-State Dewetting 1 / 50

Transcript of Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From...

Page 1: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Solid-State Dewetting: From Flat to Curved Substrates

Yan Wang

with Prof. Weizhu Bao, Prof. David J. Srolovitz,Prof. Wei Jiang and Dr. Quan Zhao

IMS, 2 May, 2018

Wang Yan (CSRC) Solid-State Dewetting 1 / 50

Page 2: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Outline

1 Introduction

2 Mathematical modelsFlat substrateCurved substrate

3 Numerical results

4 Summary and future works

Wang Yan (CSRC) Solid-State Dewetting 2 / 50

Page 3: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Outline

1 Introduction

2 Mathematical modelsFlat substrateCurved substrate

3 Numerical results

4 Summary and future works

Wang Yan (CSRC) Solid-State Dewetting 3 / 50

Page 4: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Background

Wang Yan (CSRC) Solid-State Dewetting 4 / 50

Page 5: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Background

Solid-state dewetting

Thin films are generally metastable in the as-deposited state and willdewet or agglomerate to form arrays of islands when heated.

This process occurs well below the melting temperature of the solidmaterial.

Figure: A schematic view of solid-state dewetting. Thin films dewet to formisolated islands when it remains in the solid state (M. Naffouti et al., 2017).

Wang Yan (CSRC) Solid-State Dewetting 5 / 50

Page 6: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Application

Suppress dewetting

Thin films are basic components in many microelectronic and optoelectronicdevices, and for these devices to function properly, the structural integrityof the thin films must be maintained. Dewetting destabilizes a thin filmstructure and limits the device reliability.

Induce dewetting

Ordered arrays of metal nanoparticles has a wide range of potential appli-cations in plasmonics, magnetic memories, DNA detection and catalysis fornanowire and nanotube growth. Dewetting (template-assisted dewetting,dewetting of single crystal thin film) provides a easy way to produce orderedarrays of nanoparticles of controlled size and geometry.

Wang Yan (CSRC) Solid-State Dewetting 6 / 50

Page 7: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Experimental results

Dewetting on a flat substrate generally leads to disordered arrays of islands,the irregularities of dewetting morphologies have limited the application forfabrication of ordered structures.

Figure: Dewetting of 30-nm-thick gold films on a flat substrate. (E. Jiran and C.V.Thompson, 1990).

Wang Yan (CSRC) Solid-State Dewetting 7 / 50

Page 8: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Experimental results

Dewetting on a flat substrate generally leads to disordered arrays of islands,the irregularities of dewetting morphologies have limited the application forfabrication of ordered structures.

Figure: Dewetting of a single-crystal Si film on oxidized Si on a flat substrate. (R.Nuryadi et. al., 1990).

Wang Yan (CSRC) Solid-State Dewetting 7 / 50

Page 9: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Experimental results

Template-assisted dewetting, i.e., dewetting on a pre-patterned (curved)substrate can lead to formation of ordered structures.

Figure: Template-assisted solid-state dewetting of gold films on oxidized silicon surfacespatterned with arrays of inverted pyramid shaped pits. (A.L. Giermann and C.V.Thompson, 2005).

Wang Yan (CSRC) Solid-State Dewetting 7 / 50

Page 10: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Experimental results

Template-assisted dewetting, i.e., dewetting on a pre-patterned (curved)substrate can lead to formation of ordered structures.

Figure: Dewetting of Ni(100) (J. Ye and C.V. Thompson, 2011).

Wang Yan (CSRC) Solid-State Dewetting 7 / 50

Page 11: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Schematic illustration

x lc , xrc are the contact points

γVS, γ

FSare vapor/substrate and film/substrate interfacial energy

densities (usually treated as constants)

γFV

= γ(θ) is the film/vapor interfacial energy density, where θ is thenormal angle of the film/vapor interface

Wang Yan (CSRC) Solid-State Dewetting 8 / 50

Page 12: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Film/vapor interfacial energy densities

The smooth case: γ(θ) ∈ C 2([−π, π])

Isotropic case: γ(θ) is a constant.

