Research Article Exceptional Values of Meromorphic ...2. Basic Notions in the Nevanlinna Theory on...

8
Hindawi Publishing Corporation e Scientific World Journal Volume 2013, Article ID 937584, 7 pages http://dx.doi.org/10.1155/2013/937584 Research Article Exceptional Values of Meromorphic Function on Annulus Hong-Yan Xu Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China Correspondence should be addressed to Hong-Yan Xu; [email protected] Received 5 June 2013; Accepted 9 July 2013 Academic Editors: A. Agouzal, A. Barbagallo, and A. Fiorenza Copyright Β© 2013 Hong-Yan Xu. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e main purpose of this paper is to study the exceptional values of meromorphic function and its derivative on annulus. We also give some theorems and corollaries about exceptional values of meromorphic function on the annulus, which are the improvement of the previous results given by Chen and Wu. 1. Introduction It is a very interesting problem on the exceptional values of meromorphic functions in the value distribution theory and argument distributed theory such as the Picard exceptional value and the Borel exceptional value. It is well known that every class of exceptional value is always responding to a singular direction, such as, the Picard exceptional value relating with Julia’s direction and the Borel exceptional value relating with Borel’s direction. In the 1970s, Gopalakrishna and Bhoosnurmath [1, 2] and Singh and Gopalakrishna [3] investigated Borel exceptional values of meromorphic function and its derivative on the whole complex plane. In 2011, Peng and Sun [4] gave some examples on T exceptional value which is an exceptional value relating with T direction. In fact, Peng, Sun, Singh, Gopalakrishna, and so forth only studied exceptional values of meromorphic functions in the whole complex planeβ€”single-connected region. For meromorphic function on the double-connected domain and several-connected region, there were few papers about its exceptional values. In 2005, Khrystiyanyn and Kondratyuk [5, 6] proposed the Nevanlinna theory for meromorphic functions on annuli (see also [7]). In 2010, FernΒ΄ andez [8] further investigated the value distribution of meromorphic functions on annuli. In 2012, Xu and Xuan [9] studied the uniqueness of meromorphic functions sharing some values on annuli. At the same year, Chen and Wu [10] firstly studied the Borel exceptional values of meromorphic function and its derivative on annulus. In this paper, we will further investigate the exceptional value of meromorphic function and its derivative on annulus and obtain a series of results which are improvement of previous theorems given by Chen and Wu [10]. e structure of this paper is as follows. In Section 2, we introduce the basic notations and fundamental theorems of meromorphic functions on annulus. Sections 3 and 4 are devoted to study the Borel exceptional values of meromor- phic function on annulus and give some consequences of our theorems. Section 5 are devoted to study the Borel excep- tional values of meromorphic function and its derivative on annulus. 2. Basic Notions in the Nevanlinna Theory on Annuli Let be a meromorphic function on the annulus A = { : 1/ 0 < || < 0 }, where 1<< 0 ≀ +∞. e notations of the Nevanlinna theory on annuli will be introduced as follows. Let 1 (, ) = ∫ 1 1/ 1 (, ) , 2 (, ) = ∫ 1 2 (, ) , 0 (, ) = (, ) + ( 1 , ) , 0 (, ) = 1 (, ) + 2 (, ) , (1)

Transcript of Research Article Exceptional Values of Meromorphic ...2. Basic Notions in the Nevanlinna Theory on...

  • Hindawi Publishing CorporationThe Scientific World JournalVolume 2013, Article ID 937584, 7 pageshttp://dx.doi.org/10.1155/2013/937584

    Research ArticleExceptional Values of Meromorphic Function on Annulus

    Hong-Yan Xu

    Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China

    Correspondence should be addressed to Hong-Yan Xu; [email protected]

    Received 5 June 2013; Accepted 9 July 2013

    Academic Editors: A. Agouzal, A. Barbagallo, and A. Fiorenza

    Copyright Β© 2013 Hong-Yan Xu.This is an open access article distributed under the Creative Commons Attribution License, whichpermits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    The main purpose of this paper is to study the exceptional values of meromorphic function and its derivative on annulus. We alsogive some theorems and corollaries about exceptional values of meromorphic function on the annulus, which are the improvementof the previous results given by Chen and Wu.

    1. Introduction

    It is a very interesting problem on the exceptional values ofmeromorphic functions in the value distribution theory andargument distributed theory such as the Picard exceptionalvalue and the Borel exceptional value. It is well known thatevery class of exceptional value is always responding toa singular direction, such as, the Picard exceptional valuerelating with Julia’s direction and the Borel exceptional valuerelating with Borel’s direction. In the 1970s, Gopalakrishnaand Bhoosnurmath [1, 2] and Singh and Gopalakrishna[3] investigated Borel exceptional values of meromorphicfunction and its derivative on the whole complex plane. In2011, Peng and Sun [4] gave some examples on T exceptionalvalue which is an exceptional value relating with T direction.

    In fact, Peng, Sun, Singh, Gopalakrishna, and so forthonly studied exceptional values of meromorphic functionsin the whole complex planeβ€”single-connected region. Formeromorphic function on the double-connected domain andseveral-connected region, there were few papers about itsexceptional values. In 2005, Khrystiyanyn and Kondratyuk[5, 6] proposed the Nevanlinna theory for meromorphicfunctions on annuli (see also [7]). In 2010, Fernández [8]further investigated the value distribution of meromorphicfunctions on annuli. In 2012, Xu and Xuan [9] studied theuniqueness of meromorphic functions sharing some valueson annuli. At the same year, Chen andWu [10] firstly studiedthe Borel exceptional values of meromorphic function andits derivative on annulus. In this paper, we will further

    investigate the exceptional value of meromorphic functionand its derivative on annulus and obtain a series of resultswhich are improvement of previous theorems given by Chenand Wu [10].

    The structure of this paper is as follows. In Section 2,we introduce the basic notations and fundamental theoremsof meromorphic functions on annulus. Sections 3 and 4 aredevoted to study the Borel exceptional values of meromor-phic function on annulus and give some consequences of ourtheorems. Section 5 are devoted to study the Borel excep-tional values of meromorphic function and its derivative onannulus.

