SIR Transmission Model of Dengue Virus Taking Into Account ... · dengue fever possibly become an...

19
© 2015 R. Sungchasit, P. Pongsumpun and I.M. Tang. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. American Journal of Applied Sciences Original Research Paper SIR Transmission Model of Dengue Virus Taking Into Account Two Species of Mosquitoes and an Age Structure in the Human Population 1 R. Sungchasit, 1 P. Pongsumpun and 2,3 I.M. Tang 1 Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand 2 Department of Materials Science, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao Chatuchak, Bangkok 10900, Thailand 3 Department of Physics, Faculty of Science, Mahidol University, Rama 6 road, Bangkok 10400, Thailand Article history Received: 30-07-2014 Revised: 10-05-2015 Accepted: 22-06-2015 Corresponding Author: P. Pongsumpun Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand Email: [email protected] Abstract: Dengue is a vector-borne disease. It is transmitted to humans by the bites of the Aedes aegypti and Aedes albopictus mosquitoes. The human population is separated into two classes, a child class and an adult class, each class being described by a SIR model. The transmission rates of the two mosquito species are different and depend on what class the humans belong to. We develop a single model taking into account the presence of two type of mosquitoes and two age classes and apply it to dengue fever. The model shows how it is possible for the maximum level of infected human to be reached in a short time. The nature of stability of the equilibrium state and the trajectories of the individual classes in the model are determined by the values of the basic reproduction number by setting the values of the parameters in the model to different values which reflect the environment in which the epidemic is occurring in the model. Keywords: Aedes Aegypti, Aedes Albopictus, Dengue Disease, Endemic Disease State, Equilibrium State, SIR Model Introduction Dengue fever is regarded as a serious infectious disease that risks about 2.5 billion people around the world, especially in tropical countries. It is a major epidemic disease occurred in Southeast Asia. Such epidemic arises due to climate change, knowledge of people and awareness on dengue fever so as to the dengue fever possibly become an endemic for a long time. Moreover, World Health Organization (WHO) (WHO, 2009) estimated 50 to 100 million cases worldwide. About 500,000 people are estimated to be infected by dengue hemorrhagic fever each year. Dengue fever is caused by four serotypes and they are closely related as a family of dengue virus 1 (DEN 1), virus 2 (DEN2), virus 3 (DEN3) and virus 4 (DEN4). There are viruses carried by two kinds of mosquitoes such as Aedes aegypti and Aedes albopictus. This disease is transmitted to the human though biting of mosquitoes. Recently, It was detected in Asia. However, Aedes aegypti is still the principal vector of dengue fever transmission. Another interesting fact is the shift of patients’ phenomena where dengue fever previously attacks children of primary school age, but now everybody is vulnerable to fever (Pongsumpun and Tang, 2001; Syafruddin and Noorani, 2012). Dengue virus is transmitted between the human by biting of an infected Aedes mosquito. When a vector bites someone who be infected with dengue virus, the virus is transferred to mosquitoes and it become infected mosquito. After the infected vector bites the susceptible human, then the virus move into the human bloodstream and it spreads throughout the body. Usually, the mosquitoes bite susceptible people during the day time. Dengue fever is the most common disease in urban areas. The outbreaks commonly occur during the rainy season when the mosquitoes heavily breed in standing water. The dengue fever cases are increasing worldwide. The complications of the disease are leading cases of serious illness and most death in children (Kerpaninch et al., 2001; Kabilan et al., 2003; Malhotra et al., 2006; Wiwanitkit, 2006; Pongsumpum, 2011; Joshi et al., 2002; Koenraadt et al., 2007). One of the major public health problems in many tropical and subtropical regions where Aedes aegypti and Aedes albopictus are present.

Transcript of SIR Transmission Model of Dengue Virus Taking Into Account ... · dengue fever possibly become an...

© 2015 R. Sungchasit, P. Pongsumpun and I.M. Tang. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

American Journal of Applied Sciences

Original Research Paper

SIR Transmission Model of Dengue Virus Taking Into

Account Two Species of Mosquitoes and an Age Structure in

the Human Population

1R. Sungchasit,

1P. Pongsumpun and

2,3I.M. Tang

1Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang,

Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand 2Department of Materials Science, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road,

Lat Yao Chatuchak, Bangkok 10900, Thailand 3Department of Physics, Faculty of Science, Mahidol University, Rama 6 road, Bangkok 10400, Thailand

Article history

Received: 30-07-2014

Revised: 10-05-2015

Accepted: 22-06-2015

Corresponding Author:

P. Pongsumpun

Department of Mathematics,

Faculty of Science, King

Mongkut’s Institute of

Technology Ladkrabang,

Chalongkrung Road,

Ladkrabang, Bangkok, 10520,

Thailand

Email: [email protected]

Abstract: Dengue is a vector-borne disease. It is transmitted to humans by

the bites of the Aedes aegypti and Aedes albopictus mosquitoes. The human

population is separated into two classes, a child class and an adult class,

each class being described by a SIR model. The transmission rates of the

two mosquito species are different and depend on what class the humans

belong to. We develop a single model taking into account the presence of

two type of mosquitoes and two age classes and apply it to dengue fever.

The model shows how it is possible for the maximum level of infected

human to be reached in a short time. The nature of stability of the

equilibrium state and the trajectories of the individual classes in the model

are determined by the values of the basic reproduction number by setting

the values of the parameters in the model to different values which reflect

the environment in which the epidemic is occurring in the model.

Keywords: Aedes Aegypti, Aedes Albopictus, Dengue Disease, Endemic

Disease State, Equilibrium State, SIR Model

Introduction

Dengue fever is regarded as a serious infectious disease that risks about 2.5 billion people around the world, especially in tropical countries. It is a major epidemic disease occurred in Southeast Asia. Such epidemic arises due to climate change, knowledge of

people and awareness on dengue fever so as to the dengue fever possibly become an endemic for a long time. Moreover, World Health Organization (WHO) (WHO, 2009) estimated 50 to 100 million cases worldwide. About 500,000 people are estimated to be infected by dengue hemorrhagic fever each year.

Dengue fever is caused by four serotypes and they are closely related as a family of dengue virus 1 (DEN 1), virus 2 (DEN2), virus 3 (DEN3) and virus 4 (DEN4). There are viruses carried by two kinds of mosquitoes such as Aedes aegypti and Aedes albopictus. This disease is transmitted to the human though biting of mosquitoes. Recently, It was detected in Asia. However, Aedes aegypti is still the principal vector of dengue fever transmission. Another interesting fact is the shift of patients’ phenomena where dengue fever previously attacks children of primary school age, but now everybody is

vulnerable to fever (Pongsumpun and Tang, 2001; Syafruddin and Noorani, 2012).

Dengue virus is transmitted between the human by biting of an infected Aedes mosquito. When a vector bites someone who be infected with dengue virus, the virus is transferred to mosquitoes and it become infected mosquito. After the infected vector bites the susceptible human, then the virus move into the human bloodstream and it spreads throughout the body. Usually, the mosquitoes bite susceptible people during the day time. Dengue fever is the most common disease in urban areas. The outbreaks commonly occur during the rainy season when the mosquitoes heavily breed in standing water. The dengue fever cases are increasing worldwide. The complications of the disease are leading cases of serious illness and most death in children (Kerpaninch et al., 2001; Kabilan et al., 2003; Malhotra et al., 2006; Wiwanitkit, 2006; Pongsumpum, 2011; Joshi et al., 2002; Koenraadt et al., 2007). One of the major public health problems in many tropical and subtropical regions where Aedes aegypti and Aedes albopictus are present.

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

427

It is noted that Aedes albopictus was the principal

vector in the 1940 s outbreaks in Japan (Hotta, 1998),

whereas, Aedes aegypti is commonly the principal

dengue vector in the tropical and subtropical regions.

Aedes aegypti is highly domesticated and exhibits

strong anthropophilia.

Traditional modeling in epidemiology focus on

stability equilibria, since this characterizes if a disease

will become endemic and this is a major concern for

public health officers. The concept of a basic

reproductive number (R0) was introduced and became

a modeling paradigm (Smith et al., 2012) for a very

recent review on the works by Ross and Macdonald

from a medical modeling point of view. In a fairly

large class of models, we can define R0

unambiguously and it can be shown that if R0<1, the

disease is extinct while if R0 >1 it becomes endemic

(Diekmann and Heesterbeek, 2000).

Hence, in this study, we analyze the SIR

(Susceptible-Infected-Recovered) equations for

human and SI (Susceptible-Infected) equations for

mosquitoes. The model will apply empirically on data

of dengue patients reports by Ministry of Public

Health, Thailand (2002-2012) as shown in Fig. 1. The

purpose of this paper is to study the age structural

model of dengue disease incorporated the influence of

Aedes aegypti and Aedes albopictus.

Mathematical Model

The SIR and SI simulates the spread of dengue virus

between host and vector populations. The model is based

on the Susceptible, Infected and Recovered (SIR) model

of infected disease epidemiology, which was adopted by

(Nuraini et al., 2007; Yaacob, 2007). The age structure is

introduced into a model, i.e., children and adults, then

we modify it by incorporating the different behaviors

of Aedes aegypti and Aedes albopictus. In Fig. 1, we

show the age distribution of the incidence rates in one

province in Thailand during 2002-2012 epidemic. As

we see, most cases occur in children under the age of

15. However, a small number of cases do occur in

older people. Similar distributions are seen in the

other provinces in the country.

This model with age structure, the dynamics of each

component of the human is given by:

1 1

(1 sin )

(1 sin )

cc tc ac a

va c bc b vb c d c

dSP N t

dt

I S t I S S

β α ε

β α ε µ

= − +

− + − (1a)

11 1 1 1(1 sin )c

ac a va c c c d c

dIt I S I I

dtβ α ε κ µ= + − − (1b)

21 2 2 2(1 sin )c

bc b vb c c c d c

dIt I S I I

dtβ α ε κ µ= + − − (1c)

1 1 2 2c

c c c c d c

dRI I R

dtκ κ µ= + − (1d)

2 2

(1 sin )

(1 sin )

aa ta aa a

va a ba b vb a d a

dSP N t

dt

I S t I S S

β α ε

β α ε µ

= − +

− + − (1e)

11121 -)sin1( adaaavaaaa

a IISItdt

dIµκεαβ −+= (1f)

22 2 2 2(1 sin )a

ba b vb a a a d a

dIt I S I I

dtβ α ε κ µ= + − − (1g)

1 1 2 2a

a a a a d a

dRI I R

dtκ κ µ= + − (1h)

where the variables and parameters are defined in Table 1.

