RPC D etector C ontrol S ystem: towards the final system

11
Giovanni Polese 1 RPC Detector Control System: towards the final system Pierluigi Paolucci, Anna Cimmino I.N.F.N. of Naples Giovanni Polese Lappeenranta University Workshop on CMS RPC commissioning and upgrade

description

RPC D etector C ontrol S ystem: towards the final system. Workshop on CMS RPC commissioning and upgrade. Pierluigi Paolucci, Anna Cimmino I.N.F.N. of Naples Giovanni Polese Lappeenranta University. Requirements. DCS Items: - PowerPoint PPT Presentation

Transcript of RPC D etector C ontrol S ystem: towards the final system

Page 1: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 1

RPC Detector Control System:towards the final system

Pierluigi Paolucci, Anna Cimmino I.N.F.N. of NaplesGiovanni Polese

Lappeenranta University

Workshop on CMS RPC commissioning and upgrade

Page 2: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 2

Requirements

DCS Items:• to monitor detector and environmental parameters, calibrate, set and maintain the configuration • take appropriate corrective and immediate actions to protect the equipment, maintain detector stability and reliable performance, and alert on any malfunctions.

The RPC DCS system have to control and monitor:

~ 800 HV channels

~1500 LV Feb channels

~350 LBB channels

320 T sensors

~30 MAO channels

~10 RH sensors

Page 3: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 3

Architecture

RPC

EndcapHardwareBarrel

Chamber

Sector

WheelUXC_b/e

Chamber

Ring

DiskUSC_b/e

HV

LV feb

LV LBB

BCboard

rackSY1527

RackWheel

HV

LV feb

LV LBB

BCboard

rackSY1527

T

CO

MM

AN

DS

………

Device

Unit

Act

ion

s

Page 4: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 4

FSM Schema

ONOFF

RUP

RDW

TOP

Wh,Dis

Sec,Ring

Ch

Hv

•DCS States: ON, OFF, STANDBY,ERROR

•RPC States: ON, OFF, STANDBY, RAMP1STEP,

RAMP2STEP, ERROR

•STANDBY: HV ON @ intermediate voltage,

LV ON;

•ON: HV ON @ nominal voltage, LV ON;

•RAMP1STEP: from OFF to STANDBY;

•RAMP2STEP: from STANDBY to ON;

•Logical Description of the channels behavior:

(ON,OFF, RAMPING,AND DIFFERENT

SEVERITY ERROR CONDITIONS) STB

OK

NOT_OK

•Hardware descrition status and summary of all possible error and warning condition, each device level offer major details about error message

Error Hardware

Page 5: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 5

PVSS GUI System Overview

HW

Page 6: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 6

RPC DCS during MTCC

The system was successfully integrated in the central DCS at the middle of July

During the MTCC the system worked well; it was stable, robust and has never crashed.

The FSM has never crashed and has followed correctly the logic behavior of the entire system.

The GUI has been proved to be user friendly and used easily from the shifters and no wrong actions have been performed by them.

All data has been properly stored during the MTCC on the OMDS db from barrel and endcap PCs.

Page 7: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 7

New feature for final system

We have performed a positive test in 904 using the final hardware for one wheel.

Additional Panel for Hardware tree, more detailed features for all components (boards, temperature and humidity sensors, MAO, rack and BCs).

At Wheel level, we add the possibility of monitoring up to 6 plots for worst chambers. Improved the plot manipulation. It’s now possible to scaling axis, zooming and moving time interval. Additional information about the status of cooling, cavern environmental conditions and magnet status.

Page 8: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 8

Alarm Handling

DCS Console

GSM Antenna

GSM Modem

Alert : TEST

1

2

Alert : SMS send

Alert : Waiting SMS ACKCentral DCS 3

Expert Cell PhoneDCS Console

Alert : TEST

Alert : SMS send

Alert : Waiting SMS ACK

4

LDAP Server

The alarm handling uses different severity level and manages the main working parameters (Imon and main alarm channel conditions).

All alarm conditions are sent to GUI and visualized in a dedicated panel

We add the possibility to send the alarm condition to the expert CERN mobile between SMS and also the possibility to acknowledge it.

Page 9: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 9

Access Mode Different access level: user, operator and expert with different privileges granted.

Every user must login in in the system with NICE password and must to be registered into DB for defining the access level.

Low level access (shifter) can just switch on/off chamber and LV/LBB channels, but CANNOT change chamber values (V0,I0)

Page 10: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 10

Databases

PVSS use a native schema to write and read data from DB (automatic mode)

We are developing a set of tables to complete the hardware description.

Configuration DB: A version of Configuration PVSS db with all hardware structure and working parameter has been created on development DB. Next step is to move on OMDS db

Condition DB: During the MTCC the db connection worked well and we was able to store all information from channels behavior (Vmon, Imon, I0,V0,status,temp) and from hardware component (Board temperature, FSM status, HW status)

PVSS DB manager requires many simultaneous connections, so as done by all the other subdetector, we have to move to an adhoc tablespace only for PVSS data.

Page 11: RPC D etector  C ontrol  S ystem: towards the final system

Giovanni Polese 11

Conclusion

We are now migrating to final system, redesigning and optimizing the resources management, starting from the lessons learnt during the MTCC.

Improved the FSM and inserted additional component (Temperature, Mao, Rack).

Migrate to the final db schema on OMDS machine for Configuration and Condition DB.

A working version for Barrel will be ready at the end of May, in time for the DCS commissioning.

Regarding Endcap, we need people to update the system developed by Anna Cimmino for the MTCC.

The entire system fully responses to the last version of the official CMS DCS guidelines, required for the integration to the Central DCS.

PVSS-XDAQ communication and integration in the Run Control.