Sept2013 soluc

8
1 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) FÍSICA Septiembre 2013 INSTRUCCIONES GENERALES Y VALORACIÓN. La prueba consta de dos opciones A y B, cada una de las cuales incluye tres cuestiones y dos problemas. El alumno deberá elegir la opción A o la opción B. Nunca se deben resolver cuestiones o problemas de opciones distintas. Se podrá hacer uso de calculadora científica no programable. CALIFICACIÓN: Cada cuestión debidamente justificada y razonada con la solución correcta se calificará con un máximo de 2 puntos. Cada problema debidamente planteado y desarrollado con la solución correcta se calificará con un máximo de 2 puntos. En aquellas cuestiones y problemas' que consten de varios apartados, la calificación será la misma para todos ellos. TIEMPO: Una hora treinta minutos. OPCIÓN A Pregunta 1.- Dos satélites describen órbitas circulares alrededor de un planeta cuyo radio es de 3000 km. El primero de ellos orbita a 1000 km de la superficie del planeta y su periodo orbital es de 2 h. La órbita del segundo tiene un radio 500 km mayor que la del primero. Calcule: a) El módulo de la aceleración de la gravedad en la superficie del planeta. b) El periodo orbital del segundo satélite. Solución. a. = = = = = ? T Km 4500 R h 2 T Km 4000 R : Km 3000 R 2 s 1 s P 1 1 En la superficie del planeta, se cumple: G F P = 2 P R m M G mg = 2 P R M G g = El Producto G·M, se puede obtener teniendo en cuenta que en los satélites que están orbitando en torno al planeta se cumple que c G F F = . Si aplicamos al primero de ellos, del que conocemos radio y periodo: 1 1 s s 2 2 R v m R Mm G = 1 s 2 R M G v = 1 s 1 R ω v = 1 1 s 2 s 2 R M G R ω = 1 1 T π 2 ω = 1 1 s 2 s 2 1 R M G R T π 2 = 2 1 3 s 2 T R π 4 M G 1 = Sustituyendo en la expresión de g: ( ( = ( = 2 2 2 6 3 6 2 2 1 2 P 3 s 2 2 P s m 42 , 5 3600 2 10 3 10 4 π 4 T R R π 4 R M G g 1 = × × = = = b. Partiendo de: 2 3 2 T R π 4 M G = , se llega rápidamente a cte π 4 M G T R 2 2 3 = = , que es la tercera Ley de Kepler, aplicando a los dos satélites: 2 2 3 s 2 1 3 s T R T R 2 1 = 23' h 2 h 39 , 2 4000 4500 2 R R T T 3 3 3 s 3 s 1 2 1 2 = = = Pregunta 2.- Un altavoz emite sonido como un foco puntual. A una distancia d, el sonido se percibe con un nivel de intensidad sonora de 30 dB. Determine: a) El factor en el que debe incrementarse la distancia al altavoz para que el sonido se perciba con un nivel de intensidad sonora de 20 dB.

Transcript of Sept2013 soluc

Page 1: Sept2013 soluc

1

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

FÍSICA Septiembre 2013

INSTRUCCIONES GENERALES Y VALORACIÓN. La prueba consta de dos opciones A y B, cada una de las cuales incluye tres cuestiones y dos problemas. El alumno deberá elegir la opción A o la opción B. Nunca se deben resolver cuestiones o problemas de opciones distintas. Se podrá hacer uso de calculadora científica no programable. CALIFICACIÓN: Cada cuestión debidamente justificada y razonada con la solución correcta se calificará con un máximo de 2 puntos. Cada problema debidamente planteado y desarrollado con la solución correcta se calificará con un máximo de 2 puntos. En aquellas cuestiones y problemas' que consten de varios apartados, la calificación será la misma para todos ellos. TIEMPO: Una hora treinta minutos.

OPCIÓN A Pregunta 1.- Dos satélites describen órbitas circulares alrededor de un planeta cuyo radio es de 3000 km. El primero de ellos orbita a 1000 km de la superficie del planeta y su periodo orbital es de 2 h. La órbita del segundo tiene un radio 500 km mayor que la del primero. Calcule:

a) El módulo de la aceleración de la gravedad en la superficie del planeta. b) El periodo orbital del segundo satélite.

