Relativistic Emission Lines of Accreting Black Holes

52
Andreas Müller Andreas Müller 21. Mai 2003 21. Mai 2003 Quasare und früher Kosmos Forschungsseminar LSW Relativistic Relativistic Emission Lines Emission Lines of of Accreting Accreting Black Black Holes Holes

Transcript of Relativistic Emission Lines of Accreting Black Holes

Page 1: Relativistic Emission Lines of Accreting Black Holes

Andreas MüllerAndreas Müller21. Mai 200321. Mai 2003

Quasare und früher KosmosForschungsseminar LSW

RelativisticRelativisticEmission Lines Emission Lines

ofofAccretingAccreting Black Black HolesHoles

Page 2: Relativistic Emission Lines of Accreting Black Holes

OverviewOverviewMotivationAGN paradigmAGN X-ray spectraX-ray fluorescenceCoronal irradiationRotating black holes and Kerr ray tracingPlasma kinematicsAccretion theory and radiationRadial drift model: disk truncationSimulated disk images: g-factor, emissionEmission line calculationEmissivity modelsEmission lines: calculation, studies, criteria, classification, observation

Page 3: Relativistic Emission Lines of Accreting Black Holes

Note: Note:

All radius declaration were in units of the gravitational radius

1 rg = GM/c2

In general, relativistic units were used G=M=c=1

1 rg := 1.0

Page 4: Relativistic Emission Lines of Accreting Black Holes

Motivation Motivation

In generalprobing strong gravityverify or falsify event horizon?Black Holes vs. Gravastars(few hope because strong redshift suppresses any information)measure parameters in accreting black hole systems(AGN, microquasars, globular clusters)

Cosmologicalemission line diagnostics for Quasars feasiblehighest redshift today: z ~ 0.16 (3C 273)extension to Early Universe expected

Page 5: Relativistic Emission Lines of Accreting Black Holes

TheThe AGN AGN paradigmparadigmGlobal Global topologytopology: : kpckpc--scalescale

Page 6: Relativistic Emission Lines of Accreting Black Holes

XX--rayray emitteremitterAccretingAccreting blackblack holesholes: : pcpc--scalescale

Page 7: Relativistic Emission Lines of Accreting Black Holes

XX--rayray AGN AGN spectraspectraSpectralSpectral componentscomponents

(plot idea byA. Fabian 1998)

Page 8: Relativistic Emission Lines of Accreting Black Holes

XX--rayray fluorescencefluorescenceFe Fe KKαα

Page 9: Relativistic Emission Lines of Accreting Black Holes

XX--rayray fluorescencefluorescenceProminent Prominent speciesspecies

Fe Kα 6.40 keVFe Kβ 7.06 keVNi Kα 7.48 keVCr Kα 5.41 keV

Dependency of these rest frame energieson ionization state!

decreasingrelative line

strength

(Reynolds 1996)

Page 10: Relativistic Emission Lines of Accreting Black Holes

XX--rayray illuminationilluminationCorona Corona geometriesgeometries

slab, sandwich

sphere+diskgeometry

patchy, pill box

(Reynolds & Nowak 2003)

Page 11: Relativistic Emission Lines of Accreting Black Holes

XX--rayray illuminationilluminationTheThe coronacorona problemproblem

corona geometry and locationstill open question!models:

slab corona (SSD, slim disk)patchy coronasphere+disk geometry (ADAF)on-axis point-source (jet)

observational technique: reverberation mappingtheory: radiative GRMHD in 3D

Page 12: Relativistic Emission Lines of Accreting Black Holes

RotatingRotating Black Black HolesHolesKerr Kerr geometrygeometry

(Chandrasekhar 1983)

Page 13: Relativistic Emission Lines of Accreting Black Holes

NumericalNumerical techniquetechniqueKerr Kerr rayray tracingtracing

Page 14: Relativistic Emission Lines of Accreting Black Holes

NumericalNumerical techniquetechniqueGeodesicsGeodesics equationsequations in Kerrin Kerr

GR Lagrangian in Boyer-Lindquist co-ordinatesLegendre transformation to Hamiltonianseparability ansatz for Hamilton-Jacobi differential equationphoton momenta follow from derivatives of action4 conservatives:

energy E, mass µ, angular momentum J, Carter constant C (Kerr-specific!)

reduction to set of 4 1st order differential equationsintegraton of geodesics equations by

Runge-Kutta scheme (direct method)elliptical integrals (Fanton et al. 1997, A. Müller 2000)transfer functions (Cunningham 1975, Bromley et al. 1997)

(Chandrasekhar 1983)

