Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6...

20
1 ChristianAlbrechtsUniversität zu Kiel Smart Thin Films for Medical Applications Eckhard Quandt Institute for Materials Science Faculty of Engineering University of Kiel Germany 2 Introduction Superelastic TiNi Thin Films for Medical Devices Magnetoelectric Composites for Biomagnetic Field Sensors Conclusions and Outlook Outline ThinFilms 2016, Singapore, July 13th, 2016

Transcript of Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6...

Page 1: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

1

Christian-­Albrechts-­Universität zu Kiel

Smart  Thin Films  for Medical Applications

Eckhard Quandt

Institute  for  Materials   ScienceFaculty  of  Engineering  University  of  Kiel  Germany  

2

-­ Introduction

-­ Superelastic TiNi Thin Films   for Medical Devices

-­ Magnetoelectric Composites   for Biomagnetic Field  Sensors

-­ Conclusions and  Outlook

Outline

ThinFilms  2016,  Singapore,  July  13th,  2016

Page 2: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

2

3

-­ Introduction

-­ Superelastic TiNi Thin Films   for Medical Devices

-­ Magnetoelectric Composites   for Biomagnetic Field  Sensors

-­ Conclusions and  Outlook

Outline

ThinFilms  2016,  Singapore,  July  13th,  2016

4

Smart  Materials

ThinFilms  2016,  Singapore,  July  13th,  2016

MagneticFieldorStress

ElectricFieldor  Stress

Temperatureor  Stress

Ferroic Properties

Page 3: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

3

5

Smart  Material  Thin Films

ThinFilms  2016,  Singapore,  July  13th,  2016

• Inherent effects ⇒ can be down-­scaled to  micrometer or  nanometerdimensions• Transduce electromagnetic and  mechanical energies⇒ mechanismsfor actuators and  sensors• Combination of  different  effects ⇒ natural or  composite multiferroics• Cost-­effective batch fabrication compatible to  MEMS/NEMS

6

Laboratories  @  Kieler  Nanolabor

ThinFilms  2016,  Singapore,  July  13th,  2016

LithographyMask Aligner,  E-­Beam,  FIB

Cleanroom:  350  m2

Thin Film  TechnologyMagnetron Sputtering,  Evaporation,  PLD,  PECVD

EtchingIon  Beam  Etching,  ReactiveIon  Etching,  Bosch  ProcessWet Etching

Page 4: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

4

7

-­ Introduction

-­ Superelastic TiNi Thin Films   for Medical  Devices

-­ Stent  Technology-­ Thin Film  Processing  Route-­ Unique  Features  of Thin Film  Devices-­ Examples of Applications

-­ Magnetoelectric Composites   for Biomagnetic Field  Sensors

-­ Conclusions and  Outlook

Outline

ThinFilms  2016,  Singapore,  July  13th,  2016

8

Shape  Memory  Effects

ThinFilms  2016,  Singapore,  July  13th,  2016

1. Alloy that "remembers" its original shape

— after deformation returns to its original shape when heated

2. Superelasticity

— recovering of large strain

Page 5: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

5

9

Stent  Technology

ThinFilms  2016,  Singapore,  July  13th,  2016

D.  Stöckel,  NDC

10

Stent Fabrication:  Traditional  Process Flow

ThinFilms  2016,  Singapore,  July  13th,  2016

NiTi-Tube Laser-BeamCutting Deburring Honing

HeatTreatment Blasting Electro-

polishing

Limits:• Minimum  tube thickness (approx.  50  µm)• Minimum  feature size (approx.  20  µm)

Page 6: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

6

11

Strokes (#4  Killer  in  the U.S.)

ThinFilms  2016,  Singapore,  July  13th,  2016

Ischemic Stroke~  300  of  100.000  people(i.e.  ~  725,000  strokes  /   year  (US))~  15%  mortality rate~  15  – 30%  permanent  handycapped

Intercerebral Hemorrhage:  ~  30  of  100.000  people in  thedeveloped world are affected

Subarachnoid Hemorrhage(Cerebral  Aneurysms):  ~  15  von  100.000  people(i.e.  ~  35.000  /  year   (US))high  mortality  rate

