SC Diamond Detector FE Electronics for MIPs Timing · 2005. 9. 8. · AD8009 • Dual-gate MOSFET,...

19
SC Diamond Detector FE Electronics for MIPs Timing Andrei Caragheorgheopol for GSI – Darmstadt Group and NIPNE- Bucharest Group of NoRHDia Project NoRHDia2 Workshop GSI, 30.08-01.09.2005

Transcript of SC Diamond Detector FE Electronics for MIPs Timing · 2005. 9. 8. · AD8009 • Dual-gate MOSFET,...

  • SC Diamond Detector FE Electronicsfor MIPs Timing

    Andrei Caragheorgheopol

    for

    GSI – Darmstadt Groupand

    NIPNE- Bucharest Groupof

    NoRHDia Project

    NoRHDia2 WorkshopGSI, 30.08-01.09.2005

  • Table of contents

    • Signal source

    • Timing errors

    • Reasons for a CSA solution

    • Charge Sensitive Amp and Fast Amp

    • Shaping Amp

    • Measurements

    • Summary

  • SC-DD characteristicsSignal Source

    Det. no.

    Crystal dim.Contact diam.

    areanature

    CapacitanceDark currentElectric field

    bds5 bds7

    5X5X0.315 5X5X0.3203.5 3.5

    9.6250 nm Cr + 100 nm Au

    9.62

    1.54 1.5250 50

    -1

    mm3

    mmmm2

    pFfA

    V/µm

    Dark current vs. electric field

    )(

    )(46.50)(

    2

    md

    mmSpFCD µ

    •=

    ±1

  • SC-DD signalSignal Source

    Shape: trapezoidal

    tr < 200ps (incl. 150ps DBA contribution)

    tFWHM ~ 1ns/100µm

    ∆Q∆x

    DD

    MIP~~ 36 e/µm

    (E. Berdermann et al., Int. Winter Meeting on Nuclear Physics, Bormio-Italy, 2005)

    Comparison of a 295µm PC-DD signal and a 500µm SC-DD signal

    Averaged α-induced signal from a 393µm SC-DD at different electric fields

    Q300µmMIP ~~11000e = 1.75fC → 1.75mV (CF=1pF)CSA

  • • Walk

    Timing errorsThe resolution of TOF measurements is affected by:

    • Jitter

    = time error due to signal amplitude spread

    can be compensated knowing amplitude (energy) spectra

    spectrometric chain SA

    = time error due to electronic noise and finite signal slope

    thrdt

    dVN

    t

    σσ =

    can be minimized by high S/N and fast Tr

    fast, low noise chain CSA+FA

  • S/N ratio – formulaReasons for a CSA solution

    Dominant noise sources are considered:

    ( )( ) CSA

    VA

    Tin

    mw

    VA

    CSA

    f

    f

    CR

    gT

    NS

    NS ⋅⋅⋅⋅= 12.1/

    /

    VAin fKTR4=• thermal noise of input resistor(Rin) for VA

    • channel noise (gm) of input device for CSA

    where:

    (DD) • Tw = transit time in detector = W/Vs(W = DD thickness, Vs = saturation velocity)

    (CSA) • gm = slope of CSA input device

    • CT = total input capacitance

    • fCSA = bandwidth of CSA

    (VA) • Rin = input impedance of VA

    • fVA = bandwidth of VA

    CSAm

    fg

    KT7.0

    4=

    MIP signals referred to input are:

    inSVA Rx

    QVU ⋅

    ∆∆⋅=•

    TCSA Cx

    QWU

    1⋅

    ∆∆⋅=•

    where:

    ∆Q∆x

    DD

    MIP~~ 36 e/µm

  • S/N ratio – estimationReasons for a CSA solution

    (DD) • Tw = 3ns (W = 300µm)

    (CSA) • gm = 45mA/V

    • CT = CD+Cin+CP+CF=7pF

    • fCSA = fVA

    (VA) • Rin =50Ω

    • fVA =fCSA

    CD=1.5pF

    Cin=3pF

    CP=1.5pF

    CF=1pF

    15.3(S/N)CSA(S/N)VA

    S/N

    0.910.51Spot noise, input ref.

    (nV/SR Hz)

    28.8247MIP input signal (µV)

    VACSA

    CSAf

    310484⋅

    VAf

    31032⋅

  • Rise time – formulaReasons for a CSA solution

    gm = slope of CSA input device

    CT = CD+Cin+CP+CF

    Rin =50Ω

    CC= dominant pole capacitance

    CF=feedback capacitance

    m

    C

    F

    Tr

    CSAr g

    C

    C

    CT ⋅⋅=⋅= 2.22.2 τ

    [ ] 22)(2.2 VAinPDVAr tRCCT +⋅+⋅=

    TrVA= 360ps

    where:

    where:

    tVA = gain stage rise time

    Rise time – estimation

    TrCSA= 1ns CT = 7pF

    CF=1pF

    CC = 3pF

    gm = 45mA/V

    CD=1.5pF

    CP=1.5pF

    tVA =150pS

    (DBA – Peter Moritz)

    TrCSA

    TrVA~~ 3

  • CSA and FA – circuit diagramCharge Sensitive Amp and Fast Amp

    +11V

    -11V

    +5.5V

    -5.5V

  • CSA and FA – viewCharge Sensitive Amp and Fast Amp

    BF908

    AD8009

    • Dual-gate MOSFET, 1GHz

    • Depletion type

    • yfs = 43 mA/V (typ)