Fig. 1. Age distribution of the 2002-2012 Dengue fever incidence rates in Thailand

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

428

Table 1. Parameters for equations (1a)-(1h) and their definitions

Variable/parameter Definition

Sc, Ic1, Ic2, Rc The numbers of susceptible children, infected from Aedes

aegypti and Aedes albopictus in children and recovered children

Sa, Ia1, Ia2, Ra The numbers of susceptible adult, infected from Aedes aegypti and

Aedes albopictus in adult and recovered adult

Nt The total population

Ntc and Nta The total population in children and the total population in adult they are constant variables

Pc and Pa The birth rate of children and adult human

βac The transmission probability of dengue virus from Aedes aegypti to children

βbc The transmission probability of dengue virus from Aedes albopictus to children

βaa The transmission probability of dengue virus from Aedes aegypti to adult

βba The transmission probability of dengue virus from Aedes albopictus to adult

κc1 The rate at which the infected children from Aedes aegypti can recover

κc2

The rate at which the infected children from Aedes albopictus can recover

κa1 The rate at which the infected adult from Aedes aegypti can recover

κa2 The rate at which the infected adult from Aedes albopictus can recover

µd The natural death rate of human

aa The measure of influence on the transmission process from Aedes aegypti mosquito to human

ab The measure of influence on the transmission process from Aedes albopictus to human

ρva The measure of influence on the transmission process from Aedes aegypti to human

ρvb The measure of influence on the transmission process from Aedes albopictus to human

It we add Equation (1a) – (1h) together, we get:

1 2 1 2( ) ( )

t tc ta

c c c c a a a a

dN dN dN

dt dt dt

S I I R S I I R

= +

= + + + + + + +

The total children and adult populations are supposed to

have constant sizes, i.e., 0tcdN

dt= and 0tadN

dt= , the birth

rate would have to be equivalent to the death rate,

c a dP P µ= = in children and adult, respectively.

where, tcN is the total number of children and is

equivalent to 1 2c c c cS I I R+ + + ,

taN , the total population

in adult and is equal to 1 2a a a aS I I R+ + + .

The dynamics of mosquitoes is described by:

11 1 1 1(1 sin )

a a

vav va va c va v va

dSA t I S S

dtλ ρ ε µ= − + − (2a)

11 1 1 1(1 sin )

a

vava va c va v va

dIt I S I

dtλ ρ ε µ= + − (2b)

22 1 2 2(1 sin )

a a

vav va va a va v va

dSA t I S S

dtλ ρ ε µ= − + − (2c)

22 1 2 2(1 sin )

a

vava va a va v va

dIt I S I

dtλ ρ ε µ= + − (2d)

11 2 1 1(1 sin )

b b

vbv vb vb c vb v vb

dSA t I S S

dtλ ρ ε µ= − + − (2e)

11 2 1 1(1 sin )

b

vbvb vb c vb v vb

dIt I S I

dtλ ρ ε µ= + − (2f)

22 2 2 2(1 sin )

b b

vbv vb vb a vb v vb

dSA t I S S

dtλ ρ ε µ= − + − (2g)

22 2 2 2(1 sin )

b

vbvb vb a vb v vb

dIt I S I

dtλ ρ ε µ= + − (2h)

where, the variable and parameters are given in Table 2.

If we add Equation (2a)-(2h) together, we get:

1 11

( )a a

va vav v va

d S IA N

dtµ+

= − (3a)

2 22

( )a a

va vav v va

d S IA N

dtµ+

= − (3b)

1 11

( )b b

vb vbv v vb

d S IA N

dtµ+

= − (3c)

2 22

( )b b

vb vbv v vb

d S IA N

dtµ+

= − (3d)

where,

1vaN and 2vaN are the numbers of Aedes aegypti

in children and adult respectively, which is equal to

Sva1+Iva1 and Sva2 + Iva2. Nvb1 and Nvb2 are the numbers of

Aedes albopictus in children and adult respectively,

which is equal to Svb1 + Ivb1 and Svb2 + Ivb2. If the

numbers of mosquitoes are also constant each other (3a)-

(3d) gives 1 /a ava v vN A µ= , 2 /

a ava v vN A µ= , 1 /b bvb v vN A µ=

and 2 /b bvb v vN A µ= .

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

429

Table 2. Parameters for equations (2a)-(2g) and their definitions

Variable/ parameter Definition

Sva1 and Iva1 The number of susceptible and infected Aedes aegypti mosquitoes who be infected from children

avµ The death rate of Aedes aegypti mosquito

avA The carrying capacity of the environment for Aedes aegypit

λva1 The probability that a dengue virus transmitted to the Aedes aegypti from an infected children

Sva2 and Iva2 The number of susceptible and infected Aedes aegypti mosquitoes who be infected from adult

avµ The death rate of Aedes aegypti mosquito

avA The carrying capacity of the environment for Aedes aegypit mosquito

λva2 The probability that a dengue virus transmitted to the Aedes aegypti from an infected adult human

Svb1 and Ivb1 The number of susceptible and infected Aedes albopictus mosquitoes who be infected from children

bvµ The death rate of Aedes albopictus mosquito

bvA The carrying capacity of the environment for Aedes albopictus mosquito

λvb1 The probability that a dengue virus transmitted to the Aedes albopictus from an infected human in children

Svb2and Ivb2 The number of susceptible and infected Aedes albopictus mosquitoes who be infected from adult human

bvµ The death rate of Aedes albopictus mosquito

bvA The carrying capacity of the environment for Aedes albopictus mosquito

λvb2 The probability that a dengue virus transmitted to the Aedes albopictus from an infected adult

We normalize parameter (1a)-(1h) and (2a)-(2h) by

writing cc

tc

SS

N′ = , 1

1c

c

tc

II

N′ = , 2

2c

c

tc

II

N′ = , c

c

tc

RR

N′ = in children

and aa

ta

SS

N′ = , 1

1a

a

ta

II

N′ = , 2

2a

a

ta

II

N′ = , a

a

ta

RR

N′ = in adult.

11

1

vava

va

SS

N′ = , 1

1

1

vava

va

II

N′ = , 2

2

2

vava

va

SS

N′ = , 2

2

2

vava

va

II

N′ = ,

11

1

vbvb

vb

SS

N′ = , 1

1

1

vbvb

vb

II

N′ = , 2

2

2

vbvb

vb

SS

N′ = and 2

2

2

vbvb

vb

II

N′ = , then the

reduced equations become:

1 1 1 1

(1 sin )

(1 sin )

c d ac a

va va c bc b vb vb c d c

dS t

dt

I N S t I N S S

µ β α ε

β α ε µ

′ = − +

′ ′ ′ ′ ′− + − (4a)

1 1 1 1 1 1(1 sin )c ac a va va c c c d c

dI t I N S I I

dtβ α ε κ µ′ ′ ′ ′ ′= + − − (4b)

2 1 1 2 2 2(1 sin )c bc b vb vb c c c d c

dI t I N S I I

dtβ α ε κ µ′ ′ ′ ′ ′= + − − (4c)

2 2 2 2

(1 sin )

(1 sin )

a d aa a

va va a ba b vb vb a d a

dS t

dt

I N S t I N S S

µ β α ε

β α ε µ

′ = − +

′ ′ ′ ′ ′− + − (4d)

1 2 2 1 1 1(1 sin )a aa a va va a a a d a

dI t I N S I I

dtβ α ε κ µ′ ′ ′ ′ ′= + − − (4e)

2 2 2 2 2 2(1 sin )a ba b vb vb a a a d a

dI t I N S I I

dtβ α ε κ µ′ ′ ′ ′ ′= + − − (4f)

1 1 1 1 1(1 sin )ava va va c tc va v va

dI t I N S I

dtλ ρ ε µ′ ′ ′ ′= + − (4g)

2 2 1 2 2(1 sin )ava va va a ta va v va

dI t I N S I

dtλ ρ ε µ′ ′ ′ ′= + − (4h)

1 1 2 1 1(1 sin )bvb vb vb c tc vb v vb

dI t I N S I

dtλ ρ ε µ′ ′ ′ ′= + − (4i)

2 2 2 2 2(1 sin )bvb vb vb a ta vb v vb

dI t I N S I

dtλ ρ ε µ′ ′ ′ ′= + − (4j)

Where:

1 2 1 2

1 1 2 2 1 1 2 2

1, 1,

1, 1, 1 1

c c c c a a a a

va va va va vb vb vb vb

S I I R S I I R

S I S I S I and S I

′ ′ ′ ′ ′ ′ ′ ′+ + + = + + + =′ ′ ′ ′ ′ ′+ = + = + = + =

Mathematical Analysis

Equilibrium States

The equilibrium states * * * * * * * * * *

1 2 1 2 1 1 2 2( , , , , , , , , , )

c c c a a a va vb va vbS I I S I I I I I I are obtained by

setting the right hand side of (4a)-(4j) to zero.

Therefore we obtain * * * * *

1 2 1 1( , , , , )

c c c va vbS I I I I and * * * * *

1 2 2 2( , , , , )

a a a va vbS I I I I . Doing this,

we get four equilibrium states.

