Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed:...

13
Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 1 SCIENTIFIC NOTEBOOK 632E THREE-DIMENSIONAL (3D) THERMOMECHANICAL MODEL OF PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA Author: Dr. Kevin J. Smart Date Initiated: December 12, 2003 Date Completed: April 19, 2011

Transcript of Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed:...

Page 1: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Dr. Kevin J. Smart 1

SCIENTIFIC NOTEBOOK 632ETHREE-DIMENSIONAL (3D) THERMOMECHANICALMODEL OF PROPOSED HIGH-LEVEL RADIOACTIVE

WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

Author: Dr. Kevin J. Smart

Date Initiated: December 12, 2003

Date Completed: April 19, 2011

Page 2: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E

TABLE OF CONTENTS

Topic

Objectives

Description of Geologic Framework Model

Material Properties for GFM Units

Documents Cited

Date Printed: 4/20/11

Pase

3

3

5

12

Dr. Kevin J. Smart 2

Page 3: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Dr. Kevin J. Smart 3

DECEMBER 12, 2003 _KJS_____

THREE-DIMENSIONAL (3D) THERMOMECHANICAL MODEL OFPROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT

YUCCA MOUNTAIN, NEVADA

OBJECTIVES

The overall objective of this work is to develop a series of three-dimensional (3D)thermomechanical models of the proposed high-level radioactive waste repository at YuccaMountain, Nevada. Multiple scales will be assessed including “mountain- or repository-scale”,“panel-scale” and/or “drift-scale”. Specific objectives include:

1. model geometry (i.e., topography, stratigraphy, faults) will be based upon theEarthVision geologic framework model (GFM) version 3.1.

2. assessment of the effect of overburden thickness inhomogeneity that results from theirregular 3D topographic surface.

3. assessment of different thermal loading configurations – for example, comparison ofeffects of loading entire repository versus loading panels separately/sequentially versussequential loading of drifts within a panel.

A number of issues are still to be determined, including:1. what material models should be used? Obviously need to include temperature and

stress effects, but what about inelastic strain? perhaps a jointed material model?2. what are the appropriate loading conditions? Initial stress state should reflect in-situ

stress state – can this be accomplished via initial Geostatic step with gravity load or dowe need to initialize stresses throughout model domain? How should heat load behandled – concentrated versus distributed load in terms of temperature or thermal flux?

3. what are the appropriate boundary conditions? Can we assign u2=0 on base of model,u1=0 on the two north-south trending sides, and u3=0 on the two east-west trendingsides? Is this sufficient if model boundaries are sufficiently far removed from area ofinterest? How should we handle the thermal B.C.’s – zero heat flux on 4 sides with fixedtemperature on model base?

4. how should the faults be treated – planar surfaces with or without friction, or asdistributed fault zones with elastic or inelastic material behavior? Should faults haveproperties that influence heat flow analysis or should they be effectively invisible exceptwhere they juxtapose difference materials?

5. what is most effective way to deal with different size scales – can we run a mountain-scale model and use output for B.C.’s and I.C.’s for smaller panel- or drift-scalesimulations?

DECEMBER 15, 2003 _KJS_____

DESCRIPTION OF GEOLOGIC FRAMEWORK MODEL

Current version is Geologic Framework Model (GFM) version 3.1 (CRWMS M&O, 2000b). Model characteristics include:

Page 4: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Dr. Kevin J. Smart 4

1. GFM covers area of roughly 170 km2 (65 mi2) with a volume (constrained by elevation ofthe Tertiary-Paleozoic unconformity) of roughly 771 km3 (185 mi3).

2. Approximately 12-15 major faults shown on surface of GFM. Inclusion criteria:a. within potential repository area:

i. $1.6 km map trace length and maximum vertical displacement of $30 m; orii. mapped fault intersects ESF or ECRB cross drift.

b. outside potential repository area:i. $3.2 km map trace length and maximum vertical displacement of $30 m; orii. omitting fault creates “unacceptable” mismatch between GFM and geologic map.