Weakly anisotropic case: γ(θ) := γ(θ) + γ ′′(θ) > 0, ∀θ ∈ [−π, π].

Strongly anisotropic case: γ(θ) < 0 for some θ ∈ [−π, π].

The cusped case:

γ(θ) is piecewise smooth (C 2) and not differentiable at finite points.

Figure: Different energy densities.

Wang Yan (CSRC) Solid-State Dewetting 9 / 50

Page 13: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Equilibrium problem

Energy minimization problem (J. Gibbs, 1878; G. Wulff, 1901; J.Taylor, 1974; I. Fonseca and S. Muller, 1991; R. Kaischew, 1950; W.Winterbottom, 1967; W. Bao et al., 2017)

minΩ

W =

∫ΓFV

γFVdΓFV +

∫ΓFS

(γFS − γVS

)dΓFS︸ ︷︷ ︸

Substrate Energy

s.t. |Ω| = const.

Wang Yan (CSRC) Solid-State Dewetting 10 / 50

Page 14: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Dynamic problem

Surface diffusion (mass transport) (W. Mullins, 1957; J. Cahn andD. Hoffman, 1974)

Chemical potential: µ = Ω0δW

δΓ,

Mass flux: J = − Dsν

kBTe∇sµ,

Normal velocity: Vn = −Ω0∇s · J =DsνΩ0

kBTe∇2

sµ.

Wang Yan (CSRC) Solid-State Dewetting 11 / 50

Page 15: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Dynamic problem

Surface diffusion (mass transport)

Moving contact lineAt the equilibrium state, the following (isotropic) Young equationshould be satisfied (T. Young, 1805):

γVS = γFS + γ0 cos θi .

Film

Substrate

Vapor

θ iγ F S

γ F V ≡ γ0

γ V S

Wang Yan (CSRC) Solid-State Dewetting 11 / 50

Page 16: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Existing models/methods

1 Sharp interface model/methods:

D. Srolovitz and S. Safran (1986): Isotropic, cylindrically symmetriccase;H. Wong et al. (2000): Isotropic, semi-infinite step in 2D, and a“marker-particle” methodP. Du et al. (2010): Isotropic, cylindrical wireWang et al. (2015); Jiang et al., (2016); Bao et al., (2017):Anisotropic case in 2D, and a parametric finite element method

2 Phase field model:Isotropic case (W. Jiang et al., 2012; M. Naffouti et al., 2017);Weakly anisotropic case (M. Dziwnik et al., 2017)

3 Others (e.g. E. Dornel et al., 2006; L. Klinger and E. Rabkin, 2011; R.V.

Zucker et al., 2013; O. Pierre-Louis et al., 2009; T. Lee et al., 2015)

Wang Yan (CSRC) Solid-State Dewetting 12 / 50

Page 17: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Objective

Mathematical modeling

. Rigorously derive the sharp interface model;

. Include the interfacial anisotropy;

. Consider both flat and curved substrates.

Numerical simulation

. Equilibrium;

. Morphological evolution;

. Template-assisted dewetting;

. ......

Wang Yan (CSRC) Solid-State Dewetting 13 / 50

Page 18: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Outline

1 Introduction

2 Mathematical modelsFlat substrateCurved substrate

3 Numerical results

4 Summary and future works

Wang Yan (CSRC) Solid-State Dewetting 14 / 50

Page 19: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Outline

1 Introduction

2 Mathematical modelsFlat substrateCurved substrate

3 Numerical results

4 Summary and future works

Wang Yan (CSRC) Solid-State Dewetting 15 / 50

Page 20: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Thermodynamic variation: Perturbation

Film

Substrate

Vapor

x lc

x rc

Γτ

n

θ

Γǫ = Γ + ǫϕ(s)n + ǫψ (s)τ

Derive the model via thermodynamic variation;Perturb Γ in both normal and tangent directions;ψ(s) is an arbitrary function, and ϕ(s) satisfies∫ L

0ϕ(s)ds = 0.