    2. Basic Notions in the NevanlinnaTheory on Annuli

    Let 𝑓 be a meromorphic function on the annulus A = {𝑧 :1/𝑅0< |𝑧| < 𝑅

    0}, where 1 < 𝑅 < 𝑅

    0≀ +∞. The notations

    of the Nevanlinna theory on annuli will be introduced asfollows. Let

    𝑁1(𝑅, 𝑓)=∫

    1

    1/𝑅

    𝑛1(𝑑, 𝑓)

    𝑑𝑑𝑑, 𝑁

    2(𝑅, 𝑓)=∫

    𝑅

    1

    𝑛2(𝑑, 𝑓)

    𝑑𝑑𝑑,

    π‘š0(𝑅, 𝑓) = π‘š (𝑅, 𝑓) + π‘š(

    1

    𝑅, 𝑓) ,

    𝑁0(𝑅, 𝑓) = 𝑁

    1(𝑅, 𝑓) + 𝑁

    2(𝑅, 𝑓) ,

    (1)

  • 2 The Scientific World Journal

    where 𝑛1(𝑑, 𝑓) and 𝑛

    2(𝑑, 𝑓) are the counting functions of poles

    of the function 𝑓 in {𝑧 : 𝑑 < |𝑧| ≀ 1} and {𝑧 : 1 < |𝑧| ≀𝑑}, respectively. The Nevanlinna characteristic of 𝑓 on theannulus A is defined by

    𝑇0(𝑅, 𝑓) = π‘š

    0(𝑅, 𝑓) βˆ’ 2π‘š (1, 𝑓) + 𝑁

    0(𝑅, 𝑓) . (2)

    Similarly, for π‘Ž ∈ C, we have

    𝑁0(π‘Ÿ,

    1

    𝑓 βˆ’ π‘Ž) = 𝑁

    1(𝑅,

    1

    𝑓 βˆ’ π‘Ž) + 𝑁

    2(𝑅,

    1

    𝑓 βˆ’ π‘Ž)

    = ∫1

    1/𝑅

    𝑛1(𝑑, 1/ (𝑓 βˆ’ π‘Ž))

    𝑑𝑑𝑑

    + βˆ«π‘…

    1

    𝑛2(𝑑, 1/ (𝑓 βˆ’ π‘Ž))

    𝑑𝑑𝑑

    (3)

    in which each zero of the functionπ‘“βˆ’π‘Ž is counted only once.In addition, we use π‘›π‘˜)

    1(𝑑, 1/(𝑓 βˆ’ π‘Ž)) (or 𝑛(π‘˜

    1(𝑑, 1/(𝑓 βˆ’ π‘Ž))) to

    denote the counting function of poles of the function 1/(π‘“βˆ’π‘Ž)with multiplicities ≀ π‘˜ (or > π‘˜) in {𝑧 : 𝑑 < |𝑧| ≀ 1}, each pointcounted only once. Similarly, we have the notationsπ‘π‘˜)

    1(𝑑, 𝑓),

    𝑁(π‘˜

    1(𝑑, 𝑓),π‘π‘˜)

    2(𝑑, 𝑓),𝑁(π‘˜

    2(𝑑, 𝑓), andπ‘π‘˜)

    0(𝑑, 𝑓),𝑁(π‘˜

    0(𝑑, 𝑓).

    For a nonconstant meromorphic function 𝑓 on theannulus A = {𝑧 : 1/𝑅

    0< |𝑧| < 𝑅

    0}, where 1 < 𝑅 < 𝑅

    0≀ +∞,

    the following properties will be used in this paper (see [5]):

    (i) 𝑇0(𝑅, 𝑓) = 𝑇

    0(𝑅, 1/𝑓),

    (ii) max{𝑇0(𝑅, 𝑓1β‹… 𝑓2), 𝑇0(𝑅, 𝑓1/𝑓2), 𝑇0(𝑅, 𝑓1+ 𝑓2)} ≀

    𝑇0(𝑅, 𝑓1) + 𝑇0(𝑅, 𝑓2) + 𝑂(1),

    (iii) 𝑇0(𝑅, 1/(π‘“βˆ’π‘Ž)) = 𝑇

    0(𝑅, 𝑓)+𝑂(1), for every fixed π‘Ž ∈

    C.

    Khrystiyanyn and Kondratyuk [6] also obtained thelemma on the logarithmic derivative on the annulus A.

    Theorem 1 (see [6] lemma on the logarithmic derivative). Let𝑓 be a nonconstant meromorphic function on the annulusA ={𝑧 : 1/𝑅

    0< |𝑧| < 𝑅

    0}, where 𝑅

    0≀ +∞, and let πœ† > 0. Then

    (i) in the case 𝑅0= +∞,

    π‘š0(𝑅,

    𝑓

    𝑓) = 𝑂 (log (𝑅𝑇

    0(𝑅, 𝑓))) (4)

    for 𝑅 ∈ (1, +∞) except for the set Δ𝑅such that ∫

    Δ𝑅

    π‘…πœ†βˆ’1𝑑𝑅 <+∞,

    (ii) if 𝑅0< +∞, then

    π‘š0(𝑅,

    𝑓

    𝑓) = 𝑂(log(

    𝑇0(𝑅, 𝑓)

    𝑅0βˆ’ 𝑅

    )) (5)

    for 𝑅 ∈ (1, 𝑅0) except for the set Ξ”

    𝑅such that ∫

    Ξ”

    𝑅

    (𝑑𝑅/(𝑅0βˆ’

    𝑅)πœ†βˆ’1) < +∞.

    In 2005,The second fundamental theoremon the annulusA was first obtained by Khrystiyanyn and Kondratyuk [6].Cao et al. [11] introduce other forms of the second fundamen-tal theorem on annuli as follows.

    Theorem 2 ([11, Theorem 2.3] The second fundamentaltheorem). Let 𝑓 be a nonconstant meromorphic function onthe annulusA = {𝑧 : (1/𝑅

    0) < |𝑧| < 𝑅

    0}, where 1 < 𝑅

    0≀ +∞.

    Let π‘Ž1, π‘Ž2, . . . , π‘Ž

    π‘žbe π‘ž distinct complex numbers in the extended

    complex plane C. Let π‘˜1, π‘˜2, . . . , π‘˜

    π‘žbe π‘ž positive integers, and

    let πœ† β‰₯ 0. Then

    (π‘ž βˆ’ 2) 𝑇0(𝑅, 𝑓) <

    π‘ž

    βˆ‘π‘—=1

    𝑁0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘—

    ) + 𝑆 (𝑅, 𝑓) , (6)

    where (i) in the case 𝑅0= +∞,

    𝑆 (𝑅, 𝑓) = 𝑂 (log (𝑅𝑇0(𝑅, 𝑓))) (7)

    for 𝑅 ∈ (1, +∞) except for the set Δ𝑅such that ∫

    Δ𝑅

    π‘…πœ†βˆ’1𝑑𝑅 <+∞,

    (ii) if 𝑅0< +∞, then

    𝑆 (𝑅, 𝑓) = 𝑂(log(𝑇0(𝑅, 𝑓)

    𝑅0βˆ’ 𝑅

    )) (8)

    for 𝑅 ∈ (1, 𝑅0) except for the set Ξ”

    𝑅such that ∫

    Ξ”

    𝑅

    (𝑑𝑅/(𝑅0βˆ’

    𝑅)πœ†βˆ’1) < +∞.

