Research Article Marcinkiewicz Integral Operators and...

10
Research Article Marcinkiewicz Integral Operators and Commutators on Herz Spaces with Variable Exponents Liwei Wang School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China Correspondence should be addressed to Liwei Wang; [email protected] Received 26 July 2014; Accepted 21 September 2014; Published 15 October 2014 Academic Editor: Dashan Fan Copyright © 2014 Liwei Wang. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Our aim in this paper is to give the boundedness of the Marcinkiewicz integral Ω on Herz spaces ̇ (⋅), (⋅) (R ) and (⋅), (⋅) (R ), where the two main indices are variable. Meanwhile, we consider the boundedness of the higher order commutator Ω, generated by Ω and a function in BMO(R ) on these spaces. 1. Introduction Let S −1 be the unit sphere in R ( ≥ 2) equipped with the normalized Lebesgue measure ( ). Suppose that Ω is homogeneous of degree zero on R and has mean zero on S −1 , that is, S −1 Ω ( ) ( ) = 0. (1) en the Marcinkiewicz integral Ω in higher dimension is defined by Ω () () = (∫ 0 Ω, () () 2 3 ) 1/2 , (2) where Ω, () () = ∫ |−|≤ Ω ( − ) −1 () . (3) Denote by N the set of all positive integer numbers. Let N and BMO(R ); the higher order commutator Ω, is defined by Ω, () () = (∫ 0 Ω,, () () 2 3 ) 1/2 , (4) where Ω,, () () = ∫ |−|≤ Ω ( − ) −1 ( () − ()) () . (5) Stein [1] defined the operator Ω and proved that if Ω∈ Lip (S −1 ) (0 < ≤ 1), then Ω is of type (,) (1 < ≤ 2) and of weak type (1, 1). Benedek et al. [2] showed that Ω is of type (, ) (1 < < ∞) with Ω∈ 1 (S −1 ). Ding et al. [3] improved the previous results to the case of Ω∈ 1 (S −1 ), where 1 (S −1 ) denotes the Hardy space on S −1 . Obviously, 1 Ω, = [, Ω ], which was defined by Torchinsky and Wang in [4]; moreover, they proved that if Ω∈ Lip (S −1 ) (0 < ≤ 1), then [, Ω ] is bounded on (R ) (1 < < ∞). Ding et al. [5] weakened the smoothness of the kernel to a rough kernel and showed that if Ω∈ (S −1 ) (1 < ≤ ∞), then [, Ω ] is of type (,) (1 < < ∞). Ding et al. [6] established the weighted weak log type estimates for Ω, when Ω∈ Lip (S −1 ) (0 < ≤ 1). Recently, Zhang [7] improved the previous result and proved that Ω, enjoys the same weighted weak log type estimates when the kernel Ω satisfies a kind of Dini’s conditions. For further details on recent developments on this field, we refer the readers to [8, 9] and references therein. Function spaces with variable exponents were intensively studied during the past 20 years, due to their applications to PDE with nonstandard growth conditions and so on; we mention [10, 11], for instance. Since the fundamental paper [12] by Kov´ cik and R´ akosn´ ık appeared in 1991, the Lebesgue spaces with variable exponent (⋅) (R ) have attracted a great attention and many interesting results have been obtained; Hindawi Publishing Corporation Journal of Function Spaces Volume 2014, Article ID 430365, 9 pages http://dx.doi.org/10.1155/2014/430365

Transcript of Research Article Marcinkiewicz Integral Operators and...

Page 1: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

Research ArticleMarcinkiewicz Integral Operators and Commutators onHerz Spaces with Variable Exponents

Liwei Wang

School of Mathematics and Physics Anhui Polytechnic University Wuhu 241000 China

Correspondence should be addressed to Liwei Wang wangliwei8013163com

Received 26 July 2014 Accepted 21 September 2014 Published 15 October 2014

Academic Editor Dashan Fan

Copyright copy 2014 Liwei Wang This is an open access article distributed under the Creative Commons Attribution License whichpermits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

Our aim in this paper is to give the boundedness of theMarcinkiewicz integral 120583ΩonHerz spaces 120572(sdot)119902

119901(sdot)(R119899

) and119870120572(sdot)119902

119901(sdot)(R119899

) wherethe two main indices are variable Meanwhile we consider the boundedness of the higher order commutator 120583119898

Ω119887generated by 120583

Ω

and a function 119887 in BMO(R119899) on these spaces

1 Introduction

Let S119899minus1 be the unit sphere in R119899(119899 ge 2) equipped with

the normalized Lebesgue measure 119889120590(1199091015840) Suppose that Ω is

homogeneous of degree zero on R119899 and has mean zero onS119899minus1 that is

intS119899minus1

Ω(1199091015840) 119889120590 (119909

1015840) = 0 (1)

Then the Marcinkiewicz integral 120583Ωin higher dimension is

defined by

120583Ω(119891) (119909) = (int

infin

0

1003816100381610038161003816119865Ω119905(119891) (119909)

10038161003816100381610038162 119889119905

1199053)

12

(2)

where

119865Ω119905

(119891) (119909) = int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891 (119910) 119889119910 (3)

Denote by N the set of all positive integer numbers Let119898 isin N and 119887 isin BMO(R119899

) the higher order commutator 120583119898

Ω119887

is defined by

120583119898

Ω119887(119891) (119909) = (int

infin

0

10038161003816100381610038161003816119865

119898

Ω119887119905(119891) (119909)

10038161003816100381610038161003816

2 119889119905

1199053)

12

(4)

where

119865119898

Ω119887119905(119891) (119909) = int

|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(119887 (119909) minus 119887 (119910))119898119891 (119910) 119889119910

(5)

Stein [1] defined the operator 120583Ωand proved that if Ω isin

Lip120574(S119899minus1

) (0 lt 120574 le 1) then 120583Ωis of type (119901 119901) (1 lt 119901 le 2)

and of weak type (1 1) Benedek et al [2] showed that 120583Ωis

of type (119901 119901) (1 lt 119901 lt infin) withΩ isin 1198621(S119899minus1

) Ding et al [3]improved the previous results to the case of Ω isin 119867

1(S119899minus1

)where1198671

(S119899minus1) denotes the Hardy space on S119899minus1 Obviously

1205831

Ω119887= [119887 120583

Ω] which was defined by Torchinsky and Wang

in [4] moreover they proved that if Ω isin Lip120574(S119899minus1

) (0 lt

120574 le 1) then [119887 120583Ω] is bounded on 119871

119901(R119899

) (1 lt 119901 lt infin)Ding et al [5] weakened the smoothness of the kernel to arough kernel and showed that if Ω isin 119871

119902(S119899minus1

) (1 lt 119902 le infin)then [119887 120583

Ω] is of type (119901 119901) (1 lt 119901 lt infin) Ding et al [6]

established the weighted weak 119871log119871 type estimates for 120583119898

Ω119887

when Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) Recently Zhang [7]improved the previous result and proved that 120583119898

Ω119887enjoys the

same weighted weak 119871log119871 type estimates when the kernelΩ satisfies a kind of Dinirsquos conditions For further details onrecent developments on this field we refer the readers to [8 9]and references therein

Function spaces with variable exponents were intensivelystudied during the past 20 years due to their applicationsto PDE with nonstandard growth conditions and so on wemention [10 11] for instance Since the fundamental paper[12] by Kovacik and Rakosnık appeared in 1991 the Lebesguespaces with variable exponent 119871119901(sdot)

(R119899) have attracted a great

attention and many interesting results have been obtained

Hindawi Publishing CorporationJournal of Function SpacesVolume 2014 Article ID 430365 9 pageshttpdxdoiorg1011552014430365

2 Journal of Function Spaces

see [13ndash15] Izuki [16 17] defined the Herz spaces 120572119902

119901(sdot)(R119899

)

and 119870120572119902

119901(sdot)(R119899

) with variable exponent 119901 but fixed 120572 isin R and119902 isin (0infin] Wang et al [18 19] obtained the boundednessof 120583

Ωand [119887 120583

Ω] on

120572119902

119901(sdot)(R119899

) and 119870120572119902

119901(sdot)(R119899

) Almeida andDrihem [20] established the boundedness of a wide class ofsublinear operators which includes maximal potential andCalderon-Zygmund operators on Herz spaces

120572(sdot)119902

119901(sdot)(R119899

)

and 119870120572(sdot)119902

119901(sdot)(R119899

) where the two main exponents 120572 and 119901 areboth variable In this paper we will give boundedness resultsfor 120583

Ωand 120583119898

Ω119887on Herz spaces 120572(sdot)119902

119901(sdot)(R119899

) and119870120572(sdot)119902

119901(sdot)(R119899

)For brevity |119864| denotes the Lebesgue measure for a

measurable set 119864 sub R119899 119891119864denotes the integral average of

119891 on 119864 that is 119891119864= |119864|

minus1int

119864119891(119909)119889119909 1199011015840

(sdot) stands for theconjugate exponent 1119901(sdot) + 1119901

1015840(sdot) = 1 119861(119909 119903) = 119910 isin

R119899 |119909 minus 119910| lt 119903 119862 denotes a positive constant which may

have different values even in the same line 119891 ≲ 119892means that119891 le 119862119892 and 119891 asymp 119892means that 119891 ≲ 119892 ≲ 119891

2 Preliminaries and Main Results

Let 119864 sub R119899 with |119864| gt 0 and let 119901(sdot) 119864 rarr [1infin) be ameasurable function Let us first recall some definitions andnotations

Definition 1 The Lebesgue space with variable exponent119871

119901(sdot)(119864) is defined by

119871119901(sdot)

(119864)

= 119891 is measurable int119864

(

1003816100381610038161003816119891 (119909)1003816100381610038161003816

120582)

119901(119909)

119889119909 lt infin

for some constant 120582 gt 0

(6)

This is a Banach space with the Luxemburg norm

10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(119864)= inf 120582 gt 0 int

119864

(

1003816100381610038161003816119891 (119909)1003816100381610038161003816

120582)

119901(119909)

119889119909 le 1 (7)

Let 119891 isin 1198711

loc(119864) the Hardy-Littlewood maximal operator119872 is defined by

119872119891(119909) = sup119903gt0

119903minus119899int

119861(119909119903)cap119864

1003816100381610038161003816119891 (119910)1003816100381610038161003816 119889119910 (8)

Denote

119901minus= ess inf 119901 (119909) 119909 isin 119864

119901+= ess sup 119901 (119909) 119909 isin 119864

P (119864) = 119901 (sdot) 119901minusgt 1 119901

+lt infin

B (119864) = 119901 (sdot) isin P (119864) 119872 is bounded on 119871119901(sdot)

(119864)

(9)

Let 119861119896= 119909 isin R119899

|119909| le 2119896 119877

119896= 119861

119896119861

119896minus1 and 120594

119896= 120594

119877119896

be the characteristic function of the set 119877119896for 119896 isin Z For119898 isin

N one denotes 120594119898= 120594

119877119898

if 119898 ge 1 and 1205940= 120594

1198610

By ℓ119902(0 lt

119902 le infin) we denote the discrete Lebesgue space equippedby the usual quasinorm

Definition 2 Let 0 lt 119902 le infin 119901(sdot) isin P(R119899) and 120572(sdot) R119899

rarr

R with 120572 isin 119871infin(R119899

)

(1) The homogeneous Herz space 120572(sdot)119902

119901(sdot)(R119899

) is definedby

120572(sdot)119902

119901(sdot)(R

119899) = 119891 isin 119871

119901(sdot)

loc (R119899 0)

10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

lt infin

(10)

where10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

=100381710038171003817100381710038171003817100381710038171003817100381710038172

120572(sdot)119896119891120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

infin

119896=minusinfin

100381710038171003817100381710038171003817ℓ119902(Z)

(11)

(2) The inhomogeneous Herz space119870120572(sdot)119902

119901(sdot)(R119899

) is definedby

119870120572(sdot)119902

119901(sdot)(R

119899) = 119891 isin 119871

119901(sdot)

loc (R119899)

10038171003817100381710038171198911003817100381710038171003817119870120572(sdot)119902

119901(sdot)(R119899)

lt infin (12)

where10038171003817100381710038171198911003817100381710038171003817119870120572(sdot)119902

119901(sdot)(R119899)

=100381710038171003817100381710038171003817100381710038171003817100381710038172

120572(sdot)119898119891120594

119898

10038171003817100381710038171003817119871119901(sdot)

(R119899)

infin

119898=0

100381710038171003817100381710038171003817ℓ119902(N)

(13)

with the usual modification when 119902 = infin

Remark 3 It is obvious that if 0 lt 1199021le 119902

2le infin then

120572(sdot)1199021

119901(sdot)(R119899

) sub 120572(sdot)1199022

119901(sdot)(R119899

) and 119870120572(sdot)1199021

119901(sdot)(R119899

) sub 119870120572(sdot)1199022

119901(sdot)(R119899

) Ifboth 120572(sdot) and 119901(sdot) are constants then 120572(sdot)119902

119901(sdot)(R119899

) = 120572119902

119901 (R119899)

and 119870120572(sdot)119902

119901(sdot)(R119899

) = 119870120572119902

119901 (R119899) are classical Herz spaces see

[21 22]

Definition 4 A function 120572(sdot) R119899rarr R is called log-Holder

continuous at the origin if there exists a constant 119862log gt 0

such that

|120572 (119909) minus 120572 (0)| le119862log

log (119890 + 1 |119909|) (14)

for all 119909 isin R119899 If for some 120572infinisin R and 119862log gt 0 there holds