Page 15: Relativistic Emission Lines of Accreting Black Holes

GeneralizedGeneralized Doppler Doppler factorfactorgg--factorfactor

definition in rest-frame

Carter momenta in ZAMO (1968)

Lorentz boost from ZAMO to rest frame

Page 16: Relativistic Emission Lines of Accreting Black Holes

Plasma Plasma kinematicskinematics

Page 17: Relativistic Emission Lines of Accreting Black Holes

AccretionAccretion theorytheoryHydrodynamicsHydrodynamics and MHDand MHD

co-existent and overlapping solutions available:ADAF (Advection-Dominated Accretion Flow)Narayan & Yi 1994ADIOS (Advection-Dominated Inflow-Outflow Solution)Blandford & Begelman 1999CDAF (Convection-Dominated Accretion Flow)Quataert & Gruzinov 2000ISAF (Ion-Supported Accretion Flow)Spruit & Deufel 2001TDAT (Truncated Disk – Advective Tori)Hujeirat & Camenzind 2001NRAF (Non-Radiative Accretion Flow)Balbus & Hawley 2002

α- and β-diskscomplete parameter space investigationneed for covariant radiative generalization!

Page 18: Relativistic Emission Lines of Accreting Black Holes

RadiationRadiation mechanismsmechanismsthermal emission

single black bodymulti-color black body (SSD)

Comptonization (Kompaneets equation)dominant global X-ray componentreprocessed soft photons from environmentcorona: seed photon production for fluorescence

Synchrotron radiationradio emissionfast cooling of hot accretion flow on ms-scaleSSC (sub-mm bump)SSA (dip feature)

bremsstrahlunglaunch of outflow (disk wind, Poynting flux)

Covariant generalization: GR radiation transfer!

Page 19: Relativistic Emission Lines of Accreting Black Holes

Radial drift Radial drift modelmodelTruncationTruncation and and freefree--fallfall

Truncated Standard accretion Disks (TSD) due to efficient radiativecooling. Disk cuts off at Rt, not at rms (cp. SSD) depending on radiativeaccretion theory (accretion rate, cooling, conduction). (Hujeirat & Camenzind 2000)

Page 20: Relativistic Emission Lines of Accreting Black Holes

Radial drift Radial drift modelmodelVelocity Velocity fieldfield in ZAMO in ZAMO frameframe

ZAMO velocities angular frequencies

Page 21: Relativistic Emission Lines of Accreting Black Holes

Radial drift Radial drift modelmodelParameter Parameter restrictionsrestrictions

Only region between Ω+ and Ω-is allowed (time-like trajectories).

Specific angular momentum λ has chosen between λms and λmb .

Page 22: Relativistic Emission Lines of Accreting Black Holes

Radial drift Radial drift modelsmodelsradial ZAMO velocity

radius [rg]

speed of light

Page 23: Relativistic Emission Lines of Accreting Black Holes

RenderedRendered disk disk imagesimagesgg--factorfactor and and emissionemission

Page 24: Relativistic Emission Lines of Accreting Black Holes

Disk Disk emissionemissionRelativisticRelativistic effectseffects

Page 25: Relativistic Emission Lines of Accreting Black Holes

Radial drift Radial drift modelmodelgg--factorfactor: : KeplerianKeplerian vs. Driftvs. Drift

Page 26: Relativistic Emission Lines of Accreting Black Holes

Radial drift Radial drift modelmodelImplicationsImplications

adequate consideration of accreted inflowtruncation softens the „evidence for Kerr“- argument, because Rt replaces rms. Coupling between rin and rms is lost!gravitational redshift is enhanced!emission line shape does not change dramatically comparedwith pure Keplerian: only red wing effectspoloidal motion still neglected!awaiting new accretion theory: covariancefollow Armitage & Reynolds (2003) approach: couple line emission to accretion model

Page 27: Relativistic Emission Lines of Accreting Black Holes

Disk Disk emissionemissionInclinationInclination studystudy withwith gg44

Page 28: Relativistic Emission Lines of Accreting Black Holes

Black hole Black hole shadowshadowStrong gravitationalredshift

horizon:g = 0

Flux integral folds g in high power withemissivity.

g4 – distributionsuppresses any emissionnear black holes!

„Shadow“ by Falcke et al. 2000

Page 29: Relativistic Emission Lines of Accreting Black Holes

RelativisticRelativistic emissionemission line line CalculationCalculation

general spectral flux integral

using Lorentz invariant (Misner 1973)

assume line shape in rest frame: δ-distributionfold radial emissivity profile

single power lawdouble or broken power lawGaussiancut-power law

evaluate tuple g, ∆Ω, r on each pixel and sum over pixels!