    Definition 3. Let 𝑓(𝑧) be a nonconstant meromorphic func-tion on the annulus A = {𝑧 : 1/𝑅

    0< |𝑧| < 𝑅

    0}, where

    1 < 𝑅0≀ +∞. The function 𝑓 is called a transcendental or

    admissible meromorphic function on the annulus A whichprovided that

    lim supπ‘…β†’βˆž

    𝑇0(𝑅, 𝑓)

    log𝑅= ∞, 1 < 𝑅 < 𝑅

    0= +∞ (9)

    or

    lim sup𝑅→𝑅0

    𝑇0(𝑅, 𝑓)

    βˆ’ log (𝑅0βˆ’ 𝑅)

    = ∞, 1 < 𝑅 < 𝑅0< +∞, (10)

    respectively.

    Thus for a transcendental or admissible meromorphicfunction on the annulus A, 𝑆(𝑅, 𝑓) = π‘œ(𝑇

    0(𝑅, 𝑓)) holds for

    all 1 < 𝑅 < 𝑅0except for the set Ξ”

    𝑅or the set Ξ”

    𝑅mentioned

    inTheorem 1, respectively.

    Definition 4 (see [10], Definition 2.1). Let 𝑓(𝑧) be a noncon-stant meromorphic function on the annulus A = {𝑧 : 1/𝑅

    0<

    |𝑧| < 𝑅0}, where 𝑅

    0= +∞. Then the order of 𝑓(𝑧) is defined

    by

    𝜌 (𝑓) = lim sup𝑅→+∞

    𝑇0(𝑅, 𝑓)

    log𝑅. (11)

  • The Scientific World Journal 3

    Definition 5 (see [10], Definition 3.1). Let 𝑓(𝑧) be a noncon-stant meromorphic function of order 𝜌 (0 < 𝜌 < ∞) on theannulus A = {𝑧 : 1/𝑅

    0< |𝑧| < 𝑅

    0}, where 1 < 𝑅

    0≀ +∞, and

    let π‘Ž ∈ CΜ‚. Then we say that π‘Ž is

    (i) an evB (exceptional value in the sense of Borel) for 𝑓on A for distinct zeros of order ≀ π‘˜ if 𝜌

    π‘˜(π‘Ž, 𝑓) < 𝜌;

    (ii) an evB (exceptional value in the sense of Borel) for 𝑓on A for distinct zeros if 𝜌(π‘Ž, 𝑓) < 𝜌;

    (iii) an evB (the Borel exceptional value) for 𝑓 on A if𝜌(π‘Ž, 𝑓) < 𝜌, where

    πœŒπ‘˜(π‘Ž, 𝑓) = lim sup

    𝑅→+∞

    π‘π‘˜)

    0(𝑅, 1/ (𝑓 βˆ’ π‘Ž))

    log𝑅,

    𝜌 (π‘Ž, 𝑓) = lim sup𝑅→+∞

    𝑁0(𝑅, 1/ (𝑓 βˆ’ π‘Ž))

    log𝑅,

    𝜌 (π‘Ž, 𝑓) = lim sup𝑅→+∞

    𝑁0(𝑅, 1/ (𝑓 βˆ’ π‘Ž))

    log𝑅.

    (12)

    In particular, we say that π‘Ž is an evB for 𝑓 on A for simplezeros if π‘˜ = 1 and π‘Ž is an evB for𝑓 onA for simple and doublezeros if π‘˜ = 2.

    3. The Main Results

    Now, the main theorems of this paper are listed as follows.

    Theorem 6. Let 𝑓 be transcendental meromorphic functionof order 𝜌 (0 < 𝜌 < ∞) on the annulus A :={𝑧 : 1/𝑅

    0< |𝑧| < 𝑅

    0}, where 𝑅

    0= +∞. If there

    exist π‘Ž11, . . . , π‘Ž1

    𝑝1, π‘Ž21, . . . , π‘Ž2

    𝑝2, . . . , π‘Ž]

    1, . . . , π‘Ž]

    𝑝]∈ CΜ‚ such that

    π‘Žπ‘–1, π‘Žπ‘–2, . . . , π‘Žπ‘–

    𝑝𝑖are evBs for𝑓 onA for distinct zeros of order≀ π‘˜

    𝑖,

    𝑖 = 1, 2, . . . , ], where 𝑝1, . . . , 𝑝], ] ∈ N+, and π‘˜1, π‘˜2, . . . , π‘˜] are

    positive integers or infinity. Then

    Ξ :=]

    βˆ‘π‘–=1

    π‘π‘–π‘˜π‘–

    1 + π‘˜π‘–

    +]

    βˆ‘π‘–=1

    1

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) ≀ 2. (13)

    Remark 7. Under the assumptions of Theorem 6, if ] = 3,𝑝1= π‘Ÿ, 𝑝

    2= 𝑑, 𝑝

    3= 𝑠 and π‘˜

    1= π‘˜, π‘˜

    2= 𝑙, π‘˜

    3= π‘š, since

    π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) β‰₯ 0, then we can get

    π‘˜π‘Ÿ

    π‘˜ + 1+

    𝑑𝑙

    𝑙 + 1+

    π‘ π‘š

    π‘š + 1≀

    ]

    βˆ‘π‘–=1

    π‘π‘–π‘˜π‘–

    1 + π‘˜π‘–

    +]

    βˆ‘π‘–=1

    1

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) ≀ 2.

    (14)

    This shows thatTheorem 6 is an improvement of results givenby Chen and Wu [10].

    Definition 8. For positive integers π‘˜,π‘š, we define that

    π›Ώπ‘˜0(π‘Ž, 𝑓) = 1 βˆ’ lim sup

    𝑅→+∞

    π‘π‘˜0(𝑅, 1/ (𝑓 βˆ’ π‘Ž))

    𝑇0(𝑅, 𝑓)

    ,

    Θ0(π‘Ž, 𝑓) = 1 βˆ’ lim sup

    𝑅→+∞

    𝑁0(𝑅, 1/ (𝑓 βˆ’ π‘Ž))

    𝑇0(𝑅, 𝑓)

    ,

    (15)

    whereπ‘π‘˜0(𝑅, 1/(π‘“βˆ’π‘Ž)) is the counting function of π‘Ž-points of

    𝑓 onAwhere an π‘Ž-point of multiplicityπ‘š is countedπ‘š timesifπ‘š ≀ π‘˜ and 1+π‘˜ times ifπ‘š > π‘˜. In particular, if π‘˜ = ∞, then

    π›Ώβˆž0(π‘Ž, 𝑓) = 𝛿

    0(π‘Ž, 𝑓) = lim inf

    𝑅→+∞

    π‘š0(𝑅, 1/ (𝑓 βˆ’ π‘Ž))

    𝑇0(𝑅, 𝑓)

    = 1 βˆ’ lim sup𝑅→+∞

    𝑁0(𝑅, 1/ (𝑓 βˆ’ π‘Ž))

    𝑇0(𝑅, 𝑓)

    .