A. The two group disease free equilibrium state:

( )0E = 1, 0, 0, 1, 0, 0, 0, 0, 0, 0

A1.the disease free equilibrium state:

( )* * * * *

oc c c1 c2 va1 vb1E =( S ,I ,I , I ,I )= 1, 0, 0, 0, 0 in children

A2.the disease free equilibrium state:

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

430

( )* * * * *

0a a a1 a2 va2 vb2E =(S ,I ,I ,I ,I )= 1, 0, 0, 0, 0 in adult

B. The two group endemic equilibrium state:

),,,,,,,,,(ˆ *2

*2

*2

*1

**1

*1

*2

*1

*vbvaaaavbvaccc IIIISIIIISE =

B1.the endemic state:

* * * * *

1c c c1 c2 va1 vb1E = ( S , I , I ,I ,I ) in children

Where:

1 2 1

1*

* *

1 1 1 1 1 1

1

( ( )

sin )

( ( (

)sin )(1 sin )))

t c d v b c d vb

tc d vb v b

c

t c v b v a v a ac v b b c d v a va

a a c v b b bc v b

N

N tS

N I N N I N

N t t

µ λ κ µ µ

µ λ ρ ελ β β µ

α β α β ε ρ ε

+ +

+=

+ + +

+ +

(5a)

*

1 1 1

2 1*

1 *

1 1 1 1 1

*

1 1 1

(1 sin )(

( ) sin ))

( ( )(

( ) sin ) (1 sin ))

b

va v a ac a tc d vb

c d v tc d vb vb

c

tc vb c d va va ac vb bc d

va v a a ac vb b bc vb

I N t N

N tI

N I N N

I N N t t

β α ε µ λ

κ µ µ µ λ ρ ελ κ µ β β µ

α β α β ε ρ ε

+

+ + +=

+ + + +

+ +

(5b)

*

1 1 1

2 1*

2 * *

1 2 1 1 1 1

*

1 1 1

( (1 sin )(

( ) sin ))

( ( )(

( )sin )(1 sin ))

b

vb vb bc b tc vb d

c d v tc vb d vb

c

tc vb c d va va ac vb vb bc d

va va a ac vb b bc vb

I N t N

N tI

N I N I N

I N N t t

β α ε λ µκ µ µ λ µ ρ ε

λ κ µ β β µ

α β α β ε ρ ε

+

+ + +=

+ + + +

+ +

(5c)

*

1 1 1

1 1 2

1 1 2

1 1 1

1 1 1

1 1 2

1

[(2( 2 ( )

2 ( )

( )

( ) (2 )

(2 ( )))

2( ( )

a

b

b a

b

va vb d c d v

va ac va c d v

va a ac va c d

v va vb bc vb c d v b vb

tc va ac va vb d va vb a va vb

va a ac va c d v va

vb b bc vb

I

N

N

N

N N

N

N

λ µ κ µ µ

β λ κ µ µ

α β λ κ µ

µ ρ β λ κ µ µ α ρ

β λ λ µ ρ ρ α ρ ρ

α β λ κ µ µ ρ

α β λ

= − +

+ +

+ +

− + +

+ + + +

− +

− 1 1

1 1 1

1 1 2

1 1 1 1 1

1 1 1

( )

( ( )))cos

2 (4( ( ) ( )

( ) ( ) ( ))

(4( )

(4 3 )))sin

a

b

a a

c d v vb

tc va ac va vb d va vb a va vb

va ac va c d v a va

vb d c d v vb bc vb c d v b vb

tc va ac va vb d va vb

a va vb

N N

t N

N

N N

t

κ µ µ ρ

β λ λ µ ρ ρ α ρ ρ

ε β λ κ µ µ α ρ

λ µ κ µ µ β λ κ µ µ α ρ

β λ λ µ ρ ρ

α ρ ρ ε

+

+ + +

+ + +

− + − + +

+ +

+ +

1 1 1

1 1 1

1 2 2

1 1 1 1

1 2 1 1

sin )]

/[(2 (1 sin )(2 ( )

2 ( ) ( )

(2 ) cos 2

2( ( ) ( )

a

b b

b b

tc va a ac va vb d va vb

va ac a vb c d v

va c d v c d v

tc d va vb va vb tc d va vb va vb

va c d v va vb c d v vb

tc d

N N t

N t

N N t

N

α β λ λ µ ρ ρ ε

β α ε λ κ µ µ

λ κ µ µ κ µ µ

µ λ λ ρ ρ µ λ λ ρ ρ ε

λ κ µ µ ρ λ κ µ µ ρ

µ λ

+ +

+ + +

+ + −

+ + + +

+ 1 1 ( ))sin ))]va vb va vb tλ ρ ρ ε+ (5d)

* *

1 1 1 1 1 2

*

1 1 2

1 1

1 1

1 1

2 1

[( ( )( )

sin ( ( )

( )

sin ))]

/[ (1 sin )(

( ) sin

b

b

b

vb tc vb ac vb d va va ac d c d v

va va a ac c d v

tc vb bc vb d b vb

tc vb b bc vb d vb

vb bc b tc vb d

c d v tc vb d vb

I N N I N

t I N

N N

N N t

N t N

N

β λ µ β µ κ µ µ

ε α β κ µ µ

β λ µ α ρ

α β λ µ ρ ε

β α ε λ µ

κ µ µ λ µ ρ ε

= − + +

+ − +

+ +

+

+

+ + + ))]t

(5e)

B2. The endemic state:

* * * * *

1 1 2 2 2( , , , , )

a a a a va vbE S I I I I in adult=

Where:

2 2 2*

*

2 2 2 2

*

2 2 2

( ( ) sin )

( (

( )sin )(1 sin )))

bta d vb a d v ta d vb vb

a

ta vb va va aa vb ba d

va va a aa vb b ba vb

N N tS

N I N N

I N N t t

µ λ κ µ µ µ λ ρ ελ β β µ

α β α β ε ρ ε

+ + +=

+ +

+ + +

(6a)

*

2 2 2

2 2*

1 *

2 1 2 2 2

*

2 2 2

(1 sin )(

( ) sin ))

( ( )(

( )sin )(1 sin ))

b

va va aa a ta d vb

a d v t a d vb vb

a

ta vb a d va va aa vb ba d

va va a aa v b b ba vb

I N t N

N tI

N I N N

I N N t t

β α ε µ λ

κ µ µ µ λ ρ ελ κ µ β β µ

α β α β ε ρ ε

+

+ + +=

+ + +

+ + +

(6b)

* *

2 2 2 2

2 2

*

2 2 2 2

* *

2 2 2 2

2

[( (1 sin )(

( ) sin ))

/ ( )(

(

)sin )(1 sin ))]

b

a vb vb ba b ta vb d

a d v ta vb d vb

ta vb a d va va aa

vb vb ba d va va a aa

vb b ba vb

I I N t N

N t

N I N

I N I N

N t t

β α ε λ µκ µ µ λ µ ρ ε

λ κ µ β

β µ α β

α β ε ρ ε

= ++ + +

+

+ + +

+ +

(6c)

*

2 2 1 2 2 2

2 2 2

2 2 1

2 2 2

2 2 2

2

[(2( 2 ( ) 2 ( )

( )

( ) (2 )

(2 ( )))

2( ( )

a b

b

a

b

va vb d a d v va aa va a d v

va a aa va a d v va

vb ba vb a d v b vb

ta va aa va vb d va vb a va vb

va a aa va a d v va

vb b ba vb

I N

N

N

N N

N

N

λ µ κ µ µ β λ κ µ µ

α β λ κ µ µ ρ

β λ κ µ µ α ρ

β λ λ µ ρ ρ α ρ ρ

α β λ κ µ µ ρ

α β λ

= − + + +

+ +

− + +

+ + + +

− +

− 2 1

2 2 2

2 2 2

2 1 2 2 1

2 2 2

( )

( ( )))cos2

(4( ( ) ( )

( ) ( ) ( ))

(4( )

(4 3 ))) sin

a

b

a a

a d v vb

ta va aa va vb d va vb a va vb

va aa va a d v a va

vb d a d v vb ba vb a d v b vb

ta va aa va vb d va vb

a va vb

N N t

N

N

N N

t

κ µ µ ρ

β λ λ µ ρ ρ α ρ ρ ε

β λ κ µ µ α ρ

λ µ κ µ µ β λ κ µ µ α ρ

β λ λ µ ρ ρα ρ ρ ε

+

+ + +

+ + +

− + − + +

+ +

+ +

2 2 2

2 2 1

2 2 2 2 2

2 2 2 2

2 1

sin )]

/[(2 (1 sin )(2 ( )

2 ( ) ( ) (2 )

cos2 2( ( )

( )

a

b b

b

a

ta va a aa va vb d va vb

va aa a vb a d v

va a d v a d v ta d va vb va vb

ta d va vb va vb va a d v va

vb a d v vb ta d

N N t

N t

N

N t

N

α β λ λ µ ρ ρ ε

β α ε λ κ µ µ

λ κ µ µ κ µ µ µ λ λ ρ ρ

µ λ λ ρ ρ ε λ κ µ µ ρ

λ κ µ µ ρ µ λ

+ +

+ + + + +

− + +

+ + + 2 2 ( ))sin ))]va vb va vb tλ ρ ρ ε+

(6d)

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

431

* *

2 2 2 2 2 2

*

2 2 2

2 2

2 2

2 2 2

2

[( ( )( )

sin ( ( )

( )

sin ))]/

[ (1 sin )( ( )

sin

b

b

b

vb ta vb aa vb d va va aa d a d v

va va a aa a d v

ta vb ba vb d b vb

t a vb b ba vb d vb

vb ba b ta vb d a d v

ta vb d vb

I N N I N

t I N

N N

N N t

N t N

N

β λ µ β µ κ µ µ

ε α β κ µ µ

β λ µ α ρ

α β λ µ ρ ε

β α ε λ µ κ µ µ

λ µ ρ ε

= − + +

+ − +

+ +

+

+ + +

+ ))]t

(6e)

Local Asymptotically Stability

The local stability of each equilibrium state is

determined from Jacobian matrix of right hand side of

the above set of differential equations evaluated at the

equilibrium state.