Solución.

a.

====

=?TKm 4500Rh 2TKm 4000R

:Km 3000R2s

1sP

1

1

En la superficie del planeta, se cumple: GFP = 2PRmMGmg ⋅= 2

PRMGg =

El Producto G·M, se puede obtener teniendo en cuenta que en los satélites que están orbitando en torno al planeta se cumple que cG FF = . Si aplicamos al primero de ellos, del que conocemos radio y periodo:

11s s

2

2 Rvm

RMmG =

1s

2RMGv = 1s1 Rωv ⋅=

11 s

2s

2RMGRω =⋅

11 T

π2ω =

11 s

2s

2

1 RMGR

Tπ2 =⋅

2

1

3s

2

T

Rπ4MG 1=⋅

Sustituyendo en la expresión de g:

( )( ) ( )

2226

362

21

2P

3s

2

2P s

m42,536002103

104π4TR

Rπ4

RMGg 1 =

⋅⋅×

×⋅=⋅

⋅==

b. Partiendo de: 2

32

TRπ4MG =⋅ , se llega rápidamente a cte

π4MG

TR

22

3=⋅= , que es la tercera Ley

de Kepler, aplicando a los dos satélites:

22

3s

21

3s

T

R

T

R21 = 23'h 2h 39,2

400045002

R

RTT 3

3

3s

3s

12

1

2 ≈=⋅=⋅=

Pregunta 2.- Un altavoz emite sonido como un foco puntual. A una distancia d, el sonido se percibe con un nivel de intensidad sonora de 30 dB. Determine:

a) El factor en el que debe incrementarse la distancia al altavoz para que el sonido se perciba con un nivel de intensidad sonora de 20 dB.

Page 2: Sept2013 soluc

2

b) El factor en el que debe incrementarse la potencia del altavoz para que a la distancia d el sonido se perciba con un nivel de intensidad sonora de 70 dB.

Dato: Umbral de audición, Io = 10‒12 W m‒2 Solución. a. La intensidad de un sonido, depende de la potencia de la fuente emisora y de la distancia a ella.

2r π4PI =

Para una misma fuente a dos distancias diferentes:

21

22

2

1

22

2

21

1

rr

II Comparando:

r π4PI

r π4PI

=

=

=

La intensidad de un sonido, también se puede relacionar con el nivel de intensidad sonora con que se percibe (β).

oIIlog10β = 10β

o 10II ⋅=

Aplicando a dos intensidades diferentes, producidas por la misma fuente:

10ββ

10β

10β

2

110β

o2

10βo1

21

2

1

2

110

1010

II Comparando:

10II10II

==

⋅=⋅=

Las relaciones obtenidas permiten obtener otra relación entre las intensidades y el nivel de intensidad sonora.

10ββ

1210ββ

21

22

10ββ

2

1

21

22

2

1

2121

21

10rr10rr:

10II

rr

II

−−

−⋅=⇒=

=

=

Sustituyendo por los datos:

d10r10dr 210

2030

2 ⋅=⇒⋅=−

b. En este apartado nos piden la potencia de la fuente para que a la misma distancia, aumente el nivel de intensidad sonora. Trabajando de forma análoga al apartado a):

2

1

2

1

21

11

21

11

2 PP

II Comparando:

d π4PI

d π4PI

:r π4

PI =

=

==

Teniendo en cuenta la relación obtenida en el apartado anterior entre la intensidad y el nivel de intensidad sonora:

10ββ

1210ββ

2

1

10ββ

2

1

2

1

2

1

1221

2110PP10

PP:

10II

PP

II

−−

−⋅=⇒=

=

=

14

110

3070

12 P1000010P10PP =⋅=⋅=−

Page 3: Sept2013 soluc

3

Pregunta 3.- Se quiere obtener una imagen derecha y virtual, de 25 cm de altura, de un objeto de 10 cm de altura que se sitúa a una distancia de 1 m de una lente delgada.

a) Calcule la potencia, en dioptrías, de la lente que habría que usar así como el tipo de lente. b) Realice el diagrama de rayos correspondiente.