è Development of  newtechnology  essential

12

Planar Thin Film  Process

ThinFilms  2016,  Singapore,  July  13th,  2016

700  µm

20  µm

TiNi

Cu

Photo   Resist

Substrate

(1) (2) (3)TiNi Thin FilmCu  Sacrificial Layer

Photo   Resist /UV  Lithography

TiNi EtchingProcess

(7)   Sacrificial LayerWet Etch

Removal  of  Photo   Resist

TiNi DepositionCu Etching(4) (5) (6)

(4)

(7)Advanced  Engineering  Materials  15  (2013),  66-­69

Page 7: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

7

13

Workflow  for Thin Film  Devices  @  Acquandas

ThinFilms  2016,  Singapore,  July  13th,  2016

CAD  Design UV-­ Lithography

Heat  Treatment  /  Shape   setting

Sputtering Process

Wafer  afterSputtering Process

Sample  Release  by  wet-­chemical  Etching

14

Improved Mechanical Properties

ThinFilms  2016,  Singapore,  July  13th,  2016

0 10 20 30 400

500

1000

1500

σ / M

Pa

ε / %

Acquandas thick film(laser cut & surface finished)

Conventional sheet metal(laser cut & surface finished)

T= 35°C

Fracture strains of up to ~40%

0 1 2 3 4 5 60

1

2 NiTi Film Fracture NiTi Film Run out (10 Mio. cycles) NiTi Standard Fracture NiTi Standard Run out (10 Mio. cycles)

Alte

rnat

ing

Stra

in /

%

Mean strain / %

Alternating strains of up to ±1.5%

Advanced  Engineering  Materials  15  (2013),  66-­69Journal  of  Materials  Engineering  and  Performance  23,  2437-­2445  (2014)

è Improvement  of  mechanical  properties  by  a  factor  of  2.5

Page 8: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

8

15

Fatigue in  Superelastic TiNiCu Films

ThinFilms  2016,  Singapore,  July  13th,  2016

0.00 0.01 0.02 0.030

100

200

300

400

TTest = 70 °CAf = 65 °C

cycle 1 cycle 10 cycle 50 cycle 100 cycle 200

stre

ss /

MPa

strain

Ti51Ni36Cu13

Ti54Ni34Cu12

TTest = 78 °CAf = 72 °C

0.00 0.01 0.02 0.03

a)

strain

b)

• Aquiatomic TiNi similar  (even  worse)  compared  to  aquiatomic TiNiCu• Functional  and  structural  fatigue  behavior  is  strongly  influenced  by  the  Ti content

Science  348  (2015)  1004

near-­‐aquiatomic Ti-­‐rich

16

Ultra-­low Fatigue in  Superelastic Ti-­rich TiNiCu Films

ThinFilms  2016,  Singapore,  July  13th,  2016

Science  348  (2015)  1004

No  functional  fatigue  for  107 full  superelastic cycles

Fatigue  test   of  the  full  superelastic transformation   at  10  Hz

0,000 0,005 0,010 0,015 0,0200

100

200

300

400

TTest = 70 °CAf = 65 °C

stre

ss /

MP

a

strain

cycle 1 cycle 200 cycle 107

Ti54Ni34Cu12

Page 9: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

9

17

Crystallographic Compatibility

ThinFilms  2016,  Singapore,  July  13th,  2016

Y. Song et al., Nature 502, 85-88 (2013)

Cofactors (CCI  and CCII)

The  low  fatigue  Ti-­rich  sample  satisfies   the  cofactor  conditions  better  than  the  near  equiatomic sample  

J. Cui et al., Nature Materials 5, 286-290 (2006)

middle  eigenvalue  (λ2)0

412dettr 222 ≥−−− aUU

{ } 0cof 2 =−• nIUUa

Science  348  (2015)  1004

18

Epitaxy in  Phase  Transformation

ThinFilms  2016,  Singapore,  July  13th,  2016

Occurrence  of  Ti2Cu  precipitates  only  in  the  Ti-­rich  TiNiCu thin  film

Science  348  (2015)  1004

Page 10: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

10

19

Advantages  of Thin Film  Technology

ThinFilms  2016,  Singapore,  July  13th,  2016

Miniaturization Complex  Design  Options

Integration  ofFunctions Rapid  Prototyping

Fatigue  Life MaterialCombination

MicropatternedSurfaces

Excellent  Biocompatibility

Cost  effective(Batch  process)

