RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR · PDF filestring passing over a pulley, ... charge...

55
1 RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR SYLLABUS PRESCRIBED FOR THE EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS FIRST AND SECOND SEMESTERS 2016-2017 UNDER CHOICE BASED CREDIT SYSTEM (In Accordance with University Ordinance No – 222) SYLLABUS M.Sc. FIRST SEMESTER PHYSICS CORE PAPER – I PHY C – 101 MATHEMATICAL METHODS 60+40=100 MARKS 5 CREDITS UNIT- I Tensor Analysis Elements of Cartesion tensors in three dimensions, Definition of transformation laws of scalars, vectors, tensors of second, third and fourth rank, covariant, contravariant and mixed tensors, Isotropic tensor δ i j , Levi- Civita symbol ijk , Tensor algebra (Null tensor, addition, subtraction, inner product, outer product). Green’s Function Elements of Green’s function, Green’s function for the Sturm-Liouville operator, Series expansions for G(x/ξ), Green’s functions in two dimensions, Green’s functions for initial conditions, Green’s functions for boundary conditions, the Green’s function method, A case of continuous spectrum. UNIT II Differential Equation Recursion relation, generating function and orthogonality of Bessel and Legendre functions. Elementary ideas of Associated Legendre, Hermite and Laguerre’s polynomials. Integral Transforms Fourier and Laplace transforms. Inverse Fourier and Laplace Transforms. Fourier and Laplace transforms of derivatives. Convolution theorem. Application to simple problems.

Transcript of RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR · PDF filestring passing over a pulley, ... charge...

Page 1: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

1

RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR

SYLLABUS PRESCRIBED FOR THE EXAMINATION FOR THE

DEGREE OF MASTER OF SCIENCE IN PHYSICS

FIRST AND SECOND SEMESTERS 2016-2017

UNDER CHOICE BASED CREDIT SYSTEM (In Accordance with University Ordinance No – 222)

SYLLABUS

M.Sc. FIRST SEMESTER PHYSICS

CORE PAPER – I

PHY C – 101 MATHEMATICAL METHODS

60+40=100 MARKS 5 CREDITS

UNIT- I

Tensor Analysis

Elements of Cartesion tensors in three dimensions, Definition of transformation laws of scalars, vectors, tensors of second, third and fourth rank, covariant, contravariant and mixed tensors, Isotropic tensor δi

j , Levi-Civita symbol ∈ijk , Tensor algebra (Null tensor, addition, subtraction, inner product, outer product).

Green’s Function

Elements of Green’s function, Green’s function for the Sturm-Liouville operator, Series expansions for G(x/ξ), Green’s functions in two dimensions, Green’s functions for initial conditions, Green’s functions for boundary conditions, the Green’s function method, A case of continuous spectrum.

UNIT II

Differential Equation

Recursion relation, generating function and orthogonality of Bessel and Legendre functions. Elementary ideas of Associated Legendre, Hermite and Laguerre’s polynomials.

Integral Transforms

Fourier and Laplace transforms. Inverse Fourier and Laplace Transforms. Fourier and Laplace transforms of derivatives. Convolution theorem. Application to simple problems.

Page 2: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

2

UNIT - III

Complex Variables

Analyticity of complex functions; Cauchy- Riemann equations; Cauchy’s Theorem; Integral Formula; Taylor’s and Laurent’s series; Theorem of residues; Jordan’s Lemma, simple cases of contour integration.

UNIT - IV

Group Theory

Introduction to Groups, Reducible and irreducible representation of groups, Concept of reducibility in terms of invariant subgroups, Schur’s Lemma, orthogonality relations for irreducible representation, the characters of representations, reduction of a reducible representation, multiplication of conjugate classes. The number of irreducible representations of a finite group.

Crystal symmetry operators, Translation groups, Crystal systems and point groups : applications of group theory in the electronic structure of crystals, in the translation group and in reciprocal lattice. A brief introduction to continuous groups and their representations : O(2), O(3), SU (2), SU (3); generators of U(N) and SU(N).

UNIT - V

This unit will consist of short questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are:-

(1) Geometrical representation of a second rank Cartesian tensor, principal axes system, application to electrical conductivity, quotient Rule.

(2) Green’s function for a linear oscillator, Green’s function and the Dirac δ-function, finding Green’s function for Linear operators in 1-D.

(3) Potential due to discrete or continuous charge distribution; vibration of a circular membrane, solving the 1-D harmonic oscillator Schrodinger equation; Relation of the hydrogen atom, Schrodinger equation with Laguerre equation and solution.

(4) Solution of initial value problems by using Laplace transform; LT and inverse LT of various functions,

(5) Solution of limit dept problems by Fourier transform; FT of Gaussian function, Application of FT of Dirac delta function.

(6) Verification of analyticity of simple function, Evaluation of some definite integral using residues etc.

(7) Evaluation of integrals in complex variables

(8) Construction of the character table for the group D3

Page 3: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

3

In addition to above tutorial will also consist of solving problems given in the Text Reference books.

Text and Reference Books

� Mathematical Methods for Physicists : G. Arfken

� Matrices and Tensors for Physicists : A.W. Joshi

� Advanced Engineering Mathematical : E. Kreyszig

� Special functions : E.D. Rainville

� Special functions : W.W. Bell

� Mathematical Methods for Physicists : K.F. Reily, M.P.Hob Son and Engineers and S.J. Bence

� Mathematics for Physicist : Mary L Boas

CORE PAPER –II

PHY C – 102 CLASSICAL MECHANICS

60+40= 100 MARKS 5 CREDITS

UNIT - I

Newtonian mechanics of one and many particles systems; Conservation theorems for linear momentum, angular momentum and energy; Constraints; their classification; Principle of virtual work; D’Alember’s principle in generalized coordinates; The Lagrangian, Lagrange’s equations; velocity dependent potential and dissipative function. Configuration space, Hamilton’s principle; Generalized momenta and Lagrangian formulation of the conservation theorems and Jacobi’s integral. Reduction to the equivalent one body problem; The equation of motion and first integrals; The differential equation for the orbit and integration power-law potentials.

UNIT - II

The Kepler problem: inverse square law of force; Artificial satellites; Scattering in a central force field, Rutherford scattering; Legendre transformations and the Hamilton’s equations of motion; Conservation theorems and the physical significance of the Hamiltonian. Derivation of Hamilton’s equations from a variational principle. The principle of least action.