Solución. a. Para obtener una imagen virtual, derecha y de mayor tamaño en una lente delgada, está debe ser convergente, ya que si la lente es divergente, la imagen siempre será virtual, derecha y de menor tamaño. Si la lente es convergente, para que la imagen sea virtual, el objeto deberá estar dentro de la distancia focal (s < f).

Se define la potencia de una lente como la inversa de su distancia focal imagen (f’): f1P′

=

Para calcular f ′ se tiene en cuenta la ecuación fundamental de la lentes delgadas y la del aumento lateral

f1

11

5,21:m5,2s:

1s

10101025:1025y ;1010y:

ss

yyM

f1

11

s1:1s:

f1

s1

s1

2

222

L′

=−

−−

−=′

−′

=×××=′×=

′=

′=

′=

−−

′−=

′=−

−−−

D 6,0P6,0f1 =⇒=′

b. La imagen está en la intersección de un rayo paralelo al eje óptico o eje principal de la lente, una vez refractado, pasa por el foco imagen con un rayo que pasa por el centro geométrico de la lente, que no se desvía. Pregunta 4.- Dos muestras de material radioactivo, A y B, se prepararon con tres meses de diferencia. La muestra A, que se preparó en primer lugar, contenía doble cantidad de cierto isótopo radioactivo que la B. En la actualidad, se detectan 2000 desintegraciones por hora en ambas muestras. Determine:

a) El periodo de semidesintegración del isótopo radioactivo. b) La actividad que tendrán ambas muestras dentro de un año.

Solución. a. El periodo de semidesintegración ( )21T o periodo de semivida es el tiempo que debe transcurrir para que el número de núcleos presentes en una determinada muestra se reduzca a la mitad. Se puede expresar en función de la constante de desintegración (λ), y esta expresión se obtiene si en la ecuación fundamental de la radioactividad ( ) tλ

oeNN −= se sustituye N por 2No , obteniendo:

21T λo

o eN2

N −= λ

2 LnT 21 =

Para calcular la constante de desintegración nos dan los siguientes datos: ( ) ( ) 1

2B1A h 2000tAtA −== siendo h 2160tmeses 3tt 221 +=+= y ( ) ( )BN2AN oo =

( )( )

⋅⋅=⋅=⋅⋅=⋅=→

⋅=⋅=

− 2

1

t λoBB

t λoAA

tλo eBNλNλA

eANλNλAeNNNλA

Igualando:

( ) ( ) 21 t λo

t λo eBNλeANλ

−− ⋅⋅=⋅⋅ ( )( ) 1

2

t λ

t λ

o

o

ee

BNAN

−=

Teniendo en cuenta los datos: ( )

( )( )21 ttλ

o

o eBNBN2 −=⋅ ( )22 t2160tλe2 −+= λ2160e2 =

21602Ln

λ =

Conocida la constante se calcula el periodo de semidesintegración.

h 216021602 Ln2 Ln

λ

2 LnT 21 ===

Page 4: Sept2013 soluc

4

b. La actividad de una muestra viene expresada en función del tiempo y la actividad inicial por:

tλo eAA −⋅=

Si se considera la actividad inicial como la actividad que tiene en el momento actual, y la constante de desintegración la despejamos del periodo de semidesintegración:

14

21h 1021,3

21602 Ln

T2 Ln

λ −−×===

( ) t1021,3 4e2000tA

−×−⋅= Siendo t el tiempo expresado en horas

( ) 1360024365 1021,3 h 8,141e2000año 1A4 −⋅⋅×− =⋅=

Pregunta 5.- Se tiene un plano infinito con una densidad de carga superficial positiva σ.

a) Deduzca, utilizando el teorema de Gauss, el vector campo eléctrico generado por la distribución. b) Calcule la diferencia de potencial eléctrico entre dos puntos, en el mismo semiespacio, separados

una distancia d en la dirección perpendicular al plano cargado. Justifique si cambiaría su respuesta si la dirección fuera paralela al plano cargado.

Solución. a. Según el teorema de Gauss, el flujo neto a través de una superficie cerrada cualquiera es igual a la suma algebraica de las cargas eléctricas encerradas en su interior dividida entre la constante dieléctrica del vacío.