1003816100381610038161003816120572 (119909) minus 120572infin

1003816100381610038161003816 le119862log

log (119890 + |119909|)(15)

for all 119909 isin R119899 then 120572(sdot) is called log-Holder continuous atinfinity

Let one denote

1003817100381710038171003817ℎ1198961003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)= (sum

119896⩾0

1003817100381710038171003817ℎ119896

1003817100381710038171003817119902

119871119901(sdot))

1119902

1003817100381710038171003817ℎ1198961003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)= (sum

119896lt0

1003817100381710038171003817ℎ119896

1003817100381710038171003817119902

119871119901(sdot))

1119902

(16)

Journal of Function Spaces 3

for sequences ℎ119896119896isinZ ofmeasurable functions (with the usual

modification when 119902 = infin)

Proposition 5 (see [20]) Let 0 lt 119902 le infin 119901(sdot) isin P(R119899)

and 120572(sdot) isin 119871infin(R119899

) If 120572(sdot) is log-Holder continuous both at theorigin and at infinity then

10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

(17)

Before stating themain results of this paper we introducesome key lemmas that will be used later

Lemma 6 (generalized Holderrsquos inequality [12]) Let 119901(sdot) isin

P(R119899) if 119891 isin 119871

119901(sdot)(R119899

) and 119892 isin 1198711199011015840

(sdot)(R119899

) then

intR119899

1003816100381610038161003816119891 (119909) 119892 (119909)1003816100381610038161003816 119889119909 le 119903

119901

10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

100381710038171003817100381711989210038171003817100381710038171198711199011015840(sdot)

(R119899) (18)

where 119903119901= 1 + 1119901

minusminus 1119901

+

We remark that the following Lemmas 7ndash9 were shown inIzuki [17 23] and Lemma 10 was considered by Wang et alin [18]

Lemma 7 Let 119901(sdot) isin B(R119899) then one has for all balls 119861 in

R119899

1

|119861|

1003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119861

10038171003817100381710038171198711199011015840(sdot)

(R119899)≲ 1 (19)

Lemma 8 Let 119901(sdot) isin B(R119899) then one has for all balls 119861 in

R119899 and all measurable subsets 119878 sub 1198611003817100381710038171003817120594119878

1003817100381710038171003817119871119901(sdot)

(R119899)1003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ (|119878|

|119861|)

1205751

1003817100381710038171003817120594119878

10038171003817100381710038171198711199011015840(sdot)

(R119899)1003817100381710038171003817120594119861

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (|119878|

|119861|)

1205752

(20)

where 1205751and 120575

2are constants with 0 lt 120575

1 120575

2lt 1

Lemma 9 Let 119898 isin N 119887 isin BMO(R119899) and 119896 gt 119894 (119896 119894 isin N)

then one has

sup119861subR119899

11003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887 minus 119887

119861)119898120594

119861

10038171003817100381710038171003817119871119901(sdot)

(R119899)asymp 119887

119898

BMO

100381710038171003817100381710038171003817(119887 minus 119887

119861119894

)119898

120594119861119896

100381710038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119896 minus 119894)

119898119887

119898

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

(21)

Lemma 10 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 119887 isin BMO(R119899)

and 119901(sdot) isin B(R119899) then one has1003817100381710038171003817120583Ω

(119891)1003817100381710038171003817119871119901(sdot)

(R119899)≲10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ 119887

119898

BMO10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

(22)

Our results in this paper can be stated as follows

Theorem 11 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 0 lt 119902 le infinand 119901(sdot) isin B(R119899

) And let 120572(sdot) isin 119871infin(R119899

) be log-Holder

continuous both at the origin and at infinity such that minus1198991205751lt

120572(0) le 120572infin

lt 1198991205752 where 0 lt 120575

1 120575

2lt 1 are the constants

appearing in Lemma 8 then the operator 120583Ωis bounded on

120572(sdot)119902

119901(sdot)(R119899

) and 119870120572(sdot)119902

119901(sdot)(R119899

)

Theorem 12 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 119887 isin

BMO(R119899) 0 lt 119902 le infin and 119901(sdot) isin B(R119899

) And let 120572(sdot) isin119871

infin(R119899

) be log-Holder continuous both at the origin and atinfinity such that minus119899120575

1lt 120572(0) le 120572

infinlt 119899120575

2 where 0 lt 120575

1

1205752lt 1 are the constants appearing in Lemma 8 then the

higher order commutator 120583119898

Ω119887is bounded on

120572(sdot)119902

119901(sdot)(R119899

) and119870

120572(sdot)119902

119901(sdot)(R119899

)

Remark 13 If 120572(sdot) equiv 120572 is constant then the statementscorresponding toTheorems 11 and 12 can be found in [19 24]We consider only 0 lt 119902 lt infin in Section 3 The arguments aresimilar in the case 119902 = infin

3 Proofs of the Theorems

In this section we prove the boundedness of 120583Ωand 120583119898

Ω119887on

120572(sdot)119902

119901(sdot)(R119899

) (the same arguments can be used in 119870120572(sdot)119902

119901(sdot)(R119899

))some of our decomposition techniques are similar to thoseused by Dong and Xu in [25]

Proof of Theorem 11 In view of Proposition 5 we have

1003817100381710038171003817120583Ω(119891)

1003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

Ω(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

Ω(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119868lt+ 119868

gt

(23)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (24)

Minkowskirsquos inequality implies that

119868lt=

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817120583Ω

(119891) 120594119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119864lt+ 119865

lt+ 119866

lt

(25)

4 Journal of Function Spaces

Similarly we obtain

119868gt=

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817120583Ω(119891) 120594

119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119864gt+ 119865

gt+ 119866

gt

(26)

Thus we get

1003817100381710038171003817120583Ω(119891)

1003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119864 + 119865 + 119866 (27)

where 119864 = 119864lt+ 119864

gt 119865 = 119865

lt+ 119865

gt and 119866 = 119866

lt+ 119866

gt

For 119865 Lemma 10 yields

119865 = 119865lt+ 119865

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(28)

Nowwe turn to estimate119864 Observe that if 119909 isin 119877119896 119910 isin 119877

119894

and 119894 le 119896 minus 2 then |119909 minus 119910| asymp |119909| asymp 2119896 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

|119909|2

1003816100381610038161003816100381610038161003816100381610038161003816

10038161003816100381610038161199101003816100381610038161003816

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (29)

Since Ω isin Lip120574(S119899minus1

) sub 119871infin(S119899minus1

) by Minkowskirsquosinequality and Lemma 6 we have

1003816100381610038161003816120583Ω(119891

119894) (119909)

1003816100381610038161003816

≲ (int

|119909|

0

100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

|119909 minus 119910|119899minus1119891

119894(119910)119889119910

100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

|119909 minus 119910|119899minus1119891

119894(119910)119889119910

100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(30)

Lemmas 7 and 8 lead to

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(31)

Thus we get

119864lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))

)

119902

1119902

(32)

If 1 lt 119902 lt infin since 1198991205752minus 120572(0) gt 0 Holderrsquos inequality

implies that

119864lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))1199022

)

times(

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572(0))119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))1199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(33)

Journal of Function Spaces 5

If 0 lt 119902 le 1 by the well-known inequality

(

infin

sum

119894=1

119886119894)

119902

le

infin

sum

119894=1

119886119902

119894(119886

119894gt 0 119894 = 1 2 ) (34)

we obtain

119864lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(35)

Similarly we have

119864gt≲

infin

sum

119896=0

2119896120572infin

119902(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

))

119902

1119902

(36)

If 1 lt 119902 lt infin since 120572infin+119899120575

2gt 2120572

infingt 2120572(0) then we get

119864gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

times (

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572infin

)1199021015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)1199022

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)1199022

1119902

minus2

sum

119894=minusinfin

2120572(0)119894119902

2(120572infin

+1198991205752minus2120572(0))11989411990221003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(37)

If 0 lt 119902 le 1 since 120572(0) le 120572infin we obtain

119864gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(38)

Thus we arrive at

119864 = 119864lt+ 119864

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(39)

For 119866 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896 + 2 then

|119909 minus 119910| asymp |119910| asymp 2119894 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

100381610038161003816100381611991010038161003816100381610038162

1003816100381610038161003816100381610038161003816100381610038161003816

≲|119909|

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (40)

From Minkowskirsquos inequality and Lemma 6 it followsthat1003816100381610038161003816120583Ω

(119891119894) (119909)

1003816100381610038161003816

≲ (int

|119910|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119910|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119910|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119910|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot|119909|

12

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot110038161003816100381610038161199101003816100381610038161003816

119889119910

6 Journal of Function Spaces

≲ 2(119896minus119894)2

2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 1198622minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(41)

By Lemmas 7 and 8 we have

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)10038171003817100381710038171003817120594

119861119894

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(42)

Thus we get

119866lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119866gt≲

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(43)

Using the same arguments as that for 119864ltand 119864

gt we get

119866 = 119866lt+ 119866

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(44)

Hence the proof of Theorem 11 is completed

Proof of Theorem 12 We apply Proposition 5 again and get

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119869lt+ 119869

gt

(45)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) and write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (46)

By Minkowskirsquos inequality we have

119869lt=

minus1

sum

119896=minusinfin

2120572(0)11989611990210038171003817100381710038171003817

120583119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880lt+ 119881

lt+119882

lt

(47)

By the same way we obtain

119869gt=

infin

sum

119896=0

2120572infin

11989611990210038171003817100381710038171003817120583

119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880gt+ 119881

gt+119882

gt

(48)

Thus we have

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119880 + 119881 +119882 (49)

where 119880 = 119880lt+ 119880

gt 119881 = 119881

lt+ 119881

gt and119882 = 119882

lt+119882

gt

For 119881 by Lemma 10 we have

119881 = 119881lt+ 119881

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(50)

Journal of Function Spaces 7

For 119880 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 le 119896 minus 2 then

10038161003816100381610038161003816120583

119898

Ω119887(119891

119894) (119909)

10038161003816100381610038161003816

≲ (int

|119909|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

+ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus119895

int119877119894

10038161003816100381610038161003816119887119861119894

minus 119887 (119910)10038161003816100381610038161003816

119895 1003816100381610038161003816119891119894(119910)

1003816100381610038161003816 119889119910

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus11989510038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(51)

An application of Lemmas 7 8 and 10 gives

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times

119898

sum

119895=0

119862119895

119898

10038171003817100381710038171003817(119887(119909) minus 119887

119861119894

)119898minus119895

120594119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(119877119899)

times

119898

sum

119895=0

119862119895

119898(119896 minus 119894)

119898minus119895119887

119898minus119895

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)119887

119895

BMO10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198981003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

(119894minus119896)11989912057521003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(52)For convenience below we put 120590 = 119899120575

2minus 120572(0) if 1 lt 119902 lt

infin then we use Holderrsquos inequality and obtain

119880lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120590)

119902

1119902

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205901199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120590119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)1205901199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(53)If 0 lt 119902 le 1 then we get

119880lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120590119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120590119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(54)Similarly we put 120578 = 119899120575

2minus 120572

infin if 1 lt 119902 lt infin by Holderrsquos

inequality we obtain

119880gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120578)

119902

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120578119902

1015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

1119902

(55)

8 Journal of Function Spaces

By the same arguments as 119864gt we get

119880gt≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(56)

If 0 lt 119902 le 1 we obtain

119880gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120578119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(57)

Thus we have119880 = 119880

lt+ 119880

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(58)

For119882 if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896+2 as in the arguments

for 119866 and 119880 we obtain10038171003817100381710038171003817120583

119898

Ω119887(119891

119895)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119894 minus 119896 + 1)

1198982

(119896minus119894)1198991205751

10038171003817100381710038171003817119891

119895

10038171003817100381710038171003817119871119901(sdot)

(R119899) (59)

Thus we get

119882lt

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

(119894 minus 119896 + 1)1198982

(119896minus119894)11989912057511003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times (119894 minus 119896 + 1)1198982

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119882gt

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119894 minus 119896 + 1)

1198982

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(60)

Similar to the estimates of 119880ltand 119880

gt we get

119882 = 119882lt+119882

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(61)

Hence the proof of Theorem 12 is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The author would like to thank the referees for their time andvaluable comments This work was supported by the NSF ofChina (Grant no 11201003) and University NSR Project ofAnhui Province (Grant no KJ2014A087)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 pp 430ndash466 1958

[2] A Benedek A-P Calderon and R Panzone ldquoConvolutionoperators on Banach space valued functionsrdquo Proceedings of theNational Academy of Sciences of the United States of Americavol 48 pp 356ndash365 1962

[3] Y Ding D Fan and Y Pan ldquoWeighted boundedness for aclass of rough Marcinkiewicz integralsrdquo Indiana UniversityMathematics Journal vol 48 no 3 pp 1037ndash1055 1999

[4] A Torchinsky and S L Wang ldquoA note on the Marcinkiewiczintegralrdquo Colloquium Mathematicum vol 60-61 no 1 pp 235ndash243 1990

[5] Y Ding S Lu and K Yabuta ldquoOn commutators of Marcink-iewicz integrals with rough kernelrdquo Journal of MathematicalAnalysis and Applications vol 275 no 1 pp 60ndash68 2002

[6] Y Ding S Lu and P Zhang ldquoWeighted weak type estimates forcommutators of the Marcinkiewicz integralsrdquo Science in ChinaA vol 47 no 1 pp 83ndash95 2004