Wang Yan (CSRC) Solid-State Dewetting 16 / 50

Page 21: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Thermodynamic variation: Perturbation

Film

Substrate

Vapor

x lc

x rc

Γτ

n

θ

Γǫ = Γ + ǫϕ(s)n + ǫψ (s)τ

We express Γ = (x(s), y(s)),Γε = (xε(s), y ε(s)) = (x(s) + εu(s), y(s) + εv(s)).

Then the increments along the y−axis at the two contact points must bezero, i.e.,

v(0) = v(L) = 0.

Wang Yan (CSRC) Solid-State Dewetting 16 / 50

Page 22: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Thermodynamic variation 1

The total interfacial energy before perturbation is:

W =

∫Γγ(θ) dΓ + (γFS − γVS)(x rc − x lc)

=

∫ L

0γ(θ) ds + (γFS − γVS)(x rc − x lc).

The total free energy W ε of the new curve Γε as follows:

W ε =

∫Γε

γ(θε) dΓε +(γFS − γVS

)[(x rc + εu(L)

)−(x lc + εu(0)

)]=

∫ L

0γ(

arctan(ys + εvsxs + εus

))√(xs + εus)2 + (ys + εvs)2 ds

+(γFS − γVS

)[(x rc + εu(L)

)−(x lc + εu(0)

)].

Wang Yan (CSRC) Solid-State Dewetting 17 / 50

Page 23: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Thermodynamic variation 2

dW ε

∣∣∣ε=0

=

∫ L

0

(γ ′′(θ) + γ(θ)

)κ ϕ ds

+[γ(θld) cos θld − γ ′(θld) sin θld +

(γFS − γVS

)]u(0)

−[γ(θrd) cos θrd − γ ′(θrd) sin θrd +

(γFS − γVS

)]u(L).

Chemical potential:

µ = Ω0δW

δΓ= Ω0

(γ(θ) + γ ′′(θ)

)κ,

Surface normal velocity:

Vn =DsνΩ0

kBTe

∂2µ

∂s2.

Wang Yan (CSRC) Solid-State Dewetting 18 / 50

Page 24: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Thermodynamic variation 2

dW ε

∣∣∣ε=0

=

∫ L

0

(γ ′′(θ) + γ(θ)

)κ ϕ ds

+[γ(θld) cos θld − γ ′(θld) sin θld +

(γFS − γVS

)]u(0)

−[γ(θrd) cos θrd − γ ′(θrd) sin θrd +

(γFS − γVS

)]u(L).

Assuming that the moving process of the contact point can be takenas an energy gradient flow:

dx lc(t)

dt= −η δW

δx lc= η

[γ(θld) cos θld − γ ′(θld) sin θld +

(γFS − γVS

)],

dx rc (t)

dt= −η δW

δx rc= −η

[γ(θrd) cos θrd − γ ′(θrd) sin θrd +

(γFS − γVS

)].

Wang Yan (CSRC) Solid-State Dewetting 18 / 50

Page 25: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Governing equation

According to the thermodynamic principle, we have the followingdimensionless sharp-interface model for weakly anisotropic solid-statedewetting problems:

∂X

∂t= Vnn =

∂2µ

∂s2n

µ =(γ(θ) + γ ′′(θ)

)κ,

where κ = ∂ssx∂sy − ∂sx∂ssy is the curvature.

Wang Yan (CSRC) Solid-State Dewetting 19 / 50

Page 26: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Boundary conditions

1 Contact Point Condition (BC1)

y(x lc , t) = 0, y(x rc , t) = 0.

2 Relaxed Contact Angle Condition (BC2)

dx lcdt

= ηf (θld),dx rcdt

= −ηf (θrd),

where

f (θ) := γ(θ) cos θ − γ ′(θ) sin θ − σ, with σ :=γVS − γFS

γ0.

