Saša Novak, Nataša Drnovšek, Katja Rade, Spomenka Kobe...Saša Novak, Nataša Drnovšek, Katja...

47
Saša Novak, Nataša Drnovšek, Katja Rade, Spomenka Kobe Jožef Stefan Institute, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia Marko Gradišar Helipro, Lesce, Slovenia

Transcript of Saša Novak, Nataša Drnovšek, Katja Rade, Spomenka Kobe...Saša Novak, Nataša Drnovšek, Katja...

  • Saša Novak, Nataša Drnovšek, Katja Rade, Spomenka Kobe

    Jožef Stefan Institute, Jožef Stefan International Postgraduate School,

    Ljubljana, Slovenia

    Marko Gradišar

    Helipro, Lesce, Slovenia

  • Outline

    Report on the outcome of an FP6 project

    Coatings on Ti6Al4V alloy with porous surface layer:

    TiO2-anatase coating

    Bioactive glass coating

    Characterisation

    In vivo tests

  • Project

    Multifunctional bioresorbable biocompatible coatings

    with biofilm inhibition and optimal implant fixation

    IP-SME (2006-2010)

    12 partners :

    5 research org.

    2 laboratories (SME)

    4 companies (SME)

    1 association

    A few pillars

    http://fp6.cordis.lu/fp6/home.cfm

  • Delphi, 2008

    Nataša

    Katja

    Oracle.jpg

  • Fixation: Cemented Non-cemented

    Bone ingrowth

  • Porous Ti-layer

    (

  • 1. Porous Ti-layer:

    a) EPD of Ti-powder (KUL-B)

    b) VPS – Vacuum plasma spray (Alhenia-CH)

    2. TiO2 „bond-coat“:

    a) micro-arc anodisation (Uni Bayreuth-D)

    b) hydrotermal synthesis (IJS-Slo)

    Proposed processes

  • 3. Synthesis of bioactive glass (BAG)

    a) melting /milling (KUL-B)

    b) polymeric sol-gel (KUL-B; IJS-Slo)

    c) particular sol-gel (KUL-B; IJS-Slo)

    Depostion of BAG coating

    a) EPD (KUL-B; IJS-Slo)

    b) vacuum infiltration (IJS-Slo)

    Sintering of BAG coating

    6. Antibiotic deposition (Hemotec-D)

  • 1. Porous Ti-coating on Ti6Al4V alloy

    Not cytotoxic

    No HA in simulated body fluid (SBF)

    Hydrophobic superhydrofobic

    (the cells don‘t enter the pores)

    Ti6Al4V Ti(VPS)-layer

    VPS (Alhenia-Ch)

    EPD (KUL-B)

  • Ti6Al4V

    (Helipro)

    Dental

    implant

    Porous Ti

    coated graft

    Low-cost technique for coating of

    complex shaped implants

    Ti-ions

    2. TiO2 coating: Hydrothermal treatment Ti-oxide (amorphous) is naturally present on Ti

  • TNZS

    substrate

    HT69

    HT32 HT50 HT65

    HT83

    HT80 HT80S

    HT84

  • Dental implant Bone graft with porous Ti layer

    TiO2-coating on highly complex-shaped implants

  • Impedes release of Al and V from Ti6Al4V

    (discs 16 mm, h: 1.5 mm) 1 month in MiliQ water (50 ml) + ultrapure NaCl @ 36.5 °C

    ICP-MS

    D. Cadosch, et al, Biocorrosion and uptake of titanium by human

    osteoclasts, J. BIOMEDICAL MAT. RES. A , 2010, 4

    Porous Ti-layer on TiAlV HT porous Ti-layer on TiAlV

    Improves

    wetting

  • Decoloring of

    resazurine dye

    UV-induced photocatalitic degradation of organic molecules

    HA forms in SBF (Kokubo test) - Ca/P ratio: 1.62

    Antibacterial

    effect?