Q∑=Φ

Para un plano infinito, se toma como superficie gaussiana un paralelepípedo recto como el que muestra la figura. Sólo hay flujo a través de las caras S y S’ paralelas al plano. Las líneas de campo siempre salen de las cargas positivas, por lo que el campo creado por el plano será uniforme. El flujo a través de las superficies laterales es nulo (ninguna línea de campo las atraviesan). Aplicando el teorema de Gauss:

oSSε

QSE20cosSE0cosSESdESdE =⋅=⋅′⋅+⋅⋅=+=Φ ∫∫′

ro

rro

r

Teniendo en cuenta la densidad superficial de carga ( )SσQ ⋅=

SσSE2 ⋅=⋅ oε2σE =

b. La diferencia de potencial entre dos puntos viene dado por la expresión:

( ) dε2σrr

ε2σdr

ε2σº0cosdrErdEVV

oAB

o

r

r o

r

r

r

rAB

B

A

B

A

B

A

⋅−=−−=−=⋅⋅−=⋅−=− ∫∫∫rr

Si la línea que une los puntos fuese paralela al plano, 0rr AB =− , y la diferencia de potencial entre ellos seria cero

Page 5: Sept2013 soluc

5

OPCIÓN B Pregunta 1.- Dos planetas, A y B, tienen la misma densidad. El planeta A tiene un radio de 3500 km y el planeta B un radio de 3000 km. Calcule:

a) La relación que existe entre las aceleraciones de la gravedad en la superficie de cada planeta. b) La relación entre las velocidades de escape en cada planeta.

Solución. a. La expresión de la aceleración de la gravedad en la superficie de un planeta se obtiene del hecho de que en la superficie de un planeta, el peso de un cuerpo es la fuerza gravitacional con la que atrae el planeta al cuerpo.

GFP = 2RmMGgm ⋅=⋅ 2R

MGg =

Si se aplica esta expresión a cada uno de los planetas y se compara:

2AB

2BA

B

A

2B

B

2A

A

B

A

2B

BB

2A

AA

RMRM

gg ordenandoy ndosimplifica

RMG

RMG

gg:

RMGg

RMGg

⋅⋅==

=

=

Para encontrar una la relación entre las masas de ambos planeta, se parte de la igualdad de las densidades.

3B

3A

B

A3B

B3A

A

3B

B

B

BB

3A

A

A

AA

BARR

MM

Rπ34M

Rπ34M:

Rπ34M

VMd

Rπ34M

VMd

:dd =⇒=

==

===

Teniendo en cuenta ambas relaciones:

67

30003500

RR

gg ndosimplifica

RR

RR

gg:

RR

MM

RMRM

gg

B

A

B

A2A

2B

3B

3A

B

A

3B

3A

B

A

2AB

2BA

B

A

===⋅=

=

⋅⋅=

BA g67g =

b. Se denomina velocidad de escape de un planeta a la mínima velocidad de lanzamiento de un cohete para que pueda escapar de la atracción gravitatoria del planeta. Teniendo en cuenta que el cohete se mueve sometido a una fuerza conservativa, la energía mecánica se conserva, y suponiendo que el cuerpo llega al infinito con velocidad nula, se ha de cumplir:

( ) ( ) 0InfinitoESuperficieE MM ==

( ) ( ) 0SuperficieESuperficieE pc =+ 0R

MmGmv21 2 =

−+ RMG2v =

Si aplicamos la expresión de la velocidad de escape a los dos planetas y se compara:

AB

BA

B

BA

A

B

B

A

A

B

A

B

BB

A

AA

RMRM

RMG2

RMG2

RMG2

RMG2

vv:

RMG2v

RMG2v

⋅⋅===

=

=

Teniendo en cuenta la relación entre las masas de los planetas obtenida en el apartado a:

3B

3A

B

A

RR

MM =

67

RR

RR

RR

RR

RR

MM

vv

B

A2B

2A

A

B3B

3A

A

B

B

A

B

A ===⋅=⋅= BA v67v =

Page 6: Sept2013 soluc

6

Pregunta 2.- La velocidad de una partícula que describe un movimiento armónico simple alcanza un valor máximo de 40 cm s‒1. El periodo de oscilación es de 2,5 s. Calcule:

a) La amplitud y la frecuencia angular del movimiento. b) La distancia a la que se encuentra del punto de equilibrio cuando su velocidad es de 10 cm s‒1.