The equations of canonical transformations and generating functions; Poisson’s Brackets: their canonical invariance; Simple algebraic properties of Poisson Brackets. The equations of motion in Poisson’s Brackets notation; Poisson’s theorem; Angular momentum PB’s Hamilton’s principal and characteristic functions; The Hamilton-Jacobi equation; Action Angle variables.

Page 4: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

4

UNIT - III

Theory of small oscillations Equations of motion, Eigen frequencies and general motion. Normal modes and coordinates. Applications to coupled pendulum and linear triatomic molecule.

Rotating co-ordinate systems, Acceleration in rotating frames. Coriolis force and its terrestrial and astronomical applications. Elementary treatment of Eulerian co-ordinates and transformation matrices. Angular momentum inertia tensor. Eular equations of motion for a rigid body. Torque free motion for a rigid body. Symmetrical top and gyroscopic forces.

UNIT - IV

Symmetries of space and time. Invariance under Galilion transformation, Covariant four- dimensional formulation. 4-Vectors and 4-Scalars. Relativistic generalisation of Newton’s laws, 4-momenturn and 4-force. Invariance under Lorentz transformation relativistic energy. Lagrangian and Gange invariance Hamiltonian formulation in relativistic mechanics. Covariant Lagrangian, covariant Hamiltonian, Examples.

UNIT-V

This unit will consist of questions based on tutorial problems covering all the four units. The student will have to answer any two questions out of four. Some sample problems are- (1) Simple pendulum with rigid support. Two connected masses with

string passing over a pulley, virtual work. (2) Various Poisson’s brackets thin relation with PBs in quantum

mechanics stability of orbits under central force’ orbital elements of planetary orbits.

(3) Rotating frames, Foucault’s pendulum, small oscillations in Linear triatomic molecule and coupled pendulum.

(4) Relativistic Kinetic energy, mass variation, 4-momentum and 4-force. In addition to above the tutorial will also consists of solving problems given in the Texts and references books.

Text and References Books

� Classical Mechanics : N. C. Rana and P.S. Jog (Tata Mc Graw Hill, 1991) � Classical Mechanics : H. Goldstein (Addision Wesley, 1980) � Mechanics : A Sommerfiels (Academi Press 1952) � Introduction to Dynamics : I. Perceival and

Richards(Cambridge Univ. Press, 1982)

Page 5: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

5

CORE PAPER –

PHY C 103 ELECTRONIC DEVICES

60+40= 100 MARKS 5 CREDITS

UNIT-I

Transistors

JFET, BJT, MOSFET and MESFET, Construction, Structure, working Derivations of the equations for I-V characteristics under different conditions. High frequency limits.

Microwave Devices; Tunnel diode, transfer electron devices (Gunn diode), Avalanche transit time devices, Imatt diodes and parametric devices.

UNIT-II

Photonic Devices

Radiative and non-radiative transitions. Optical absorption, Bulk and their film photoconductive devices (LDR), diode photodetectors, s olar cell (open circuit voltage and short circuit current, fill factor). LED (high frequency limit, effect of surface and indirect recombination current, operation of LED).

Diode lasers (condition for population inversion, in active region, Light confinement factor. Optical gain and threshold current for lasing. Fabry-Perrot cavity length for lasing and the separation.

UNIT - III

Digital Integrated Circuits

Characteristics of logic families, saturated logic families. RTL, DCTL, DTL,TTL, IIL, HTL Non saturated bipolar logic families, TTC, ECL, Unipolar logic families, Digital integrated circuits-SSI, MSI, LSI and VLSI circuits.

Operational Amplifiers

DC Amplifier, Difference amplifier, operational amplifier, OP-AMP Parameters, Inverting and Non-Inverting modes, Use of OPAMP as adder, substractor, inverter, differentiator, integrator, function generator.

UNIT - IV

Memory Devices: Static and dynamic random access memories SRAM and DRAM, CMOS and NMOS, non- volatile memory, magnetic, optical and ferroelectrics memories, charge coupled devices (CCD).

Page 6: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

6

Introduction to other electronic devices: Electro optic, magneto optic and Acousto-optic effects; Examples of some active devices in integrated optics based on these effects., Liquid crystal display devices.

Piezoelectric effect, important materials exhibiting this property, piezoelectric filters and resonators , high frequency piezoelectric devices – surface acoustic devices. Capacitor, Electrets and piezo electric electro mechanical transducer devices.

UNIT – V

This unit will consist of questions based on tutorial problems covering all the four units. The student will have to answer any two questions out of four.

1. Design of MOSFET amplification in different configurations.

2. Microwave oscillators: Klystron and Magnetron.

3. Deviation of the condition of lasing action in a two level system, optical pumping

4. Derivation of rate equation for three – Laval Devices system.

5. Design of gates using DL, DTL etc. logics OPAMP

6. Derivation of expressions for OPAMP adder, substrates differentiator, integrator current voltage.

7. Derivation of expansions negated to pier clement effect.

The problems given in this Text and preference books will form tutorial course.

Text and reference books

� Semi Conductor Devices – Physics and Technology : SM Sze (Wiley, 1985)

� Introduction to Semiconductor devices : M.S. Tyagi (John Wiley and Sons)

� Measurement, Instrumentation and Experimental Design in Physics and Eugineeruin : M. Sayer and A. Mansingh

� Optical Electronics : Ajoy Ghatak and K. Thygarajan (Cambridge Univ. Press.).

Page 7: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

7

ELECTIVE PAPER IV (ANY ONE OF THE FOLLOWING)

PHY E – 104

IV (A) COMPUTATIONAL METHODS AND PROGRAMMING

60+40= 100 MARKS 5 CREDITS

UNIT - I

Programming : Elementary information about digital computer principles, compilers, interpreters and operating system. BASIC programming, Flow charts, integer and floating point arithmetic expressions, built in functions, executable and non-executable statements, assignments, control and input-output elements, subroutines and functions, operations with files, Graphics, statements.

UNIT - II

Methods for determination of zeros of linear and nonlinear algebraic equation and transcendental equations, convergence of solutions. Solutions of simultaneous linear equation, Gaussian elimination, pivoting, iterative method, matrix inversion.