3. GFM uses grid spacing of 200 ft by 200 ft with only exception for topography (100 ft by100 ft).

4. In GFM 3.0 and later, Solitario Canyon fault made a single fault surface that is west-dipping from south end of model to Tonsil Ridge and nearly vertical, west-dipping tonorth boundary of GFM. In earlier GFM’s, fault was two separate segments.

5. The repository host horizon (RHH) interval includes RHHtop (lower part of Tptpul),Tptpmn, Tptpll, and Tptpln.

6. Three reference horizons used:a. Base of Tiva Canyon Tuff.b. Top of Calico Hills Formation.c. Top of Older Tertiary Unit.

7. Final model consists of 2193 grids – 50 units times 43 fault blocks plus 43 faults.8. The GFM is built with 50 stratigraphic units. This is far too many to use in the 3D FE

model since many of the stratigraphic layers are relatively thin on the mountain-scalemodel. Equally important, there is a lack of rock property data for many units so thereisn’t much reason to assign them different values (since values are estimates anyway). Suggested simplification from youngest to oldest (i.e., lumping of layers) is:a. Qal – includes Qal down through and including Post-Tiva (represents n1% of GFM.b. Tpc (Tiva Canyon Tuff) – includes Tpcp, TpcpLD, & Tpcpv3.c. PTn (Paintbrush Tuff nonwelded unit) – Tpcpv2, Tpcpv1, Tpbt4, Yucca (Tpy), Tpbt3,

Pah (Tpp), Tpbt2, Tptrv3, & Tptrv2.d. TSw1 (Topopah Spring welded, lithophysae-rich) – Tptrv1, Tptrn, Tptrl, Tptrf, &

Tptpul.e. TSw2 (Topopah Spring welded, lithophysae-rich) – RHH, Tptpmn, Tptpll, & Tptlln.f. TSw3 (Topopah Spring welded, vitrophyric) – Tptpv3.g. CHn (Calico Hills nonwelded) – Tptptv2, Tptpv1, Calico (Ta), & Calicobt (Tacbt).h. Tcp (Prow Pass Tuff) – Prowuv, Prowuc, Prowmd, Prowlc, Prowlv, & Prowbt.i. Tcb (Bullfrog Tuff) – Bullfroguv, Bullfroguc, Bullfrogmd, Bullfroglc, Bullfroglv, &

Bullfrogbt.j. Tct (Tram Tuff) – Tramuv, Tramuc, Trammd, Tramlc, Tramlv, & Trambt.k. Tund (Older Tertiary unit) – Tund.l. TPuc (Tertiary-Paleozoic unconformity) – Paleozoic.

9. Selection of faults is still to be determined. Some thoughts:a. Solitario Canyon and Paintbrush Canyon Faults are both significant down-to-west

normal faults (>425 m slip).b. Windy Wash Fault is also large, but is restricted to NW part of GFM.c. Fatigue Wash, Iron Ridge, and Bow Ridge Faults form significant topographic

features.d. Ghost Dance, Sundance, Dune Wash, and Drill Hole Wash Faults are in (or very

near) the repository.

DECEMBER 17, 2003 _KJS_____

`MATERIAL PROPERTIES FOR GFM UNITS

Page 5: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Dr. Kevin J. Smart 5

As previously noted, material properties are well established for some but not all thestratigraphic intervals at Yucca Mountain. This information is taken directly from the YuccaMountain site description (CRWMS M&O, 2000a), unless otherwise noted. Unfortunately, theunit breakdown for the YM site description (referred to as the Thermomechanical Units) is notexactly the same as that suggested above, and does not go as deep. Themomechanical unitsare:

1. UO (undifferentiated overburden) – ground surface down to and including Tpcrv2.2. TCw (Tiva Canyon welded) – Tpcrv1 to Tpcpv3.3. PTn (Paintbrush Tuff nonwelded) – Tpcpv2 to Tptrv2.4. TSw1 (Topopah Spring welded, lithophysae-rich) – Tptrv1 to Tptpul.5. TSw2 (Topopah Spring welded, lithophysae-poor) – Tptpmn to Tptpln6. TSw3 (Topopah Spring welded, vitrophyric) – Tptpv3.7. CHn (Calico Hills nonwelded) – Tptpv2 to Tacbt.