Solución. a. La expresión matemática de un movimiento armónico simple es:

( ) ( )oφt ω sen Aty += La velocidad del m.a.s. es la derivada de la posición con respecto al tiempo.

( ) ( ) ( )( ) ( )oo φt ω cosωAφt ω sen Adtd

dtty dtv +=+==

La expresión de la velocidad máxima será cuando la parte trigonométrica de la ecuación valga 1. ωAvmax =

La velocidad angular o frecuencia angular se puede calcular a partir del periodo:

srad5π4

5,2π2

Tπ2

ω ===

Conocida la velocidad angular, se calcula la amplitud del movimiento a partir de la velocidad máxima.

ωAvmax = cm 16m 16.0π21

5π41040

ω

vA2

max =≈=×==−

b. Partiendo de la expresión de la velocidad y operando con la ecuación se puede obtener una ecuación que relaciona la velocidad y la posición.

( )oφt ω cosωAv += Elevando al cuadrado ( )o2222 φt ωcosωAv +=

Por trigonometría se transforma el coseno en seno:

( )( )o2222 φt ωsen1ωAv +−= ( )

+−=444 3444 21

2x

o22222

φt ωsenAAωv ( )2222 xAωv −=

La última expresión permite despejar x en función de v

2

222

ω

vxA =− ; 2

222

ω

vAx −= ; 2

22

ω

vAx −=

( )( )

cm 15,4m 154,05π4

1010π21x 2

222==×−

=−

Pregunta 3.- Se tiene un prisma rectangular de vidrio de índice de refracción 1,48. Del centro de su cara A se emite un rayo que forma un ángulo a con el eje vertical del prisma, como muestra la figura. La anchura del prisma es de 20 cm y la altura de 30 cm.

a) Si el medio exterior es aire, ¿cuál es el máximo valor de α para que el rayo no salga por la cara B? Justifique la respuesta.

b) Si el medio exterior es agua, ¿cuál es el máximo valor de α para que el rayo no salga por la cara B? Para este valor de α, ¿cuál es el ángulo con el que emerge de la cara C?

Datos: Índice de refracción del aire, naire =1; Índice de refracción del agua, nagua =1,33 Solución. a. El ángulo límite ( )l) , es el ángulo de incidencia al que le corresponde un ángulo de refracción de 90º, produciendo reflexión total y no permitiendo que el rayo salga del medio. Se calcula aplicando la ley de Snell.

r sen ni sen n 21))

=

Si l))) =⇒= i90r

Page 7: Sept2013 soluc

7

0º9 sen n sen n 21 =l)

676,048,11

nn sen

1

2 ===l)

º5,42676,0arcsen ==l)

Conocido el ángulo límite se calcula α. º5,475,429090α =−=−= l

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua.

r sen ni sen n 21))

=

Si l))) =⇒= i90r

0º9 sen n sen n 21 =l)

899,048,133,1

nn sen

1

2 ===l)

º64899,0arcsen ≈=l)

Conocido el ángulo límite se calcula α.

º26649090α =−=−= l Una vez conocido el ángulo límite, hay que calcular el desplazamiento del rayo por el prisma de vidrio, para comprobar si el rayo reflejado en la cara B, incide sobre la cara C o sobre la opuesta a la B.

cm 5,2064 tg 10 tg 10x220

x tg ===⇒= ll

Teniendo en cuenta que 2305,20 > , el rayo reflejado sobre la cara B incide sobre la cara C. Según las leyes de Snell, el ángulo de incidencia ( )l es igual al ángulo de reflexión (r), por lo que podemos calcular el ángulo de incidencia sobre la cara C (i).

64r == l)) º90ir =+

)) º26º64º90rº90i =−=−= ))

Conocido el ángulo de incidencia sobre la cara C, aplicando la ley de Snell se calcula el ángulo de emergencia sobre la cara C.

r sen ni sen n 21))

= º2,29º26sen33,148,1i sen

nnr sen

1

2 ===))

Pregunta 4.-

a) Calcule la longitud de onda de un fotón que posea la misma energía que un electrón en reposo. b) Calcule la frecuencia de dicho fotón y, a la vista de la tabla, indique a qué tipo de radiación

correspondería. Ultravioleta Entre 7,5×1014 Hz y 3×1017 Hz

Rayos-X Entre 3 ×1017 Hz y 3×1019 Hz Rayos gamma Más de 3×1019 Hz

Datos: Masa del electrón, me = 9,11×10‒31 kg; Constante de Planck, h = 6,63×10‒34 J s; Velocidad de la luz en el vacío, c = 3,00×108 m s‒1. Solución. a. La energía de un electrón en reposo se obtiene mediante la ecuación de Einstein para la equivalencia masa-energía.