Page 30: Relativistic Emission Lines of Accreting Black Holes

Radial Radial emissivityemissivity profilesprofiles

emissivitiesemissivities

single power law(Page & Thorne 1974)

double or brokenpower law

Gaussian, cut-power law(Müller & Camenzind 2003)

Page 31: Relativistic Emission Lines of Accreting Black Holes

Line Line featuresfeaturesImprintsImprints of of relativisticrelativistic effectseffects

Doppler (Newtonian)Beaming (SR)Gravitational redshift (GR)

Page 32: Relativistic Emission Lines of Accreting Black Holes

Line Line studiesstudiesInclinationInclination

Parameters:a = 0.999999i = 5°....70°rin = rms = 1.0015rout = 30.0

single power lawemissivity

pure rotation,no drift

Blue edge shifts!Enhanced Beaming!Doppler effect

Page 33: Relativistic Emission Lines of Accreting Black Holes

Line Line studiesstudiesInner disk edgeInner disk edge

Parameters:a = 0.999999i = 30°rin = 1...28rout = 30.0 single power lawemissivitypure rotation,no drift Static blue edge!Red wing vanishes!Doppler effectend: Newtonian

SpaceSpace--timetime curvaturecurvatureisis negligiblenegligible atatradiiradii ~ 20 ~ 20 rrgg!!!!!!

Page 34: Relativistic Emission Lines of Accreting Black Holes

Line Line studiesstudiesOuterOuter disk edgedisk edge

Parameters:a = 0.999999i = 30°rin = 1.0015rout = 30...1.5

single power lawemissivity

pure rotation,no drift

Static red edge!Beaming vanishes!Doppler effect

Page 35: Relativistic Emission Lines of Accreting Black Holes

Line Line studiesstudiesKerr Kerr parameterparameter

Parameters:a = 0.1....0.999999i = 40°rin = rms

rout ~ 10.0 decreasing

constant emitting area!

single power law emissivity

pure rotation,no drift

Beaming increases dueto increasing frame-dragging effect!

Page 36: Relativistic Emission Lines of Accreting Black Holes

Line Line studiesstudiesTruncationTruncation radiusradius

Parameters:a = 0.1i = 40°rin = rH = 1.995rout = 30.0 Rt = 4....8σr = 0.4 RtGaussian emissivitycouples to Rt

non-Keplerian:rotation plus drift!

Gravitational redshiftdecreases with radius!Enhanced Beaming!Doppler effect

Page 37: Relativistic Emission Lines of Accreting Black Holes

Line Line studiesstudiesDrift + rotation vs. pure rotationDrift + rotation vs. pure rotation

Parameters:a = 0.001i = 30°rin = rH = 2.0rout = 30.0 Rt = 6single power lawemissivity

pure Kepleriannon-Keplerian:rotation plus drift!Drift causesenhancedgravitational redshiftand reduces red wingflux!

Page 38: Relativistic Emission Lines of Accreting Black Holes

Line Line studiesstudiesDrift + rotation vs. pure rotationDrift + rotation vs. pure rotation

Parameters:a = 0.1i = 40°rin = rH = 1.995rout = 10.0 Rt = 5σr = 0.4 RtGaussian emissivitycouples to Rt

pure Kepleriannon-Keplerian:rotation plus drift!

Gravitational redshiftcauses red wingdifferences!

Page 39: Relativistic Emission Lines of Accreting Black Holes

Line Line suppressionsuppression„„ShadowedShadowed lineslines““

Parameters:a = 0.998i = 30°rin = rH = 1.06rout = 30.0Rt = 1.5σr = 0.4Gaussian emissivitynon-Keplerian:rotation + driftpeak at ~ 3 keVhigh redshift!

(„unphysical“ line: considerfluorescencerestrictions)

Page 40: Relativistic Emission Lines of Accreting Black Holes

Line Line criteriacriteria

DPRDoppler Peak Ratio

DPSDoppler Peak Spacing

(relative quantities!)