    (16)

    Theorem 9. Let 𝑓 be transcendental meromorphic function oforder 𝜌 (0 < 𝜌 < ∞) on the annulus A := {𝑧 : 1/𝑅

    0< |𝑧| <

    𝑅0}, where 𝑅

    0= +∞. If there exist π‘Ž ∈ CΜ‚ and two positive

    integers π‘˜ and 𝑝 such that

    (1 + π‘˜)Θ0(π‘Ž, 𝑓) + βˆ‘

    𝑏 ΜΈ= π‘Ž

    𝛿0(𝑏, 𝑓) > 2 βˆ’ π‘˜ (𝑝 βˆ’ 1) , (17)

    then there exist at most 𝑝 elements CΜ‚ \ {π‘Ž} which are evBs for𝑓 on A for distinct zeros of order not exceeding π‘˜.

    3.1. Proof of Theorem 6

    Proof. For any positive integer π‘˜ or∞ and π‘Ž ∈ CΜ‚, we have

    𝑁0(𝑅,

    1

    𝑓 βˆ’ π‘Ž) ≀

    π‘˜

    1 + π‘˜π‘π‘˜)

    0(𝑅,

    1

    𝑓 βˆ’ π‘Ž)

    +1

    1 + π‘˜π‘π‘˜0(𝑅,

    1

    𝑓 βˆ’ π‘Ž) ,

    (18)

    where π‘˜/(π‘˜ + 1) = 1 and 1/(π‘˜ + 1) = 0 if π‘˜ = ∞. Then, from(18) andTheorem 2, we have

    (]

    βˆ‘π‘–=1

    π‘π‘–βˆ’ 2)𝑇

    0(𝑅, 𝑓)

    ≀]

    βˆ‘π‘–=1

    π‘˜π‘–

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π‘π‘˜π‘–)

    0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–π‘—

    )

    +]

    βˆ‘π‘–=1

    1

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π‘π‘˜π‘–

    0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–π‘—

    ) + 𝑆 (𝑅, 𝑓) .

    (19)

    From Definition 5 and the assumptions of Theorem 6, thereexists a constant πœ‚ (0 < πœ‚ < 𝜌) such that for sufficiently large𝑅,

    π‘π‘˜π‘–)

    0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–π‘—

    ) < π‘…πœ‚, 𝑗 = 1, 2, . . . , 𝑝𝑖, 𝑖 = 1, 2, . . . , ].

    (20)

  • 4 The Scientific World Journal

    Hence, from (19) and (20) and for sufficiently large𝑅, we have

    (]

    βˆ‘π‘–=1

    π‘π‘–βˆ’ 2)𝑇

    0(𝑅, 𝑓) ≀

    ]

    βˆ‘π‘–=1

    1

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π‘π‘˜π‘–

    0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–π‘—

    )

    + 𝑂 (π‘…πœ‚) + 𝑆 (𝑅, 𝑓) .

    (21)

    Thus, for sufficiently large 𝑅 and taking arbitrary πœ€(> 0), wecan get from (21) and the definition of 𝛿

    π‘˜(π‘Ž, 𝑓) that

    (]

    βˆ‘π‘–=1

    π‘π‘–βˆ’ 2)𝑇

    0(𝑅, 𝑓)

    ≀]

    βˆ‘π‘–=1

    1

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    (1 βˆ’ π›Ώπœƒπ‘˜π‘–(π‘Žπ‘–π‘—, 𝑓) + πœ€) 𝑇

    0(𝑅, 𝑓)

    + 𝑂 (π‘…πœ‚) + 𝑆 (𝑅, 𝑓) .

    (22)

    Since 𝑅 = +∞, it follows that

    (Ξ βˆ’ 2 βˆ’ πœ€) 𝑇0(𝑅, 𝑓) ≀ 𝑂 (π‘…πœ‚) + 𝑂 (log𝑅𝑇

    0(𝑅, 𝑓)) , (23)

    for 𝑅 ∈ (1, +∞) except for the set Δ𝑅such that ∫

    Δ𝑅

    π‘…πœ†βˆ’1𝑑𝑅 <

    +∞. If 𝐼 = [𝑅, 𝑅) ∈ Δ𝑅, we have

    π‘…πœ† βˆ’ π‘…πœ† = πœ†βˆ«π‘…

    𝑅

    π‘₯πœ†βˆ’1𝑑π‘₯ ≀ πœ†βˆ«Ξ”π‘…

    π‘…πœ†βˆ’1𝑑𝑅 < 𝑀, (24)

    where𝑀 is a constant. Thus,

    (Ξ βˆ’ 2 βˆ’ πœ€) 𝑇0(𝑅, 𝑓) ≀ 𝑂 (π‘…πœ‚) + 𝑂 (log𝑅𝑇

    0(𝑅, 𝑓)) (25)

    holds for all 𝑅. If Ξ > 2, we can choose an arbitrary πœ€ (0 <πœ€ < Ξ βˆ’ 2) satisfying πœ‚ + πœ€ < 𝜌. Thus, from (25) and forsufficiently large 𝑅, we can get a contradiction to (13) easily.

    Therefore, we can get the conclusion of Theorem 6.

    3.2. The Proof of Theorem 9

    Lemma 10. Let 𝑓 be transcendental meromorphic function oforder 𝜌 (0 < 𝜌 < ∞) on the annulus A := {𝑧 : 1/𝑅

    0< |𝑧| <

    𝑅0}, where 1 < 𝑅

    0≀ +∞. Then

    lim sup𝑅→+∞

    π‘š0(𝑅, 1/𝑓)

    𝑇0(𝑅, 𝑓)

    ≀ 2 βˆ’ Θ0(∞, 𝑓) βˆ’ βˆ‘

    π‘βˆˆC

    𝛿0(𝑏, 𝑓) .

    (26)

    Proof. Suppose that 𝑏1, 𝑏2, . . . , 𝑏

    π‘‘βˆˆ C are 𝑑 distinct complex

    constants. From the definitions ofπ‘š0(𝑅, 𝑓), 𝑇

    0(𝑅, 𝑓), we have

    𝑑

    βˆ‘π‘–=1

    π‘š0(π‘Ÿ,

    1

    𝑓 βˆ’ 𝑏𝑖

    ) ≀ π‘š0(π‘Ÿ,

    1

    𝑓) + 𝑆 (𝑅, 𝑓) ≀ 𝑇

    0(𝑅, 𝑓)

    βˆ’ 𝑁0(𝑅,

    1

    𝑓) + 𝑆 (𝑅, 𝑓) .