3 Zero-Mass Flux Condition (BC3)

∂µ

∂s(x lc , t) = 0,

∂µ

∂s(x rc , t) = 0.

Wang Yan (CSRC) Solid-State Dewetting 20 / 50

Page 27: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Regularization

∂X

∂t=

∂2

∂s2

[(γ(θ) + γ ′′(θ)

)κ]

n,

Well-posed in the isotropic and weakly anisotropic cases, i.e.,γ(θ) := γ(θ) + γ ′′(θ) > 0 for all θ ∈ [0, 2π];

Ill-posed in the strongly anisotropic case where γ(θ) may becomenegative for some θ.

In order to regularize the equation, a high order regularization termcan be added to the free energy (M.E. Gurtin and M.E. Jabbour,2002; S. Torabi et al., 2009):

Ww =ε2

2

∫Γκ2 dΓ

Wang Yan (CSRC) Solid-State Dewetting 21 / 50

Page 28: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Governing equation (strong anisotropy)

By calculating the variation of the regularized interfacial energy W + Ww,we can form the dimensionless model for the strongly anisotropic case as:

∂X

∂t= Vnn =

∂2µ

∂s2n,

µ =(γ(θ) + γ ′′(θ)

)κ−ε2

(κss +

κ3

2

),

where κ = ∂ssx∂sy − ∂sx∂ssy is the curvature.

Wang Yan (CSRC) Solid-State Dewetting 22 / 50

Page 29: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Boundary conditions (strong anisotropy)

1 Contact Point Condition (BC1)

y(x lc , t) = 0, y(x rc , t) = 0.

2 Relaxed Contact Angle Condition (BC2)

dx lcdt

= ηfε(θld),

dx rcdt

= −ηfε(θrd),

where fε(θ) := γ(θ) cos θ − γ ′(θ) sin θ − σ−ε2∂κ

∂s(θ) sin θ.

3 Zero-Mass Flux Condition (BC3)

∂µ

∂s(x lc , t) = 0,

∂µ

∂s(x rc , t) = 0.

4 Zero-curvature Condition (BC4)

κ(x lc , t) = 0, κ(x rc , t) = 0.

Wang Yan (CSRC) Solid-State Dewetting 23 / 50

Page 30: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Outline

1 Introduction

2 Mathematical modelsFlat substrateCurved substrate

3 Numerical results

4 Summary and future works

Wang Yan (CSRC) Solid-State Dewetting 24 / 50

Page 31: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Schematic illustration on a curved substrate

Film

Substrate

Vaporτ

n

θ

c l cr

Γ

Γsub

γ F V = γ (θ)

Figure: A schematic illustration of a film island in two dimension. Interfacialenergy densities: γFV = γ(θ), γFS and γVS are contants.

The interfacial energy:

W =

∫Γγ(θ) dΓ +

(γFS − γVS

)(cr − cl)︸ ︷︷ ︸

Substrate Energy

,

Wang Yan (CSRC) Solid-State Dewetting 25 / 50

Page 32: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Thermodynamic variation

Similarly, we can perturb the film/vapor interfaceand calculate the thermodynamic variationof the total interfacial energy as

δW

δΓ=

(γ(θ) + γ ′′(θ)

)κ,

δW

δcr= γ(θrex) cos θrin − γ ′(θrex) sin θrin + (γFS − γVS),

δW

δcl= −

[γ(θlex) cos θlin − γ ′(θlex) sin θlin + (γFS − γVS)

].

Wang Yan (CSRC) Solid-State Dewetting 26 / 50

Page 33: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Thermodynamic variation

Similarly, we can perturb the film/vapor interfaceand calculate the thermodynamic variationof the total interfacial energy as

δW

δΓ=

(γ(θ) + γ ′′(θ)

)κ,

δW

δcr= γ(θrex) cos θrin − γ ′(θrex) sin θrin + (γFS − γVS),

δW

δcl= −

[γ(θlex) cos θlin − γ ′(θlex) sin θlin + (γFS − γVS)

].