[7] P Zhang ldquoWeighted endpoint estimates for commutators ofMarcinkiewicz integralsrdquo Acta Mathematica Sinica vol 26 no9 pp 1709ndash1722 2010

[8] S Lu ldquoMarcinkiewicz integral with rough kernelsrdquo Frontiers ofMathematics in China vol 3 no 1 pp 1ndash14 2008

[9] Y P Chen and Y Ding ldquo119871119901 boundedness of the commutatorsof Marcinkiewicz integrals with rough kernelsrdquo Forum Mathe-maticum 2013

[10] Y M Chen S Levine and M Rao ldquoVariable exponent lineargrowth functionals in image restorationrdquo SIAM Journal onApplied Mathematics vol 66 no 4 pp 1383ndash1406 2006

[11] P Harjulehto P Hasto U V Le and M Nuortio ldquoOverviewof differential equations with non-standard growthrdquo NonlinearAnalysis Theory Methods amp Applications vol 72 no 12 pp4551ndash4574 2010

[12] O Kovacik and J Rakosnık ldquoOn spaces 119871119901(119909) and 119882119896119901(119909)rdquo

Czechoslovak Mathematical Journal vol 41 no 4 pp 592ndash6181991

[13] D Cruz-Uribe A Fiorenza J M Martell and C Perez ldquoTheboundedness of classical operators on variable 119871

119901 spacesrdquoAnnales Academiae Scientiarum Fennicae Mathematica vol 31no 1 pp 239ndash264 2006

[14] L Diening P Harjulehto P Hasto and M Ruzicka Lebesgueand Sobolev Spaces with Variable Exponents vol 2017 of LectureNotes in Mathematics Springer Heidelberg Germany 2011

[15] D V Cruz-Uribe and A Fiorenza Variable Lebesgue SpacesFoundations and Harmonic Analysis Applied and NumericalHarmonic Analysis Birkhauser Basel Switzerland 2013

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

2 Journal of Function Spaces

see [13ndash15] Izuki [16 17] defined the Herz spaces 120572119902

119901(sdot)(R119899

)

and 119870120572119902

119901(sdot)(R119899

) with variable exponent 119901 but fixed 120572 isin R and119902 isin (0infin] Wang et al [18 19] obtained the boundednessof 120583

Ωand [119887 120583

Ω] on

120572119902

119901(sdot)(R119899

) and 119870120572119902

119901(sdot)(R119899

) Almeida andDrihem [20] established the boundedness of a wide class ofsublinear operators which includes maximal potential andCalderon-Zygmund operators on Herz spaces

120572(sdot)119902

119901(sdot)(R119899

)

and 119870120572(sdot)119902

119901(sdot)(R119899

) where the two main exponents 120572 and 119901 areboth variable In this paper we will give boundedness resultsfor 120583

Ωand 120583119898

Ω119887on Herz spaces 120572(sdot)119902

119901(sdot)(R119899

) and119870120572(sdot)119902

119901(sdot)(R119899

)For brevity |119864| denotes the Lebesgue measure for a

measurable set 119864 sub R119899 119891119864denotes the integral average of

119891 on 119864 that is 119891119864= |119864|

minus1int

119864119891(119909)119889119909 1199011015840

(sdot) stands for theconjugate exponent 1119901(sdot) + 1119901

1015840(sdot) = 1 119861(119909 119903) = 119910 isin

R119899 |119909 minus 119910| lt 119903 119862 denotes a positive constant which may

have different values even in the same line 119891 ≲ 119892means that119891 le 119862119892 and 119891 asymp 119892means that 119891 ≲ 119892 ≲ 119891

2 Preliminaries and Main Results

Let 119864 sub R119899 with |119864| gt 0 and let 119901(sdot) 119864 rarr [1infin) be ameasurable function Let us first recall some definitions andnotations

Definition 1 The Lebesgue space with variable exponent119871

119901(sdot)(119864) is defined by

119871119901(sdot)

(119864)

= 119891 is measurable int119864

(

1003816100381610038161003816119891 (119909)1003816100381610038161003816

120582)

119901(119909)

119889119909 lt infin

for some constant 120582 gt 0

(6)

This is a Banach space with the Luxemburg norm

10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(119864)= inf 120582 gt 0 int

119864

(

1003816100381610038161003816119891 (119909)1003816100381610038161003816

120582)

119901(119909)

119889119909 le 1 (7)

Let 119891 isin 1198711

loc(119864) the Hardy-Littlewood maximal operator119872 is defined by

119872119891(119909) = sup119903gt0

119903minus119899int

119861(119909119903)cap119864

1003816100381610038161003816119891 (119910)1003816100381610038161003816 119889119910 (8)

Denote

119901minus= ess inf 119901 (119909) 119909 isin 119864

119901+= ess sup 119901 (119909) 119909 isin 119864

P (119864) = 119901 (sdot) 119901minusgt 1 119901

+lt infin

B (119864) = 119901 (sdot) isin P (119864) 119872 is bounded on 119871119901(sdot)

(119864)

(9)

Let 119861119896= 119909 isin R119899

|119909| le 2119896 119877

119896= 119861

119896119861

119896minus1 and 120594

119896= 120594

119877119896

be the characteristic function of the set 119877119896for 119896 isin Z For119898 isin

N one denotes 120594119898= 120594

119877119898

if 119898 ge 1 and 1205940= 120594

1198610

By ℓ119902(0 lt

119902 le infin) we denote the discrete Lebesgue space equippedby the usual quasinorm

Definition 2 Let 0 lt 119902 le infin 119901(sdot) isin P(R119899) and 120572(sdot) R119899

rarr

R with 120572 isin 119871infin(R119899

)

(1) The homogeneous Herz space 120572(sdot)119902

119901(sdot)(R119899

) is definedby

120572(sdot)119902

119901(sdot)(R

119899) = 119891 isin 119871

119901(sdot)

loc (R119899 0)

10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

lt infin

(10)

where10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

=100381710038171003817100381710038171003817100381710038171003817100381710038172

120572(sdot)119896119891120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

infin

119896=minusinfin

100381710038171003817100381710038171003817ℓ119902(Z)

(11)

(2) The inhomogeneous Herz space119870120572(sdot)119902

119901(sdot)(R119899

) is definedby

119870120572(sdot)119902

119901(sdot)(R

119899) = 119891 isin 119871

119901(sdot)

loc (R119899)

10038171003817100381710038171198911003817100381710038171003817119870120572(sdot)119902

119901(sdot)(R119899)

lt infin (12)

where10038171003817100381710038171198911003817100381710038171003817119870120572(sdot)119902

119901(sdot)(R119899)

=100381710038171003817100381710038171003817100381710038171003817100381710038172

120572(sdot)119898119891120594

119898

10038171003817100381710038171003817119871119901(sdot)

(R119899)

infin

119898=0

100381710038171003817100381710038171003817ℓ119902(N)

(13)

with the usual modification when 119902 = infin

Remark 3 It is obvious that if 0 lt 1199021le 119902

2le infin then

120572(sdot)1199021

119901(sdot)(R119899

) sub 120572(sdot)1199022

119901(sdot)(R119899

) and 119870120572(sdot)1199021

119901(sdot)(R119899

) sub 119870120572(sdot)1199022

119901(sdot)(R119899

) Ifboth 120572(sdot) and 119901(sdot) are constants then 120572(sdot)119902

119901(sdot)(R119899

) = 120572119902

119901 (R119899)

and 119870120572(sdot)119902

119901(sdot)(R119899

) = 119870120572119902

119901 (R119899) are classical Herz spaces see

[21 22]

Definition 4 A function 120572(sdot) R119899rarr R is called log-Holder

continuous at the origin if there exists a constant 119862log gt 0

such that

|120572 (119909) minus 120572 (0)| le119862log

log (119890 + 1 |119909|) (14)

for all 119909 isin R119899 If for some 120572infinisin R and 119862log gt 0 there holds

1003816100381610038161003816120572 (119909) minus 120572infin

1003816100381610038161003816 le119862log

log (119890 + |119909|)(15)

for all 119909 isin R119899 then 120572(sdot) is called log-Holder continuous atinfinity

Let one denote

1003817100381710038171003817ℎ1198961003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)= (sum

119896⩾0

1003817100381710038171003817ℎ119896

1003817100381710038171003817119902

119871119901(sdot))

1119902

1003817100381710038171003817ℎ1198961003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)= (sum

119896lt0

1003817100381710038171003817ℎ119896

1003817100381710038171003817119902

119871119901(sdot))

1119902

(16)

Journal of Function Spaces 3

for sequences ℎ119896119896isinZ ofmeasurable functions (with the usual

modification when 119902 = infin)

Proposition 5 (see [20]) Let 0 lt 119902 le infin 119901(sdot) isin P(R119899)

and 120572(sdot) isin 119871infin(R119899

) If 120572(sdot) is log-Holder continuous both at theorigin and at infinity then

10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

(17)

Before stating themain results of this paper we introducesome key lemmas that will be used later

Lemma 6 (generalized Holderrsquos inequality [12]) Let 119901(sdot) isin

P(R119899) if 119891 isin 119871

119901(sdot)(R119899

) and 119892 isin 1198711199011015840

(sdot)(R119899

) then

intR119899

1003816100381610038161003816119891 (119909) 119892 (119909)1003816100381610038161003816 119889119909 le 119903

119901

10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

100381710038171003817100381711989210038171003817100381710038171198711199011015840(sdot)

(R119899) (18)

where 119903119901= 1 + 1119901

minusminus 1119901

+

We remark that the following Lemmas 7ndash9 were shown inIzuki [17 23] and Lemma 10 was considered by Wang et alin [18]

Lemma 7 Let 119901(sdot) isin B(R119899) then one has for all balls 119861 in

R119899

1

|119861|

1003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119861

10038171003817100381710038171198711199011015840(sdot)

(R119899)≲ 1 (19)

Lemma 8 Let 119901(sdot) isin B(R119899) then one has for all balls 119861 in

R119899 and all measurable subsets 119878 sub 1198611003817100381710038171003817120594119878

1003817100381710038171003817119871119901(sdot)

(R119899)1003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ (|119878|

|119861|)

1205751

1003817100381710038171003817120594119878

10038171003817100381710038171198711199011015840(sdot)

(R119899)1003817100381710038171003817120594119861

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (|119878|

|119861|)

1205752

(20)

where 1205751and 120575

2are constants with 0 lt 120575

1 120575

2lt 1

Lemma 9 Let 119898 isin N 119887 isin BMO(R119899) and 119896 gt 119894 (119896 119894 isin N)

then one has

sup119861subR119899

11003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887 minus 119887

119861)119898120594

119861

10038171003817100381710038171003817119871119901(sdot)

(R119899)asymp 119887

119898

BMO

100381710038171003817100381710038171003817(119887 minus 119887

119861119894

)119898

120594119861119896

100381710038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119896 minus 119894)

119898119887

119898

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

(21)

Lemma 10 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 119887 isin BMO(R119899)

and 119901(sdot) isin B(R119899) then one has1003817100381710038171003817120583Ω

(119891)1003817100381710038171003817119871119901(sdot)

(R119899)≲10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ 119887

119898

BMO10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

(22)

Our results in this paper can be stated as follows

Theorem 11 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 0 lt 119902 le infinand 119901(sdot) isin B(R119899

) And let 120572(sdot) isin 119871infin(R119899

) be log-Holder

continuous both at the origin and at infinity such that minus1198991205751lt

120572(0) le 120572infin

lt 1198991205752 where 0 lt 120575

1 120575

2lt 1 are the constants

appearing in Lemma 8 then the operator 120583Ωis bounded on

120572(sdot)119902

119901(sdot)(R119899

) and 119870120572(sdot)119902

119901(sdot)(R119899

)

Theorem 12 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 119887 isin

BMO(R119899) 0 lt 119902 le infin and 119901(sdot) isin B(R119899

) And let 120572(sdot) isin119871

infin(R119899

) be log-Holder continuous both at the origin and atinfinity such that minus119899120575

1lt 120572(0) le 120572

infinlt 119899120575

2 where 0 lt 120575

1

1205752lt 1 are the constants appearing in Lemma 8 then the

higher order commutator 120583119898

Ω119887is bounded on

120572(sdot)119902

119901(sdot)(R119899

) and119870

120572(sdot)119902

119901(sdot)(R119899

)

Remark 13 If 120572(sdot) equiv 120572 is constant then the statementscorresponding toTheorems 11 and 12 can be found in [19 24]We consider only 0 lt 119902 lt infin in Section 3 The arguments aresimilar in the case 119902 = infin

3 Proofs of the Theorems

In this section we prove the boundedness of 120583Ωand 120583119898

Ω119887on

120572(sdot)119902

119901(sdot)(R119899

) (the same arguments can be used in 119870120572(sdot)119902

119901(sdot)(R119899

))some of our decomposition techniques are similar to thoseused by Dong and Xu in [25]

Proof of Theorem 11 In view of Proposition 5 we have

1003817100381710038171003817120583Ω(119891)

1003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

Ω(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

Ω(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119868lt+ 119868

gt

(23)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (24)

Minkowskirsquos inequality implies that

119868lt=

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817120583Ω

(119891) 120594119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119864lt+ 119865

lt+ 119866

lt

(25)

4 Journal of Function Spaces

Similarly we obtain

119868gt=

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817120583Ω(119891) 120594

119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119864gt+ 119865

gt+ 119866

gt

(26)

Thus we get

1003817100381710038171003817120583Ω(119891)