    (27)

    And since 𝑇0(𝑅, 𝑓) ≀ 𝑇

    0(𝑅, 𝑓) +𝑁

    0(𝑅, 𝑓) + 𝑆(𝑅, 𝑓), then we

    have

    𝑑

    βˆ‘π‘–=1

    π‘š0(𝑅,

    1

    𝑓 βˆ’ 𝑏𝑖

    ) + 𝑁0(𝑅,

    1

    𝑓) ≀ 𝑇

    0(𝑅, 𝑓)

    + 𝑁0(𝑅, 𝑓) + 𝑆 (𝑅, 𝑓) .

    (28)

    It follows from the definitions of 𝛿0(π‘Ž, 𝑓), Θ

    0(π‘Ž, 𝑓) that

    𝑑

    βˆ‘π‘–=1

    𝛿0(𝑏𝑖, 𝑓) + lim sup

    𝑅→+∞

    𝑁0(𝑅, 1/𝑓)

    𝑇0(𝑅, 𝑓)

    ≀ 2 βˆ’ Θ0(∞, 𝑓) .

    (29)

    From (29) and 𝑑 is arbitrary, the proof of Lemma 10 iscompleted easily.

    Proof of Theorem 9. Without loss of generality, we assumethat π‘Ž = ∞. Next, we will employ reductio ad absurdum toprove the conclusion of Theorem 9. Suppose that there exist𝑝+ 1 elements π‘Ž

    1, π‘Ž2, . . . , π‘Ž

    𝑝+1∈ C which are evBs for 𝑓 onA

    for distinct zeros of multiplicity ≀ π‘˜. We know that if 𝑧0is a

    zero of 𝑓 βˆ’ 𝑏 onA of multiplicity 𝑠 (> 1) for 𝑏 ∈ C, then 𝑧0is

    a zero of 𝑓 on A of multiplicity 𝑠 βˆ’ 1. It follows that

    𝑝+1

    βˆ‘π‘–=1

    𝑁0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–

    ) ≀

    𝑝+1

    βˆ‘π‘–=1

    π‘π‘˜)

    0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–

    ) +1

    π‘˜π‘0(𝑅,

    1

    𝑓) .

    (30)

    Therefore, by Theorem 2 we have

    𝑝𝑇0(𝑅, 𝑓) ≀

    𝑝+1

    βˆ‘π‘–=1

    𝑁0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–

    ) + 𝑁0(𝑅, 𝑓) + 𝑆 (𝑅, 𝑓)

    ≀

    𝑝+1

    βˆ‘π‘–=1

    π‘π‘˜)

    0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–

    ) +1

    π‘˜π‘0(𝑅,

    1

    𝑓)

    + 𝑁0(𝑅, 𝑓) + 𝑆 (𝑅, 𝑓) .

    (31)

    From the definitions of order and evB of 𝑓 on A, there existsa constant πœ‚ (0 < πœ‚ < 𝜌) such that for sufficiently large 𝑅, wehave

    π‘π‘˜)

    0(𝑅,

    1

    𝑓 βˆ’ π‘Žπ‘–

    ) < π‘…πœ‚, 𝑖 = 1, 2, . . . , 𝑝 + 1. (32)

    From (31), (32), and Lemma 10, for sufficiently large 𝑅, itfollows that

    (𝑝 βˆ’ 1 βˆ’1

    π‘˜(2 βˆ’ Θ

    0(∞, 𝑓) βˆ’ βˆ‘

    𝑏 ΜΈ=∞

    𝛿0(𝑏, 𝑓)) + Θ

    0(∞, 𝑓))

    Γ— 𝑇0(𝑅, 𝑓) ≀ π‘…πœ‚ + 𝑆 (𝑅, 𝑓) ,

    (33)

  • The Scientific World Journal 5

    for 𝑅 ∈ (1, +∞) except for the set Δ𝑅such that ∫

    Δ𝑅

    π‘…πœ†βˆ’1𝑑𝑅 <

    +∞. Since 𝑅0

    = +∞, similar to the argument as inTheorem 6, from (33) we find that

    (𝑝 βˆ’ 1 βˆ’2 βˆ’ (π‘˜ + 1)Θ

    0(∞, 𝑓) βˆ’ βˆ‘

    𝑏 ΜΈ=βˆžπ›Ώ0(𝑏, 𝑓)

    π‘˜)𝑇0(𝑅, 𝑓)

    ≀ π‘…πœ‚ + 𝑂 (log (𝑅𝑇0(𝑅, 𝑓)))

    (34)

    holds for all𝑅. Since πœ‚ < 𝜌, from (34) and for sufficiently large𝑅, we can get

    (1 + π‘˜)Θ0(∞, 𝑓) + βˆ‘

    𝑏 ΜΈ=∞

    𝛿0(𝑏, 𝑓) > 2 βˆ’ π‘˜ (𝑝 βˆ’ 1) , (35)

    which is contradiction with the assumption of Theorem 9.Thus, this completes the proof of Theorem 9.

    4. Some Consequences of Theorems 6 and 9

    In this section, wewill give some consequences ofTheorems 6and 9. Before we give these results, some definitions will beintroduced below.

    Definition 11. Let𝑓 bemeromorphic function on the annulusA := {𝑧 : 1/𝑅

    0< |𝑧| < 𝑅

    0}, where 𝑅

    0= +∞. For π‘Ž ∈ CΜ‚, then

    we say that

    (i) π‘Ž is called an exceptional value in the sense ofNevanlinna (evN for short) for𝑓 onA, if 𝛿

    0(π‘Ž, 𝑓) > 0;

    (ii) π‘Ž is called a normal value in the sense of Nevanlinna(nvN for short) for 𝑓 on A, if 𝛿

    0(π‘Ž, 𝑓) = 0.

    In addition, similar to the Picard exceptional value in thewhole complex plane, we define that π‘Ž is called an exceptionalvalue in the sense of Picard (evP for short) for𝑓 onA, if𝑓 hasat most a finite number of π‘Ž-points on A.

    Consequence 1. Under the assumptions of Theorem 6, if π‘˜1=

    1, fromTheorem 6, we get

    𝑝1+ 2

    ]

    βˆ‘π‘–=2

    π‘π‘–π‘˜π‘–

    1 + π‘˜π‘–

    +

    𝑝1

    βˆ‘π‘—=1

    𝛿10(π‘Ž1𝑗, 𝑓) +

    ]

    βˆ‘π‘–=2

    2

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    𝛿10(π‘Žπ‘–π‘—, 𝑓) ≀ 4.