UNIT-III

Eigen values and Eigen vectors of matrices, power and Jocobi method, finite differences, interpolation with equally spaced and unevenly spaced points. Curve fitting, polynomial least squares and cubic spline fitting.

Numerical differentiation and integration, Newton-Cotes formulae, Error estimates, Gauss method.

UNIT - IV

Random variables, Monte Carlo evaluation of integrals, Methods of importance sampling, Random walk and metropolis method, Numerical solution of ordinary differential equation, Euler and Runge- Kutta Methods, Predictor and corrector method, Elementary ideas of solution of partial differential equation.

UNIT - V

This unit will have four questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four some sample problems are-

(1) Explain the use of sequential formatted data files. What are Random data files.

(2) How is a sequential data file created in Basic.

(3) Write a program to obtain the roots of a quadratic equation with the provision that if the roots are complex, the execution should stop.

Page 8: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

8

(4) Invert and diagonalize 3×3 and 4×4 symmetric matrices for example.

2 0.5 0.1 3 1 1 0.5

0.5 3 0.1 1 4 1 1

0.1 0.1 4 1 1 5 1

0.5 1 1 6

(5) Find equations for the coefficients a and b of the curve y = aebx by the least squares method.

(6) Use the Lagrange from to find the quadratic interpolation polynomial to the function f(x) having values.

X : 1 2 3

F(x) : 2 3 7

(7) Find out C0, C1, X0 and X1 such that the Gaussion quadrature rule

f(x)dx = c0f(x0) + c1f(x1)

is exact for polynomials of degree upto three. Hence evaluate the integral of exp(x) over x from x = 0 to x = 2.

(8) What are the methods to solve partial differential equations? Write down the difference analogue of the Laplace equations.

Uxx + Uyy = 0

(9) Write a program to solve the Laplace equations using Lattice method.

(10) Give In addition to above, the tutorial will also consist of Solving problems given in the Text and Reference books.

Text and reference books

� Introductory Methods of Numerical Analysis : Sastry

� Numerical Analysis : Rajaraman

� Fortran Programming : Rajaraman

� Numerical Recipes : Utter mind Teukolsky, Press and Flattery

� Programming with Basic : Gottfried (Schema Series)

� Programming with Basic : Balaguruswamy

� Numerical Analyses : Balagurswamy

Page 9: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

9

PHY E - 105

(b) PHYSICS OF ELECTRONICS DEVICES & FABRICATION OF

INTERGRATED CIRCUITS AND SYSTEMS

60+40= 100 MARKS 5 CREDITS

UNIT-I

Semiconductor Materials

Energy Bands, Intrinsic carrier concentration. Donors and Acceptors, Direct and Indirect band semiconductors. Degenerate and compensated semiconductors, Elemental (Si) and compound semiconductors (GaAs). Replacement of group III element and Group V elements to get tertiary alloys such as Alx Ga(1-x) As or GaPyAs(1-y) and quaternary InxGa(1-x)PyAs(1-y) alloys and their important properties such as band gap and refractive index changes with x and Y. Doping of Si (Group III (n) and Group V (P) compounds) and GaAs (Group II (P) , IV (n-p) and VI (n compounds) . Diffusion of impurities – Thermal Diffusion, constant surface concentration, Constant Total Dopant Diffusion, ion implantation.

UNIT-II

Carrier Transport in Semiconductors

Carrier Drift under low and high fields in (Si and GaAs) saturation of drift velocity. High field effects in two valley semiconductors. Carrier Diffusion carrier injection, Generation Recombination processes- Direct, indirect bandgap semiconductors. Minority carrier Life Time, Drift and Diffusion of minority carriers (Haynes= Shockley Experiment) Determination of conductivity (a) four probe and (b) van der Pauw techniques. Hall coefficient, minority carrier Life Time.

UNIT- III

Junction Devices: (i) p-n junction- Energy Band diagrams for homo and hetro junctions. Current flow mechanism in p-n junction, effect of indirect and surface recombination currents on the forward biased diffusion current, p-n junction diodes-rectifiers (high frequency limit) (ii) Metal-semiconductor (Schottkey Junction): Energy band diagram current flow mechanisms in forward and reverse bias, effect of interface states. Applications of Schottky diodes, (iii) bimetal Oxide – Semiconductor (MOS) diodes. Energy band diagram depletion and inversion layer, High and low frequency capacitance voltage (c-v) characteristics. Smearing of c-v curve, flat band shift. Applications of MOS diode.

UNIT- IV

Fabrication of Integrated Devices

Thin film Deposition Techniques; Vacuum pumps and gauges- pumping speed, throughout Effective conductance control chemical vapor

Page 10: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

10

Deposition (CVD) , MOCVD, PEMOCVD ( plasma enhanced chemical vapour deposition) Physical vapor Deposition: Thermal Evaporation, Molecular Beam Epitaxy (MBE), Sputtering and Laser Ablation. Lithography, Etching and Micro- Machining of Silicon, Fabrication of integrated circuits and integrated micro- electro- mechanical – Systems (MEMS)

UNIT-V

The unit will have four short questions based on the tutorial problems covering all the four units. The students will have to answer any two questions. Some samples problems are: 1. Obtain an expression for intrinsic carrier density in a semiconductor. 2. Derive the expression for the concentration of a diffusant at a distance

x at time t from the surface having a constant concentration No. 3. Derive an expression for Hall coefficient for semiconductors. 4. Prove that the minimum conductivity of an extrinsic semiconductor is

given by σ = 2ni e (µn µp)

½

show that the conductivity minimum occurs when

NA-ND = ni [(µn/ µp)1/2 – (µp/µn)]

1/2 5. Discuss the Mechanism of forward and reverse current flow in p-n

junction. 6. Applications of Schottky Diode 7. Thin film deposition techniques. 8. Discuss Sputtering and Laser Ablation. In addition to above the tutorial will also consist of solving problems given in the Text and References books. Text and Reference Books

The Physics of Semiconductor Devices

- D.A. Eraser, oxford physics Series ( 1986)

Semiconductor Devices - Physics and Technology. By SM Sze Wiley (1985).