Wang Yan (CSRC) Solid-State Dewetting 26 / 50

Page 34: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Model formulation

The two-dimensional solid-state dewetting of a thin film on a rigid curvedsolid substrate can be described in the following dimensionless form by thesharp interface model (isotropic/weakly anisotropic case):

∂X

∂t= Vnn =

∂2µ

∂s2n

µ =(γ(θ) + γ ′′(θ)

)κ,

where κ = ∂ssx∂sy − ∂sx∂ssy is the curvature.

Wang Yan (CSRC) Solid-State Dewetting 27 / 50

Page 35: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Boundary conditions for the weakly anisotropic case

1 Contact point condition (BC1)

X(0, t) = Xsub(cl), X(L, t) = Xsub(cr ).

2 Relaxed contact angle condition (BC2)

dcldt

= ηf (θlex, θlin),

dcrdt

= −ηf (θrex, θrin),

where the binary function f is defined as

f (θex, θin) := γ(θex) cos θin − γ ′(θex) sin θin − σ,

with the dimensionless coefficient σ := (γVS − γFS)/γ0 = cos θi .

3 Zero-mass flux condition (BC3)

∂µ

∂s(s = 0, t) = 0,

∂µ

∂s(s = L, t) = 0,

Wang Yan (CSRC) Solid-State Dewetting 28 / 50

Page 36: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Outline

1 Introduction

2 Mathematical modelsFlat substrateCurved substrate

3 Numerical results

4 Summary and future works

Wang Yan (CSRC) Solid-State Dewetting 29 / 50

Page 37: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Isotropic, short island

L = 5,β = 0,σ = cos(3π/4)

Wang Yan (CSRC) Solid-State Dewetting 30 / 50

Page 38: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Weakly anisotropic, short island

L = 5,m = 4,β = 0.06,σ = cos(3π/4)

Wang Yan (CSRC) Solid-State Dewetting 31 / 50

Page 39: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Strongly anisotropic, short island

L = 5,m = 4,β = 0.2,σ = cos(3π/4)

Wang Yan (CSRC) Solid-State Dewetting 32 / 50

Page 40: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Weakly anisotropic, long island

L = 60,m = 4,β = 0.06,σ = cos(5π/6)

Wang Yan (CSRC) Solid-State Dewetting 33 / 50

Page 41: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Critical length for pinch-off

1 2 3 41/sin(

i/2)

50

70

90

110

130

L

1

2 or more

1 1.5 2 2.51/sin(

i/2)

100

150

200

250

L

1

2 or more

γ(θ) = 1 + 0.06 cos(4θ), γ(θ) = 1− 0.06 cos(4θ)

Wang Yan (CSRC) Solid-State Dewetting 34 / 50

Page 42: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Weakly anisotropic, semi-infinite island

m = 4, β = 0.06, σ = cos(5π/6)

Power-law for the retraction distance: l ∼ t0.4 (H. Wong et al., 2000)

Wang Yan (CSRC) Solid-State Dewetting 35 / 50

Page 43: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Power law

101

102

103

100

101

102

β = 0.06

t

Retr

action d

ista

nce

θi = 5π/6

θi = 3π/4

θi = 2π/3

θi = π/2

θi =π/3

θi =π/4

5

2

Wang Yan (CSRC) Solid-State Dewetting 36 / 50

Page 44: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Hole: Dewetting – I

β = 0.06, m = 4, σ = cos(π/2).

(a) d = 0.6

−1.5 0 1.50

1.5

Wang Yan (CSRC) Solid-State Dewetting 37 / 50

Page 45: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Hole: Wetting – II

β = 0.06, m = 4, σ = cos(π/2).

(b) d = 0.4

−1.5 0 1.50

1.5

Wang Yan (CSRC) Solid-State Dewetting 38 / 50

Page 46: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Hole: Void – III

β = 0.06, m = 4, σ = cos(π/2).