Simple  Alloy  Optimization

0,000 0,005 0,010 0,015 0,0200

100

200

300

400

TTest = 70 °CAf = 65 °C

stre

ss /

MPa

strain

cycle 1 cycle 200 cycle 107

Ti54Ni34Cu12

20

Mechanical Thromboembolectomy

ThinFilms  2016,  Singapore,  July  13th,  2016

Deepak S  Nair,  MD  (Vascular Neurology INI  Stroke Center,  OSF  Saint  Francis  Medical Center)www.ini.org/.../Stroke-­101-­Deepak-­S-­Nair-­MD.ppt

Page 11: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

11

21

Thin Film  Stent  Retriever

ThinFilms  2016,  Singapore,  July  13th,  2016

strut thickness:  30  µm

internal structure hight:  10  µm

22

Transcatheter Aortic Valve Implantation

ThinFilms  2016,  Singapore,  July  13th,  2016

Edwards  Lifescience

Minimal  invasive  implantation

• Developed to  treat high  riskpatients

• First  ‚in  human‘  in  2002• Today  more than 60,000  implants worldwide

• Durability max.  15  years• Possible damage of  leaflets due  to high  crimping forces• Leaflet thickness 200   –350   µm

Biological valve

NiTi thin film  leaflets

• Long   durability• High   crimpability(superelasticity)• Leaflet thickness10  – 20  µm

Page 12: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

12

23

Fabrication of  NiTi Thin Film  Leaflets

ThinFilms  2016,  Singapore,  July  13th,  2016

Leaflet Forming &  Annealing

Forming Annealing

24

Patterned Leaflets

ThinFilms  2016,  Singapore,  July  13th,  2016

Fabrication of structuredheart valve leaflets

Diameter: 20 mmHeight: 18 mmFilm thickness: 10 and 15 µm

9.5 µm

24.6 µm

84.9 µm10  mm

1.

Cell seeding of smooth muscle cellsfor 7 days

Page 13: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

13

25

Performance  in  Comparison to Biological  Valve

ThinFilms  2016,  Singapore,  July  13th,  2016

Opening Phase Closing Phase

TiNiFull 10  µm

TiNiMesh 10  µm

Porcine

Opening cycle ofheart valves at a heart rate of 70 bpm

26

-­ Introduction

-­ Superelastic TiNi Thin Films   for Medical Devices

-­ Magnetoelectric Composites   for Biomagnetic Field  Sensors

-­ Principle-­ General  Features-­ Exchange-­biased Sensors-­ Tuning  Fork Sensors

-­ Conclusions and  Outlook

Outline

ThinFilms  2016,  Singapore,  July  13th,  2016

Page 14: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

14

27

Development  of a  biomagnetic interface to measure the magnetic fieldsof heart and brain currents

• magnetoelectric composites (magnetostrictive,   piezoelectric components)  as magnetic field sensors

• magnetoelectric sensor (array)  systems• medical applications of the biomagnetic interfaces

Focus  of the Collaborative  Research  Centre 1261

ThinFilms  2016,  Singapore,  July  13th,  2016

28

Magnetic  Fields  in  Medicine

ThinFilms  2016,  Singapore,  July  13th,  2016

earth  magnetic  field

urban  noise

magnetocardiography (MCG)

magnetoencophalography (MEG)

SQUID  noise

Frequency

Challenges:• small   signals• large  noise  level• no  cooling

Page 15: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

15

29

Natural  and Composite  Magnetoelectric Effects

ThinFilms  2016,  Singapore,  July  13th,  2016

Composite magnetoelectric effectcan be described as a product property:

magnetostrictive property * coupling* piezoelectric property

Composite  Magnetoelectric Effect in  Thin Films

ThinFilms  2016,  Singapore,  July  13th,  2016 30

Page 16: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

16

General  Features   of  Magnetoelectric Thin  Film  Sensors

31ThinFilms  2016,  Singapore,  July  13th,  2016

current noise ~ 1/f

voltage noise

amplification by mechanical resonancefrequency dependent noise sources

linear response over orders of magnitudeLOD minimum @ mechanical resonance

Appl.  Phys.  Lett.  2016(in  press)

32

Plate  Capacitor  vs.  Interdigital Electrodes:  αME

ThinFilms  2016,  Singapore,  July  13th,  2016

approximately factor 10  in  effect size

-2 -1 0 1 2

0

500

1000

1500

2000

Bbias / mT

α /

mV/

Oe

-2 -1 0 1 2

0

50

100

150

200

Bbias

/ mT

α /

mV/

Oe

Appl.  Phys.  Lett.,  103,  032902  (2013).