1003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119864 + 119865 + 119866 (27)

where 119864 = 119864lt+ 119864

gt 119865 = 119865

lt+ 119865

gt and 119866 = 119866

lt+ 119866

gt

For 119865 Lemma 10 yields

119865 = 119865lt+ 119865

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(28)

Nowwe turn to estimate119864 Observe that if 119909 isin 119877119896 119910 isin 119877

119894

and 119894 le 119896 minus 2 then |119909 minus 119910| asymp |119909| asymp 2119896 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

|119909|2

1003816100381610038161003816100381610038161003816100381610038161003816

10038161003816100381610038161199101003816100381610038161003816

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (29)

Since Ω isin Lip120574(S119899minus1

) sub 119871infin(S119899minus1

) by Minkowskirsquosinequality and Lemma 6 we have

1003816100381610038161003816120583Ω(119891

119894) (119909)

1003816100381610038161003816

≲ (int

|119909|

0

100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

|119909 minus 119910|119899minus1119891

119894(119910)119889119910

100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

|119909 minus 119910|119899minus1119891

119894(119910)119889119910

100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(30)

Lemmas 7 and 8 lead to

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(31)

Thus we get

119864lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))

)

119902

1119902

(32)

If 1 lt 119902 lt infin since 1198991205752minus 120572(0) gt 0 Holderrsquos inequality

implies that

119864lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))1199022

)

times(

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572(0))119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))1199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(33)

Journal of Function Spaces 5

If 0 lt 119902 le 1 by the well-known inequality

(

infin

sum

119894=1

119886119894)

119902

le

infin

sum

119894=1

119886119902

119894(119886

119894gt 0 119894 = 1 2 ) (34)

we obtain

119864lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(35)

Similarly we have

119864gt≲

infin

sum

119896=0

2119896120572infin

119902(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

))

119902

1119902

(36)

If 1 lt 119902 lt infin since 120572infin+119899120575

2gt 2120572

infingt 2120572(0) then we get

119864gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

times (

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572infin

)1199021015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)1199022

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)1199022

1119902

minus2

sum

119894=minusinfin

2120572(0)119894119902

2(120572infin

+1198991205752minus2120572(0))11989411990221003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(37)

If 0 lt 119902 le 1 since 120572(0) le 120572infin we obtain

119864gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(38)

Thus we arrive at

119864 = 119864lt+ 119864

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(39)

For 119866 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896 + 2 then

|119909 minus 119910| asymp |119910| asymp 2119894 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

100381610038161003816100381611991010038161003816100381610038162

1003816100381610038161003816100381610038161003816100381610038161003816

≲|119909|

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (40)

From Minkowskirsquos inequality and Lemma 6 it followsthat1003816100381610038161003816120583Ω

(119891119894) (119909)

1003816100381610038161003816

≲ (int

|119910|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119910|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119910|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119910|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot|119909|

12

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot110038161003816100381610038161199101003816100381610038161003816

119889119910

6 Journal of Function Spaces

≲ 2(119896minus119894)2

2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 1198622minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(41)

By Lemmas 7 and 8 we have

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)10038171003817100381710038171003817120594

119861119894

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(42)

Thus we get

119866lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119866gt≲

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(43)

Using the same arguments as that for 119864ltand 119864

gt we get

119866 = 119866lt+ 119866

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(44)

Hence the proof of Theorem 11 is completed

Proof of Theorem 12 We apply Proposition 5 again and get

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119869lt+ 119869

gt

(45)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) and write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (46)

By Minkowskirsquos inequality we have

119869lt=

minus1

sum

119896=minusinfin

2120572(0)11989611990210038171003817100381710038171003817

120583119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880lt+ 119881

lt+119882

lt

(47)

By the same way we obtain

119869gt=

infin

sum

119896=0

2120572infin

11989611990210038171003817100381710038171003817120583

119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880gt+ 119881

gt+119882

gt

(48)

Thus we have

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119880 + 119881 +119882 (49)

where 119880 = 119880lt+ 119880

gt 119881 = 119881

lt+ 119881

gt and119882 = 119882

lt+119882

gt

For 119881 by Lemma 10 we have

119881 = 119881lt+ 119881

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(50)

Journal of Function Spaces 7

For 119880 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 le 119896 minus 2 then

10038161003816100381610038161003816120583

119898

Ω119887(119891

119894) (119909)

10038161003816100381610038161003816

≲ (int

|119909|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

+ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus119895

int119877119894

10038161003816100381610038161003816119887119861119894

minus 119887 (119910)10038161003816100381610038161003816

119895 1003816100381610038161003816119891119894(119910)

1003816100381610038161003816 119889119910

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus11989510038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(51)

An application of Lemmas 7 8 and 10 gives

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times

119898

sum

119895=0

119862119895

119898

10038171003817100381710038171003817(119887(119909) minus 119887

119861119894

)119898minus119895

120594119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(119877119899)

times

119898

sum

119895=0

119862119895

119898(119896 minus 119894)

119898minus119895119887

119898minus119895

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)119887

119895

BMO10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198981003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

(119894minus119896)11989912057521003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(52)For convenience below we put 120590 = 119899120575

2minus 120572(0) if 1 lt 119902 lt

infin then we use Holderrsquos inequality and obtain

119880lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120590)

119902

1119902

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205901199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120590119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)1205901199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(53)If 0 lt 119902 le 1 then we get

119880lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120590119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120590119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(54)Similarly we put 120578 = 119899120575

2minus 120572

infin if 1 lt 119902 lt infin by Holderrsquos

inequality we obtain

119880gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120578)

119902

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120578119902

1015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

1119902

(55)

8 Journal of Function Spaces

By the same arguments as 119864gt we get

119880gt≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(56)

If 0 lt 119902 le 1 we obtain

119880gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120578119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(57)

Thus we have119880 = 119880

lt+ 119880

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(58)

For119882 if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896+2 as in the arguments

for 119866 and 119880 we obtain10038171003817100381710038171003817120583

119898

Ω119887(119891

119895)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119894 minus 119896 + 1)

1198982

(119896minus119894)1198991205751

10038171003817100381710038171003817119891

119895

10038171003817100381710038171003817119871119901(sdot)

(R119899) (59)

Thus we get

119882lt

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

(119894 minus 119896 + 1)1198982

(119896minus119894)11989912057511003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times (119894 minus 119896 + 1)1198982

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119882gt

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119894 minus 119896 + 1)

1198982

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(60)

Similar to the estimates of 119880ltand 119880

gt we get

119882 = 119882lt+119882

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(61)

Hence the proof of Theorem 12 is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The author would like to thank the referees for their time andvaluable comments This work was supported by the NSF ofChina (Grant no 11201003) and University NSR Project ofAnhui Province (Grant no KJ2014A087)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 pp 430ndash466 1958

[2] A Benedek A-P Calderon and R Panzone ldquoConvolutionoperators on Banach space valued functionsrdquo Proceedings of theNational Academy of Sciences of the United States of Americavol 48 pp 356ndash365 1962

[3] Y Ding D Fan and Y Pan ldquoWeighted boundedness for aclass of rough Marcinkiewicz integralsrdquo Indiana UniversityMathematics Journal vol 48 no 3 pp 1037ndash1055 1999

[4] A Torchinsky and S L Wang ldquoA note on the Marcinkiewiczintegralrdquo Colloquium Mathematicum vol 60-61 no 1 pp 235ndash243 1990

[5] Y Ding S Lu and K Yabuta ldquoOn commutators of Marcink-iewicz integrals with rough kernelrdquo Journal of MathematicalAnalysis and Applications vol 275 no 1 pp 60ndash68 2002

[6] Y Ding S Lu and P Zhang ldquoWeighted weak type estimates forcommutators of the Marcinkiewicz integralsrdquo Science in ChinaA vol 47 no 1 pp 83ndash95 2004

[7] P Zhang ldquoWeighted endpoint estimates for commutators ofMarcinkiewicz integralsrdquo Acta Mathematica Sinica vol 26 no9 pp 1709ndash1722 2010

[8] S Lu ldquoMarcinkiewicz integral with rough kernelsrdquo Frontiers ofMathematics in China vol 3 no 1 pp 1ndash14 2008

[9] Y P Chen and Y Ding ldquo119871119901 boundedness of the commutatorsof Marcinkiewicz integrals with rough kernelsrdquo Forum Mathe-maticum 2013

[10] Y M Chen S Levine and M Rao ldquoVariable exponent lineargrowth functionals in image restorationrdquo SIAM Journal onApplied Mathematics vol 66 no 4 pp 1383ndash1406 2006

[11] P Harjulehto P Hasto U V Le and M Nuortio ldquoOverviewof differential equations with non-standard growthrdquo NonlinearAnalysis Theory Methods amp Applications vol 72 no 12 pp4551ndash4574 2010

[12] O Kovacik and J Rakosnık ldquoOn spaces 119871119901(119909) and 119882119896119901(119909)rdquo

Czechoslovak Mathematical Journal vol 41 no 4 pp 592ndash6181991

[13] D Cruz-Uribe A Fiorenza J M Martell and C Perez ldquoTheboundedness of classical operators on variable 119871

119901 spacesrdquoAnnales Academiae Scientiarum Fennicae Mathematica vol 31no 1 pp 239ndash264 2006

[14] L Diening P Harjulehto P Hasto and M Ruzicka Lebesgueand Sobolev Spaces with Variable Exponents vol 2017 of LectureNotes in Mathematics Springer Heidelberg Germany 2011

[15] D V Cruz-Uribe and A Fiorenza Variable Lebesgue SpacesFoundations and Harmonic Analysis Applied and NumericalHarmonic Analysis Birkhauser Basel Switzerland 2013

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

Journal of Function Spaces 3

for sequences ℎ119896119896isinZ ofmeasurable functions (with the usual

modification when 119902 = infin)

Proposition 5 (see [20]) Let 0 lt 119902 le infin 119901(sdot) isin P(R119899)

and 120572(sdot) isin 119871infin(R119899

) If 120572(sdot) is log-Holder continuous both at theorigin and at infinity then

10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

(17)

Before stating themain results of this paper we introducesome key lemmas that will be used later

Lemma 6 (generalized Holderrsquos inequality [12]) Let 119901(sdot) isin

P(R119899) if 119891 isin 119871

119901(sdot)(R119899

) and 119892 isin 1198711199011015840

(sdot)(R119899

) then

intR119899

1003816100381610038161003816119891 (119909) 119892 (119909)1003816100381610038161003816 119889119909 le 119903

119901

10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

100381710038171003817100381711989210038171003817100381710038171198711199011015840(sdot)

(R119899) (18)

where 119903119901= 1 + 1119901

minusminus 1119901

+

We remark that the following Lemmas 7ndash9 were shown inIzuki [17 23] and Lemma 10 was considered by Wang et alin [18]

Lemma 7 Let 119901(sdot) isin B(R119899) then one has for all balls 119861 in

R119899

1

|119861|

1003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119861

10038171003817100381710038171198711199011015840(sdot)

(R119899)≲ 1 (19)

Lemma 8 Let 119901(sdot) isin B(R119899) then one has for all balls 119861 in

R119899 and all measurable subsets 119878 sub 1198611003817100381710038171003817120594119878

1003817100381710038171003817119871119901(sdot)

(R119899)1003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ (|119878|

|119861|)

1205751

1003817100381710038171003817120594119878

10038171003817100381710038171198711199011015840(sdot)

(R119899)1003817100381710038171003817120594119861

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (|119878|

|119861|)

1205752

(20)

where 1205751and 120575

2are constants with 0 lt 120575

1 120575

2lt 1

Lemma 9 Let 119898 isin N 119887 isin BMO(R119899) and 119896 gt 119894 (119896 119894 isin N)

then one has

sup119861subR119899

11003817100381710038171003817120594119861

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887 minus 119887

119861)119898120594

119861

10038171003817100381710038171003817119871119901(sdot)

(R119899)asymp 119887

119898

BMO

100381710038171003817100381710038171003817(119887 minus 119887

119861119894

)119898

120594119861119896

100381710038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119896 minus 119894)

119898119887

119898

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

(21)

Lemma 10 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 119887 isin BMO(R119899)

and 119901(sdot) isin B(R119899) then one has1003817100381710038171003817120583Ω

(119891)1003817100381710038171003817119871119901(sdot)

(R119899)≲10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ 119887

119898

BMO10038171003817100381710038171198911003817100381710038171003817119871119901(sdot)

(R119899)

(22)

Our results in this paper can be stated as follows

Theorem 11 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 0 lt 119902 le infinand 119901(sdot) isin B(R119899

) And let 120572(sdot) isin 119871infin(R119899

) be log-Holder

continuous both at the origin and at infinity such that minus1198991205751lt

120572(0) le 120572infin

lt 1198991205752 where 0 lt 120575

1 120575

2lt 1 are the constants

appearing in Lemma 8 then the operator 120583Ωis bounded on

120572(sdot)119902

119901(sdot)(R119899

) and 119870120572(sdot)119902

119901(sdot)(R119899

)

Theorem 12 Let Ω isin Lip120574(S119899minus1

) (0 lt 120574 le 1) 119887 isin

BMO(R119899) 0 lt 119902 le infin and 119901(sdot) isin B(R119899

) And let 120572(sdot) isin119871

infin(R119899

) be log-Holder continuous both at the origin and atinfinity such that minus119899120575