Density and Porosity – data summarized from Tables 4.7-5, 4.7-6, 4.7-7, and 4.7-8.Thermomechanical

UnitDry Bulk Density

(kg/m3)Saturated Bulk Density

(kg/m3)Average GrainDensity (kg/m3)

Porosity(%)

UO 1280 ± 100 1690 ± 70 2350 ± 40 45.24 ± 3.66

TCw 2160 ± 220 2300 ± 140 2530 ± 30 14.23 ± 9.48

PTn 1280 ± 210 1740 ± 130 2380 ± 80 46.68 ± 8.38

TSw1 2160 ± 80 2300 ± 50 2555 ± 20 15.90 ± 4.03

TSw2 2270 ± 80 2370 ± 30 2555 ± 30 11.30 ± 3.01

TSw3 2350 ± 0 2360 ± 10 2370 ± 10 1.15 ± 0.31

CHn n.a. 1870 ± 30 n.a. n.a.

Rock Thermal Conductivity – data summarized from Tables 4.7-13 and 4.7-14.Thermomechanical

UnitTemperatures <100°C (W/mK) Temperatures >100°C (W/mK)

Saturated Dry Saturated Dry

UO n.a. n.a. n.a. n.a.

TCw 1.89 ± 0.12 1.17 ± 0.35 n.a. 1.53 ± 0.17

PTn 0.92 ± 0.13 0.38 ± 0.10 n.a. 0.42 ± 0.14

TSw1 1.70 ± 0.19 0.96 ± 0.26 n.a. 1.15 ± 0.15

TSw2 2.29 ± 0.42 1.49 ± 0.44 n.a. 1.59 ± 0.10

TSw3 n.a. n.a. n.a. n.a.

CHn n.a. n.a. n.a. n.a.

Page 6: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Mean Coefficient of Thermal Expansivity (heat-up) - data summarized from Table 4.7- 17.

~~

Mean Coefficient of Thermal Expansivity (104/"C) Unit

25- 50- 75- 100- 125- 150- 175- 200- 225- 250- 275- 50°C '75°C 100°C 125°C 150°C 175°C 200°C 225°C 250°C 275°C 300°C

uo

TCw

PTn

TSwl

TSw2

TSw3

CHn

Sat.

Dry

Sat.

Dry

Sat.

Dry

Sat.

Dry

Sat.

Dry

Sat.

Dry Sat.

Dry

n.a.

n.a.

7.09 f 0.43

6.60 f 1.49

4.46 f 0.38

4.55 f 0.74

6.56 f 1.16

6.29 f 1.22

7.14 f 0.65

6.67 f 1.20

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

7.62 f 0.15

8.29 f 0.99

4.28 f 1.61

4.24 j: 1.46

7.32 f 0.60

7.60 * 1.02

7.47 * 1.51

8.31 3: 0.42

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

8.08 f 0.50

9.62 f 1.06

-1.45 f 3.63

3.36 f 2.40

6.83 f 1.60

8.39 f 0.89

7.46 f 1.21

8.87 f 0.40

n.a.

n.a.

n.a.

ma.

n.a.

n.a.

10.34 f 1.52

10.53 f 1.60

-30.42 f 21.47

-4.78 f 11.12

6.92 f 3.28

8.96 f 1.20

9.07 f 2.41

9.37 f 0.55

n.a.

n.a.

n.a.

n.a.

ma.

n.a.

13.17 f 1.23

12.69 f 1.55

5.54 f 0.41

6.46 f 0.98

10.72 f 1.74

10.37 f 1.38

9.98 f 0.77

10.10 f 0.88

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

15.20 f 1.57

14.90 f 1.91

4.47 f 0.79

5.69 f 1.41

14.28 f 3.26

15.51 f 4.53

11.74 f 1.28

10.96 f 1.16

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

16.99 f 1.41

17.03 f 2.31

0.64 f 1.03

3.61 f 2.58

20.98 f 7.01

23.67 f 11.07

13.09 f 1.40

12.22 f 1.50

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

18.99 f 0.96

20.68 f 5.41

-4.65 f 4.05

0.56 f 5.81

36.82 f 20.49

34.24 f 20.30

15.47 f 1.75

14.52 f 2.57

n.a.

n. a.

n.a.

n.a.

n.a.

n.a.