  • Human osteoblast cells: Good viability

    S. aureus

    1,00E+07

    1,00E+08

    1,00E+09

    1,00E+10

    24 48 72

    Incubation time (in h)

    Cfu

    /dis

    c

    * ** * * *

    Staphylococcus epidermidis (1457)

    Staphylococcus aureus (ATCC 25923 Bacterial inhibition

    µ-T

    iO2 (

    HT

    )

    Ti-

    all

    oy

    su

    bs

    tra

    te

    n-T

    iO2 (

    HT

    )

  • Unfinished story…

    • Limited reproducibility of the in vitro test (effect of UV light?)

    • UV-induced antibacterial effect?

    ….Starting point for Martina‘s thesis / BioTiNet

    Greece … Delphi…

  • 3. Bioactive glass (BAG) coating

    Discovered by L. Hench in 1969

    BIOACTIVE: due to similarity of the glass components to hydroxyapatite

    BIORESORBABLE: the dissolution products nucleate hydroxyapatite

    formation at silanol Si-OH groups on the surface.

    OSTEOCONDUCTIVE: bond to hard as well as to soft tissue.

    BIOINDUCTIVE: ability to repair and to rebuild damaged (hard) tissues

    POOR MECHANICAL PROPERTIES !!!

    COMPOSITIONS:

    SiO2-CaO-Na2O-P2O5 (45S5, melt)

    SiO2-CaO-MxOy (M= Zn, Sr, K, Na, P, Mg, ..)

    … up to 90SiO2-10 CaO

  • Comercial BAG

    PARTICULATE SOL-GEL

    POLYMERIC SOL-GEL

    Synthesis methods

    MELTING + MILLING

  • after sintering

    After soaking in SBF

    for 5 days

    Hydroxyapatite formation in simulated body fluid

    “SBF test” (sintered pellets)

  • BACTERIOLOGICAL TEST

    after sintering after sintering

    24 h

    70S30C 53S

    24 h

    S. aureus 120 h 120 h

  • 7

    7,5

    8

    8,5

    9

    9,5

    10

    10,5

    11

    0 10 20 30 40 50 60

    t (h)

    pH

    70/30 SG-particulate

    53S SG-particulate

    53S SG-polymeric

    45S KUL

    (Vivoxid)

    fine

    powders

    coarse

    powders

    7

    7,5

    8

    8,5

    9

    9,5

    10

    10,5

    11

    0 10 20 30 40 50 60

    t (h)

    pH

    70/30 SG-particulate

    53S SG-particulate

    fine

    powders

    sintered

    pellets

    53S SG-particulate

    70/30 SG-particulate

    Effect of particles size Effect of sintering

    Local pH change during dissolution in water

  • Impregnation of the porous Ti-layer with BAG

    Sintering of the BAG coating

    Ti6Al4V

    Ti (VPS)

    SG-BAG

    Ti6Al4V

    Ti-porous layer

  • Nano-Meadow

  • TEM analysis of the interphase

    BAG-coating on Ti6Al4V

    substrate

    interlayer

    glass

    1 μm

    Ca

    Si

    O

    Ti

    Ti

    Ti

    Si

    Al V

    60-80 at.% SiO2 10-35 at.% CaO

    5-10 at.% TiO2

    28-35 at.% Si

    72-65 at.% Ti

    (Ti5Si3, Ti3Si)

    93 at.% Ti

    5.4 at.% Al

    1.6 at.% V

  • 5

    6

    Region (close to the substrate)

    Crystalline

    Larger amount of Ti

  • What to expect in vivo?

  • No bacteria! No endotoxins!

    Histomorphometric

    analysis

    10 weeks

    rabbits

    In-vivo tests

    BAG-particular

    BAG-polymeric

    TiO2-Hydrothermal

    TiO2-MAO

    Gentamicin

    VPS (reference)

    14 x

    Sample holder

    Ti6Al4V graft with

    porous Ti layer and

    different coatings

  • Implantation / Explantation

    Bone Cylinder

    1. Drilling a hole diameter 4.2 mm to achieve pressfit betwen implant and bone

    2. Pushing the sterilized cylinder into the hole

    3. Closing the wound

    ~ 10 mm

    6 mm

    1. Cutting the tibia around the implant 2. Fixation in formaldehid

    Implantation (July-August 2011)

    Housing for 10 weeks

    Explantation (October 2011)

  • Samples preparation

    3) Cutting (vertically)

    ½: grinding and polishing

    - SEM

    - EDS (mapping)