Introduction to semiconductor devices

- M.S. Tyagi, John Wiley & Sons

Measurement, Instrumentation and Experimental Design in physics and Engineering

- M. Sayer and A. Mansingh, prentice Hall India (2000)

Thin film phenomena - K.L. Chopra Solid State Physical Electronics - Aldert van der Ziel Solid State Physics - J.P. Srivastava Prentice Hall of India

(2001)

Page 11: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

11

The material science of thin films - Milton S. Ohring Optical electronics - Ajoy Ghatak and K. Thyagarajan,

Cambridge Univ. Press Material science for engineers - James F. Shackelford, Prentice Hall Deposition techniques for films and coatings

- R.F. Bunshah (Noyes publications)

Solid State Electronics - Ben G. Streetman (Prentice Hall of India) 1994.

Integrated Circuit - K.R. Botkar (Khanna) 1997. Integrated Circuit - Nagchoudhary

M.Sc. SECOND SEMESTER PHYSICS

CORE PAPER – I

PHY C - 201

QUANTUM MECHANICS - I

60+40= 100 MARKS 5 CREDITS

UNIT – I

Why QM? Brief prevision. Basic postulates of quantum mechanics, equation of continuity, Normality, orthogonlity and closure properties of eigen functions, Expectation values and Ehrenfest theorems. Free particle solution of Schrodinger equation, Box normalization, Dirac delta-function and its properties, solution of Schrodinger equation for one dimensional (a) potential well (b) potential step and (c) potential barrier.

UNIT – II

Linear vector space, concept of Hilbert space, Bra and Ket notation for state vector, Representation of state vectors and dynamical variables by matrices, change of basis and Unitary transformation (Translation and rotation), Schrodinger, Heisenberg and Interaction pictures, Matrix theory of linear harmonic Oscillator, Creation and annihilation operators, Matrices for x, p, H. Heisenberg uncertainty relation through operators (Schwartz inequality).

UNIT – III

Solution of Schrodinger equation for (a) linear harmonic oscillator (b) hydrogen-like atom (c) three-dimensional harmonic oscillator (d) square well potential and their respective applications to atomic spectra, molecular spectra and low energy nuclear states (deuteron).

Page 12: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

12

UNIT – IV

Angular momentum is quantum mechanics, Eigen values and eigen functions of L2 and L2 in terms of spherical harmonics, Relation of angular momentum with rotation operator, commutation relations, Matrix representation of angular momentum, Pauli spin matrices and their algebra, Coupling of two angular moments and Clebsch-Gorden coefficients for j1=j2=1/2 and j1=1/2 and j2=1.

UNIT –V

This Unit will have four questions based as tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are : (1) Black body radiation and Planck’s hypothesis, Insignificance of de

Broglie hypothesis in macrophysics. (2) Plotting of Harmonic oscillator wave functions in 1-d. (3) Energy levels of a particle of mass m moving in one-dimensional

potential. + ∞ x < 0 V(x) = + ½ mω2x2 x > 0

(4) Admissible wave functions, stationary states.

(5) Wave function corresponding to minimum uncertainty product. Gaussion wave packet. Spread of wave packet in time.

(6) Continuous basis corresponding to position eigen values and wave functions corresponding to state vectors using position and momentum representation.

(7) Rotational spectra of diatomic molecules.

(8) Vibrational and rotational spectra of diatomic molecules.

(9) Obtaining the matrices for L+, L-, Lx, Ly, L2,Lz, [L+,L−].

(10) Problems related to panli spin matrices. eq

In additions to above the tutorial will also consist of solving problems given in the Text and Reference Books.

Text and Reference Books

� Quantum Mechanics : L I. Schiff (Mc Graw-Hill) � Quantum Physics : S. Gasiorowiz (Wiley) � Quantum Mechanics : B. Craseman and J.D. Powel (Addison

Wesley) � Quantum Mechanics : AP Messiah � Modern Quantum Mechanics : J.J. Sakurai � Quantum Mechanics : Mathews and Venkatesan

ei yσ θ θ σ θ/ cos2 = / 2 + i y sin / 2

Page 13: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

13

CORE PAPER – II

PHY C - 202

STATISTICAL MECHANICS

60+40= 100 MARKS 5 CREDITS

UNIT-I

Foundations of statistical mechanics, specification of states of a system, contact between statistics and thermodynamics, classical ideal gas, entropy of mixing and Gibb’s paradox.

Microcanonical ensemble, Phase space, trajectories and density of states, Liouville’s theorem, canonical and grand canonical ensembles; partition function calculation of statistical quantities, Energy and density fluctuations.

UNIT - II

Statistics of ensembles, statistics of indistinguishable particles, Density matrix, Maxwell- Boltzmann, Fermi-Dirac and Bose- Einstein statistics, properties of ideal Bose gases, Bose-Einstein condensation. Properties of ideal Fermi gas, electron gas in metals. Boltzmann’s transport equation

UNIT - III

Cluster expansion for a classical gas, Virial equation of state, Dynamical model of phase transition, Ising model in zeroth approximation, Ising model in first approximation. Exact solution in one-dimension.

Landau theory of phase transition, Scaling hypothesis for thermodynamic functions.

UNIT - IV

Thermodynamics fluctuation, spatial correlation. Brownian motion, Langevin theory, fluctuation dissipation theorem. The Fokker-Planck equation. Onsager reciprocity relations.

UNIT - V

This unit will have four questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are: (1) Calculation of number of states and density of states. (2) Relative population of particles in two energy levels. (3) Liquid helium II (4) Electrical and thermal conductivities. (5) Evaluation of virial coefficient (6) Critical indices.

Page 14: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

14

(7) Applications of Onsager relation (8) Diffusion co-efficient

In addition to above the tutorial will also consist of soloing and reference books .

Text and Reference Books

� Fundamentals of Statistical and Thermal Physics : F. Reif

� Statistical Mechanics : K. Huang

� Statistical Mechanics : R.K. Pathria

� Statistical Mechanics : R. Kubo

� Statistical Mechanics : Landau and Lifshitz

CORE PAPER – III

PHY C - 203

ELECTRODYNAMICS AND PLASMA PHYSICS

60+40= 100 MARKS 5 CREDITS

UNIT – I

Review of basics of electrostatics and magnetostatics. (Electric field, Gausse law, Laplaces and Poisson’s equations, method of images. Biot-sawart law, Ampere’s law). Maxwell’s equations, scalar and vector potentials, Guage transformation Lorentz Guage, Coulomb guage, Solution of Maxwell’s equation in conducting media.