    CiG1-s = 3.1pF (typ)

    • NF = 0.6 db (typ) / 200MHz

    =1.5 db (typ) / 800Mhz

    • IDSS = 3-27 mA

    (UDS = 8V, UG2-S = 4V, ID = 15mA)

    • Current feedback type

    • GBP = 1GHz

    G = 10 B = 350 MHz

    • en=1.9 nV/SR Hzin+ = 46 pA/SR Hzin-- = 41 pA/SR Hz

  • Shaping AmpSA – circuit diagram

    CD100p

    R4

    51

    R6

    2k2

    R7

    51

    +Vs

    -Vs

    R7

    51

    +Vs

    -Vs

    1k2

    R6

    R2

    51OPA847

    OPA847

    RadjR5

    51

    C/R3 100p

    CIIR3 10n R32k2

    -

    ++

    --Vs

    +Vs

    -Vs

    C5

    100n

    C1

    1µC310n

    C2

    +Vs

    -Vs

    1µC4100n

    L1

    L2

    10µH

    10µH

    +6V

    -6V

    GND

    +Vs

    -Vs

    C5

    100n

    C1

    1µC310n

    C21µ

    C4100n

    L1

    L2

    10µH

    10µH

    +6V

    -6V

    GND

    IN

    OUT

    PCB-1 PCB-2

    OPA 847

    • Voltage Feedback type

    • GBP = 3.9 Ghz

    G = +12 B = 600 MHz

    G = +25 B = 350 MHz/1ns

    G = -44 B = 240 MHz/1.5ns

    • en = 0.85 nV/SR Hz

    in = 2.5 pA/SR Hz

  • Shaping AmpSA – specifications

    GAIN: ≈200, inverting

    SHAPING: CR-RC, 10 ns

    TR ≤ 6.4 ns TP = 12 ns

    TF ≤ 28 ns TFWHM ≤ 20 ns

    BANDWIDTH: 31.6 MHz (6.6 MHz – 38.2 MHz)

    OUTPUT RANGE: linear ±2V,max. ±2.2V

    DC OUTPUT LEVEL: ≤ 1mV

    NOISE: ≤ 10mVpp (output)

    ≤ 8.5µVRMS (input)

    ≤ 1.5 nV/SR Hz (input)

    INPUT: 50 ohms, AC coupled, SMB connector

    OUTPUT: 50 ohms, DC coupled, SMB connector

    POWER SUPPLY: ±6V/36mA, 9 pins connector (NIM)

  • MeasurementsPulser tests (A)

    CSA output (avg.)

    CSA+FA output (avg.)

    QTEST = 6fC

    2mV/div32mV/div

    2mV/div32mV/div

    200ns/div 2ns/div

    CSA

    τ = 500ns

    CSA+FA

    avg. avg. CSA

    CSA+FA

  • MeasurementsPulser tests (B) SA input, output and noise

    25m adapted cableGain = 200/50 ohms

    TP=10ns

    17% amplitude loss

    8.5 µVRMS1.5 nV/SR Hzinput referred

  • MeasurementsPulser tests (C)

    CSA+SA output and noiseCSA+FA output and noise

    QTEST = 3fC

    100mV/div10mV/div

    100mV/div10mV/div

    5ns/div 20ns/div

    100mV/div10mV/div

    50mV/div5mV/div

    10ns/div 100ns/div

    avg.CSA+FA

    18.3mV/fC

    CSA+SA167 mV/fC

    avg.CSA+FA

    CSA+SA

    CSA+SA

    CSA+FACSA+SA

    CSA+FA

    310 eRMS

    560 eRMS

  • MeasurementsSr 90/SC-DD tests

    CSA outputCSA+FA output and spectrumSciP trigger outputSC-DD: bds5/315µm

    bds7/320µm

    4.5mV/div65mV/div

    20ns/div 13mV/div100mV/div

    10ns/div

    4mV/div

    2mV/div

    2ns/div

    avg.

    TR=2.2ns CSA+FA

    CSATR=3.3ns

    CSA+FA

    SciP

    Sr 90

    2XSC-DD

    Sr 90

    CSA+FA

    SciP1XSC-DD

  • Time and energy spectra

    Measurements Energy spectrum

    Start: SciP

    Time – Energy spectra

    No walk correction After walk correction

    Energy

    Tim

    e

    Tim

    e

    Energy

    Det. : 2XSC-DD (bds5+bds7)

    Electronics: CSA+FA, SA

    Time calibration: 46ps/ch.

    7.7 ch. 6.0 ch.

    Sr 90/SC-DD tests

    MIP selected

  • Summary

    First results are promising :

    • focus on S/N, TR

    • improvements in:-DD-CSA connection, mounting

    - PCB layout design

    - schematic

    - components

    • systematic noise measurements/optimisation

    • beam tests

    Next steps:

    S/N ≈ 20, TR ≈ 1ns

  • List of participants

    A. Caragheorgheopol a

    A. Martemianov b,c

    M. Ciobanu b,a

    P. Moritz b

    M. Pomorski b

    M. Petris a

    M. Petrovici a

    E. Berdermann b

    a – NIPNE – Bucharest, Romania

    b – GSI – Darmstadt, Germany

    c – IHEP – Moscow, Russia