    - Quantitative analyses

    of bone ingrowth - Optical microscopy

    - Hystological examination

    1) Fixation ½: thinning of 2 slices

    2) Mounting (propylene

    oxide + EPON / EPON)

    HISTOLOGICAL SECTION

    SEM

    2) Dehidration Staining

    (Stevenels blue and

    VanGieson picrofuchsin red)

  • Histological observation

    Bone marrow

    empty

    lacuna NEW

    BONE

    MATURE

    BONE

    Ti Ti

    Ti

    Van Gieson picrofuchsin red

    Stevenel’s blue

  • Porous Ti layers with TiO2 coating

    Porous Ti layers without coating (reference)

  • Bioactive glass

    • Bone in the pores

    • Good contact with implant

    • Mineralised bone in contact

    with implant and also in porous

    Ti-layer

    VPS (reference)

  • • Mineralised bone in the pores

    • Good contact of mineralised

    bone with implant

    TiO2-HT TiO2/HA-MAO

    • No contact between mineralised

    bone and implant

    • No bone in pores

    • A thick layer of unmineralized bone

    (osteoid) – something prevents bone

    from mineralization – Osteomalacia

    (defective mineralization of bone

    matrix)

    • Osteoclasts !!!

    F11

  • TiO2/HA-MAO

  • In histological preparations

    difficult (if not impossible) to quantify the amount of

    bone formed in the porous Ti-layer

    Polished cross-sections

    SEM, EDS

  • FEG SEM, EDS (mapping)

    Ca, P: indication of bone

    Si: remains of BAG

    Ti: metal

    Al: metal

    C, Cl: EPON

    Elemental distribution Polished bulk sample

    Bone-to-implant contact Presence of bone in the

    porous layer

    Count: B: points in grey phase (bone)

    E: points in Epon (un-field part of the pore)

    B (%) = B / (B+E)

  • VPS (reference)

    - 2 samples have cracks between the Ti-coating and

    substrate (formed during cutting)

    - Moderately high amount of bone in the pores

    - Good bone-to-metal contact (surface)

  • - Half of pores volume filled with bone

    - Relatively good contact of bone and implant

    - Al at the TiAllV-Ti contact

    TiO2 - Hydrothermal treatment

  • TiO2 anatase coating improves osseointegration of Ti in-vivo

    (10 weeks, rabbits)

    Ti: No coating TiO2 anatase coating on Ti

    Improvement of wetting easier cell entering into the pores

    Bone forms also in the deepest parts of the porous Ti-layer

    Epon

    bone

    Ti bone marrow

    TiAlV

  • TiO2-Micro arc anodisation

    - No bone in pores

    - Almost no contact of bone and implant

    - Coating still present in pores (foam-like

    appearance)

    - No Ca in pores, high P content in the coating

  • Bioactive glass (particulate sol-gel)

    - Relatively high amount of bone in pores

    - Relatively good contact of bone and implant

    - BAG has dissolved (Si from grinding with SiC paper)

    Bone

    N. Drnovšek, S. Novak, U. Dragin, M. Čeh, M. Gorenšek, M. Gradišar,

    Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants,

    International Orthopaedics (2012)

  • 47

    6

    59

    45

    2

    44

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    % l

    inea

    l p

    art

    of

    bon

    e-to

    -met

    al

    con

    tact

  • TiO2-anatase coating (HT):

    - Simple technique for coating Ti-based materials

    - Impedes the release of Al in V release from

    the Ti6Al4V alloy

    - Improves wetting

    - Improves osseointegration in-vivo

    - Nano-TiO2 opens the possibility for

    UV-induced „self“-sterilisation

    (photocatalysis)

    BAG-coating (particulate sol-gel):

    - Enhances osseointegration

    Dental screws

    should

    er

  • Standardisation

    Clinical tests

    In vivo tests

    Samples preparation

    Development of new/improved biomaterial

  • ?

  • Nataša Drnovšek

    Gregor Murn

    Matej Skočaj

    Katja Rade

    Jozef Vleugels, KUL

    (Meddelcoat coordinator)

    ..and the Meddelcoat team

    Marko Gradišar, Helipro d.o.o

    Institute for Cell biology, Lj.