Proposition A. If S0<1, S0c<1 and S0a<1when ε = 0,

then the disease free equilibrium state E0c in children and

E0a in adult are locally asymptotically stable, where:

1 1 1

1 1 1 2

1

1 1 1

1 1 2

1

0

2 ( )

(2( ( ) )

(2 ) 2 ( ))

(2 ( ) (2 (2 ))

2 ( ( )

( ( ) )))max

a

b

a

b

vb b bc vb c d v vb

va ac va tc vb d c d v

a va tc vb d a va

vb c d v d vb bc b vb

va ac va a c d v va

tc vb d a va a va vb

N

N N

N

N

N

NS

α β λ κ µ µ ρ

β λ λ µ κ µ µ

α ρ λ µ α ρλ κ µ µ µ β α ρ

β λ α κ µ µ ρ

λ µ α ρ α ρ ρ

+ +

+ +

+ + ++ + +

+ +

+ + +=

2 2 1

2 2 2 2

2

2 1 2

2 2 2

2

,

2 ( )

(2( ( ) )

(2 ) 2 ( ))

(2 ( ) (2

(2 )) 2 ( ( )

( ( ) )))

a

b

a

b

vb b ba vb a d v vb

va aa va ta vb d a d v

a va ta vb d a va

vb a d v d vb ba

b vb va aa va a a d

v va ta vb d a va a va vb

N

N N

N

N

N

N

α β λ κ µ µ ρ

β λ λ µ κ µ µ

α ρ λ µ α ρλ κ µ µ µ β

α ρ β λ α κ µ

µ ρ λ µ α ρ α ρ ρ

+

+ + +

+ + ++ +

+ + +

+ + +

(6f)

1 1 1

1 1 1 2

10

1 1 1

1 1 2

1

2 ( )

(2( ( ) )

(2 ) 2 ( ))

(2 ( ) (2 (2 ))

2 ( ( )

( ( ) )))

in

a

b

a

b

vb b bc vb c d v vb

va ac va tc vb d c d v

a va tc vb d a vac

vb c d v d vb bc b vb

va ac va a c d v va

tc vb d a va a va vb

N

N N

NS

N

N

N

α β λ κ µ µ ρ

β λ λ µ κ µ µ

α ρ λ µ α ρλ κ µ µ µ β α ρ

β λ α κ µ µ ρ

λ µ α ρ α ρ ρ

+

+ + +

+ + +=

+ + +

+ +

+ + +

children

(6g)

2 2 1

2 2 2 2

2

0

2 1 2

2 2 2

2

2 ( )

(2( (

) )(2 ) 2 ( ))in

(2 ( ) (2 (2 ))

2 ( ( )

( ( ) )))

a

b

a

b

vb b ba vb a d v vb

va aa va ta vb d a

d v a va ta vb d a va

a

vb a d v d vb ba b vb

va aa va a a d v va

ta vb d a va a va vb

N

N N

NS

N

N

N

α β λ κ µ µ ρ

β λ λ µ κ

µ µ α ρ λ µ α ρλ κ µ µ µ β α ρ

β λ α κ µ µ ρ

λ µ α ρ α ρ ρ

+

+ +

+ + + +=

+ + +

+ +

+ + +

adult (6h)

Proof.

For the disease free equilibrium state in children E0c

= (1, 0, 0, 0, 0) and in adult E0a = (1, 0, 0, 0, 0).

The system defined by Equation (4a) - (4j), the

Jacobian matrix evaluated at E0c and E0a respectively,

given by:

1 1

1 1

2 1

1 1

1 1

( ) 0 0 (1 sin ( ))

(1 sin ( ))

0 ( ) 0 (1 sin ( )) 0

0 0 ( ) 0 (1 sin ( ))

0 (1 sin ( )) 0 0

0 0 (1 sin ( )) 0

d a c a

va bc b vb

c d ac a va

c

c d bc b v b

v a v a va

v b v b v b

t

N t N

t NJ

t N

t

t

µ β α ε

β α ε

κ µ β α ε

κ µ β α ε

λ ρ ε µ

λ ρ ε µ

− − +

− +

− + + = − + + + −

+ −

(7a)

2

2

1 2

2 2

2 2

2 2

( ) 0 0 (1 sin ( ))

(1 sin ( ))

0 ( ) 0 (1 sin( )) 0

0 0 ( )0 (1 sin ( ))

0 (1 sin ( )) 0 0

0 0 (1 sin ( ))0

d aa a va

ba b vb

a d aa a vaa

a d ba b vb

va va va

vb vb vb

t N

t N

t NJ

t N

t

t

µ β α ε

β α ε

κ µ β α ε

κ µ β α ελ ρ ε µ

λ ρ ε µ

− − + − + − + + = − + +

+ − + −

(7b)

The eigenvalues are obtained by solving the

characteristic equations, det ηI5-Ji= 0. Where I5 is the

5×5 identity matrix and Ji(Ji; i = c,a) is the Jacobian matrix

matrix for (7a) and (7b), respectively. To evaluate the

determinant, we get the following characteristic equations:

4 3 2

1 2 3 4( )( ) 0

dW W W Wη µ η η η η+ + + + + = (8a)

4 3 2

1 2 3 4( )( ) 0

dF F F Fη µ η η η η+ + + + + = (8b)

Where:

1 1 2 2a bc c d v vW κ κ µ µ µ= + + + + (9a)

2 1 1 1 1

2

2 1 2

)

2 2

( ) ( )

a b a b

a b a b

va ac va vb bc vb

d d v d v v v

c d v v c c d v v

W N Nβ λ β λ

µ µ µ µ µ µ µ

κ µ µ µ κ κ µ µ µ

=− −

+ + + +

+ + + + + + +

(9b)

3 1 2 1 1 1

1 2 1 2

1 1 2 1 2

( )( ) ( )

(( )( ) ( 2 ) )

( ) ( ( ))

a a

a

b b b

c d c d v vb bc vb c d v

c d c d c c d v

v va ac va c d v ac va c d v

W N

N

κ µ κ µ µ β λ κ µ µ

κ µ κ µ κ κ µ µ

µ β λ κ µ µ β λ κ µ µ

= + + − + +

+ + + + + +

− + + + + +

(9c)

4 1 1 1

1 1 2

( ( ) )

( ( ) )

a

b

va ac va c d v

vb bc vb c d v

W N

N

β λ κ µ µ

β λ κ µ µ

= − +

+ + (9d)

1 1 2 2a ba a d v vF κ κ µ µ µ= + + + + (9e)

2

2 2 2 2 2

2 1 2

) 2 2

( ) ( )

a b

a b a b a b

va aa va vb ba vb d d v d v

v v a d v v a a d v v

F N Nβ λ β λ µ µ µ µ µ

µ µ κ µ µ µ κ κ µ µ µ

=− − + + +

+ + + + + + + + (9f)

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

432

3 1 2 2 2 1

1 2 1 2

2 2 2 2 2

( )( ) ( )

(( )( ) ( 2 ) )

( ) ( ( ))

a a

a b

b b

a d a d v vb ba vb a d v

a d a d a a d v v

va aa va a d v aa va a d v

F N

N

κ µ κ µ µ β λ κ µ µ

κ µ κ µ κ κ µ µ µ

β λ κ µ µ β λ κ µ µ

= + + − + +

+ + + + + +

− + + + + +

(9g)

4 2 2 1 2 2 2( ( ) )( ( ) )a bva aa va a d v vb ba vb a d vF N Nβ λ κ µ µ β λ κ µ µ= − + + + (9h)

From the characteristic equation, Equation (8a)-(8b),

we see that eigenvalues are c dη µ=− and

a dη µ=− , all of

these eigenvalues are negative, for 0

1S < . The sign of

other four eigenvalues can be ascertained by solving

equation 4 3 2

1 2 3 4( ) 0W W W Wη η η η+ + + + = and

4 3 2

1 2 3 4( ) 0F F F Fη η η η+ + + + = . The remaining four

eigenvalues have negative real parts if they satisfy

Routh-Hurwitz criteria (10a) - (10d) (Esteva and Vargas,

1998), each equilibrium state is locally asymptotically

stable if the following conditions are satisfied:

1 1 0W and F > (10a)

3 3 0W and F > (10b)

4 4 0W and F > (10c)

2 2

1 2 3 3 1 4 1 2 3 3 1 4( ) 0 ( ) 0WW W W W W and F F F F F F− + > − + > (10d)

After we use Mathematica to show the conditions

of locally asymptotically stable, we can see that W1

and F1 are always positive. For the equations given by

(10b)-(10d), we show these conditions by using the

following Fig. 2.

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

433

Fig. 2. The parameter spaces for the disease free equilibrium state, which satisfies the Routh-Hurwitz conditions, show onto

),( 31 Wcκ , ),( 32 Wcκ , ),( 31 Faκ , ),( 32 Faκ , ),( 41 Wcκ , ),( 42 Wcκ , ),( 41 Faκ , ),( 42 Faκ , )))((,( 42

133211 WWWWWWc −−κ ,

)))((,( 42

133211 WWWWWWc −−κ , )))((,( 42

133211 FFFFFFa −−κ , )))((,( 42

133212 FFFFFFa −−κ , respectively. The values of

parameter are follows: )2/17(/11 =cκ , )2/19/(12=cκ , )6.74*365/(1=dµ day−1, 9000=tcN , 40001 =vaN , 55001 =vbN , 00769.0=acβ ,

000246.0=bcβ , 00000576.01 =vaλ , 00000335.01 =vbλ , 07.0=aα , 067.0=bα and 100000=tN , )2/19(/11 =aκ , )2/21/(12 =aκ ,

)6.74*365/(1=dµ day−1, 6000=taN , 30002 =vaN , 41002 =vbN , 000045.0=aaβ , 000067.0=baβ , 0066.02 =vaλ , 00235.02 =vbλ ,

07.0=aα , 067.0=bα and 100000=tN . From the above figures, the Routh-Hurwitz conditions are satisfied for 10 >S

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

434

Endemic Disease State

Proposition B. If S0>1, when 0ε = , then the equilibrium

state * * * * * * * * * *

1 2 1 1 1 2 2 2ˆ ( , , , , , , , , , )

c c c va vb a a a va vbS S I I I I S I I I I= is

locally asymptotically stable.

Proof.