1lt 120572(0) le 120572

infinlt 119899120575

2 where 0 lt 120575

1

1205752lt 1 are the constants appearing in Lemma 8 then the

higher order commutator 120583119898

Ω119887is bounded on

120572(sdot)119902

119901(sdot)(R119899

) and119870

120572(sdot)119902

119901(sdot)(R119899

)

Remark 13 If 120572(sdot) equiv 120572 is constant then the statementscorresponding toTheorems 11 and 12 can be found in [19 24]We consider only 0 lt 119902 lt infin in Section 3 The arguments aresimilar in the case 119902 = infin

3 Proofs of the Theorems

In this section we prove the boundedness of 120583Ωand 120583119898

Ω119887on

120572(sdot)119902

119901(sdot)(R119899

) (the same arguments can be used in 119870120572(sdot)119902

119901(sdot)(R119899

))some of our decomposition techniques are similar to thoseused by Dong and Xu in [25]

Proof of Theorem 11 In view of Proposition 5 we have

1003817100381710038171003817120583Ω(119891)

1003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

Ω(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

Ω(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119868lt+ 119868

gt

(23)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (24)

Minkowskirsquos inequality implies that

119868lt=

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817120583Ω

(119891) 120594119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119864lt+ 119865

lt+ 119866

lt

(25)

4 Journal of Function Spaces

Similarly we obtain

119868gt=

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817120583Ω(119891) 120594

119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119864gt+ 119865

gt+ 119866

gt

(26)

Thus we get

1003817100381710038171003817120583Ω(119891)

1003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119864 + 119865 + 119866 (27)

where 119864 = 119864lt+ 119864

gt 119865 = 119865

lt+ 119865

gt and 119866 = 119866

lt+ 119866

gt

For 119865 Lemma 10 yields

119865 = 119865lt+ 119865

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(28)

Nowwe turn to estimate119864 Observe that if 119909 isin 119877119896 119910 isin 119877

119894

and 119894 le 119896 minus 2 then |119909 minus 119910| asymp |119909| asymp 2119896 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

|119909|2

1003816100381610038161003816100381610038161003816100381610038161003816

10038161003816100381610038161199101003816100381610038161003816

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (29)

Since Ω isin Lip120574(S119899minus1

) sub 119871infin(S119899minus1

) by Minkowskirsquosinequality and Lemma 6 we have

1003816100381610038161003816120583Ω(119891

119894) (119909)

1003816100381610038161003816

≲ (int

|119909|

0

100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

|119909 minus 119910|119899minus1119891

119894(119910)119889119910

100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

|119909 minus 119910|119899minus1119891

119894(119910)119889119910

100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(30)

Lemmas 7 and 8 lead to

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(31)

Thus we get

119864lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))

)

119902

1119902

(32)

If 1 lt 119902 lt infin since 1198991205752minus 120572(0) gt 0 Holderrsquos inequality

implies that

119864lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))1199022

)

times(

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572(0))119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))1199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(33)

Journal of Function Spaces 5

If 0 lt 119902 le 1 by the well-known inequality

(

infin

sum

119894=1

119886119894)

119902

le

infin

sum

119894=1

119886119902

119894(119886

119894gt 0 119894 = 1 2 ) (34)

we obtain

119864lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(35)

Similarly we have

119864gt≲

infin

sum

119896=0

2119896120572infin

119902(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

))

119902

1119902

(36)

If 1 lt 119902 lt infin since 120572infin+119899120575

2gt 2120572

infingt 2120572(0) then we get

119864gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

times (

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572infin

)1199021015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)1199022

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)1199022

1119902

minus2

sum

119894=minusinfin

2120572(0)119894119902

2(120572infin

+1198991205752minus2120572(0))11989411990221003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(37)

If 0 lt 119902 le 1 since 120572(0) le 120572infin we obtain

119864gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(38)

Thus we arrive at

119864 = 119864lt+ 119864

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(39)

For 119866 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896 + 2 then

|119909 minus 119910| asymp |119910| asymp 2119894 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

100381610038161003816100381611991010038161003816100381610038162

1003816100381610038161003816100381610038161003816100381610038161003816

≲|119909|

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (40)

From Minkowskirsquos inequality and Lemma 6 it followsthat1003816100381610038161003816120583Ω

(119891119894) (119909)

1003816100381610038161003816

≲ (int

|119910|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119910|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119910|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119910|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot|119909|

12

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot110038161003816100381610038161199101003816100381610038161003816

119889119910

6 Journal of Function Spaces

≲ 2(119896minus119894)2

2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 1198622minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(41)

By Lemmas 7 and 8 we have

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)10038171003817100381710038171003817120594

119861119894

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(42)

Thus we get

119866lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119866gt≲

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(43)

Using the same arguments as that for 119864ltand 119864

gt we get

119866 = 119866lt+ 119866

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(44)

Hence the proof of Theorem 11 is completed

Proof of Theorem 12 We apply Proposition 5 again and get

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119869lt+ 119869

gt

(45)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) and write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (46)

By Minkowskirsquos inequality we have

119869lt=

minus1

sum

119896=minusinfin

2120572(0)11989611990210038171003817100381710038171003817

120583119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880lt+ 119881

lt+119882

lt

(47)

By the same way we obtain

119869gt=

infin

sum

119896=0

2120572infin

11989611990210038171003817100381710038171003817120583

119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880gt+ 119881

gt+119882

gt

(48)

Thus we have

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119880 + 119881 +119882 (49)

where 119880 = 119880lt+ 119880

gt 119881 = 119881

lt+ 119881

gt and119882 = 119882

lt+119882

gt

For 119881 by Lemma 10 we have

119881 = 119881lt+ 119881

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(50)

Journal of Function Spaces 7

For 119880 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 le 119896 minus 2 then

10038161003816100381610038161003816120583

119898

Ω119887(119891

119894) (119909)

10038161003816100381610038161003816

≲ (int

|119909|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

+ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus119895

int119877119894

10038161003816100381610038161003816119887119861119894

minus 119887 (119910)10038161003816100381610038161003816

119895 1003816100381610038161003816119891119894(119910)

1003816100381610038161003816 119889119910

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus11989510038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(51)

An application of Lemmas 7 8 and 10 gives

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times

119898

sum

119895=0

119862119895

119898

10038171003817100381710038171003817(119887(119909) minus 119887

119861119894

)119898minus119895

120594119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(119877119899)

times

119898

sum

119895=0

119862119895

119898(119896 minus 119894)

119898minus119895119887

119898minus119895

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)119887

119895

BMO10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198981003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

(119894minus119896)11989912057521003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(52)For convenience below we put 120590 = 119899120575

2minus 120572(0) if 1 lt 119902 lt

infin then we use Holderrsquos inequality and obtain

119880lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120590)

119902

1119902

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205901199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120590119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)1205901199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(53)If 0 lt 119902 le 1 then we get

119880lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120590119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120590119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(54)Similarly we put 120578 = 119899120575

2minus 120572

infin if 1 lt 119902 lt infin by Holderrsquos

inequality we obtain

119880gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120578)

119902

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120578119902

1015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

1119902

(55)

8 Journal of Function Spaces

By the same arguments as 119864gt we get

119880gt≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(56)

If 0 lt 119902 le 1 we obtain

119880gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120578119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(57)

Thus we have119880 = 119880

lt+ 119880

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(58)

For119882 if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896+2 as in the arguments

for 119866 and 119880 we obtain10038171003817100381710038171003817120583

119898

Ω119887(119891

119895)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119894 minus 119896 + 1)

1198982

(119896minus119894)1198991205751

10038171003817100381710038171003817119891

119895

10038171003817100381710038171003817119871119901(sdot)

(R119899) (59)

Thus we get

119882lt

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

(119894 minus 119896 + 1)1198982

(119896minus119894)11989912057511003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times (119894 minus 119896 + 1)1198982

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119882gt

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119894 minus 119896 + 1)

1198982

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(60)

Similar to the estimates of 119880ltand 119880

gt we get

119882 = 119882lt+119882

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(61)

Hence the proof of Theorem 12 is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The author would like to thank the referees for their time andvaluable comments This work was supported by the NSF ofChina (Grant no 11201003) and University NSR Project ofAnhui Province (Grant no KJ2014A087)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 pp 430ndash466 1958

[2] A Benedek A-P Calderon and R Panzone ldquoConvolutionoperators on Banach space valued functionsrdquo Proceedings of theNational Academy of Sciences of the United States of Americavol 48 pp 356ndash365 1962

[3] Y Ding D Fan and Y Pan ldquoWeighted boundedness for aclass of rough Marcinkiewicz integralsrdquo Indiana UniversityMathematics Journal vol 48 no 3 pp 1037ndash1055 1999

[4] A Torchinsky and S L Wang ldquoA note on the Marcinkiewiczintegralrdquo Colloquium Mathematicum vol 60-61 no 1 pp 235ndash243 1990

[5] Y Ding S Lu and K Yabuta ldquoOn commutators of Marcink-iewicz integrals with rough kernelrdquo Journal of MathematicalAnalysis and Applications vol 275 no 1 pp 60ndash68 2002

[6] Y Ding S Lu and P Zhang ldquoWeighted weak type estimates forcommutators of the Marcinkiewicz integralsrdquo Science in ChinaA vol 47 no 1 pp 83ndash95 2004

[7] P Zhang ldquoWeighted endpoint estimates for commutators ofMarcinkiewicz integralsrdquo Acta Mathematica Sinica vol 26 no9 pp 1709ndash1722 2010

[8] S Lu ldquoMarcinkiewicz integral with rough kernelsrdquo Frontiers ofMathematics in China vol 3 no 1 pp 1ndash14 2008

[9] Y P Chen and Y Ding ldquo119871119901 boundedness of the commutatorsof Marcinkiewicz integrals with rough kernelsrdquo Forum Mathe-maticum 2013

[10] Y M Chen S Levine and M Rao ldquoVariable exponent lineargrowth functionals in image restorationrdquo SIAM Journal onApplied Mathematics vol 66 no 4 pp 1383ndash1406 2006

[11] P Harjulehto P Hasto U V Le and M Nuortio ldquoOverviewof differential equations with non-standard growthrdquo NonlinearAnalysis Theory Methods amp Applications vol 72 no 12 pp4551ndash4574 2010

[12] O Kovacik and J Rakosnık ldquoOn spaces 119871119901(119909) and 119882119896119901(119909)rdquo

Czechoslovak Mathematical Journal vol 41 no 4 pp 592ndash6181991

[13] D Cruz-Uribe A Fiorenza J M Martell and C Perez ldquoTheboundedness of classical operators on variable 119871

119901 spacesrdquoAnnales Academiae Scientiarum Fennicae Mathematica vol 31no 1 pp 239ndash264 2006

[14] L Diening P Harjulehto P Hasto and M Ruzicka Lebesgueand Sobolev Spaces with Variable Exponents vol 2017 of LectureNotes in Mathematics Springer Heidelberg Germany 2011

[15] D V Cruz-Uribe and A Fiorenza Variable Lebesgue SpacesFoundations and Harmonic Analysis Applied and NumericalHarmonic Analysis Birkhauser Basel Switzerland 2013

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

4 Journal of Function Spaces

Similarly we obtain

119868gt=

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817120583Ω(119891) 120594

119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

1003817100381710038171003817120583Ω(119891

119894) 120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119864gt+ 119865

gt+ 119866

gt

(26)

Thus we get

1003817100381710038171003817120583Ω(119891)

1003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119864 + 119865 + 119866 (27)

where 119864 = 119864lt+ 119864

gt 119865 = 119865

lt+ 119865

gt and 119866 = 119866

lt+ 119866

gt

For 119865 Lemma 10 yields

119865 = 119865lt+ 119865

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(28)

Nowwe turn to estimate119864 Observe that if 119909 isin 119877119896 119910 isin 119877

119894

and 119894 le 119896 minus 2 then |119909 minus 119910| asymp |119909| asymp 2119896 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

|119909|2

1003816100381610038161003816100381610038161003816100381610038161003816

10038161003816100381610038161199101003816100381610038161003816

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (29)

Since Ω isin Lip120574(S119899minus1

) sub 119871infin(S119899minus1

) by Minkowskirsquosinequality and Lemma 6 we have

1003816100381610038161003816120583Ω(119891

119894) (119909)

1003816100381610038161003816

≲ (int

|119909|

0

100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

|119909 minus 119910|119899minus1119891

119894(119910)119889119910

100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

|119909 minus 119910|119899minus1119891

119894(119910)119889119910

100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(30)

Lemmas 7 and 8 lead to

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(31)

Thus we get

119864lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))

)

119902

1119902

(32)

If 1 lt 119902 lt infin since 1198991205752minus 120572(0) gt 0 Holderrsquos inequality

implies that

119864lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))1199022

)

times(

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572(0))119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))1199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(33)

Journal of Function Spaces 5

If 0 lt 119902 le 1 by the well-known inequality

(

infin

sum

119894=1

119886119894)

119902

le

infin

sum

119894=1

119886119902

119894(119886

119894gt 0 119894 = 1 2 ) (34)

we obtain

119864lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(35)

Similarly we have

119864gt≲

infin

sum

119896=0

2119896120572infin

119902(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

))

119902

1119902

(36)

If 1 lt 119902 lt infin since 120572infin+119899120575

2gt 2120572

infingt 2120572(0) then we get

119864gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

times (

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572infin

)1199021015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)1199022

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)1199022

1119902

minus2

sum

119894=minusinfin

2120572(0)119894119902

2(120572infin

+1198991205752minus2120572(0))11989411990221003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(37)