(c) d = 0.1

−0.8 0 0.80

1.5

Wang Yan (CSRC) Solid-State Dewetting 39 / 50

Page 47: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Hole

Wang Yan (CSRC) Solid-State Dewetting 40 / 50

Page 48: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Equilibria on a sawtooth substrate

Figure: (a1-a2): Two equilibrium shapes of thin films on a sawtooth substate withinitial area A = 2.

Wang Yan (CSRC) Solid-State Dewetting 41 / 50

Page 49: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Asymmetric equlibrium

(a1)

(a2)

(a3)

(a4)

(b1)

(b2)

(b3)

(b4)

Figure: Evolution of thin films on a circular substrate (R = 20). (a) isotropiccase, (b) weakly anisotropic case with m = 4, β = 0.06. σ = −0.5 in both cases.The intrinsic (contact) angles in (b4) are (left) 2.025 and (right) -2.319.

Wang Yan (CSRC) Solid-State Dewetting 42 / 50

Page 50: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Pinch-off

(a) (b)

(c) (d)

Figure: Evolution of a large island with isotropic surface energy on a sphericalsubstrate of radius R = 30. Film length L = 82, σ = −

√3/2.

Wang Yan (CSRC) Solid-State Dewetting 43 / 50

Page 51: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Pinch-off

1 2 3 41/sin(

i/2)

80

100

120

140

160

180

L

(a)

1

2 or more

1 2 3 41/sin(

i/2)

80

120

160

200

240

280

320

L

(b)

1

2 or more

R = 30 R = 60

Wang Yan (CSRC) Solid-State Dewetting 44 / 50

Page 52: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Pinch-off

Assuming isotropic surface energy, for given R and θi , we suggest that thecritical pinch-off length can be predicted according to the following relation

L =−320.2/R + 89.9

sin(θi/2), R ≥ 10. (1)

Here, the radius is restricted to be larger than 10 since pinch-off won’toccur for small R.

Wang Yan (CSRC) Solid-State Dewetting 45 / 50

Page 53: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Movement on a sinusoidal substrate

L = 5,β = 0,σ = cos(π/3)

y = 4 sin(x/4)

Wang Yan (CSRC) Solid-State Dewetting 46 / 50

Page 54: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Templated solid-state dewetting

Consider sinusoidal substates y = H sin(wx).

Consider enough long films.

(b)

(a)

(c)

Figure: Dewetting of thin films with different length on a pre-patterned sinusoidalsubstrate. The lengths of the films are L = 100, 150 and 200.

Wang Yan (CSRC) Solid-State Dewetting 47 / 50

Page 55: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Templated solid-state dewetting

(I)

(II)

(III)

(IV)

0.1 0.2 0.3 0.4 0.5

0.6

0.8

1

1.2

H[R

0]

2πω [1/R0]

I II III IV

Figure: Phase diagram of the four observed categories of solid-state dewetting ofthin films on pre-patterned sinusoidal substrates y = H sin(wx)

Wang Yan (CSRC) Solid-State Dewetting 48 / 50

Page 56: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Templated solid-state dewetting

Wang Yan (CSRC) Solid-State Dewetting 48 / 50

Page 57: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Outline

1 Introduction

2 Mathematical modelsFlat substrateCurved substrate

3 Numerical results

4 Summary and future works

Wang Yan (CSRC) Solid-State Dewetting 49 / 50

Page 58: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Summary and future works

Summary

I Proposed sharp interface models for solid-state dewetting problems in2D for both flat and curved substrates.

I Presented a series of numerical results to show the influence ofanisotropy and curved substrates in solid-state dewetting.

Future works

Analysis for the physical laws that we observed or summarized fromnumerical studies.

3D simulations.

......

Page 59: Solid-State Dewetting: From Flat to Curved Substrates · 2018-05-02 · Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz,

Summary and future works

Thank You for Your Attention!