UNIT – II

Radiations by moving charges, Retarded potentials, Lienard-wiechert potentials, Fields of charged particle in uniform motion, Fields of arbitrarily moving charged particle, Fields of an accelerated charged particle at low velocity and high velocity. Angular distributions of power radiated, Bremsstrahlung, Reaction force of radiation, Abrahm-Lorentz method of self-force, Difficulty with the Abrahm-Lorentz model, line-breadth and level-shift of an oscillator.

UNIT - III

Review of Four-vectors and Lorentz transformation is 4-dimensional spaces Invariance of electric charge, relativistic transformation properties of E and H fields, electromagnetic field tensor in 4-dimensionl Maxwell equation 4-vector current and potential and their invariance under Lorentz transformation, covariance of electrodynamics Lagrangian and Hamiltonion for a relativistic charged particle in External EM field; motion of charged particles in electromagnetic fields, uniform and non-uniform E and B fields,

Page 15: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

15

Particle Drifts in Non-uniform field, static magnetic fields, Adiabatic invariant.

UNIT – IV

Magnetohydrodynamic equations, Magnetic diffusion, viscosity and Pressure, Magnetohydrodynamic flow between Boundaries with crossed Electric and magnetic fields, Pinch Effect, Instability in a Pinched Plasma column, magnetohydrodynamic waves, magneto sonic and Alfven waves, Plasma oscillations, short wave length limit for plasma oscillations and Debye Screening Distance.

UNIT – V

This unit will have four questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are : (1) Obtain the formal solution for electromagnetic boundary value

problem with Green function. (2) Discuss the problem of conducting sphere is a uniform electric field by

method of images and Green’s functions.

(3) For a solenoid wound with N turns per unit length and carrying a current I, show that the magnetic flux density on a point on the axis is given (for N → ∞) by

Where θ1, θ2 are the angles between the axis and the lines joining the point on the axis to the first and last turns of the solenoid.

(4) A linear accelerator accelerates protons to almost relativistic speeds. Determine fraction of power radiated by the protons to the power supplied in terms of the gradients of the linear electric field.

(5) A charged particle oscillated according to the harmonic law Determine the total average intensity of the emitted radiation.

(6) Discuss the Lagrangian and Hamiltonion for a relativistic charged particle in External electromagnetic field.

(7) Obtain the expression for energy radiated as Cherenkov radiation per unit distance along the path of the particle.

(8) Consider a magnetic field configuration that is cylindrically symmetric and a charged particle is injected into it. Use the adiabatic invariant of motion to describe conditions in which the injected particle would bounce back from the direction of increasing field gradient.

(9) Consider the problem of waves in an electronic plasma when an external magnetic field B0 is present. Use the fluid model, neglecting the pressure term as well as collisions. (a) Write down the linearized equations of motion and Maxwell

equations, assuming all variables vary as exp (ik.x-iωt).

Bz = 2 NI

C 1 2

πθ θ(cos cos )+

Page 16: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

16

(b) Show that the dispersion relation for the frequencies of the different modes in terms of the wave number can be written. ω

2(ω2-ωp2) (ω2 - ωp2- k2c2) = ω2

B (ω2 - k2c2) [ω2 (ω2 - ωp2-k2c2) +

ωp2c2 (k .b)2] where b is the unit vector in the direction of B, ωp and ωB are the plasma and precession frequencies, respectively.

(c) Show that for propagation parallel to B0 the dielectric constant is recovered.

(d) Assuming ωB << ωp, solve approximately for the various roots for the cases (i) K parallel to b (ii) K perpendicular to b. Sketch your result for w2 versus k2

in the two cases.

Text and Reference Books

� Classical Electronics : Jackson � Electromagnetic Theory : B.B. Laud � Classical Electricity and Magnetism : Pan of sky and Philips � Plasma Physics : Chen � Plasma Physics : Buttencourt

ELECTIVE PAPERS (ANY ONE OF THE FOLLOWING) –

PHY E - 204

ELECTIVE PAPER

IV (A) CONDENSED MATTER PHYSICS

60+40= 100 MARKS 5 CREDITS

UNIT - I

Interaction of X-rays with matter, absorption of x-ray, Elastic scattering from a perfect lattice. The reciprocal lattice and its applications to diffraction techniques in the laue, powder and rotating crystal methods. Crystal structure factor and intensity of diffraction maxim.

Point defects line defects and planer (stacking) faults. The role of dislocation in plastic deformation and crystal growth. The observation of imperfections in crystals – x-ray and electron microscopic techniques.

UNIT - II

Free electron fermi gas, Energy levels of orbital in one and three dimensions. Electrons in a periodic lattice, Bloch theorem band theory of

Page 17: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

17

solids. Classification of solids Effective mass. Tight-binding, cellular and pseudopotential methods, fermi surface, de Hass von Alfen effect.

UNIT - III

Atomic and molecular polarizability, Claussius-Mossotti relation, types of polar: Zability, Dipolar polarizability, and frequency dependence of dipolar polarizability. Ionic and electronic polarizability Hall effects in low fields, quantum Hall effect, Magneto-resistance. Super conductivity, critical temperature persistent current, Meissner effect. General idea about high temperature superconductors.

UNIT - IV

Weiss theory of ferromagnetism, Heisenberg model and molecular field theory, spin waves and magnons, Curie-Weiss law for susceptibility, Ferri and antiferro-magnetic order, Domains and Bloch-wall energy.

Optical reflectance, Kramer-Kronig relations, Light absorption spectrum of semiconductors cyclotron resonance Photoelectromagnetic effect, Faraday effect, Elements of Raman effect in solids.

UNIT - V

This unit will have four questions based on tutorial problems covering all four units. The students will have to answer any two questions out of four. Some sample problems are:

(1) Given that the primitive basis vectors of a lattice a = (a/2) (i + j), b = a/2 (j + k) and c = a/2 (k + j) where i, j and k are usual three unit vectors along cartesion coordinates. What is the Bravais lattice?

(2) Determine planes in a fcc structure having highest density of atoms.

Or

Evaluate density of atoms for Cu. in atoms/cm2.

(3) For the delta function potential and with p > 1 find at k = 0 the energy of the lowest energy band. Also find the band gap at k = π /a.

(4) Consider a square, lattice in two dimensions with the crystal potential.

U(x,y) = .4U cos (πx/a) cos (πy/a)

Apply the central equation to find approximately the energy gap at the corner point (π/a, π/a) of the Britlouin Zone.

