Simple Harmonic Oscillator Simple Harmonic Oscillator Quantum harmonic oscillator Eigenvalues and...
date post
04-Feb-2021Category
Documents
view
17download
4
Embed Size (px)
Transcript of Simple Harmonic Oscillator Simple Harmonic Oscillator Quantum harmonic oscillator Eigenvalues and...
Simple Harmonic Oscillator Classical harmonic oscillator
Linear force acting on a particle (Hooke’s law):
F = !kx
F = ma = m d 2 x
dt 2 = !kx
" d 2 x
dt 2 +#
2 x = 0, # = k / m
x(t) = x(0)cos(!t) + p(0)
m! sin(!t)
p(t) = m dx
dt = p(0)cos !t( ) " m!x(0)sin(!t)
From Newton’s law:
Position and momentum solutions oscillate in time:
Simple Harmonic Oscillator Classical harmonic oscillator
Classical Hamiltonian
H = T +V
T = p 2
2m
F = ! "V
"x #V =
1
2 kx
2 = 1
2 m$
2 x 2
V(x)
x
H = p 2
2m + 1
2 m!
2 x 2
Simple Harmonic Oscillator Quantum harmonic oscillator
Quantum Hamiltonian: replace x and p variables with operators
H = T +V = p 2
2m + 1
2 m!
2 x 2
Define a dimensionless operator
a = m!
2! x + i
1
2m!! p
Then
a † =
m! 2!
x + i 1
2m!! p
"
#$ %
&'
†
= m! 2!
x ( i 1
2m!! p
Position, momentum operators obey the canonical commutation relation:
[x, p] = i!
Simple Harmonic Oscillator Quantum harmonic oscillator
Commutation relation:
a,a †!" #$ =
m% 2!
x + i 1
2m%! p
&
'( )
*+ ,
m% 2!
x , i 1
2m%! p
&
'( )
*+ !
" - -
#
$ . .
= m% 2! [x, x]+
i
2! [p, x],
i
2! [x, p]+
1
2m%! [p, p]
= i
2! (,i!) ,
i
2! (i!) = 1
a,a †!" #$ = 1
a † ,a!" #$ = %1
Simple Harmonic Oscillator Quantum harmonic oscillator
Number operator:
Hence we can rewrite the Hamiltonian in terms of the number operator:
N = a † a =
m! 2!
x "i 1
2m!! p
#
$% &
'( m! 2!
x + i 1
2m!! p
#
$% &
'(
= 1
!! p 2
2m + 1
2 m! 2x2
# $%
& '( " 1
2
N = a † a =
m! 2!
x " i 1
2m!! p
#
$% &
'( m! 2!
x + i 1
2m!! p
#
$% &
'(
H = p 2
2m + 1
2 m! 2x2 = !! a†a +
1
2
# $%
& '(
Simple Harmonic Oscillator Quantum harmonic oscillator Number operator:
[N ,H ] = a † a,H!" #$ = !% a
† a, a
† a +
1
2
& '(
) *+
!
" ,
#
$ - = 0
[N ,a] = a † a,a!" #$ = a
† a,a[ ] + a†,a!" #$a = %a
[N ,a † ] = a
† a,a
†!" #$ = a † a,a
†!" #$ + a † ,a
†!" #$a = a †
N † = a
† a( )
†
= a † a †( ) †
= a † a = N
Commutation relations
[H ,a] = !! N +1 2,a[ ] = !! N ,a[ ] = "!!a
[H ,a † ] = !! N +1 2,a†#$ %& = !! N ,a
†#$ %& = !!a †
Simple Harmonic Oscillator Quantum harmonic oscillator
Eigenvalues and eigenfunctions The energy eigenfunctions and eigenvalues can be found by analytically solving the TISE. Here we will use operator algebra:
Energy eigenvalue equation (TISE):
H = p 2
2m + 1
2 m! 2x2 = !! N +
1
2
" #$
% &' = !! a†a +
1
2
" #$
% &'
H ! n = E
n ! n
Ha ! n = aH " !#a( ) !
n = E
n " !#( )a !n
Ha † !
n = a
† H + !#a†( ) !n = En + !#( )a
† ! n
Notice that:
The parentheses around ψ are standard (Dirac) notation for states that is independent of x or p representation. More on this notation later.