For the endemic disease equilibrium

state * * * * *

1 1 2 1 1( , , , , )

c c c c va vbE S I I I I= in children and

* * * * *

1 1 2 2 2( , , , , )

a a a a va vbE S I I I I= in adult, we obtain the

characteristic equation:

5 4 3 2

1 2 3 4 5( ) 0D D D D D in childrenη η η η η+ + + + + = (11a)

5 4 3 2

1 2 3 4 5( ) 0G G G G G in adultη η η η η+ + + + + = (11b)

Where:

1 1 1 1 2 1 2 3a bva ac vb bc c c d v vD N Nβ θ β θ κ κ µ µ µ= + + + + + + (12a)

2

2 1 2 1 2 1 2 1

1 2 1 1

1 1 1 1 2 1 1 2

1 1 1 1 2

1 1 1 1 1

2 2 3

3 ( 3 )

( ( / ) ( 2

( / ) ))

( ( /

a

a b

a b

c c c d c d d c v c va

d v c c d va v va ac

va d va ac vb bc d c c d

va d va ac vb bc d v v

vb bc vb d va ac vb

D

N

N N

N N

N N N

κ κ κ µ κ µ µ κ µ κ µ

µ µ κ κ µ µ µ β

λ µ β θ β θ µ θ κ κ µ

λ µ β θ β θ µ µ µ

β λ µ β θ β

= + + + + +

+ + + + +

− + + + +

+ + + +

+ − + 2 2 1

2 1 1 1 1 2

) (

2 ( / ) ))a b

bc d c

c d vb d va ac vb bc d v vN N

θ µ θ κ

κ µ λ µ β θ β θ µ µ µ

+

+ + + + +

(12b)

2 2 2 2

3 1 1 1

1 1 1 2

2 1 2

2 2 2

1 2

2

2 1 2

2

2

1( ( 2

2 ( ) (

))

( 2 2

( ) (

)) ( ( 2 (

b a b a b

a b

a b

a b a b a

b a b

va ac d d va

va ac vb bc d

d v v v c d v v c c d

v v vb bc

d d v d v

v v c d v v c c d v

v d c d v v d

D NN N

N

β θ µ µ µβ θ β θ µ

µ µ µ µ κ µ µ µ κ κ µ

µ µ β θ

µ µ µ µ µ

µ µ κ µ µ µ κ κ µ µ

µ µ κ µ µ µ µ

= ++ +

+ + + + + + +

+ + +

+ +

+ + + + + + +

+ + + +2 2

1

2 1

1 1 2 2 1

2 1 2

2

))

( 3 3 ( )) (

2 ( ) ( )))

( ( 2 ) ( (2 (

) (3 5 ) ) ( (3 )

(5 4 )) (2

a b

a b a b a b

a b a b

a

a a

a b a

v v

d d v v d v v c d v v

d v v c d v v vb bc

vb d c d v d d c vb

d c vb d v c d v

d d v v c d v

N

µ µ

µ µ µ µ µ µ µ κ µ µ µ

µ µ µ κ µ µ µ β

λ µ κ µ µ θ µ µ κ λ

µ κ λ µ µ κ µ µ

µ µ µ µ κ µ µ

+

+ + + + + +

+ + + + + +

− + + + +

+ + + + + +

+ + + + +

1 1

2 1 2 1

2

1

2

1 1

2

1 2 1 1 1 2

))))

(

( 2 ) ( (

2 3 ) (3 )

(2 ( )

5 ( 5 4 ) ) (2

3 ( ) (2 )))

( ( (

b

b

b a b

a a b a b

a b a b

v

va ac va d

c d v c d va

d v c d v v

d d va d

d v va d v v c d v v

d v v c d v v

vb bc va d vb d

N

N

µ

β λ µ

κ µ µ θ κ µ λ

µ µ κ µ µ µ

µ µ λ µ

µ µ λ µ µ µ κ µ µ µ

µ µ µ κ µ µ µ

β θ λ µ θ λ µ θ

+ −

+ + +

+ + + +

+ +

+ + + + + +

+ + + + +

+ − + − + 1 1

2

1 2

(

2 4 ) 2(2 )

2 ( )

2 ( ))))))

a b b

a b

a b

d va vb

d v d v v

c d v v

c c d v v

µ λ λµ µ µ µ µ

κ µ µ µ

κ κ µ µ µ

+

+ + + +

+ + +

+ + + +

(12c)

2 2 3

4 1 2 1 2 1 2

2 2 3

1 2 1 2 1

3

2

1 1 1 2

2

1 2 1 2 1 1

2

12 3

(( 1 ) ( 2 ) (

a a a a b

b b b a b a b

a b a b

a

c c d v c d v c d v d v c c d v

c d v c d v d v c c v v c d v v

c d v v d v v

va ac vb b c d

vb bc vb d d v va ac

D

N N

N N N

κ κ µ µ κ µ µ κ µ µ µ µ κ κ µ µ

κ µ µ κ µ µ µ µ κ κ µ µ κ µ µ µ

κ µ µ µ µ µ µβ θ β θ µ

β θ λ µ µ µ θ β θ

= + + + +

+ + + + +

+ + ++ +

− + + + + 1 2

2 2 2

1 2 1 2 1 1 1 2 2

2 22 1 1 2 1

2 1

1 1 1 2 1

)

( ( ) ( ( ) ( 2 ) ) )

(( 1 ) ( 2 ) ( ) (( )

( ) ))) (

a a b

a a

a b

vb bc d

d c d v d c d c d v v

c vb d d v va a c vb bc d c d v

c v a d c va dc d v v va ac

va ac vb bc d va

N N

NN N N

β θ µ

µ κ µ µ µ κ µ κ µ µ µ

κ θ λ µ µ µ θ β θ β θ µ κ µ µ

κ λ µ θ κ λ µκ µ µ µ ββ θ β θ µ

+

+ + + + +

+ − + + + + + +

+ + + + − ++ + 1 1 2

3 3

1 1 1

1 1 2 1 1

1 1 1 2 1 1 1 2

2 2

1 2 1 1 1 2 1 1 1 2 1

2 1

1 1 1 2

a a

a a b b b b

b

ac vb bc d

va d v a d

c c v c d v

va ac vb bc d va ac vb bc d

c d v d v c c v c d v c d v d v

c va d v

va ac vb bc

N

N N N N

N N

β θ β θ µ

λ µ θ λ µθ κ κ µ θ κ µ µ

β θ β θ µ β θ β θ µ

θ κ µ µ θ µ µ θ κ κ µ θ κ µ µ θ κ µ µ θ µ µ

κ λ µ µβ θ β θ µ

+ +

− + + ++ + + +

+ + + + + +

−+ +

2 2

1 2 1 1 1 1

1 1 1 2 1 1 1 2 1 1 1 2

1 1 1 2 1 1 1 12

1 1 1 2

1 1

2 2

12 (

( )

( (

b b b

a b a b a b

c va d v va d v v a d v

d va ac vb bc d va ac vb bc d va ac vb bc d

c v v c v v d v v vb bc d va ac

va ac vb bc d

vb

N N N N N N

N NN N

θ κ λ µ µ λ µ µ θ λ µ µβ θ β θ µ β θ β θ µ β θ β θ µ

θ κ µ µ θ κ µ µ θ µ µ µ β µ β θβ θ β θ µ

θ λ κ

+ − ++ + + + + +

+ + + ++ +

−1 2 1 2 .1 1 1 1 1 1

1 2 1 1 1 2 1 2 1 1 1 1 1 1

1 1 1 1 1

) (( 1 ) ( ) ( ( ) ( ))))

( ( ) (( 1 ) ( ) ( ( )

( )))) ( ( (

a b a b

a a

b

c d v c va va d v vb c d v va d v

vb bc vb c d v c va va d vb vb c d v

va d v d vb va c

N

µ µ θ θ κ λ λ µ µ θ λ κ µ µ λ µ µ

β θ θ λ κ µ µ θ θ κ λ λ µ µ θ λ κ µ µ

λ µ µ µ λ λ θ κ λ

+ + + − + − + + + + + +

+ − + + + − + − + + + +

+ + + − − + + 1 2 1 2 1 1 1

1 1 1 1 1 1

)) (( 1 ) ( )

( ( ) ( ))))))

a b

a b

va d v c va va vb d v

c vb vb d v va vb d v

µ µ θ θ κ λ λ λ µ µ

θ κ λ λ µ µ λ λ µ µ

+ + + − + − + + +

+ + + + + (12d)

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

435

3 3 3

5 1 1 1 2 12

1 1 1 2

2 2

1 2 1 1 2 1 1 2 2

2 2

1 1 1 1 2 1 1 1 2

1( ( ) ( )

( )

( ) ( ) ( ( 1 ) ( ) ( ) )

( ( 1 ) ( ) (

b

a b

a

va ac c d c d va v

va ac vb bc d

vb bc d c d v vb b c vb d vb bc d c d v

va ac vb bc vb d c d v vb bc

D NN N

N N N

N N N

β θ κ µ κ µ µ µβ θ β θ µ

β θ µ κ µ µ β θ λ µ β θ µ κ µ µ

β θ β θ θ λ µ κ µ µ β θ µ

= + ++ +

+ + + − + + + +

+ − + + + + 2

2

1 1 1 1 1 2 1 1

2 2

1 1 1 2 1 2 1 1 2 2 1 1 1 1

1 2

) ( )

(( 1 ) 3 ( ) ) ) ( ( ) (( 1 )

3 ( ) ) ) ( ( 1 ) ( ) ( ) (( 1 ) 3 ( ) ) )

(( 1 )

a b

a b a a b

d c d

va d c d v v va ac d c d va d

c d v v vb bc vb d c d v c d va d c d v v

vb bc d

N

N

N

κ µ

θ λ µ θ κ µ µ µ β µ κ µ θ λ µ

θ κ µ µ µ β θ θ θ λ µ κ µ µ θ κ µ θ λ µ θ κ µ µ µ

β µ θ

+

− + + + + + − +

+ + + − + + + + − + + +

+ − + 1 1 1 2 2 1 1 1 12 ( ) ) 2 ( ) (( 1 ) 3 ( ) ) )) )a a bvb d c d v c d va d c d v vλ µ θ κ µ µ θ κ µ θ λ µ θ κ µ µ µ+ + + + − + + +

(12e)

1 2 3 2 4 1 2 3a bva aa vb ba a a d v vG N Nβ θ β θ κ κ µ µ µ= + + + + + + (12f)

2

2 1 2 1 2 1 2

1 2 2 2 2 3 2 4

3 1 2 2 2 3 2 4 2

2 2 3 2

2 2 3 3

( 3 ) ( ( / )