( ) J10199,81000,31011,9cmE 1428312oo

−− ×=×⋅×=⋅= Siendo mo la masa del electrón en reposo La longitud de onda de un fotón, conocida su energía, se obtiene mediante la ecuación de Planck

λ

chE:λ

νhE⋅=

=⋅=

λ

chcm:cmEE

λ

chE 2o

2oo

⋅=⋅

⋅==

⋅=

cmh

λo ⋅

=

m1043,2sm1000,3Kg1011,9

sJ1063,6λ 12

1831

34−

−−

−×=

⋅×⋅×⋅×=

Page 8: Sept2013 soluc

8

b. Hz1024,11043,21000,3

λ

cν 20

12

8×=

××== −

El fotón corresponde a una radiación de rayos gamma. Pregunta 5.- Dos partículas idénticas A y B, de cargas 3,2×10‒19 C y masas 6,4×10‒27 kg, se mueven en una región donde existe un campo magnético uniforme de valor: ( ) T jiBo

rrr+= . En un instante dado,

la partícula A se mueve con velocidad ( ) 133A s m j 10i 10v −+−=

rrr y la partícula B con velocidad

( ) 133B s m j 10i 10v −−−=

rrr

a) Calcule, en ese instante, la fuerza que actúa sobre cada partícula. b) Una de ellas realiza un movimiento circular; calcule el radio de la trayectoria que describe y la

frecuencia angular del movimiento. Solución. a. La fuerza a la que se ve sometida una carga eléctrica que se desplaza en el seno de un campo magnético viene dada por la expresión:

( )BvqFrrr

×⋅= × ≡ producto vectorial

( ) ( ) ( )[ ] ( ) ( )[ ]=+×+−⋅⋅×=+×+−⋅×=×⋅= −− jiji10102,3jij10i10102,3BvqF 3193319AAA

rrrrrrrrrrr

( ) ( )[ ] ( )2 ,0 ,0102,31111

,0101

,0101

102,30 ,1 ,10 ,1 ,110102,3 1616319 −⋅×=

−−−⋅×=×−⋅⋅×= −−−

N k104,6F 16A

rr −×−=

( ) ( ) ( )[ ] ( ) ( )[ ]=+×−−⋅⋅×=+×−−⋅×=×⋅= −− jiji10102,3jij10i10102,3BvqF 3193319BBB

rrrrrrrrrrr

( ) ( )[ ] ( )0 ,0 ,0102,31111

,0101

,0101

102,30 ,1 ,10 ,1 ,110102,3 1616319 ⋅×=

−−−−

−⋅×=×−−⋅⋅×= −−−

0FB =r

b. La carga A realiza un movimiento circular uniforme, por lo tanto la suma de todas las fuerzas que actúan sobre ella debe ser igual a la fuerza centrípeta.

cFFrr

=∑ Si se supone que la única fuerza que actúa sobre la carga es la magnética, y trabajando en módulo:

RvmαsenBvq

2

A =⋅⋅⋅

Teniendo en cuenta que la velocidad y el campo forman 90º ( ) ( )( )00 ,1 ,10 ,1 ,1Bv =−= or

or

RvmBqA =⋅

BqvmR

A ⋅⋅=

Los módulos de la velocidad y el campo magnético son:

( ) ( ) 1322323 s m 21001010v −=++−= T 2011B 222 =++=

m1022102,3

210104,6BqvmR 5

19

327

A

−−

−×=

⋅×⋅×=

⋅⋅=

Velocidad angular: BqR

Rωm:Rωv

BqRvm

AA ⋅=⋅

⋅=

⋅= Bqmω A ⋅=⋅

srad1007,7104,6

2102,3m

Bqω 7

27

19A ×=

×⋅×=⋅= −