If 0 lt 119902 le 1 since 120572(0) le 120572infin we obtain

119864gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(38)

Thus we arrive at

119864 = 119864lt+ 119864

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(39)

For 119866 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896 + 2 then

|119909 minus 119910| asymp |119910| asymp 2119894 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

100381610038161003816100381611991010038161003816100381610038162

1003816100381610038161003816100381610038161003816100381610038161003816

≲|119909|

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (40)

From Minkowskirsquos inequality and Lemma 6 it followsthat1003816100381610038161003816120583Ω

(119891119894) (119909)

1003816100381610038161003816

≲ (int

|119910|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119910|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119910|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119910|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot|119909|

12

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot110038161003816100381610038161199101003816100381610038161003816

119889119910

6 Journal of Function Spaces

≲ 2(119896minus119894)2

2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 1198622minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(41)

By Lemmas 7 and 8 we have

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)10038171003817100381710038171003817120594

119861119894

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(42)

Thus we get

119866lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119866gt≲

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(43)

Using the same arguments as that for 119864ltand 119864

gt we get

119866 = 119866lt+ 119866

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(44)

Hence the proof of Theorem 11 is completed

Proof of Theorem 12 We apply Proposition 5 again and get

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119869lt+ 119869

gt

(45)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) and write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (46)

By Minkowskirsquos inequality we have

119869lt=

minus1

sum

119896=minusinfin

2120572(0)11989611990210038171003817100381710038171003817

120583119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880lt+ 119881

lt+119882

lt

(47)

By the same way we obtain

119869gt=

infin

sum

119896=0

2120572infin

11989611990210038171003817100381710038171003817120583

119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880gt+ 119881

gt+119882

gt

(48)

Thus we have

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119880 + 119881 +119882 (49)

where 119880 = 119880lt+ 119880

gt 119881 = 119881

lt+ 119881

gt and119882 = 119882

lt+119882

gt

For 119881 by Lemma 10 we have

119881 = 119881lt+ 119881

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(50)

Journal of Function Spaces 7

For 119880 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 le 119896 minus 2 then

10038161003816100381610038161003816120583

119898

Ω119887(119891

119894) (119909)

10038161003816100381610038161003816

≲ (int

|119909|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

+ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus119895

int119877119894

10038161003816100381610038161003816119887119861119894

minus 119887 (119910)10038161003816100381610038161003816

119895 1003816100381610038161003816119891119894(119910)

1003816100381610038161003816 119889119910

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus11989510038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(51)

An application of Lemmas 7 8 and 10 gives

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times

119898

sum

119895=0

119862119895

119898

10038171003817100381710038171003817(119887(119909) minus 119887

119861119894

)119898minus119895

120594119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(119877119899)

times

119898

sum

119895=0

119862119895

119898(119896 minus 119894)

119898minus119895119887

119898minus119895

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)119887

119895

BMO10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198981003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

(119894minus119896)11989912057521003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(52)For convenience below we put 120590 = 119899120575

2minus 120572(0) if 1 lt 119902 lt

infin then we use Holderrsquos inequality and obtain

119880lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120590)

119902

1119902

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205901199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120590119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)1205901199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(53)If 0 lt 119902 le 1 then we get

119880lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120590119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120590119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(54)Similarly we put 120578 = 119899120575

2minus 120572

infin if 1 lt 119902 lt infin by Holderrsquos

inequality we obtain

119880gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120578)

119902

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120578119902

1015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

1119902

(55)

8 Journal of Function Spaces

By the same arguments as 119864gt we get

119880gt≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(56)

If 0 lt 119902 le 1 we obtain

119880gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120578119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(57)

Thus we have119880 = 119880

lt+ 119880

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(58)

For119882 if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896+2 as in the arguments

for 119866 and 119880 we obtain10038171003817100381710038171003817120583

119898

Ω119887(119891

119895)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119894 minus 119896 + 1)

1198982

(119896minus119894)1198991205751

10038171003817100381710038171003817119891

119895

10038171003817100381710038171003817119871119901(sdot)

(R119899) (59)

Thus we get

119882lt

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

(119894 minus 119896 + 1)1198982

(119896minus119894)11989912057511003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times (119894 minus 119896 + 1)1198982

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119882gt

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119894 minus 119896 + 1)

1198982

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(60)

Similar to the estimates of 119880ltand 119880

gt we get

119882 = 119882lt+119882

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(61)

Hence the proof of Theorem 12 is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The author would like to thank the referees for their time andvaluable comments This work was supported by the NSF ofChina (Grant no 11201003) and University NSR Project ofAnhui Province (Grant no KJ2014A087)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 pp 430ndash466 1958

[2] A Benedek A-P Calderon and R Panzone ldquoConvolutionoperators on Banach space valued functionsrdquo Proceedings of theNational Academy of Sciences of the United States of Americavol 48 pp 356ndash365 1962

[3] Y Ding D Fan and Y Pan ldquoWeighted boundedness for aclass of rough Marcinkiewicz integralsrdquo Indiana UniversityMathematics Journal vol 48 no 3 pp 1037ndash1055 1999

[4] A Torchinsky and S L Wang ldquoA note on the Marcinkiewiczintegralrdquo Colloquium Mathematicum vol 60-61 no 1 pp 235ndash243 1990

[5] Y Ding S Lu and K Yabuta ldquoOn commutators of Marcink-iewicz integrals with rough kernelrdquo Journal of MathematicalAnalysis and Applications vol 275 no 1 pp 60ndash68 2002

[6] Y Ding S Lu and P Zhang ldquoWeighted weak type estimates forcommutators of the Marcinkiewicz integralsrdquo Science in ChinaA vol 47 no 1 pp 83ndash95 2004

[7] P Zhang ldquoWeighted endpoint estimates for commutators ofMarcinkiewicz integralsrdquo Acta Mathematica Sinica vol 26 no9 pp 1709ndash1722 2010

[8] S Lu ldquoMarcinkiewicz integral with rough kernelsrdquo Frontiers ofMathematics in China vol 3 no 1 pp 1ndash14 2008

[9] Y P Chen and Y Ding ldquo119871119901 boundedness of the commutatorsof Marcinkiewicz integrals with rough kernelsrdquo Forum Mathe-maticum 2013

[10] Y M Chen S Levine and M Rao ldquoVariable exponent lineargrowth functionals in image restorationrdquo SIAM Journal onApplied Mathematics vol 66 no 4 pp 1383ndash1406 2006

[11] P Harjulehto P Hasto U V Le and M Nuortio ldquoOverviewof differential equations with non-standard growthrdquo NonlinearAnalysis Theory Methods amp Applications vol 72 no 12 pp4551ndash4574 2010

[12] O Kovacik and J Rakosnık ldquoOn spaces 119871119901(119909) and 119882119896119901(119909)rdquo

Czechoslovak Mathematical Journal vol 41 no 4 pp 592ndash6181991

[13] D Cruz-Uribe A Fiorenza J M Martell and C Perez ldquoTheboundedness of classical operators on variable 119871

119901 spacesrdquoAnnales Academiae Scientiarum Fennicae Mathematica vol 31no 1 pp 239ndash264 2006

[14] L Diening P Harjulehto P Hasto and M Ruzicka Lebesgueand Sobolev Spaces with Variable Exponents vol 2017 of LectureNotes in Mathematics Springer Heidelberg Germany 2011

[15] D V Cruz-Uribe and A Fiorenza Variable Lebesgue SpacesFoundations and Harmonic Analysis Applied and NumericalHarmonic Analysis Birkhauser Basel Switzerland 2013

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

Journal of Function Spaces 5

If 0 lt 119902 le 1 by the well-known inequality

(

infin

sum

119894=1

119886119894)

119902

le

infin

sum

119894=1

119886119902

119894(119886

119894gt 0 119894 = 1 2 ) (34)

we obtain

119864lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572(0))119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572(0))119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(35)

Similarly we have

119864gt≲

infin

sum

119896=0

2119896120572infin

119902(

119896minus2

sum

119894=minusinfin

2(119894minus119896)119899120575

21003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

))

119902

1119902

(36)

If 1 lt 119902 lt infin since 120572infin+119899120575

2gt 2120572

infingt 2120572(0) then we get

119864gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

times (

119896minus2

sum

119894=minusinfin

2(119894minus119896)(119899120575

2minus120572infin

)1199021015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)1199022)

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)1199022

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)1199022

1119902

minus2

sum

119894=minusinfin

2120572(0)119894119902

2(120572infin

+1198991205752minus2120572(0))11989411990221003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(37)

If 0 lt 119902 le 1 since 120572(0) le 120572infin we obtain

119864gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)(1198991205752minus120572infin

)119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

2(119894minus119896)(119899120575

2minus120572infin

)119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

2(119894minus119896)(119899120575

2minus120572infin

)119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(38)

Thus we arrive at

119864 = 119864lt+ 119864

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(39)

For 119866 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896 + 2 then

|119909 minus 119910| asymp |119910| asymp 2119894 and

1003816100381610038161003816100381610038161003816100381610038161003816

1

1003816100381610038161003816119909 minus 11991010038161003816100381610038162minus

1

100381610038161003816100381611991010038161003816100381610038162

1003816100381610038161003816100381610038161003816100381610038161003816

≲|119909|

1003816100381610038161003816119909 minus 11991010038161003816100381610038163 (40)

From Minkowskirsquos inequality and Lemma 6 it followsthat1003816100381610038161003816120583Ω

(119891119894) (119909)

1003816100381610038161003816

≲ (int

|119910|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119910|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

119891119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119910|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

(int

infin

|119910|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot|119909|

12

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910 + int119877119894

1003816100381610038161003816119891119894(119910)

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816119899minus1

sdot110038161003816100381610038161199101003816100381610038161003816

119889119910

6 Journal of Function Spaces

≲ 2(119896minus119894)2

2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 1198622minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(41)

By Lemmas 7 and 8 we have

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)10038171003817100381710038171003817120594

119861119894

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(42)

Thus we get

119866lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119866gt≲

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(43)

Using the same arguments as that for 119864ltand 119864

gt we get

119866 = 119866lt+ 119866

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(44)

Hence the proof of Theorem 11 is completed

Proof of Theorem 12 We apply Proposition 5 again and get

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119869lt+ 119869

gt

(45)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) and write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (46)

By Minkowskirsquos inequality we have

119869lt=

minus1

sum

119896=minusinfin

2120572(0)11989611990210038171003817100381710038171003817

120583119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880lt+ 119881

lt+119882

lt

(47)

By the same way we obtain

119869gt=

infin

sum

119896=0

2120572infin

11989611990210038171003817100381710038171003817120583

119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880gt+ 119881

gt+119882

gt

(48)

Thus we have

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119880 + 119881 +119882 (49)

where 119880 = 119880lt+ 119880

gt 119881 = 119881

lt+ 119881

gt and119882 = 119882

lt+119882

gt

For 119881 by Lemma 10 we have

119881 = 119881lt+ 119881

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(50)

Journal of Function Spaces 7

For 119880 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 le 119896 minus 2 then

10038161003816100381610038161003816120583

119898

Ω119887(119891

119894) (119909)

10038161003816100381610038161003816

≲ (int

|119909|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

+ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus119895

int119877119894

10038161003816100381610038161003816119887119861119894

minus 119887 (119910)10038161003816100381610038161003816

119895 1003816100381610038161003816119891119894(119910)

1003816100381610038161003816 119889119910

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus11989510038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(51)

An application of Lemmas 7 8 and 10 gives

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times

119898

sum

119895=0

119862119895

119898

10038171003817100381710038171003817(119887(119909) minus 119887

119861119894

)119898minus119895

120594119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(119877119899)

times

119898

sum

119895=0

119862119895

119898(119896 minus 119894)

119898minus119895119887

119898minus119895

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)119887

119895

BMO10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198981003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

(119894minus119896)11989912057521003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(52)For convenience below we put 120590 = 119899120575

2minus 120572(0) if 1 lt 119902 lt

infin then we use Holderrsquos inequality and obtain

119880lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120590)

119902

1119902

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205901199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120590119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)1205901199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(53)If 0 lt 119902 le 1 then we get

119880lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120590119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120590119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(54)Similarly we put 120578 = 119899120575

2minus 120572

infin if 1 lt 119902 lt infin by Holderrsquos

inequality we obtain

119880gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120578)

119902

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120578119902

1015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

1119902

(55)

8 Journal of Function Spaces

By the same arguments as 119864gt we get

119880gt≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(56)

If 0 lt 119902 le 1 we obtain

119880gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120578119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(57)

Thus we have119880 = 119880

lt+ 119880

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(58)

For119882 if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896+2 as in the arguments

for 119866 and 119880 we obtain10038171003817100381710038171003817120583

119898

Ω119887(119891

119895)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119894 minus 119896 + 1)

1198982

(119896minus119894)1198991205751

10038171003817100381710038171003817119891

119895

10038171003817100381710038171003817119871119901(sdot)

(R119899) (59)

Thus we get

119882lt

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

(119894 minus 119896 + 1)1198982

(119896minus119894)11989912057511003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times (119894 minus 119896 + 1)1198982

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119882gt

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119894 minus 119896 + 1)

1198982

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(60)

Similar to the estimates of 119880ltand 119880

gt we get

119882 = 119882lt+119882

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(61)

Hence the proof of Theorem 12 is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The author would like to thank the referees for their time andvaluable comments This work was supported by the NSF ofChina (Grant no 11201003) and University NSR Project ofAnhui Province (Grant no KJ2014A087)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 pp 430ndash466 1958