( 2 ( / ) ))

( ( /

a a a

a b

a b

a a a d a d d a v a v d v

a a d v v va aa va d va aa vb ba d

a a d va d va aa vb ba d v v vb ba

vb d va aa vb b

G

N N N

N N N

N N

κ κ κ µ κ µ µ κ µ κ µ µ µ

κ κ µ µ µ β λ µ β θ β θ µ

θ κ κ µ λ µ β θ β θ µ µ µ β

λ µ β θ β

= + + + + + + +

+ + + + − +

+ + + + + + + +

− + 4 4 1 2 2 2 3 2 4) ( 2 ( / ) ))a ba d a a d vb d va aa vb ba d v vN Nθ µ θ κ κ µ λ µ β θ β θ µ µ µ+ + + + + +

(12g)

2 2 2 2

3 2 3

2 3 2 4

2 2 2 2

2 2 1 2 2 4

2

2 1 2 2

1( ( 2 2

( ) ( )) ( 2

2 ( ) ( )) ( (

2 (

a b

b a b a b a

b a b a b a b a b

v a aa d d v d v

va aa vb ba d

va v a d v v a a d v v vb ba d d v

d v v v a d v v a a d v v d a d v v

d

G NN N

N

β θ µ µ µ µ µβ θ β θ µ

µ µ κ µ µ µ κ κ µ µ µ β θ µ µ µ

µ µ µ µ κ µ µ µ κ κ µ µ µ µ κ µ µ µ

µ

= + ++ +

+ + + + + + + + + +

+ + + + + + + + + + +

+ 2 2

1

2 2 2 1

4 2 2 2 2 2

2

)) ( 3 3 ( ) ) (

2 ( ) ( ))) ( ( 2 )

( (2 ( ) (3 5 ) ) ( (3 ) (5 4 ))

( 2

a b a b a b a b

a b a b a

a a a b

a

v v d d v v d v v a d v v

d v v a d v v vb ba vb d a d v

d d a vb d a vb d v a d v d d v v

a d v

N

µ µ µ µ µ µ µ µ µ κ µ µ µ

µ µ µ κ µ µ µ β λ µ κ µ µ

θ µ µ κ λ µ κ λ µ µ κ µ µ µ µ µ µ

κ µ µ

+ + + + + + +

+ + + + + + − + +

+ + + + + + + + + +

+ + + 2 2 2 3 2 2

2 2 2 2

2

1 2 2 4 2

3 2 4

)))) ( ( 2 ) ( (

2 3 ) (3 ) ( 2 ( ) 5 ( 5 4 ) )

( 2 3 ( ) ( 2 ))) (

(

b b

a a a a b

a b a b a b

v va aa va d a d v a d va

d v a d v vb d d va d d v va d v v

a d v v d v v a d v v vb ba va d

vb d

N

N

µ β λ µ κ µ µ θ κ µ λ

µ µ κ µ µ µ µ µ λ µ µ µ λ µ µ µ

κ µ µ µ µ µ µ κ µ µ µ β θ λ µ

θ λ µ θ

+ − + + +

+ + + + + + + + + +

+ + + + + + + + −

+ − + 2 2 2 1 2 2( ( 2 4 ) 2 (2 ) 2 ( ) 2 ( ))))))a b b a b bd va vb d v d v v a d v v a a d va vµ λ λ µ µ µ µ µ κ µ µ µ κ κ µ µ µ+ + + + + + + + + + + +

(12h)

2 2 3

4 1 2 1 2 1 2

2 2 3

1 2 1 2 1

3

2 2 4

2 3 2 4

2

2 4 2 3

2

12 3 (( 1 )

( 2 ) (

a a a a b

b b b a b a b

a b a b

a

a a d v a d v a d v d v a a d v

a d v a d v d v a a v v a d v v

a d v v d v v vb ba

va aa vb ba d

vb d d v va aa

G

NN N

N N

κ κ µ µ κ µ µ κ µ µ µ µ κ κ µ µ

κ µ µ κ µ µ µ µ κ κ µ µ κ µ µ µ

κ µ µ µ µ µ µ β θβ θ β θ µ

λ µ µ µ θ β θ

= + + + +

+ + + + +

+ + + − ++ +

+ + + 2 4 2 2

2 1 4 2 4 2 3

2 4 2 2 2

223 2 22 2

2 3 2 4 2

) ( ( ) ( ( )

( 2 ) ) ) ( ( 1 ) ( 2 ) (

) ( ( ) ( ) )))

(

a

a b a

a a b

vb ba d d a d v d a d

a d v v a vb d d v va aa

vb ba d a d v a d v v va aa

a va da va d

va aa vb ba d va

N

N N

N N N

β θ µ µ κ µ µ µ κ µ

κ µ µ µ κ θ λ µ µ µ θ β θ

β θ µ κ µ µ κ µ µ µ β

θ κ λ µκ λ µβ θ β θ µ

+ + + +

+ + + − + + +

+ + + + + + +

− ++ +

333 22

3 2 4 2 3 2 4 2 3 2 4

2 2

3 1 2 3 1 3 2 3 3 1 2 2 1 3 2 3

2 2

2 3 2 4

a a a a b b

b

va dva d

aa vb ba d va aa vb ba d va aa vb ba d

a a v a d v a d v d v a a v a d vb a d vb d v

a va d v

va aa vb ba d

N N N N N

N N

θ λ µλ µβ θ β θ µ β θ β θ µ β θ β θ µ

θ κ κ µ θ κ µ µ θ κ µ µ θ µ µ θ κ κ µ θ κ µ µ θ κ µ µ θ µ µ

κ λ µ µβ θ β θ µ

− ++ + + + + +

+ + + + + + +

−+ +

2 2

3 2 2 2 3 2

2 3 2 4 2 3 2 4 2 3 2 4

3 1 3 2 3 2

2 3 2 4

2 2 3 3 2

2 2

12

( )

( ( (

b b b

a b a b a b

a va d v va d v va d v

va aa vb ba d va aa vb ba d va aa vb ba d

a v v a v v d v v

va aa vb ba d

vb ba d va aa vb a

N N N N N N

N N

N N

θ κ λ µ µ λ µ µ θ λ µ µβ θ β θ µ β θ β θ µ β θ β θ µ

θ κ µ µ θ κ µ µ θ µ µ µβ θ β θ µ

β µ β θ θ λ κ

+ − ++ + + + + +

+ + + ++ +

− 1 4 3 2 2 2

3 2 1 2 2 4 3 2 1 4 3 2 2

2 3 2 1 2 2 2 3 1 2

) (( 1 ) ( )

( ( ) ( )))) ( ( ) (( 1 )

( ) ( ( ) ( )))) ( ( (

a b

a b a

a bb

d v a va va d v

vb a d v va d v vb ba vb a d v a va

va d vb a d v va d v d vb va a vav

N

µ µ θ θ κ λ λ µ µ

θ λ κ µ µ λ µ µ β θ θ λ κ µ µ θ θ κ λ

λ µ µ θ λ κ µ µ λ µ µ µ λ λ θ κ λ

+ + + − + − +

+ + + + + + − + + + − +

− + + + + + + + − − + +

4 3 2 2 2 2 3 1 2 2 2 2)) (( 1 ) ( ) ( ( ) ( ))))))a b a bd v a va va vb d v a vb vb d v va vb d vµ µ θ θ κ λ λ λ µ µ θ κ λ λ µ µ λ λ µ µ+ + + − + − + + + + + + + + (12i)

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

436

3 3 3

5 2 3 1 22

2 3 2 4

2 2

2 4 1 2 4 2 2 4

2 2

2 2 3 2 3 4 2 1 2 4

1( ( ) ( )

( )

( ) ( ) ( ( 1 ) ( )

( ) ) ( ( 1 ) ( ) (

a b a

b a

vb aa a d a d

va aa vb ba d

v v vb b a d a d v vb b a vb d vb ba d

a d v va aa vb ba vb d a d v vb ba d

G NN N

N N N

N N N

β θ κ µ κ µβ θ β θ µ

µ µ β θ µ κ µ µ β θ λ µ β θ µ

κ µ µ β θ β θ θ λ µ κ µ µ β θ µ

= + ++ +

+ + + − + + +

+ + − + + + +2

2 3 2 3 1 2 2 3 2

2 2

3 1 2 4 3 4 2 1 4 2

3 2 3 1 2 4

)

( )(( 1 ) 3 ( ) ) ) ( ( )(( 1 )

3 ( ) ) ) ( ( 1 ) ( ) ( )

(( 1 ) 3 ( ) ) ) (( 1 )

a b

a b a

a b

a d va d a d v v va aa d a d va d

a d v v vb ba vb d a d v a d

va d a d v v vb ba d

N

N

N

κ µ θ λ µ θ κ µ µ µ β µ κ µ θ λ µ

θ κ µ µ µ β θ θ θ λ µ κ µ µ θ κ µ

θ λ µ θ κ µ µ µ β µ θ λ

+ − + + + + + − +

+ + + − + + + +

− + + + + − + 2 3 1

4 2 3 2 3 1

2 ( ) )

2 ( ) ( ( 1 ) 3 ( ) ) )))

a

a b

vb d a d v

a d va d a d v v

µ θ κ µ µ

θ κ µ θ λ µ θ κ µ µ µ

+ +

+ + − + + +

(12 j)

Where:

1 1 1 1 1

1 1 1 2

1

1 1 1 1

1 1 2

( ( )

( ) ( ) )

( (

( ) ( ) ))

a b

a b

tc va ac va vb d vb vb bc d

c d v v a ac va c d v

va ac tc va vb d vb

c d v va c d v

N N N

N

N N

β λ λ µ λ β µ

κ µ µ β λ κ µ µθ

β λ λ µ λκ µ µ λ κ µ µ

− +

+ + +=

++ + +

(13a)

1 1 1 1 2

2

1 1 2

( )( )

( ( ) )

b

b

tc vb bc vb d va ac d c d v

vb bc tc vb d c d v

N N N

N N

β λ µ β θ µ κ µ µθ

β λ µ κ µ µ− + +

=+ +

(13b)

2 2 2 2 2

1 2 2 2

3

2 2 2

2 1 2 2

( ( )