(5) Explain why the Hall constant is inversely proportional to the electron concentration M.

Text and Reference Books

� Solid State Physics : C. Kittel � Introduction to Solid : Azaroff � Crystallography for Solid State Physics : Verma and Shrivastava

Page 18: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

18

� Solid State Physics : A.J. Dekker � Elementary Solid State Physics : Omar � Solid State Physics : Aschroft and Mermin � Principles of Condensed Matter Physics : Chaikin and Lubensky

ELECTIVE PAPER

PHY E - 205

IV (B) INFORMATICS

60+40= 100 MARKS 5 CREDITS

UNIT – I

Introduction to Probability and Random variables, Introduction to Information theory and queuing theory.

Fourier series and transform and their applications to data communication. Introduction and evolution of Telecommunication, Fundamentals of electronic communication : Wired, Wireless, Satellite and Optical Fibre, Analog/Digital, Serial/Parallel, Simplex/half and full duplex, Synchronous/ Asynchronous, Bit/baud rates, Parity and error control, Signal to Noise ratio.

UNIT – II

Transmission types, Codes, Modes, Speed and throughput. Modulation types, Techniques and standards. Base band and carrier communication, Detection, Interference, Noise signal and their characteristics, Phase locked loops.

Modems, Transmission media (guided and unguided), common Interface standards.

UNIT – III

Introduction to Unix/Linux and shell scripting. Introduction to C/ C++. Data types and operators, Statements and Control flow, Functions and Program structures, Strings, The preprocessor, Pointers, Memory allocation, Input and output, Sub program, Recursion, File access.

UNIT – IV

Object orientation concepts: Classes, objects, methods and messages, encapsulation and inheritance, interface and implementation, reuse and extension of classes, inheritance and polymorphism, analysis and design; Notations for object-oriented analysis and design, Application of some object oriented programming languages.

Introduction to web enabling technologies and authoring tools/ languages, (web casting data base integration, CGI, Peri, Java, HTML, C#)

Page 19: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

19

UNIT - V

This unit will have four short question based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are:

(1) A raised cosine pulse used in commutation systems shows a signal gp(t) [1+ cos2πt] that is a periodic sequence of these pulses with equal spacing between them. Show that the Fourier series expansion of gp(t) is given by

What is channel capacity for a teleprinter channel with a 300 Hz bandwidth and a signal – to- noise ratio of 3 dB ? (2) Estimate the thermal noise level of a channel with bandwidth of 10

kHz carrying 1000 watts of power operating at 50oc?

(3) A transmitter receiver pair is connected across a coaxial cable. The signal power measured at the receiver is 0.1 watt. Signal levels change 100 times per second. Noise energy is 0.05 µ Joules for every 1 milliseconds. If Eb/No= 10 dB is desired, determine how many levels must be accommodated in the signal to encode the bits. What would be the bit rate ?

(4) Write an awk script to process Lete/ password file and print (a) List of accounts with access of super user (b) All accounts with no password.

(5) Write c/c++ program to manipulate file. (6) For each of the following system identity the relative importance of

three aspects of modeling (a) Object modeling (b) Dynamic modeling (c) Functional modeling. (1) Remote controlled machine (2) Telephone answering machine.

(7) How Java and HTML is implemented. In addition to above the tutorial will also consist of solving problems

given in the Text and References books.

Text and References Books

Data Networks - Gallager

Data Communication - William stalling

Analog and Digital communication - S. Haykins

Object oriented Analysis and Design with Application

- G. Booch, Addison Wesley, 2nd Edition, 1994

Beginning Object Oriented Analysis and Design using C ++,

- Jesse Liberty Wrox Press, 1998.

Multimedia Networking - Bohdan O. Szuprowic, McGraw Hill, Snigapore, 1995 (ISE)

Computer Networks - William Stalling, PHI

Computer Networks - A.S. Tanenbaum Prentice Hall of India.

g t t tp ( ) cos( ) cos( )= + + + − − −1

2

8

3

1

22

ππ π

Page 20: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

20

ABILITY ENHANCEMENT AND SKILL DEVELOPMENT

PRACTICAL COURSES

SEMESTER I & II

LIST OF PRACTICALS

LAB A : PHY L 105

Section – I (General Physics)

(Preferably six experiments to be performed by the students) (1) Determination of separation of two plates of Febry Perot Etalon. (2) (a) Measurement of Wavelength of He-Ne Laser.

(b) Measurement of thickness of thin wire with laser. (3) Determination of Poisson’s Ratio of glass plate by Cornu’s method. (4) Optical Fibre

(a) Determination of numerical aperture. (b) Attenuation loses. (c) Bending loss.

(5) Production and study of elliptically and circularly polarized light by Fresnel’s Rhomb.

(6) Verification of Hartman’s formula by constant deviation spectrometer. (7) Verification of Fresnel’s law of reflection for polarized light. (8) Study of the fluorescence spectrum of DCM dye and to determine the

quantum yield of fluorescence maxima and full width at half maxima for this dye using monochromator.

(9) To study Faraday effect using He-Ne Laser. (10) Determination of e/m eluting by normal Zemann effect. (11) Measurement of resistively of a semiconductor by four prove method

at different temperature and determination of band gap. (12) Measurement of Hall coefficient of given semiconductor identification

of type of semiconductor and sign of charge, carrier concentration. (13) Determination of lande factor of DPPH using ESR.

TUTORIAL

(1) Coherence and its relevance in diffraction. (2) Effect of magnetic field on the plane of polarization. (3) Normal Zeaman effect by Ferry Pert Etelon. (4) Longitudinal and transverse bending of glass plate. (5) Variation of refractive index with wave length of light. (6) Propagation of light wave through optical fiber. (7) Identification of charge type by Hall voltage measurement. (8) Four prove method and the contact renitence problem.