    (36)

    Since 𝑝𝑖β‰₯ 0 and 𝛿1

    0(π‘Žπ‘–π‘—, 𝑓) β‰₯ 0 for 𝑖 = 1, . . . , ], it follows that

    (i) if 𝑓 has an evB for simple zeros which is also an evNfor 𝑓 on A, then 𝑓 has at most three evBs for simplezeros on A;

    (ii) if π‘Ž1and π‘Ž

    2are two evPs for 𝑓 on A then no other

    element is an evB for 𝑓 for simple zeros on A;(iii) there exist at most four elements which are evBs for 𝑓

    simple zeros on A since 𝛿1(π‘Ž1𝑗, 𝑓) β‰₯ 0. Moreover, all

    these four values are nvNs for 𝑓 on A.

    Consequence 2. Under the assumptions of Theorem 6, letπ‘˜1= 1, 𝑝

    1= 1, then

    (a) if π‘˜2= 2, we have

    2𝑝2

    3+

    ]

    βˆ‘π‘–=3

    π‘π‘–π‘˜π‘–

    1 + π‘˜π‘–

    +1

    2𝛿10(π‘Ž11, 𝑓) +

    1

    3

    𝑝2

    βˆ‘π‘—=1

    𝛿20(π‘Ž2𝑗, 𝑓)

    +]

    βˆ‘π‘–=3

    1

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) ≀

    3

    2.

    (37)

    Since 𝑝𝑖β‰₯ 0 and π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) β‰₯ 0, it follows from (37) that 𝑝

    2<

    3. Thus, if π‘Ž11is an evB for 𝑓 on A for simple zeros, that is,

    𝛿10(π‘Ž11, 𝑓) > 0, then there exist at most two other elements

    which are evBs for𝑓 onA for distinct simple zeros and doublezeros. Furthermore,

    (i) if 𝛿10(π‘Ž11, 𝑓) = 1/3, then two other elements evBs are

    also evNs for 𝑓 on A;

    (ii) if any of the two other elements π‘Ž21and π‘Ž2

    2, say π‘Ž2

    1,

    satisfies 𝛿10(π‘Ž21, 𝑓) = 1/2, then π‘Ž1

    1, π‘Ž22are also evNs for

    𝑓 on A;(b) if π‘˜

    2= 3, we have

    3𝑝2

    4+

    ]

    βˆ‘π‘–=3

    π‘π‘–π‘˜π‘–

    1 + π‘˜π‘–

    +1

    2𝛿10(π‘Ž1, 𝑓) +

    1

    4

    𝑝2

    βˆ‘π‘—=1

    𝛿30(π‘Ž2𝑗, 𝑓)

    +]

    βˆ‘π‘–=3

    1

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) ≀

    3

    2.

    (38)

    From the above inequality and 𝛿0(π‘Ž, 𝑓) β‰₯ 0 for π‘Ž ∈ CΜ‚, we get

    that 𝑝1= 1, 𝑝

    2≀ 2 and 𝑝

    1= 1, 𝑝

    2= 2, 𝑝

    𝑖= 0 (𝑖 = 3, . . . , ]).

    Thus, if𝑓 has an evB for simple zeros onA, then there exist atmost two other elementswhich are evBs for𝑓distinct zeros ofmultiplicity ≀ 3 on A. Moreover, all these exceptional valuesare nvNs for 𝑓 on A.

    Consequence 3. Under the assumptions ofTheorem 6, if π‘˜1=

    2, then we have

    2𝑝1

    3+

    ]

    βˆ‘π‘–=2

    π‘π‘–π‘˜π‘–

    1 + π‘˜π‘–

    +1

    3

    𝑝1

    βˆ‘π‘—=1

    𝛿20(π‘Ž1𝑗, 𝑓)

    +]

    βˆ‘π‘–=2

    1

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) ≀ 2.

    (39)

    Sinceβˆ‘]𝑖=2(π‘π‘–π‘˜π‘–/(1+π‘˜

    𝑖))+βˆ‘

    ]𝑖=2(1/(1+π‘˜

    𝑖)) βˆ‘π‘π‘–

    𝑗=1π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) β‰₯ 0,

    then from (39) we have

    2𝑝1

    3+1

    3

    𝑝1

    βˆ‘π‘—=1

    𝛿20(π‘Ž1𝑗, 𝑓) ≀ 2. (40)

    Thus, it follows that 𝑝1≀ 3 and 𝑝

    1= 3, 𝑝

    𝑖= 0, 𝑖 = 2, . . . , ].

    Hence, we have that 𝑓 has at most three evBs for distinctsimple and double zeros on A. Moreover, all three evBs fordistinct simple and double zeros are nvNs for 𝑓 on A.

  • 6 The Scientific World Journal

    Consequence 4. Under the assumptions of Theorem 6, letπ‘˜1= 2, 𝑝

    1= 1.

    (a) If π‘˜2= 1, then we have

    𝑝2+ 2

    ]

    βˆ‘π‘–=3

    π‘π‘–π‘˜π‘–

    1 + π‘˜π‘–

    +2

    3𝛿20(π‘Ž11, 𝑓) +

    𝑝2

    βˆ‘π‘—=1

    𝛿10(π‘Ž2𝑗, 𝑓)

    +]

    βˆ‘π‘–=3

    2

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) ≀

    8

    3.

    (41)

    Thus, it follows that 𝑝2≀ 2. So, if there exists an evB for 𝑓

    on A for distinct and double zeros, say π‘Ž11, then there exist at

    most two other evBs for 𝑓 on A for simple zeros, say π‘Ž21, π‘Ž22.

    Furthermore, if 𝑝1= 1, 𝑝

    2= 2, it follows that

    2𝛿20(π‘Ž11, 𝑓) + 3𝛿1

    0(π‘Ž21, 𝑓) + 𝛿1

    0(π‘Ž22, 𝑓) ≀ 2. (42)

    Thus, we can see that any one of π‘Ž21, π‘Ž22may not be an evP for

    𝑓 on A. Furthermore, if π‘Ž11is an evP for 𝑓 on A. Then π‘Ž2

    1, π‘Ž22

    are nvNs for 𝑓 on A;

    (b) if 𝑝2= 1, π‘˜

    2= 3, π‘˜3= 1, then we have

    𝑝3+

    ]

    βˆ‘π‘–=4

    2π‘π‘–π‘˜π‘–

    1 + π‘˜π‘–

    +2

    3𝛿20(π‘Ž11, 𝑓) +

    1

    2𝛿30(π‘Ž21, 𝑓)

    +

    𝑝3

    βˆ‘π‘—=1

    𝛿10(π‘Ž3𝑗, 𝑓) +

    ]

    βˆ‘π‘–=4

    2

    1 + π‘˜π‘–

    𝑝𝑖

    βˆ‘π‘—=1

    π›Ώπ‘˜π‘–

    0(π‘Žπ‘–π‘—, 𝑓) ≀

    7

    6.