( ) ( ) )

( (

( ) ( ) ))

a b

a b

ta va aa va vb d vb vb ba d

a d v va aa va a d v

va aa ta va vb d

vb a d v va a d v

N N N

N

N N

β λ λ µ λ β µκ µ µ β λ κ µ µ

θβ λ λ µ

λ κ µ µ λ κ µ µ

− ++ + +

=

+ + + +

(13c)

2 2 2 3 2

4

2 2 2

( )( )

( ( ) )

b

b

ta vb ba vb d va aa d a d v

vb ba ta vb d a d v

N N N

N N

β λ µ β θ µ κ µ µθ

β λ µ κ µ µ− + +

=+ +

(13d)

From the characteristic Equation (11a)-(11b), the

eigenvalues are found by solving 5 4 3 2

1 2 3 4 5( ) 0D D D D Dη η η η η+ + + + + = in children and in

adult 5 4 3 2

1 2 3 4 5( ) 0G G G G Gη η η η η+ + + + + = , when T1 = D1

and G1 for children and adult,2 2 2T D and G= , for

children and adult, T3 = D3 and G3 for children and

adult T4 = D4 and G4 for children and adult, T5 = D5

and G5 for children and adult. The five eigenvalues

have negative real parts if they satisfy Routh-

Hurwitz criteria (14b)-(14e) (Edelstein-Keshet, 1988),

each equilibrium state is locally asymptotically stable,

when it satisfies the following conditions:

1 1det 0H T= > (14a)

2 1 2 3det 0H T T T= − > (14b)

2 2

3 1 2 3 3 1 4det 0H T T T T T T= − − > (14c)

2 2 2

4 1 2 3 4 3 4 1 4det 0H T T T T T T T T= − − > (14d)

2 2 2 2 2

5 1 2 3 4 5 3 4 5 1 4 5 1 2 5

2 2 3

2 3 5 1 4 5 5

det

2 0

H T T T T T T T T T T T T T T

T T T T T T T

=

+ + > (14e)

We check the stability of endemic equilibrium

state by using the Routh-Hurwitz conditions (14a)-

(14e), the results are given in Fig. 3.

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

437

(a)

(b) Fig. 3. The parameter spaces for endemic disease equilibrium state, which satisfies the Routh-Hurwitz conditions, plotted

onto )det,( 21 Hcκ , )det,( 31 Hcκ , )det,( 41 Hcκ , )det,( 51 Hcκ , )det,( 21 Haκ , )det,( 31 Haκ , )det,( 41 Haκ and

)det,( 51 Haκ , respectively. The values of parameter are follows: (a) )2/17(/11 =cκ , )2/19/(12 =cκ , )6.74*365/(1=dµ day−1,

6000=tcN , 50001 =vaN , 25001 =vbN , 2.0=acβ , 0714.0=bcβ , 60000000057.01 =vaλ , 00000435.01 =vbλ , 08.0=aα ,

047.0=bα and 000,100=tN , (b) )2/19(/11 =aκ , )2/21/(12 =aκ , )6.74*365/(1=dµ day−1, 4000=taN , 70002 =vaN , 43002 =vbN ,

1667.0=aaβ , 125.0=baβ , 60000000017.02 =vaλ , 000000835.02 =vbλ , 07.0=aα , 027.0=bα and 100000=tN . From the

above figures, the Routh-Hurwitz conditions are satisfies for 10 >S

Numerical Results

We consider the numerical solutions for dengue

virus transmission. The main effect of introducing an

age structure into the model is to change the definition

of the basic reproductive rate. The parameters in this

study are determined by the real life observations. The

values of the parameters are as follows: 1/ (365* 74.6)dµ =

day−1

, corresponding to life expectancy of 74.6 years for

human; 1 1 / (8.5)cκ = and

2 1 / (9.5)cκ = corresponding to

the 8.5 days and 9.5 days of recovering due to biting

of Aedes aegypti and Aedes albopictus, respectively.

The death rate of mosquitoes are 1/28 per day and

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

438

1/35 per day satisfies to the life time of 28 days for

Aedes aegypti and the life time of 35 days for Aedes

albopictus, respectively κa1 = 1/(9.5) and κa1 =

1/(10.5) corresponding to the 9.5 days and 10.5 days

of recovering of adult human population due to biting

of Aedes aegypti and Aedes albopictus, respectively.

The other parameters are arbitrary chosen. Numerical

solutions of (4a)-(4j) are shown in Fig. 4-9.

Fig. 4. Time series solutions of

cS ,1c

I ,2c

I ,1vaI and

1vbI respectively. For 10 <S and S0c = 0.000023944 with parameters are following:

49/11 =vaµ , 39/11 =vbµ , 71000=tcN , 58001 =vaN , 100001 =vbN , 0239.0=acβ , 0333.0=bcβ , 0003470.000000001 =vaλ ,

000675 0.00001 =vbλ , 07.0=aα , 027.0=bα and 000,100=tN . The proportions of populations (cS′ , 1cI ′ ,

2cI ′ ,1vaI ′ ,

1vbI ′ ) approach

to the disease free equilibrium state (1,0,0,0,0)

(a)

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

439

(b)

Fig. 5. (a) Time series solutions of 1121 ,,,, vbvaccc IIIIS . Values of parameters in the model are following: 7/11 =vaµ ,

14/11 =vbµ , 50000=tcN , 320001 =vaN , 170001 =vbN , 0.2acβ = , 125.0=bcβ , 580.00000000 1 =vaλ , 4650.00000000 1=vbλ ,

026.0=aα , 009.0=bα and 000,100=tN , when S0c = 174.473. (b) Numerical solutions projected onto

),('1

'cc IS , ),(

'1

'vac IS , ),(

'1

'1 cva II . The solutions oscillate to the endemic equilibrium state

),,,,( *1

*1

*2

*1

*vbvaccc IIIIS where 000556913.0* =cS , 0003.0

*1 =cI , -14*

2 101.6622 ×=cI , -6*

1 108.23484 ×=vaI and

-17*

1 1038289.7 ×=vbI , respectively

Fig. 6. Time series solution of aS ,

1aI ,

2aI ,2vaI and

2vbI respectively. For 10 <S and S0a = 0.0307919 with parameters are

following: 36/12 =vaµ , 46/12 =vbµ , 61000=taN , 48002 =vaN , 100002 =vbN , 03225.0=aaβ , 02941.0=baβ ,

00760.000000002 =vaλ , 06640.000000002 =vbλ , 04.0=aα , 06.0=bα and 000,100=tN . The proportions of

populations (aS′ ,

1aI ′ ,2aI ′ ,

2vaI ′ ,2vbI ′ ) approach to the disease free equilibrium state (1,0,0,0,0)

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

440

(a)

(b)

Fig. 7. (a) Time series solutions of2221 ,,,, vbvaaaa IIIIS . Values of parameters in the model are following: 7/12 =vaµ ,

13/12 =vbµ , 30000=taN , 370002 =vaN , 190002 =vbN , 25.0=aaβ , 1428.0=baβ , 440.00000000 2 =vaλ ,

03350.00000000 2 =vbλ , 02.0=aα , 07.0=bα and 000,100=tN , where S0a = 21.7785 in adult. (b) Numerical solutions

projected onto ),( '1

'aa IS , ),( '

2'

vaa IS , ),( '1

'2 ava II . The solutions oscillate to the endemic equilibrium state

),,,,( *2

*2

*2

*1

*vbvaaaa IIIIS where 0123201.0* =cS , *

1 0.000344474cI = , -14*2 106.9961 ×=cI , 7*

1 103.18294 −×=vaI and -16*1 101.40069 ×=vbI ,

respectively

Case A.1, in children, we consider the locally asymptotically stable of disease free equilibrium state, when ε = 0

as shown in Fig. 4. Case A.2, in children, we consider the locally asymptotically stable of endemic equilibrium state, when ε = 0

as shown in Fig. 5. Case B.1, in adult, we consider the locally asymptotically stable of disease free equilibrium state, when ε = 0 as

shown in Fig. 6. Case B.2, in adult, we consider the locally asymptotically stable of endemic equilibrium state, when ε = 0 as shown

in Fig. 7. Case C, in children, when ε ≠ 0 as shown in Fig. 8.

Case D, in adult, when ε ≠ 0 as shown in Fig. 9.

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

441

(a)

(b) Fig. 8. (a) Time series solutions of

1121 ,,,, vbvaccc IIIIS . Values of parameters in the model are following: 50000=tcN , 320001 =vaN ,

170001 =vbN , 2.0=acβ , 125.0=bcβ , 280.00000000 1 =vaλ , 01650.00000000 1 =vbλ , 005.0=aα , 004.0=bα and 000,100=tN and S0c

= 22.8627, (b) Numerical solutions projected onto ),('1

'cc IS , ),(

'2

'cc IS , ),(

'1

'vac IS , ),( '

1'

vbc IS , ),( '1

'1 cva II , ),( '

1'

1 vbva II .

Limit1cycles are produced in this case

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

442

(a)

(b)

Fig. 9. (a) Time series solutions of

2221 ,,,, vbvaaaa IIIIS . Values of parameters in the model are following: 50000=taN ,

340002 =vaN , 300002 =vbN , 25.0=aaβ , 1428.0=baβ , 750.00000000 2 =vaλ , 06250.000000002 =vbλ , 02.0=aα , 07.0=bα and

000,100=tN , when S0a = 9.26764. (b) Numerical solutions projected onto ),( '2

'aa IS , ),(

'2

'vba IS , ),(

'2

'2 avb II . The solutions

oscillate to the endemic equilibrium state ),,,,( *2

*2

*2

*1

*vbvaaaa IIIIS are limit cycles

Discussion

Several investigations have been conducted using

the SIR and SI models. The SIR and SI models which

provide suitable for the states of children and adult in

two species are used in this study. (Aedes aegypti and

Aedes albopictus).