21.38 f 1.23

29.64 f 21 .a8

-9.79 f 7.85

-2.98 f 9.12

41.64 f 17.35

34.00 f 13.70

19.03 f 3.09

20.79 f 17.03

n.a.

n. a.

n.a.

n.a.

n.a.

n.a.

27.42 f 1.94

36.49 f 16.97

-1 3.46 f 11.12

-5.81 f 11.36

42.76 f 13.19

36.07 f 13.23

25.28 f 6.87

25.13 f 10.07

n.a.

n.a.

n. a.

n.a.

n.a.

n.a.

42.99 f 37.35

49.15 f 34.24

-12.96 f 12.90

-7.25 f 10.80

43.81 f 13.65

38.74 f 13.78

37.19 f 14.27

35.13 f 14.56

n.a.

n.a.

n.a.

n.a.

Dr. Kevin J. Smart 6

Page 7: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Dr. Kevin J. Smart 7

DECEMBER 18, 2003 _KJS______

Mean Coefficient of Thermal Expansivity (cool-down) – data summarized from Table4.7-18.

UnitMean Coefficient of Thermal Expansivity (10-6/°C)

300-275°C

275-250°C

250-225°C

225-200°C

200-175°C

175-150°C

150-125°C

125-100°C

100-75°C

75-50°C

50-35°C

UOSat. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Dry n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

TCwSat. 14.72

± 3.7621.97± 6.79

33.53± 16.44

37.01± 26.18

23.81± 10.01

18.48± 3.25

15.72± 1.96

13.51± 1.48

12.09± 1.28

10.78± 1.36

10.85± 1.96

Dry 17.46± 3.70

26.34± 6.88

36.95± 11.50

33.72± 14.21

22.86± 3.16

17.58± 2.00

13.89± 2.39

11.77± 2.22

10.21± 1.56

9.35± 1.15

6.59± 2.20

PTnSat. 15.58

± 1.049.12

± 0.847.20

± 0.296.39

± 0.176.98

± 1.516.29

± 0.785.93

± 0.475.36

± 0.365.12

± 0.344.33

± 0.841.94

± 2.93

Dry 11.22± 2.46

7.91± 1.00

6.78± 0.81

6.45± 0.90

6.47± 1.14

6.53± 1.35

6.11± 1.30

5.80± 1.16

5.52± 0.89

4.82± 0.84

2.41± 0.86

TSw1Sat. 15.07

± 4.6819.87± 7.82

24.05± 9.85

26.15± 7.37

27.57± 8.36

26.66± 9.91

28.19± 18.04

19.89± 8.05

11.46± 2.01

9.92± 1.54

9.35± 1.06

Dry 16.68± 4.13

20.71± 7.78

24.16± 10.61

23.26± 7.29

26.74± 9.32

25.34± 9.35

25.55± 14.94

17.78± 8.53

10.53± 2.15

9.22± 1.51

6.95± 2.49

TSw2Sat. 21.89

± 6.1627.83

± 10.3626.55

± 10.0121.38± 5.70

17.31± 3.07

14.06± 1.38

12.49± 1.32

11.52± 2.00

10.27± 0.62

9.48± 0.63

8.81± 0.62

Dry 20.57± 4.88

24.31± 7.55

24.20± 8.08

21.16± 6.24

18.45± 9.36

14.34± 4.23

11.74± 3.03

10.51± 2.26

9.54± 1.79

8.87± 1.56

7.48± 1.99

TSw3Sat. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Dry n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

CHnSat. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Dry n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

DECEMBER 19, 2003 _KJS______

Mean Thermal Capacitance – data summarized from Table 4.7-21.Unit Mean Thermal Capacitance (J/cm3K)

25°C 50°C 75°C 100°C 125°C 150°C 175°C 200°C 225°C 250°C 275°C 300°C

TSw1 1.58 1.68 1.80 1.91 2.03 2.14 2.13 2.09 2.07 2.05 2.03 2.03

TSw2 1.79 1.88 1.97 2.16 2.32 2.45 2.43 2.40 2.39 2.39 2.39 2.43

Page 8: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Mean Intact Elastic (Young’s) Modulus and Poisson’s Ratio - data summarized from Tables 4.7-22 and 4.7-23.