    (43)

    Thus, we can get that 𝑝3≀ 1. That is, if 𝑓 have two evBs onA,

    say π‘Ž11and π‘Ž21and π‘Ž11is for distinct simple and double zeros,

    π‘Ž21for distinct zeros of order ≀ 3, then 𝑓 has at most one evB

    for simple zeros on A. Furthermore, if 𝑝3= 1, then

    2

    3𝛿20(π‘Ž11, 𝑓) +

    1

    2𝛿30(π‘Ž21, 𝑓) + 𝛿1

    0(π‘Ž31, 𝑓) ≀

    1

    6. (44)

    It follows that 𝛿20(π‘Ž11, 𝑓) ≀ 1/4, 𝛿3

    0(π‘Ž21, 𝑓) ≀ 1/3 and

    𝛿10(π‘Ž31, 𝑓) ≀ 1/6. Thus, if any equality of these three inequali-

    ties holds, then the other two are nvNs for 𝑓 on A.Now, we will give some consequences of Theorem 9 as

    follows.

    Consequence 5. Under the assumptions of Theorem 9, if π‘˜ =1 and

    2Θ0(π‘Ž, 𝑓) + βˆ‘

    𝑏 ΜΈ= π‘Ž

    𝛿0(𝑏, 𝑓) > 3 βˆ’ 𝑝, (45)

    we have the following:

    (i) if 𝑝 = 1 and 2Θ0(π‘Ž, 𝑓)+βˆ‘

    𝑏 ΜΈ= π‘Žπ›Ώ0(𝑏, 𝑓) > 2, then there

    exists at most one element 𝑏 ΜΈ= π‘Ž which is an evB for 𝑓onA for simple zeros; in particular, this holds if thereexists an π‘Ž ∈ CΜ‚ satisfying Θ

    0(π‘Ž, 𝑓) = 1;

    (ii) if 𝑝 = 2 and 2Θ0(π‘Ž, 𝑓)+βˆ‘

    𝑏 ΜΈ= π‘Žπ›Ώ0(𝑏, 𝑓) > 1, then there

    exists at most two elements 𝑏1, 𝑏2ΜΈ= π‘Ž which are evBs

    for 𝑓 onA for simple zeros; in particular, this holds ifthere exists an π‘Ž ∈ CΜ‚ satisfying Θ

    0(π‘Ž, 𝑓) > 1/2;

    (iii) if 𝑝 = 3 and 2Θ0(π‘Ž, 𝑓)+βˆ‘

    𝑏 ΜΈ= π‘Žπ›Ώ0(𝑏, 𝑓) > 0, then there

    exists at most three elements 𝑏1, 𝑏2, 𝑏3ΜΈ= π‘Ž which are

    evBs for 𝑓 on A for simple zeros; in particular, thisholds if there exists an π‘Ž ∈ CΜ‚ satisfying Θ

    0(π‘Ž, 𝑓) > 0.

    Remark 12. Under the assumptions of Theorem 9, fromConsequence 5, we have that if there exist four distinctelements 𝑏

    1, 𝑏2, 𝑏3, 𝑏4∈ CΜ‚which are evBs for𝑓 onA for simple

    zeros, then Θ0(𝑏𝑖, 𝑓) ≀ 1/2 and Θ

    0(π‘Ž, 𝑓) = 0 for π‘Ž ΜΈ= 𝑏

    𝑖and

    𝑖 = 1, 2, 3, 4.

    Consequence 6. Under the assumptions of Theorem 9, if π‘˜ =2 and

    3Θ0(π‘Ž, 𝑓) + βˆ‘

    𝑏 ΜΈ= π‘Ž

    𝛿0(𝑏, 𝑓) > 4 βˆ’ 2𝑝, (46)

    we have the following:

    (i) if 𝑝 = 1 and 3Θ0(π‘Ž, 𝑓) + βˆ‘

    𝑏 ΜΈ= π‘Žπ›Ώ0(𝑏, 𝑓) > 2, then

    there exists at most one element 𝑏 ΜΈ= π‘Ž which is an evBfor 𝑓 on A for distinct simple and double zeros; inparticular, this holds if there exists an π‘Ž ∈ CΜ‚ satisfyingΘ0(π‘Ž, 𝑓) > 2/3;

    (ii) if 𝑝 = 2 and 3Θ0(π‘Ž, 𝑓)+βˆ‘

    𝑏 ΜΈ= π‘Žπ›Ώ0(𝑏, 𝑓) > 0, then there

    exists at most two elements 𝑏1, 𝑏2ΜΈ= π‘Ž which are evBs

    for 𝑓 on A for distinct simple and double zeros; inparticular, this holds if there exists an π‘Ž ∈ CΜ‚ satisfyingΘ0(π‘Ž, 𝑓) > 0.

    Remark 13. Under the assumptions ofTheorem 9, fromCon-sequence 6, we have that if there exist four distinct elements𝑏1, 𝑏2, 𝑏3∈ CΜ‚ which are evBs for 𝑓 on A for distinct simple

    and double zeros, then Θ0(𝑏𝑖, 𝑓) ≀ 2/3 and Θ

    0(π‘Ž, 𝑓) = 0 for

    π‘Ž ΜΈ= 𝑏𝑖and 𝑖 = 1, 2, 3.

    5. Exceptional Value of MeromorphicFunction and Its Derivative

    In this section, we will study the exceptional value ofmeromorphic function𝑓 onA and its differential polynomialof the form

    𝑀[𝑓] := 𝑀[𝑓, 𝑓, . . . , 𝑓(π‘˜)] = π‘Žπ‘“(𝑧)𝑖0(𝑓)

    𝑖1β‹… β‹… β‹… (𝑓(π‘˜))

    π‘–π‘˜

    ,

    (47)

    where 𝑖0, 𝑖1, . . . , 𝑖

    π‘˜βˆˆ N, π‘˜ ∈ N

    +, and π‘Ž( ΜΈ= 0) ∈ C is a complex

    constant.

    Theorem 14. Let 𝑓 be transcendental meromorphic functionof order 𝜌 (0 < 𝜌 < ∞) on the annulus A := {𝑧 : 1/𝑅

    0<

    |𝑧| < 𝑅0}, where 𝑅

    0= +∞. If 0 and ∞ are evBs for 𝑓 on

    A for distinct zeros, then𝑀[𝑓] has no evB for simple zeros inCΜ‚ \ {0,∞}.