[2] A Benedek A-P Calderon and R Panzone ldquoConvolutionoperators on Banach space valued functionsrdquo Proceedings of theNational Academy of Sciences of the United States of Americavol 48 pp 356ndash365 1962

[3] Y Ding D Fan and Y Pan ldquoWeighted boundedness for aclass of rough Marcinkiewicz integralsrdquo Indiana UniversityMathematics Journal vol 48 no 3 pp 1037ndash1055 1999

[4] A Torchinsky and S L Wang ldquoA note on the Marcinkiewiczintegralrdquo Colloquium Mathematicum vol 60-61 no 1 pp 235ndash243 1990

[5] Y Ding S Lu and K Yabuta ldquoOn commutators of Marcink-iewicz integrals with rough kernelrdquo Journal of MathematicalAnalysis and Applications vol 275 no 1 pp 60ndash68 2002

[6] Y Ding S Lu and P Zhang ldquoWeighted weak type estimates forcommutators of the Marcinkiewicz integralsrdquo Science in ChinaA vol 47 no 1 pp 83ndash95 2004

[7] P Zhang ldquoWeighted endpoint estimates for commutators ofMarcinkiewicz integralsrdquo Acta Mathematica Sinica vol 26 no9 pp 1709ndash1722 2010

[8] S Lu ldquoMarcinkiewicz integral with rough kernelsrdquo Frontiers ofMathematics in China vol 3 no 1 pp 1ndash14 2008

[9] Y P Chen and Y Ding ldquo119871119901 boundedness of the commutatorsof Marcinkiewicz integrals with rough kernelsrdquo Forum Mathe-maticum 2013

[10] Y M Chen S Levine and M Rao ldquoVariable exponent lineargrowth functionals in image restorationrdquo SIAM Journal onApplied Mathematics vol 66 no 4 pp 1383ndash1406 2006

[11] P Harjulehto P Hasto U V Le and M Nuortio ldquoOverviewof differential equations with non-standard growthrdquo NonlinearAnalysis Theory Methods amp Applications vol 72 no 12 pp4551ndash4574 2010

[12] O Kovacik and J Rakosnık ldquoOn spaces 119871119901(119909) and 119882119896119901(119909)rdquo

Czechoslovak Mathematical Journal vol 41 no 4 pp 592ndash6181991

[13] D Cruz-Uribe A Fiorenza J M Martell and C Perez ldquoTheboundedness of classical operators on variable 119871

119901 spacesrdquoAnnales Academiae Scientiarum Fennicae Mathematica vol 31no 1 pp 239ndash264 2006

[14] L Diening P Harjulehto P Hasto and M Ruzicka Lebesgueand Sobolev Spaces with Variable Exponents vol 2017 of LectureNotes in Mathematics Springer Heidelberg Germany 2011

[15] D V Cruz-Uribe and A Fiorenza Variable Lebesgue SpacesFoundations and Harmonic Analysis Applied and NumericalHarmonic Analysis Birkhauser Basel Switzerland 2013

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

6 Journal of Function Spaces

≲ 2(119896minus119894)2

2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

+ 1198622minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

1003817100381710038171003817120594119894

10038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(41)

By Lemmas 7 and 8 we have

1003817100381710038171003817120583Ω(119891

119894)(119909)120594

119896

1003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198941198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲1003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)10038171003817100381710038171003817120594

119861119894

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(42)

Thus we get

119866lt≲

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

2(119896minus119894)119899120575

11003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119866gt≲

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)2

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(43)

Using the same arguments as that for 119864ltand 119864

gt we get

119866 = 119866lt+ 119866

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(44)

Hence the proof of Theorem 11 is completed

Proof of Theorem 12 We apply Proposition 5 again and get

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

asymp100381710038171003817100381710038172

120572(0)119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

+100381710038171003817100381710038172

120572infin

119896120583

119898

Ω119887(119891) 120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

= 119869lt+ 119869

gt

(45)

Let 119891 isin 120572(sdot)119902

119901(sdot)(R119899

) and write

119891 (119909) =

infin

sum

119894=minusinfin

119891 (119909) 120594119894 (119909) =

infin

sum

119894=minusinfin

119891119894 (119909) (46)

By Minkowskirsquos inequality we have

119869lt=

minus1

sum

119896=minusinfin

2120572(0)11989611990210038171003817100381710038171003817

120583119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

minus1

sum

119896=minusinfin

2120572(0)119896119902

(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880lt+ 119881

lt+119882

lt

(47)

By the same way we obtain

119869gt=

infin

sum

119896=0

2120572infin

11989611990210038171003817100381710038171003817120583

119898

Ω119887(119891) 120594

119896

10038171003817100381710038171003817

119902

119871119901(sdot)

(R119899)

1119902

infin

sum

119896=0

2120572infin

119896119902(

119896minus2

sum

119894=minusinfin

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

119896+1

sum

119894=119896minus1

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

+

infin

sum

119896=0

2120572infin

119896119902(

infin

sum

119894=119896+2

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894) 120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

= 119880gt+ 119881

gt+119882

gt

(48)

Thus we have

10038171003817100381710038171003817120583

119898

Ω119887(119891)

10038171003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

≲ 119880 + 119881 +119882 (49)

where 119880 = 119880lt+ 119880

gt 119881 = 119881

lt+ 119881

gt and119882 = 119882

lt+119882

gt

For 119881 by Lemma 10 we have

119881 = 119881lt+ 119881

gt

minus1

sum

119896=minusinfin

2120572(0)1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

+

infin

sum

119896=0

2120572infin

1198961199021003817100381710038171003817119891119896

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(50)

Journal of Function Spaces 7

For 119880 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 le 119896 minus 2 then

10038161003816100381610038161003816120583

119898

Ω119887(119891

119894) (119909)

10038161003816100381610038161003816

≲ (int

|119909|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

+ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus119895

int119877119894

10038161003816100381610038161003816119887119861119894

minus 119887 (119910)10038161003816100381610038161003816

119895 1003816100381610038161003816119891119894(119910)

1003816100381610038161003816 119889119910

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus11989510038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(51)

An application of Lemmas 7 8 and 10 gives

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times

119898

sum

119895=0

119862119895

119898

10038171003817100381710038171003817(119887(119909) minus 119887

119861119894

)119898minus119895

120594119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(119877119899)

times

119898

sum

119895=0

119862119895

119898(119896 minus 119894)

119898minus119895119887

119898minus119895

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)119887

119895

BMO10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198981003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

(119894minus119896)11989912057521003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(52)For convenience below we put 120590 = 119899120575

2minus 120572(0) if 1 lt 119902 lt

infin then we use Holderrsquos inequality and obtain

119880lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120590)

119902

1119902

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205901199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120590119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)1205901199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(53)If 0 lt 119902 le 1 then we get

119880lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120590119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120590119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(54)Similarly we put 120578 = 119899120575

2minus 120572

infin if 1 lt 119902 lt infin by Holderrsquos

inequality we obtain

119880gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120578)

119902

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120578119902

1015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

1119902

(55)

8 Journal of Function Spaces

By the same arguments as 119864gt we get

119880gt≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(56)

If 0 lt 119902 le 1 we obtain

119880gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120578119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(57)

Thus we have119880 = 119880

lt+ 119880

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(58)

For119882 if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896+2 as in the arguments

for 119866 and 119880 we obtain10038171003817100381710038171003817120583

119898

Ω119887(119891

119895)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119894 minus 119896 + 1)

1198982

(119896minus119894)1198991205751

10038171003817100381710038171003817119891

119895

10038171003817100381710038171003817119871119901(sdot)

(R119899) (59)

Thus we get

119882lt

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

(119894 minus 119896 + 1)1198982

(119896minus119894)11989912057511003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times (119894 minus 119896 + 1)1198982

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119882gt

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119894 minus 119896 + 1)

1198982

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(60)

Similar to the estimates of 119880ltand 119880

gt we get

119882 = 119882lt+119882

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(61)

Hence the proof of Theorem 12 is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The author would like to thank the referees for their time andvaluable comments This work was supported by the NSF ofChina (Grant no 11201003) and University NSR Project ofAnhui Province (Grant no KJ2014A087)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 pp 430ndash466 1958

[2] A Benedek A-P Calderon and R Panzone ldquoConvolutionoperators on Banach space valued functionsrdquo Proceedings of theNational Academy of Sciences of the United States of Americavol 48 pp 356ndash365 1962

[3] Y Ding D Fan and Y Pan ldquoWeighted boundedness for aclass of rough Marcinkiewicz integralsrdquo Indiana UniversityMathematics Journal vol 48 no 3 pp 1037ndash1055 1999

[4] A Torchinsky and S L Wang ldquoA note on the Marcinkiewiczintegralrdquo Colloquium Mathematicum vol 60-61 no 1 pp 235ndash243 1990

[5] Y Ding S Lu and K Yabuta ldquoOn commutators of Marcink-iewicz integrals with rough kernelrdquo Journal of MathematicalAnalysis and Applications vol 275 no 1 pp 60ndash68 2002

[6] Y Ding S Lu and P Zhang ldquoWeighted weak type estimates forcommutators of the Marcinkiewicz integralsrdquo Science in ChinaA vol 47 no 1 pp 83ndash95 2004

[7] P Zhang ldquoWeighted endpoint estimates for commutators ofMarcinkiewicz integralsrdquo Acta Mathematica Sinica vol 26 no9 pp 1709ndash1722 2010

[8] S Lu ldquoMarcinkiewicz integral with rough kernelsrdquo Frontiers ofMathematics in China vol 3 no 1 pp 1ndash14 2008

[9] Y P Chen and Y Ding ldquo119871119901 boundedness of the commutatorsof Marcinkiewicz integrals with rough kernelsrdquo Forum Mathe-maticum 2013

[10] Y M Chen S Levine and M Rao ldquoVariable exponent lineargrowth functionals in image restorationrdquo SIAM Journal onApplied Mathematics vol 66 no 4 pp 1383ndash1406 2006

[11] P Harjulehto P Hasto U V Le and M Nuortio ldquoOverviewof differential equations with non-standard growthrdquo NonlinearAnalysis Theory Methods amp Applications vol 72 no 12 pp4551ndash4574 2010

[12] O Kovacik and J Rakosnık ldquoOn spaces 119871119901(119909) and 119882119896119901(119909)rdquo

Czechoslovak Mathematical Journal vol 41 no 4 pp 592ndash6181991

[13] D Cruz-Uribe A Fiorenza J M Martell and C Perez ldquoTheboundedness of classical operators on variable 119871

119901 spacesrdquoAnnales Academiae Scientiarum Fennicae Mathematica vol 31no 1 pp 239ndash264 2006

[14] L Diening P Harjulehto P Hasto and M Ruzicka Lebesgueand Sobolev Spaces with Variable Exponents vol 2017 of LectureNotes in Mathematics Springer Heidelberg Germany 2011

[15] D V Cruz-Uribe and A Fiorenza Variable Lebesgue SpacesFoundations and Harmonic Analysis Applied and NumericalHarmonic Analysis Birkhauser Basel Switzerland 2013

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

Journal of Function Spaces 7

For 119880 observe that if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 le 119896 minus 2 then

10038161003816100381610038161003816120583

119898

Ω119887(119891

119894) (119909)

10038161003816100381610038161003816

≲ (int

|119909|

0

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

+ (int

infin

|119909|

1003816100381610038161003816100381610038161003816100381610038161003816

int|119909minus119910|le119905

Ω(119909 minus 119910)

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

[119887 (119909) minus 119887 (119910)]119898119891

119894(119910)119889119910

1003816100381610038161003816100381610038161003816100381610038161003816

2

119889119905

1199053)

12

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int|119909minus119910|le119905|119909|ge119905

119889119905

1199053)

12

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

(int

infin

|119909|

119889119905

1199053)

12

119889119910

≲ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot

1003816100381610038161003816119910100381610038161003816100381612

1003816100381610038161003816119909 minus 119910100381610038161003816100381632

119889119910

+ int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816

1003816100381610038161003816119909 minus 1199101003816100381610038161003816119899minus1

sdot1

|119909|119889119910

≲ 2(119894minus119896)2

2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

+ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

int119877119894

1003816100381610038161003816119887 (119909) minus 119887 (119910)1003816100381610038161003816119898 1003816100381610038161003816119891119894

(119910)1003816100381610038161003816 119889119910

≲ 2minus119896119899

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus119895

int119877119894

10038161003816100381610038161003816119887119861119894

minus 119887 (119910)10038161003816100381610038161003816

119895 1003816100381610038161003816119891119894(119910)

1003816100381610038161003816 119889119910

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

119898

sum

119895=0

119862119895

119898

10038161003816100381610038161003816119887 (119909) minus 119887119861

119894

10038161003816100381610038161003816

119898minus11989510038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

(51)

An application of Lemmas 7 8 and 10 gives

10038171003817100381710038171003817120583

119898

Ω119887(119891

119894)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times

119898

sum

119895=0

119862119895

119898

10038171003817100381710038171003817(119887(119909) minus 119887

119861119894

)119898minus119895

120594119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817(119887

119861119894

minus 119887)119895120594

119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ 2minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(119877119899)

times

119898

sum

119895=0

119862119895

119898(119896 minus 119894)

119898minus119895119887

119898minus119895

BMO10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)119887

119895

BMO10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

minus1198961198991003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198981003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

10038171003817100381710038171003817120594

119861119894

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)10038171003817100381710038171003817120594