(Müller & Camenzind 2003)

Page 41: Relativistic Emission Lines of Accreting Black Holes

Line Line classificationclassificationProposedProposed nomenclaturenomenclature

topological criterion:triangularbumpydouble-horneddouble-peakedshoulder-like

pre-selection of parameters possiblepre-classification of observed linesunification scheme of AGN

Page 42: Relativistic Emission Lines of Accreting Black Holes

Line Line classificationclassificationTriangularTriangular

Parameters:a = 0.999999i = 10°rin = 1.0015rout = 30.0

β = 3.0single power law

Keplerian

typical:low inclination, Doppler reduced

g-factor

normalizedline flux

Page 43: Relativistic Emission Lines of Accreting Black Holes

Line Line classificationclassificationDDoubleouble--peakedpeaked

Parameters:a = 0.999999i = 30°rin = 28.0rout = 30.0β = 3.0single power law

Keplerian

typical:medium2high inclination, asymptoticallyflat metric, no GR effects

Page 44: Relativistic Emission Lines of Accreting Black Holes

Line Line classificationclassificationDDoubleouble--hornedhorned

Parameters:a = 0.4i = 40°rin = 1.9165rout = 9.9846β = 3.0single power law

Keplerian

typical:medium inclination,standard emissivity,2 relic Doppler peaks

Page 45: Relativistic Emission Lines of Accreting Black Holes

Line Line classificationclassificationBumpyBumpy

Parameters:a = 0.998i = 30°rin = rms = 1.23rout = 30.0

β = 4.5single power law

Keplerian

typical:steep emissivity,beaming lack

Page 46: Relativistic Emission Lines of Accreting Black Holes

Line Line classificationclassificationShoulderShoulder--likelike

Parameters:a = 0.8i = 40°rin = 1.6rout = 30.0Rt = 4.0Gaussian emissivity

Keplerian + drift

typical:localized emissivity,Medium inclination,very sensitive!

Page 47: Relativistic Emission Lines of Accreting Black Holes

Line Line observationsobservationsSeyfertSeyfert 1 MCG1 MCG--66--3030--15, z = 0.00815, z = 0.008

XMM EPIC MOSXMM EPIC MOS

broad Fe Kα 6.5 keV+

broad Fe Kβ 7.05 keV

i = 27.8°Rin = 2.0Rbr = 6.5qin = 4.8 brokenqout = 2.5 emissivityΓ = 1.95

shoulder-likeline topology

(Fabian et al. 2002)

Page 48: Relativistic Emission Lines of Accreting Black Holes

Line Line observationsobservationsSeyfertSeyfert 1.9 MCG1.9 MCG--55--2323--16, z = 0.008316, z = 0.0083

XMM EPIC PNXMM EPIC PN

broad Fe Kα 6.4 keV+

narrow Gaussian(torus reflection)

i ~ 46°absorption featureat 7.1 keV

flattening continuum

line weakening

(Dewangan et al. 2003)

Page 49: Relativistic Emission Lines of Accreting Black Holes

Line Line observationsobservationsQuasar Quasar MrkMrk 205, z = 0.071205, z = 0.071

XMM EPIC PNXMM EPIC PN

broad Fe Kα 6.7 keV+

narrow Gaussian6.4 keV (neutral component)

i ~ 75...90°

low luminosity, radio-quiet QSO

(Reeves et al. 2000)

Page 50: Relativistic Emission Lines of Accreting Black Holes

XX--rayray spectroscopyspectroscopyMultiMulti--speciesspecies emissionemission line line complexcomplex

Parameters:a = 0.998i = 30°rin = rms = 1.23rout = 30.0Rt = 4.0σr = 0.8Gaussian emissivity

(relative line strengthsfrom Reynolds 1996)

Page 51: Relativistic Emission Lines of Accreting Black Holes

ComingComing soonsoon on on thethe web...web...paper version of this talkA. Müller & M. Camenzind (2003)

powerpoint and postscript version ofthis talk available underhttp://www.lsw.uni-heidelberg.de/~amueller/astro_ppt.html

Page 52: Relativistic Emission Lines of Accreting Black Holes

ReferencesReferencesArmitage & Reynolds 2003, astro-ph/0302271Balbus & Hawley 2002, ApJ, 573, 738 - 748Bromley et al. 1997, ApJ, 475, 57 - 64Carter 1968, Phys. Rev., 174, 1559Chandrasekhar 1983, The Mathematical Theory of Black HolesCunningham 1975, ApJ, 202, 788 - 802Dewangan et al. 2003, astro-ph/0304037Fabian 1998, Astronomy & Geophysics, 123Fabian et al. 2002, MNRAS, 335, L1 – L5 (astro-ph/0206095)Falcke et al. 2000, ApJ, 528, L13Fanton et al. 1997, PASJ, 49, 159Hujeirat & Camenzind 2000, A&A, 361, L53 – L56Müller 2000, diplomaNarayan & Yi 1994, ApJ, 428, L13Reeves et al. 2001, A&A, 365, L134 – L139 (astro-ph/0010490)Reynolds 1996, Ph.D.Reynolds & Nowak 2003, astro-ph/0212065Rybicki & Lightman 1979, Radiative Processes in Astrophysics