Simple Harmonic Oscillator Quantum harmonic oscillator
Eigenvalues and eigenfunctions
The state is an energy eigenfunction with eigenvalue
The state is an energy eigenfunction with eigenvalue
H ! n = E
n ! n
Ha ! n = E
n " !#( )a !n
Ha † !
n = E
n + !#( )a† !n
Hence a and a+ are called the raising and lowering (ladder) operators since they raise or lower the energy by a definite amount.
a ! n
a † !
n
E n ! !"( )
E n + !!( )
Simple Harmonic Oscillator Quantum harmonic oscillator
Eigenvalues and eigenfunctions
Consider the lowest eigenvalue of H (ground state energy):
H ! n = E
n ! n
H ! 0 = E
0 ! 0
The lowering operator a cannot lower the energy of this eigenstate any further. Hence,
a ! 0 = 0
!!a†( )a "0 = !!N "0 = H # !! 2
$ %&
' () " 0 = E
0 # !! 2
$ %&
' () " 0 = 0
E 0 = !!
2
Ground state energy:
Simple Harmonic Oscillator Quantum harmonic oscillator
Eigenvalues and eigenfunctions
H ! n = E
n ! n
H ! 0 = E
0 ! 0
We have seen that the states
are energy eigenstates with energy .
Thus starting with the lowest energy E0, the energy eigenvalues are
E 0 ,E
0 + !! ,E
0 + 2!! ,......
E n = E
0 + n!! = n +
1
2
" #$
% &' !!
E 0 = !!
2
a † !
n
E n + !!( )
Simple Harmonic Oscillator Quantum harmonic oscillator
Eigenvalues and eigenfunctions
A unique feature of the quantum harmonic oscillator is that the energy eigenvalues are equally spaced:
E n = n +
1
2
! "#
$ %& !'
Simple Harmonic Oscillator Quantum harmonic oscillator
! 0 (x) = N
0 e " x2 x
c
2
N 0
2 =
m#
$! , x
c =
2!
m#
Consider the ground state:
! m"
2! # 0 + !
2m"
$# 0
$x = 0
Normalized solution:
The lowering operator a cannot lower the energy of this eigenstate any further. Hence,
a ! 0 = 0
Simple Harmonic Oscillator Quantum harmonic oscillator
! 0 (x) = N
0 e " x2 x
c
2
N 0
2 =
m#
$! , x
c =
2!
m#
Now we can calculate the higher energy (excited) states:
! 1 (x) = N
1 a †! 0 (x) = N
1
x
x c
" x c
2
# #x
$
%& '
() ! 0 (x)
! 2 (x) = N
2 a †( ) 2
! 0 (x) = N
2
x
x c
" x c
2
# #x
$
%& '
()
2
! 0 (x)
! n (x) = N
n a †( )
n
! 0 (x) = N
n
x
x c
" x c
2
# #x
$
%& '
()
n
! 0 (x)
Simple Harmonic Oscillator Quantum harmonic oscillator
! 0 (x) = N
0 e " x2 x
c
2
N 0
2 =
m#
$! , x
c =
2!
m#
Now we can calculate the higher energy (excited) states:
! n (x) =
1
2 n n! H
n y( )!0 (x)
Normalized solutions:
Hn(y): Hermite polynomials
y = 2x
x c
Simple Harmonic Oscillator First few Hermite polynomials:
H 0 (x) = 1, H
1 (x) = x, H
2 (x) = 4x
2 ! 2
There are many properties known about Hermite polynomials. See http://mathworld.wolfram.com/HermitePolynomial.html or your favourite mathematics book of special functions for more.
Simple Harmonic Oscillator Quantum harmonic oscillator
Ground State Expectation values (verify this using the ladder operators, a and a+. See Example 2.5 in the textbook)
!p 0 = p
2
0 " p
2
= m#!
2
!x 0 = x
2
0 " x
2
= !
2m#
!x 0 !p
0 = !
2
The ground state is a minimum uncertainty state. Recall that such a state must be Gaussian.