The basic reproductive number of equations (4a)-(4j)

is defined as follows (Chong et al., 2013):

1 1 1

1 1 1 2

2 ( )

(2( ( ) )

a

b

vb b bc vb c d v vb

va ac va tc vb d c d v

N

N N

α β λ κ µ µ ρ

β λ λ µ κ µ µ

+

+ + +

10

1 1 1

1 1 2

1

2 2 1

2 2 2 2

(2 ) 2 ( ))max { ,

(2 ( ) (2

(2 )) 2 ( ( )

( ( ) )))

2 ( )

(2( ( )

a

b

a

a va tc vb d a va

vb c d v d vb bc

b vb va ac va a c d

v va tc vb d a va a va vb

vb b ba vb a d v vb

va aa va ta vb d a d v

NS

N

N

N

N

N N

α ρ λ µ α ρλ κ µ µ µ β

α ρ β λ α κ µ

µ ρ λ µ α ρ α ρ ρ

α β λ κ µ µ ρ

β λ λ µ κ µ µ

+ + +=

+ +

+ + +

+ + +

+

+ + +

2

2 1 2

2 2 2

2

)

(2 ) 2 ( ))}

(2 ( ) (2 (2 ))

2 ( ( )

( ( ) )))

b

a

b

a va ta vb d a va

vb a d v d vb ba b vb

va aa va a a d v va

ta vb d a va a va vb

N

N

N

N

α ρ λ µ α ρλ κ µ µ µ β α ρ

β λ α κ µ µ ρ

λ µ α ρ α ρ ρ

+ + ++ + +

+ +

+ + +

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

443

Table 3. Determination of the values S0 of infected mosquitoes

Iva1 value Ivb1 value Iva2 value Iva2 value S0 value

2.3860×10-18 6.44744×10-7 0.00310

2.5687×10-26 0.000065 - - 0.00732

0 0.00036 - - 0.06795

- - 4.9155×10-23 0.0007175 0.68842

- - 7.3376×10-14 1.07169×10-8 3.61291

8.234×10-6 7.982×10-17 - - 38.6066

3.16331×10-5 1.118×10-6 - - 80.3505

- - 9.933×10-8 2.822×10-17 89.3077

S0 describes the number of infectious human

produced from primary infection of children and

adult. Using the initial values and parameter values

from data, the obtained result of threshold parameter

value S0 for S0c and S0a can be rewritten in

mathematical form as follows:

1 1 1

1 1 1 2

1

0

1 1 1

1 1 2

1

2 ( )

(2( ( )

)(2 ) 2 ( ))in

(2 ( ) (2

(2 )) 2 ( ( )

( ( ) )))

a

b

a

b

vb b bc vb c d v vb

va ac va tc vb d c d

v a va tc vb d a va

c

vb c d v d vb bc

b vb va ac va a c d

v va tc vb d a va a va vb

N

N N

NS

N

N

N

α β λ κ µ µ ρ

β λ λ µ κ µ

µ α ρ λ µ α ρλ κ µ µ µ β

α ρ β λ α κ µ

µ ρ λ µ α ρ α ρ ρ

+

+ + +

+ + +=

+ +

+ + +

+ + +

children

2 2 1

2 2 2 2

20

2 1 2

2 2 2

2

2 ( )

(2( ( ) )

(2 ) 2 ( ))in

(2 ( ) (2

(2 )) 2 ( ( )

( ( ) )))

a

b

a

b

vb b ba vb a d v vb

va aa va ta vb d a d v

a va ta vb d a vaa

vb a d v d vb ba

b vb va aa va a a d

v va ta vb d a va a va vb

N

N N

NS

N

N

N

α β λ κ µ µ ρ

β λ λ µ κ µ µ

α ρ λ µ α ρλ κ µ µ µ β

α ρ β λ α κ µ

µ ρ λ µ α ρ α ρ ρ

+ +

+ +

+ + +=

+ +

+ + +

+ + +

adult

The reproductive rate is depend on the number of

infected mosquitoes Iva1, Ivb1 in children and Iva2, Ivb2

in adult.

From the above table (Table 3), we will see that if the

number of infected mosquitoes is increased, the basic

reproductive rate is also increased.

Moreover, we consider the effect of sinusoidal

variation (ε), we will see that if ε = 0, then the

solutions oscillation to the steady state. The limit

cycle occurs for ε ≠ 0. Thus the limit cycles occurs

while there is the seasonal variation of mosquitoes

(Aedes aegypti and Aedes albopictus). It can be seen

that the dynamical behavior of the endemic state

change while there is the influence of season.

Conclusion

The basic reproductive number of disease is defined by

0 0S S=ɶ . This value is the threshold condition for the

existence of the endemic state. When S0 ≤ 1, the solutions

oscillate to disease free equilibrium state, whereas S0 >

1, the solutions oscillate to the endemic state. The

behaviors of the proportion of susceptible, infective

human into two classes (a child class and an adult

class) and infective vectors of the two species (Aedes

aegypti and Aedes albopictus) are initially positive. If

this can be seen as follow; the infective human are

introduced into the susceptible is bitten during each

period, by the fraction 1

( )

h

h v

bN

N m µ

+ (that the biting

rate b of mosquitoes is the average number of bites per

mosquito per day, µv is the per capita mortality rate of

mosquito, of these bites becomes new infective in the

human population) (Esteva and Vargas, 1998). The

parameters βac, βbc, βaa, βba, βac, λva1, λva2, λvb1 and

λvb2are effects to the basic reproductive number of this

disease as we see in (6f)-(6h). If the basic reproductive

number is less or equal than one, then the infective

replaces less than one, then disease dies. On the other

hand, if this number is greater than one and when the

susceptible fraction get large enough to birth of new

susceptible, then there are secondary infections and

endemic equilibrium state is occurred. As we can see in

this study, the seasonal parameters such as ε, ρva and

ρvb which are the measure of influence on the

transmission process reflect the environment.

Acknowledgment

This study is supported by King Mongkut’s Institute of Technology Ladkrabang and National Research Council of Thailand.

Author’s Contributions

The work preseted here was carried out in collaboration between all authors. R. Sungchasit, P. Pongsumpun and I.M. Tang. Designed and analyzed the model. All authors have contributed to, seen and approved the manuscript.

Ethics

The authors confirm that this work is original and contains has not published elsewhere.

R. Sungchasit et al. / American Journal of Applied Sciences 2015, 12 (6): 426.444

DOI: 10.3844/ajassp.2015.426.444

444

References

WHO, 2009. Fact sheets: Dengue and dengue

haemorrhagic.

Pongsumpun, P.P. and I. Tang, 2001. A realistic age

structured transmission model for dengue

hemorrhagic fever in Thailand. Math. Comput.

Modell., 32: 336-340.

Syafruddin, S. and M.S.M. Noorani, 2012. SEIR Model

for transmission of dengue fever in selangor

Malaysia. Int. J. Mod. Phys. Conf. Ser., 9: 380-389.

DOI: 10.1142/S2010194512005454 Kerpaninch, A., V. Watanaveeradej, R. Samakosses, S.

Chumnanvanakij and T. Chulyamitporn et al., 2001. Perinatal dengue infection. Southeast Asian J. Trop Med. Publ. Health, 32: 488-493. PMID: 11944704

Kabilan, L., S. Balasubramanian, A.M. Keshava, V. Thenmozhi and C. Sehar et al., 2003. Dengue disease spectrum among infants in the 2001 dengue epidemic on Chennai, Tamil Nadu, India. J. Clin. Microbiol., 41: 3919-3921.

DOI: 10.1128/JCM.41.8.3919-3921.2003

Malhotra, N., C. Chanan and S. Kumar, 2006. Dengue

infection in pregnancy. Int. J. Gynecol. Obstet, 94:

131-132.

Wiwanitkit, V., 2006. Dengue haemorrhagic fever in pregnancy: Appraisal on Thai cases. J. Vector Borne Disease, 43: 203-205.

Pongsumpum, P., 2011. Seasonal transmission model of

dengue virus infection in Thailand. J. Basic Applied

Sci. Res., 1: 1372-1379.

Joshi, V., D.T. Mourya and R.C. Sharma, 2002.

Persistence of dengue -3 virus though transovarial

passage in successive generations of Aedes aegypti

mosquitoes. Am J. Trop Med. Hyg., 67: 158-61.

Koenraadt, C.J.M., J. Aldstadt, U. Kijchalao, A.

Kengluecha and J.W. Jones et al., 2007. Spatial and

temporal patterns in the recovery of Aedes aegypti

(Diptera: Culicidae) populations after insecticide

treatment. J. Med. Entomol., 44: 65-71. DOI:

10.1603/0022-2585(2007)44[65:SATPIT]2.0.CO;2

Hotta, S., 1998. Dengue vector mosquitoes in Japan: The

role of Aedes albopictus and Aedes aegypti in the

1942-1944 dengue epidemics of Japanese Main

Islands [in Japanses with English summary]. Med.

Entomol. Zoollogy, 49: 267-274.

Smith, D.L., K.E. Battle, S.I. Hay, C.M. Barker and

T.W. Scott et al., 2012. Macdonald and a theory for

the dynamics and control mosquito-transmitted

pathogens. PLos Pathog, 8: e1002588-e1002588.

Diekmann, D. and J. Heesterbeek, 2000. Mathematical

Epidemiology of Infectious Disease: Model

Building, Analysis and Interpretation. 1st Edn., John

Wiley and Sons, Chichester, ISBN-10: 0471492418,

pp: 303.

Nuraini, N., E. Soewono and K. Sidarto, 2007.

Mathematical model of dengue disease transmission

with severe dhf compartment. Bullentin Malaysian

Math. Sci., 30: 143-157.

Yaacob, Y., 2007. Analysis of a dengue disease

transmission model with immunity. Matematika,

23: 75-81.

Esteva, L. and C. Vargas, 1998. Analysis of a dengue

disease transmission model. Math. Biosciences, 15:

131-151. DOI: 10.1016/S0025-5564(98)10003-2

Edelstein-Keshet, L., 1988. Mathematical Models in

Biology. 1st Edn., SIAM, Norwood Mass,

ISBN-10: 0898719143, pp: 586.

Chong, N.S., J.M. Tchuenche and R.J. Smith, 2013. A

mathematical model of avian influenza with half-

saturated incidence. J. Theory Biosciences, 133:

23-38. DOI: 10.1007/s12064-013-0183-6