Thermomechanical Young’s Modulus Poisson’s Unit (GPa) Ratio

uo TCw PTn

TSwl

TSw2

TSw3 CHn

3.86 f 1.86

29.36 f 10.80 2.54 f 4.02

20.36 f 6.75

33.03 f 5.94

37.43 f 15.02 5.63 f 1.55

0.09 f 0.07

0.21 f 0.11

0.20 f 0.06 0.23 f 0.07

0.21 f 0.04

0.24 f 0.13 0.17 f 0.12

Mean Uniaxial (Unconfined) Compressive Strength and Brazillian Tensile Strength - data summarized from Tables 4.7-25 and 4.7-27.

Thermomechanical Uniaxial Strength Tensile Strength Unit (MPa) (MPa)

uo TCw

PTn TSwl

TSw2

TSw3

CHn

7.14 f 4.92

127.54 f 92.66

6.37 f 6.97

58.22 f 30.69

167.90 f 65.53

16.40 f n.a.

23.23 f 3.04

0.88f 0.72

8.88 f 3.66

0.66 f 1.17

5.48k 2.32

3.97f 0.32

n. a.

8.91f 3.39

Dr. Kevin J. Smart 8

Page 9: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Dr. Kevin J. Smart 9

Mean Confined Compressive Strength – data summarized from Table 4.7-26.

TM Unit1 L Unit2 Cohesion(MPa)

FrictionAngle

Confining Pressure(MPa)

Axial Stress(MPa)

UO n.a. n.a.

TCw

Tpcpmn 14.2 65°

510555

101010

158.2291.4295.9275.1180.3369.0339.1309.9

Tpcpll 50.6 54°

1010101055550000

439.7434.6343.4417.3395.3391.2396.8307.1315.8284.2313.8332.4

Tpcpln 27.8 63°

05

100

1005

278.4313.6418.2169.8410.4259.9323.3

PTn n.a. n.a.

TSw1

Tptrn 6.4 55°

55555

10101010

76.5108.9113.690.067.5

160.8142.1131.4133.0

Tptrn 3.4 53°

1010105555

119.9147.961.177.139.684.758.8

Tptrn 15.1 51°

10101055550000

185.0139.1208.356.5

163.975.9

110.2106.289.597.388.7

Page 10: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Tptpmn 42.8 50"

TSw2

Tptprnn 36.9 46"

CHn n.a. n.a.

' Thermomechanical Unit Lithostratigraphic Unit

Dr. Kevin J. Smart

Page 11: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Rock Mass Mechanical Properties - data summarized from Tables 4.7-40. Therrnornechanical Cohesion Friction Dilation Poisson's Young's Modulus

Unit ( M W Angle Angle Ratio ( G W

uo 1.1 52" 26" 0.14 4.3

TCw 5.5 55" 27" 0.21 25.7

PTn 1.3 48" 24" 0.20 2.5

TSwl 3.3 47" 24" 0.26 18.9

TSw2 8.9 59" 30" 0.21 31.1

TSw3 n.a. n. a. n. a. n. a. n. a.

CHn n. a. n. a. n. a. n. a. n. a.

APRIL 9, 2003 KJS

HyperMesh@ (including the Earthvision import toolkit) is used to convert components of the Yucca Mountain geologic framework model (GFM) to a finite element geometry that can be used in ABAQUS@.