    Proof. From (21), set 𝜎 = 𝑖0+ 𝑖1+ β‹… β‹… β‹… + 𝑖

    π‘˜. Since 𝑓 is a

    transcendental meromorphic function on A, similar to themethod of [12, Theorem 1.21], we can get that 𝑓 and 𝑀[𝑓]

  • The Scientific World Journal 7

    have the same order 𝜌 onA. By applyingTheorem 1 for𝑀[𝑓],for 𝑏( ΜΈ= 0) ∈ C we have

    𝑇0(𝑅,𝑀 [𝑓]) ≀ 𝑁

    0(𝑅,

    1

    𝑀 [𝑓]) + 𝑁

    0(𝑅,𝑀 [𝑓])

    + 𝑁0(𝑅,

    1

    𝑀 [𝑓] βˆ’ 𝑏) + 𝑆 (𝑅,𝑀 [𝑓])

    ≀ 𝑁0(𝑅,

    1

    𝑀 [𝑓]) + 𝑁

    0(𝑅, 𝑓)

    +1

    2𝑁1)

    0(𝑅,

    1

    𝑀 [𝑓] βˆ’ 𝑏)

    +1

    2𝑁1

    0(𝑅,

    1

    𝑀 [𝑓] βˆ’ 𝑏) + 𝑆 (𝑅, 𝑓)

    ≀ 𝑁0(𝑅,

    1

    𝑀 [𝑓]) + 𝑁

    0(𝑅, 𝑓)

    +1

    2𝑁1)

    0(𝑅,

    1

    𝑀 [𝑓] βˆ’ 𝑏)

    +1

    2𝑇0(𝑅, 𝑓) + 𝑆 (𝑅, 𝑓) .

    (48)

    Since

    𝑁0(𝑅,

    1

    𝑀 [𝑓]) ≀ 𝑁

    0(𝑅,

    π‘“πœŽ

    𝑀[𝑓]) + 𝑁

    0(𝑅,

    1

    π‘“πœŽ)

    ≀ 𝑇0(𝑅,

    𝑀 [𝑓]

    π‘“πœŽ) + 𝑁

    0(𝑅,

    1

    𝑓) + 𝑆 (𝑅, 𝑓)

    ≀ 𝑁0(𝑅,

    𝑀 [𝑓]

    π‘“πœŽ) + 𝑁

    0(𝑅,

    1

    𝑓) + 𝑆 (𝑅, 𝑓)

    ≀ 𝑂(𝑁0(𝑅,

    1

    𝑓) + 𝑁

    0(𝑅, 𝑓)) + 𝑆 (𝑅, 𝑓) .

    (49)

    and 0 and∞ are evBs for𝑓 onA for distinct zeros, then thereexists a constant πœ‚ (0 < πœ‚ < 𝜌) such that for sufficiently large𝑅, we have

    𝑁0(𝑅,

    1

    𝑓) < π‘…πœ‚, 𝑁

    0(𝑅, 𝑓) < π‘…πœ‚. (50)

    Suppose that 𝑏 is an evB for𝑀[𝑓] on A for simple zeros,since 𝑀[𝑓] is of order 𝜌. Then for sufficiently large 𝑅, thereexists a constant 𝛽 < 𝜌 such that

    𝑁1)

    0(𝑅,

    1

    𝑀 [𝑓] βˆ’ 𝑏) < 𝑅𝛽. (51)

    Thus, from (48)–(50), it follows that

    1

    2𝑇0(𝑅,𝑀 [𝑓]) ≀ 𝑂(π‘Ÿπ›½

    ) + 𝑂 (log𝑅𝑇0(𝑅, 𝑓)) , (52)

    where 𝛽 = max{πœ‚, 𝛽} and for 𝑅 ∈ (1, +∞) except for the setΔ𝑅such that ∫

    Δ𝑅

    π‘…πœ†βˆ’1𝑑𝑅 < +∞. Since 𝑀[𝑓] is of order 𝜌,then there exists a sequence {𝑅

    𝑛} tending to∞ such that

    𝑇0(𝑅𝑛,𝑀 [𝑓]) > 𝑅𝛼

    𝑛, (53)

    where 𝛼 (𝛽 < 𝛼 < 𝜌) is a constant. Thus, we can get acontradiction by using the same argument as inTheorem 6.

    Therefore,𝑀[𝑓] has no evB for simple zeros in CΜ‚\{0,∞}.

    Acknowledgments

    The author was supported by the NNSF of China (no.61202313) and the Natural Science Foundation of Jiang-XiProvince in China (2010GQS0119 and 20132BAB211001).

    References

    [1] H. S. Gopalakrishna and S. S. Bhoosnurmath, β€œExceptional val-ues of meromorphic functions,” Annales Polonici Mathematici,vol. 32, pp. 83–93, 1976.

    [2] H. S. Gopalakrishna and S. Subhas Bhoosnurmath, β€œExcep-tional values of meromorphic functions and its derivatives,”Annales Polonici Mathematici, vol. 35, pp. 99–105, 1977-1978.

    [3] S. K. Singh and H. S. Gopalakrishna, β€œExceptional values ofentire and meromorphic functions,” Mathematische Annalen,vol. 191, no. 2, pp. 121–142, 1971.

    [4] Y. H. Peng and D. C. Sun, β€œExamples on exceptional values ofmeromorphic functions,”ActaMathematica Scientia, vol. 31, no.4, pp. 1327–1336, 2011.

    [5] A. Ya. Khrystiyanyn andA. A. Kondratyuk, β€œOn theNevanlinnatheory for meromorphic functions on annuli. I,”MatematychniStudii, vol. 23, pp. 19–30, 2005.

    [6] A. Ya. Khrystiyanyn andA. A. Kondratyuk, β€œOn theNevanlinnatheory formeromorphic functions on annuli. II,”MatematychniStudii, vol. 24, pp. 57–68, 2005.

    [7] A. A. Kondratyuk and I. Laine, β€œMeromorphic functions inmultiply connected domains,” in Fourier Series Methods inComplex Analysis. Proceedings of the Workshop, I. Laine, Ed.,pp. 24–29, University of Joensuu, Department of Mathematics,Mekrijärvi, Finland, July 2005, Report Series. Department ofMathematics, University of Joensuu, vol. 10, 9–111, 2006.

    [8] A. Fernández, β€œOn the value distribution of meromorphicfunction in the punctured plane,”Matematychni Studii, vol. 34,pp. 136–144, 2010.

    [9] H. Y. Xu and Z. X. Xuan, β€œThe uniqueness of analyticfunctionson annuli sharing some values,” Abstract and Applied Analysis,vol. 2012, Article ID 896596, 13 pages, 2012.

    [10] Y. X. Chen and Z. J. Wu, β€œExceptional values of a meromorphicfunction and its derivatives on annuli,” Annales Polonici Math-ematici, vol. 105, pp. 167–177, 2012.

    [11] T.-B. Cao, H.-X. Yi, and H.-Y. Xu, β€œOn the multiple values anduniqueness of meromorphic functions on annuli,” ComputersandMathematics with Applications, vol. 58, no. 7, pp. 1457–1465,2009.

    [12] H. X. Yi and C. C. Yang, Uniqueness Theory of MeromorphicFunctions, Kluwer Academic, Dordrecht, The Netherlands,2003, Chinese Original: Science Press, Beijing, China, 1995.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of