Page 17: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

17

33

Magnetoelectric  Effect  vs.  Magnetic  Bias  Field

• Magnetoelectric effect directly related to magnetostrictivesusceptibility (piezomagnetic coefficient)

• Magnetic bias field needed:  at  H=0  ME  effect almost vanishes

-4 -2 0 2 4-6

-4

-2

0

2

4

6

b (M

Pa)

µ0H (mT)-4 -2 0 2 4

dλ/d

H (a

.u.)

µ0H (mT)

-500

-250

0

250

500

αM

E (V

/cm

Oe)

bdλ/dHαME

33ThinFilms  2016,  Singapore,  July  13th,  2016

Mag

neto

stric

tionλ

(a.u

.)

λ

ThinFilms  2016,  Singapore,  July  13th,  2016 34

Biased ME  Sensors

External  bias:  • limits   miniaturization• crosstalk   in  sensor  arrays• adds  additional  noise  source

X

Y

sensor  array 3d  sensor

HEB H

MFMAFM

FMAFM

TNéel <  T  <  TCurie

T  <  TNéelExchange  Coupling

Intrinsic  bias  via  exchange  bias:

Page 18: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

18

35

Si

Ta

35

Exchange  Biased  Magnetoelectric  Sensor  

CuMnIr

magnetostrictive

AlN

TaCuMnIr

magnetostrictive

••• x  times

AlN  2  µm

650  µm  x  3  mm  x  25  mm  Si  cantileverwith  trench

Fe50Co50 or  Fe70.2Co7.8Si12B10 tFM

Mn70Ir30 7  nm              (111)  textured

Cu  3  nmTa  7  nm

seed

total   thickness  of  magnetostrictive layerapprox.  1  µm

ThinFilms  2016,  Singapore,  July  13th,  2016

36

-5 0 5

-100

-50

0

50

100

αΜΕ

/ V /

cmO

e

µ0H / mT)

36

Exchange  Biased  Magnetoelectric  Sensor  

Fe70.2Co7.8Si12B10

f  =  1.2kHz

8  x  (tFM =  130nm)<-­>  1040nm   FeCoSiB

ThinFilms  2016,  Singapore,  July  13th,  2016

Nature  Materials  11  (2012),  523-­529.  

no  bias  field  needed

Page 19: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

19

37

Tuning  Fork Magnetoelectric Sensor

ThinFilms  2016,  Singapore,  July  13th,  2016

• vibrations  cancel  out• magnetic  field  induced  strains  add  up

• high  LoD in  less   shielded  environments

single sensor

tuning fork

Sensors  and Actuators A:  237  (2016),  91-­95

38

-­ Introduction

-­ Superelastic TiNi Thin Films   for Medical Devices

-­ Magnetoelectric Composites   for Biomagnetic Field  Sensors

-­ Conclusions and  Outlook

Outline

ThinFilms  2016,  Singapore,  July  13th,  2016

Page 20: Smart&ThinFilms& for MedicalApplications · ) Fabrication methode allows realizationof6thin film6 medical implants with newfeatures that open6up6new application areas) ME6compositesshow

20

39ThinFilms  2016,  Singapore,  July  13th,  2016

-­ Superelastic TiNi thin films show unique properties

-­ Fabrication methode allows realization of  thin film  medicalimplants with new features that open  up  new application areas

-­ ME  composites show a  LoD below the pT range (at  resonance)

-­ Exchanged biased sensors do  not  require a  magnetic bias fieldfor operation

-­ Tuning  fork sensors are less sensitive   to vibrations and acousticnoise

Summary

40

Acknowledgements

ThinFilms  2016,  Singapore,  July  13th,  2016

Team  in  Kiel,  especially:

Dr.  Rodrigo  Lima  de  Miranda(CEO  Acquandas)-­ SMA  Technology   -­

Dr.  Dirk  Meyners-­ ME   Composites  -­

Prof.  Manfred  Wuttig,  University  of  Maryland