Page 21: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

21

Section – I (Electronics)

(Preferably six experiments to be performed by the students) (1) Design of a regulated power supply. (2) Design of a common Emitter Transistor Amplifier. (3) Experiment on Bias stability. (4) Negative Feedback (Voltage Series/ Shunt and Current Series/Shunt). (5) Astable, Monostable and bistable Multivibrator. (6) Characteristics and application of Silicon controlled Rectifier. (7) Experiment on FET and MOSFET characterization and application as

an amplifier. (8) Experiment an UJT and its applications. (9) Digital I : Basic Logic Gates, TTL, NAND and NOR. (10) Digital II : Combinational Logic. (11) Flip-Flops. (12) Operational Amplifier (741). (13) Differential Amplifier. (14) expEYES based Physics practicals(a) Transient response of LCR,(b)

Two phase AC Generator using a rotating magnet and two coils(c)Interference of sound from piezo-electric buzzers(d) PN junction Diode as half wave rectifier and its IV characterics

TUTORIAL

(1) Network Analysis- Thevnin and Nortan’s equivalent circuits. (2) Basics of p-n junction-Diffusion current, Drift current, junction width,

forward and reverse biasing, significance of Fermi level in stabilizing the junction.

(3) Zener Diode- characteristics and Voltage regulation. (4) Transistor biasing and stability. (5) Wein bridge and phase shift moscilators. (6) Solving Boolean expressions. (7) Atomic scattering power and geometrical structure factor. (8) Effect of capacitance and load resistance on output of an amplifier. (9) Integrated circuit timer familiarization. (10) Op-amp differentiator. (11) Multiplexor and De-multiplexor. (12) Registers and counters. (13) Coincidence circuits, counters, timers.

LAB A : PHY L 107

(Computer Ptrogramming)

(Preferably six experiments to be performed by the students) (1) Preparation of result of an examination.

Page 22: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

22

(2) Mean, standard deviation, coefficient of correlation and the equation of regression line for two variables.

(3) Least squares fit for a straight line. (4) Least squares fit for a parabola. (5) Solution of simultaneous equations. (6) Solution of differential equations. (7) Graphical depiction of expanding cube. (8) Integration by Simpson’s Rule. (9) Integration by Gaussian Quadrature. (10) Solution of partial differential equation.

TUTORIAL

(1) Different BASIC statements. (a) If (b) GOTO (c) GOSUB statement.

(2) Graphic statements in BASIC. (3) GET-PUT and LOCATE statements. (4) Newten Raphson iterative method for the solution of non-linear

equations. (5) What is meant by numerical integration? Derive Trapezoidal rule for

numerical integration. (6) Reading from a data file and writing on a data file in BASIC.

Note : Appropriate other experiments can be added based on the prescribed

syllabus in both the Labs A & B.

Page 23: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

23

RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR

SYLLABUS PRESCRIBED FOR THE EXAMINATION FOR THE

DEGREE OF MASTER OF SCIENCE IN PHYSICS

THIRD AND FOURTH SEMESTERS 2017-2018

UNDER CHOICE BASED CREDIT SYSTEM (In Accordance with University Ordinance No – 222)

M.Sc. THIRD SEMESTER PHYSICS

CORE PAPER – I

PHYC 301 QUANTUM MECHANICS – II

60+40= 100 MARKS 5 CREDITS

UNIT - I

Approximation method for bound states : Rayleigh-Schrodinger perturbation theory of non-degenerate and degenerate levels and their application to perturbation of an oscillator, normal Helium atom, and First order Stark effect in Hydrogen. Variation method and its application to ground state of helium, W.K.B. approximation method, connection formula, Ideas on potential barrier with applications to the theory of alpha decay.

UNIT-II

Time dependent perturbation theory : Method of variation of constants, constant and harmonic perturbation, transition probability, adiabatic and sudden approximation. Hamiltonian for a charged particle under the influence of external electromagnetic field, Absorption and induced emission, Transition probability in Electric dipole transition, Einstein's A and B coefficients.

UNIT - III

Theory of scattering, Physical concepts, Scattering amplitude, scattering cross section. Born approximation and partial waves. Scattering by a perfectly rigid sphere, complex potential and absorption, scattering by spherically symmetric potential. Identical particles with spin, symmetric and antisymmetric wave functions, Pauli’s exclusion principle, Pauli's spin matrices.

UNIT – IV

Schrodinger’s relativistic equation (Klein-Gordon equation), Probability and current density, Klein-Gordon equation in presence of electromagnetic field, Hydrogen atom, short comings of Klein-Gordon equation. Dirac’s relativistic equation for a free electron, Dirac’s matrices, Equation of motion for operators, position momentum and angular momentum; spin of an electron, Zitterbewegung Dirac’s relativistic equation

Page 24: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

24

in electromagnetic field, negative energy states and their interpretation, Hydrogen atom, Hyperfine splitting.

UNIT - V

This unit will have four short questions based on tutorial problems covering all the four units. Students will have to answer any two questions out of four. Some sample problems are: 1. Normal Zeeman Effect. 2. Anomalous Zeeman Effect. 3. Van der Waals interactions. 4. Ionization of a hydrogen atom 5. Selection rules for single and many particle systems. 6. Optical theorem and Ramasuer- Townsend effect. 7. Scattering from standard simple potentials using partial wave analysis

and Born Approximation. 8. Slater determinant. 9. Spin and statistics 10. Difference in collision process between classical and quantum identical

particles. 11. Magnetic moment and spin of a Dirac’s electron. 12. Covariance of a Dirac’s equation.

In addition to above the tutorial will also consist of solving problems given in the Text and References books.

Text and Reference Books

Quantum Mechanics : L. I. Schiff Quantum Mechanics : S. Gasiorowicz Quantum Physics : B. Craseman and J.D. Powell Quantum Mechanics : A.P. Messiah Modern Quantum Mechanics : J.J. Sakurai Quantum Mechanics : Mathews and Venkatesan Quantum Mechanics : A.K. Ghatak and Loknathan

CORE PAPER II

PHY C – 302 NUCLEAR AND PARTICLE PHYSICS

60+40= 100 MARKS 5 CREDITS

UNIT – I

Nuclear Interactions and Nuclear Reactions

Nucleon- nucleon interaction, exchange forces and tensor forces, meson theory of nuclear forces, nucleon, nucleon scattering, Effective range theory, spin dependence of nuclear forces, charge independence and charge symmetry of nuclear forces, Isospin formalism, Yukawa interaction.

Page 25: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

25

Direct and compound nuclear reaction mechanisms, cross sections in terms of partial wave amplitudes, compound nucleus, scattering matrix, Reciprocity theorem, Breit- Wigner one–level formula, Resonance scattering.