Dr. Kevin J. Snarl 11

Page 12: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 4/20/11

Dr. Kevin J. Smart 12

DOCUMENTS CITED

Board, M. (2003) Resolution strategy for geomechanically-related repository design andthermal-mechanical effects (RDTME). Report prepared by Bechtel SAIC Company, LLC forthe U.S. Department of Energy to address Key Technical Issue (KTI) agreements onRepository Design and Thermal-Mechanical Effects. [PDF]

BSC (2001) Thermal Management Analysis for Lower-Temperature Designs.ANL-SFS-MG-000005 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC:MOL.20010814.0329.

Buesch, D.C., Spengler, R.W., Moyer, T.C., Geslin, J.K. (1996) Proposed stratigraphicnomenclature and macroscopic identification of lithostratigraphic units of the PaintbrushGroup exposed at Yucca Mountain, Nevada. U.S. Geological Survey Open-File Report 94-469.

Busheck, T.A. (2000) Multiscale thermohydrologic model. ANL-EBS-MD-000049 REV 00. LasVegas, Nevada: CRWMS M&O. MOL. ????

Busheck, T.A. (2001) Multiscale thermohydrologic model. ANL-EBS-MD-000049 REV 00 ICN02. Las Vegas, Nevada: CRWMS M&O. MOL. ????

Chen, R. (1999) Analyses of drift stability and rockfall due to earthquake ground motion atYucca Mountain, Nevada. In Rock Mechanics for Industry – Proceedings of the 37th U.S.Rock Mechanics Symposium, volume 2 (Amadei, B., Kranz, R.L., Scott, G.A., and Smeallie,P.H., eds.). A.A. Balkema, Rotterdam, 759-766.

Chen, R. (2000) Drift stability and ground support performance under thermal and dynamic loadin fractured rock mass at Yucca Mountain, Nevada. CNWRA 2000-04, Center for NuclearWaste Regulatory Analyses, San Antonio, TX.

CRWMS M&O (2000a) Yucca Mountain Site Description. TDR-CRW-GS-000001 REV 01 ICN01. Las Vegas, Nevada: CRWMS M&O. MOL. ??????

CRWMS M&O (2000b) Geologic Framework Model (GFM 3.1). MDL-NBS-GS-000002 REV 00ICN 01. Las Vegas, Nevada: CRWMS M&O. MOL. 20000121.0115

Ofoegbu, G.I. (1999) Variations in drift stability at the proposed Yucca Mountain repository. InRock Mechanics for Industry – Proceedings of the 37th U.S. Rock Mechanics Symposium,volume 2 (Amadei, B., Kranz, R.L., Scott, G.A., and Smeallie, P.H., eds.). A.A. Balkema,Rotterdam, 767-773.

Ofoegbu, G.I. (2000) Thermal-mechanical effects on long-term hydrological properties at theproposed Yucca Mountain nuclear waste repository. CNWRA 2000-03, Center for NuclearWaste Regulatory Analyses, San Antonio, TX.

Ofoegbu, G.I. (2001) Hydrological implications of thermally induced geomechanical response atYucca Mountain, Nevada. In Rock Mechanics in the National Interest – Proceedings of the38th U.S. Rock Mechanics Symposium, volume 1 (Elsworth, D., Tinucci, J.P., and Heasley,K.A., eds.). A.A. Balkema, Rotterdam, 613-619.

Page 13: Scientific Notebook No. 632E: Three-Dimensional (3D ... · Scientific Notebook 632 E Date Printed: 4/20/11 Dr. Kevin J. Smart 3 DECEMBER 12, 2003 _KJS_____ THREE-DIMENSIONAL (3D)

Scientific Notebook 632 E Date Printed: 412011 1

Ofoegbu, G.I., Painter, S., Chen, R., Fedors, R.W., Ferrill, D.A. (2001) Geomechanical and thermal effects on moisture flow at the proposed Yucca Mountain nuclear waste repository. Nuclear Technology 134, 241 -262.

Peters, R.R. (1983) Thermal response to emplacement of nuclear waste in long, horizontal boreholes. Sandia National Laboratories SAND82-2497.

Dr. Kevin J. Smart 13