119861119896

100381710038171003817100381710038171198711199011015840(sdot)

(R119899)

≲ (119896 minus 119894 + 1)1198982

(119894minus119896)11989912057521003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

(52)For convenience below we put 120590 = 119899120575

2minus 120572(0) if 1 lt 119902 lt

infin then we use Holderrsquos inequality and obtain

119880lt≲

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120590)

119902

1119902

minus1

sum

119896=minusinfin

(

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205901199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120590119902

1015840

2)

1199021199021015840

1119902

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

2(119894minus119896)1205901199022

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(53)If 0 lt 119902 le 1 then we get

119880lt≲

minus1

sum

119896=minusinfin

119896minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120590119902

1119902

asymp

minus3

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

minus1

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120590119902

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)

≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(54)Similarly we put 120578 = 119899120575

2minus 120572

infin if 1 lt 119902 lt infin by Holderrsquos

inequality we obtain

119880gt≲

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198982

(119894minus119896)120578)

119902

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

times (

119896minus2

sum

119894=minusinfin

(119896 minus 119894 + 1)1198981199021015840

2(119894minus119896)120578119902

1015840

2)

1199021199021015840

1119902

infin

sum

119896=0

(

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)2

(119894minus119896)1205781199022)

1119902

(55)

8 Journal of Function Spaces

By the same arguments as 119864gt we get

119880gt≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(56)

If 0 lt 119902 le 1 we obtain

119880gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120578119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(57)

Thus we have119880 = 119880

lt+ 119880

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(58)

For119882 if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896+2 as in the arguments

for 119866 and 119880 we obtain10038171003817100381710038171003817120583

119898

Ω119887(119891

119895)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119894 minus 119896 + 1)

1198982

(119896minus119894)1198991205751

10038171003817100381710038171003817119891

119895

10038171003817100381710038171003817119871119901(sdot)

(R119899) (59)

Thus we get

119882lt

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

(119894 minus 119896 + 1)1198982

(119896minus119894)11989912057511003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times (119894 minus 119896 + 1)1198982

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119882gt

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119894 minus 119896 + 1)

1198982

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(60)

Similar to the estimates of 119880ltand 119880

gt we get

119882 = 119882lt+119882

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(61)

Hence the proof of Theorem 12 is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The author would like to thank the referees for their time andvaluable comments This work was supported by the NSF ofChina (Grant no 11201003) and University NSR Project ofAnhui Province (Grant no KJ2014A087)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 pp 430ndash466 1958

[2] A Benedek A-P Calderon and R Panzone ldquoConvolutionoperators on Banach space valued functionsrdquo Proceedings of theNational Academy of Sciences of the United States of Americavol 48 pp 356ndash365 1962

[3] Y Ding D Fan and Y Pan ldquoWeighted boundedness for aclass of rough Marcinkiewicz integralsrdquo Indiana UniversityMathematics Journal vol 48 no 3 pp 1037ndash1055 1999

[4] A Torchinsky and S L Wang ldquoA note on the Marcinkiewiczintegralrdquo Colloquium Mathematicum vol 60-61 no 1 pp 235ndash243 1990

[5] Y Ding S Lu and K Yabuta ldquoOn commutators of Marcink-iewicz integrals with rough kernelrdquo Journal of MathematicalAnalysis and Applications vol 275 no 1 pp 60ndash68 2002

[6] Y Ding S Lu and P Zhang ldquoWeighted weak type estimates forcommutators of the Marcinkiewicz integralsrdquo Science in ChinaA vol 47 no 1 pp 83ndash95 2004

[7] P Zhang ldquoWeighted endpoint estimates for commutators ofMarcinkiewicz integralsrdquo Acta Mathematica Sinica vol 26 no9 pp 1709ndash1722 2010

[8] S Lu ldquoMarcinkiewicz integral with rough kernelsrdquo Frontiers ofMathematics in China vol 3 no 1 pp 1ndash14 2008

[9] Y P Chen and Y Ding ldquo119871119901 boundedness of the commutatorsof Marcinkiewicz integrals with rough kernelsrdquo Forum Mathe-maticum 2013

[10] Y M Chen S Levine and M Rao ldquoVariable exponent lineargrowth functionals in image restorationrdquo SIAM Journal onApplied Mathematics vol 66 no 4 pp 1383ndash1406 2006

[11] P Harjulehto P Hasto U V Le and M Nuortio ldquoOverviewof differential equations with non-standard growthrdquo NonlinearAnalysis Theory Methods amp Applications vol 72 no 12 pp4551ndash4574 2010

[12] O Kovacik and J Rakosnık ldquoOn spaces 119871119901(119909) and 119882119896119901(119909)rdquo

Czechoslovak Mathematical Journal vol 41 no 4 pp 592ndash6181991

[13] D Cruz-Uribe A Fiorenza J M Martell and C Perez ldquoTheboundedness of classical operators on variable 119871

119901 spacesrdquoAnnales Academiae Scientiarum Fennicae Mathematica vol 31no 1 pp 239ndash264 2006

[14] L Diening P Harjulehto P Hasto and M Ruzicka Lebesgueand Sobolev Spaces with Variable Exponents vol 2017 of LectureNotes in Mathematics Springer Heidelberg Germany 2011

[15] D V Cruz-Uribe and A Fiorenza Variable Lebesgue SpacesFoundations and Harmonic Analysis Applied and NumericalHarmonic Analysis Birkhauser Basel Switzerland 2013

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

8 Journal of Function Spaces

By the same arguments as 119864gt we get

119880gt≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(56)

If 0 lt 119902 le 1 we obtain

119880gt≲

infin

sum

119896=0

119896minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)(119896 minus 119894 + 1)

1198981199022

(119894minus119896)120578119902

1119902

asymp

minus2

sum

119894=minusinfin

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=0

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

infin

sum

119896=119894+2

(119896 minus 119894 + 1)1198981199022

(119894minus119896)120578119902

1119902

minus2

sum

119894=minusinfin

2120572(0)1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)+

infin

sum

119894=minus1

2120572infin

1198941199021003817100381710038171003817119891119894

1003817100381710038171003817119902

119871119901(sdot)

(R119899)

1119902

≲100381710038171003817100381710038172

120572(0)119896119891120594

11989610038171003817100381710038171003817ℓ119902

lt(119871119901(sdot)

)+100381710038171003817100381710038172

120572infin

119896119891120594

11989610038171003817100381710038171003817ℓ119902

gt(119871119901(sdot)

)

asymp10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(57)

Thus we have119880 = 119880

lt+ 119880

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(58)

For119882 if 119909 isin 119877119896 119910 isin 119877

119894 and 119894 ge 119896+2 as in the arguments

for 119866 and 119880 we obtain10038171003817100381710038171003817120583

119898

Ω119887(119891

119895)120594

119896

10038171003817100381710038171003817119871119901(sdot)

(R119899)≲ (119894 minus 119896 + 1)

1198982

(119896minus119894)1198991205751

10038171003817100381710038171003817119891

119895

10038171003817100381710038171003817119871119901(sdot)

(R119899) (59)

Thus we get

119882lt

minus1

sum

119896=minusinfin

2119896120572(0)119902

(

infin

sum

119894=119896+2

(119894 minus 119896 + 1)1198982

(119896minus119894)11989912057511003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899))

119902

1119902

asymp

minus1

sum

119896=minusinfin

(

infin

sum

119894=119896+2

2120572(0)1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)

times (119894 minus 119896 + 1)1198982

(119896minus119894)(1198991205751+120572(0))

)

119902

1119902

119882gt

infin

sum

119896=0

(

infin

sum

119894=119896+2

2120572infin

1198941003817100381710038171003817119891119894

1003817100381710038171003817119871119901(sdot)

(R119899)(119894 minus 119896 + 1)

1198982

(119896minus119894)(1198991205751+120572infin

))

119902

1119902

(60)

Similar to the estimates of 119880ltand 119880

gt we get

119882 = 119882lt+119882

gt≲10038171003817100381710038171198911003817100381710038171003817120572(sdot)119902

119901(sdot)(R119899)

(61)

Hence the proof of Theorem 12 is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The author would like to thank the referees for their time andvaluable comments This work was supported by the NSF ofChina (Grant no 11201003) and University NSR Project ofAnhui Province (Grant no KJ2014A087)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 pp 430ndash466 1958

[2] A Benedek A-P Calderon and R Panzone ldquoConvolutionoperators on Banach space valued functionsrdquo Proceedings of theNational Academy of Sciences of the United States of Americavol 48 pp 356ndash365 1962

[3] Y Ding D Fan and Y Pan ldquoWeighted boundedness for aclass of rough Marcinkiewicz integralsrdquo Indiana UniversityMathematics Journal vol 48 no 3 pp 1037ndash1055 1999

[4] A Torchinsky and S L Wang ldquoA note on the Marcinkiewiczintegralrdquo Colloquium Mathematicum vol 60-61 no 1 pp 235ndash243 1990

[5] Y Ding S Lu and K Yabuta ldquoOn commutators of Marcink-iewicz integrals with rough kernelrdquo Journal of MathematicalAnalysis and Applications vol 275 no 1 pp 60ndash68 2002

[6] Y Ding S Lu and P Zhang ldquoWeighted weak type estimates forcommutators of the Marcinkiewicz integralsrdquo Science in ChinaA vol 47 no 1 pp 83ndash95 2004

[7] P Zhang ldquoWeighted endpoint estimates for commutators ofMarcinkiewicz integralsrdquo Acta Mathematica Sinica vol 26 no9 pp 1709ndash1722 2010

[8] S Lu ldquoMarcinkiewicz integral with rough kernelsrdquo Frontiers ofMathematics in China vol 3 no 1 pp 1ndash14 2008

[9] Y P Chen and Y Ding ldquo119871119901 boundedness of the commutatorsof Marcinkiewicz integrals with rough kernelsrdquo Forum Mathe-maticum 2013

[10] Y M Chen S Levine and M Rao ldquoVariable exponent lineargrowth functionals in image restorationrdquo SIAM Journal onApplied Mathematics vol 66 no 4 pp 1383ndash1406 2006

[11] P Harjulehto P Hasto U V Le and M Nuortio ldquoOverviewof differential equations with non-standard growthrdquo NonlinearAnalysis Theory Methods amp Applications vol 72 no 12 pp4551ndash4574 2010

[12] O Kovacik and J Rakosnık ldquoOn spaces 119871119901(119909) and 119882119896119901(119909)rdquo

Czechoslovak Mathematical Journal vol 41 no 4 pp 592ndash6181991

[13] D Cruz-Uribe A Fiorenza J M Martell and C Perez ldquoTheboundedness of classical operators on variable 119871

119901 spacesrdquoAnnales Academiae Scientiarum Fennicae Mathematica vol 31no 1 pp 239ndash264 2006

[14] L Diening P Harjulehto P Hasto and M Ruzicka Lebesgueand Sobolev Spaces with Variable Exponents vol 2017 of LectureNotes in Mathematics Springer Heidelberg Germany 2011

[15] D V Cruz-Uribe and A Fiorenza Variable Lebesgue SpacesFoundations and Harmonic Analysis Applied and NumericalHarmonic Analysis Birkhauser Basel Switzerland 2013

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

Journal of Function Spaces 9

[16] M Izuki ldquoHerz and amalgam spaces with variable exponentthe Haar wavelets and greediness of the wavelet systemrdquo EastJournal on Approximations vol 15 no 1 pp 87ndash109 2009

[17] M Izuki ldquoCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponentrdquo Rendiconti del CircoloMatematico di Palermo Second Series vol 59 no 3 pp 461ndash4722010

[18] H B Wang Z W Fu and Z G Liu ldquoHigher-order commu-tators of Marcinkiewicz integrals on variable Lebesgue spacesrdquoActa Mathematica Scientia A vol 32 no 6 pp 1092ndash1101 2012

[19] Z G Liu and H B Wang ldquoBoundedness of Marcinkiewiczintegrals on Herz spaces with variable exponentrdquoThe JordanianJournal of Mathematics and Statistics vol 5 no 4 pp 223ndash2392012

[20] A Almeida and D Drihem ldquoMaximal potential and singulartype operators on Herz spaces with variable exponentsrdquo Journalof Mathematical Analysis and Applications vol 394 no 2 pp781ndash795 2012

[21] S Z Lu D C Yang and G E Hu Herz Type Spaces and TheirApplications Science Press Beijing China 2008

[22] X W Li and D C Yang ldquoBoundedness of some sublinearoperators on Herz spacesrdquo Illinois Journal of Mathematics vol40 no 3 pp 484ndash501 1996

[23] M Izuki ldquoVector-valued inequalities onHERz spaces and char-acterizations of HERz-Sobolev spaces with variable exponentrdquoGlasnik Matematicki vol 45 no 65 pp 475ndash503 2010

[24] L Wang and L Shu ldquoHigher order commutators of Marcink-iewicz integral operator on Herz-Morrey spaces with variableexponentrdquo Journal of Mathematical Research with Applicationsvol 34 no 2 pp 175ndash186 2014

[25] B Dong and J Xu ldquoNew Herz type Besov and Triebel-Lizorkinspaces with variable exponentsrdquo Journal of Function Spaces andApplications vol 2012 Article ID 384593 27 pages 2012

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Marcinkiewicz Integral Operators and ...downloads.hindawi.com/journals/jfs/2014/430365.pdfResearch Article Marcinkiewicz Integral Operators and Commutators on Herz

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of