UNIT - II

Nuclear Models

Liquid drop model, Bohr–wheeler theory of fission, Experimental evidence for shell effects- shell model, spin, orbit coupling, magic numbers, Angular momenta and parities of nuclear ground states, Qualtative discussion and estimates of transition rates, magnetic moment and Schmidt lines, Collective model of Bohr and Mottelson .

UNIT – III

Nuclear Decay

Beta decay, Fermi theory of beta decay, Comparative half, lives, Parity violation, Two component theory of neutrino decay, Detection and properties of neutrino Gamma decay, Multipole transition in nuclei Angular momentum and parity selection rules Internal conversion, Nuclear isomerism.

General ideas of nuclear radiation detectors, Linear acceleration, Betatron, Proton- synchrotron, Electron synchrotron.

UNIT - IV

Elementary particle physics

Types of interaction between elementary particles, Hadrons and leptons, Symmetry and conservation laws, Elementary ideas of : CP and CPT invariance, Classification of hadrons, lie algebra, SU(2) – SU (3) multiplets, Quark model, Gell Mann- Okubo mass formula for octet and decuplet hadrons, Charm, bottom and top quarks.

Cosmic Rays

Nature, composition, charge and energy spectrum of primary cosmic rays, production and propagation of secondary cosmic rays. Soft, penetrating and nucleonic components, Origin of cosmic rays, Rossi curve, Bhabha – Heitler theory of cascade showers.

UNIT – V

This unit will have four short questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are. 1. Scattering Matrix. 2. Nucleon- Nucleon phase Shifts. 3. Double Scattering Experiment to measure polarization. 4. Ground state spectroscopic configuration of nuclei on the basis of

single particle shell model. 5. The Q – Equation. 6. Calculation of Absorption Cross Section.

Page 26: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

26

7. Nuclear Quadrapole moment. 8. Kurie Plot 9. Selection Rules for β and γ decay. 10. Parity Violation Experiment. 11. Neutrino Helicity. 12. Isospin Symmetry. 13. Lie Algebra. 14. Origin of cosmic rays. 15. Bhabha-Heitler theory. In addition to above the tutorial will also consist of solving problems given in the Text and Reference books. Text and Reference Books

� Kenneth S. Kiane. Introductory Nuclear Physics, Wiley New York 1988..

� H.A. Enge, Introduction to Nuclear Physics, Addison- Wesley ,,1975. � G.E.Brown and A.D. Jackson, Introduction to Nuclean nucleon

Interaction, North – Holland, Amsterdam, 1976. � Y.R. Waghmare, Introductory Nuclear Physics, Oxford-IBH

Bombay,1981 � I. Kaplan, Nuclear Physics, 2” Ed. Narosa, Madras, 1989 � R.D.Evans, Atomic Nucleus, McGraw Hill, New York, 1955. � B.L. Cohen, Concepts of Nuclear Physics, TMGH, Bombay, 1971. � R.R. Roy and B.P. Nigam Nuclear Physics, Wiley- Eastem Ltd, 1983. � Bruno Rossi, Cosmic Rays � B.N. Shrivastava, Basic Nuclear Physics and Cosmic Rays � M.P. Khanna, Particle Physics, Prentice Hall � Burcham, Nuclear Physics

PAPERS III & IV : SPECIAL ELECTIVE PAPERS

(ANY TWO OF THE FOLLOWING)

PHY SE – 303

(A) CONDENSED MATTER PHYSICS – I

60+40= 100 MARKS 5 CREDITS

UNIT - I

Imperfection in Crystals

Mechanism of plastic deformation in solids, stress and strain field of screw and edge dislocations. Elastic energy of dislocations. Forces between dislocations. Stress needed to operate Frank-Read source, dislocations in fcc, hcp and bcc lattices.

Page 27: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

27

UNIT - II

Partial dislocations and stacking faults in closed packed structures. Experimental methods of observing dislocations and stacking faults. Electron microscopy, kinematical theory of diffraction contrast and lattice imaging.

Elementary concepts of surface crystallography. Scanning tunneling and atomic force microscopy.

UNIT - III

Films and Surface

Study of surface topography by multiple-beam interferometry, conditions for accurate determination of step height and film thickness (Fizeau Fringes). Electrical conductivity of thin films, difference of behaviour of thin films from bulk, Boltzmann transport equation for a thin film (for diffused scattering), expression for temperature coefficient of resistivity of thin films.

UNIT – IV

Lattice Dynamics

Lattice Dynamics of monatomic and Diatomic lattice, Optical phonons and dielectric constants. Mossbauer effect, Debye – Waller factor Anharmonicity, Thermal expansion and thermal conductivity. Umklapp process, Interaction of electrons and phonons with photons.

Optical Properties of Solids

Direct and indirect transitions. Absorption in insulators, polaritons, one phonon absorption, optical properties of metals, skin effect and anomalous skin effect.

UNIT – V

This unit will have four short questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are.

1. Consider two parallel dislocation lying on the same slip plane. Their Burgers vectors lie parallel to the slip plane but are not parallel to each other. Their magnitudes are equal. Find all possible orientations of the Burgers vectors for which the component of the force between the dislocations that acts parallel to the slip plane is zero.

2. Prove that the stress σZZ never exerts a force on a dislocation in which burgers vector lies parallel to the x direction regardless of the orientation of the dislocation line.

3. Derive Taylor’s relation between dislocation density and applied stress.

4. Discuss the working of atomic force microscope

Page 28: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

28

5. Bring out the essential differences between diffuse and specular electron scattering from the conventional solid : bulk and films by taking the specific property of electrical conductivity.

6. What are thin and thick film? With reference to electronic conduction which films can be referred to as thin and which as thick taking into account the mean free path as a reference parameters.

7. Estimate for 300 K the root mean square thermal dilation AV/V for a primitive cell of sodium. Take the bulk modufus as 7 × 1010 erg cm-3. Note that the Debye temperature 158 K is less than 300 K so that the thermal energy is of the order of KBT. Use this result to estimate the root mean square thermal fluctuation ∆a/a of the lattice parameter.

8. Consider a classical harmonic oscillator with small anharmonic terms so that the potential energy is V(x) = ax2 + bx3 + cx4. Using the partition function approach show that the mean energy (ξ) and mean thermal displacement from equilibrium (x) are :

(ξ) = KBT [15b2/16a2 – 3c/4a2] (KBT)

2

(x) = -(3b/4a2) KBT

The former leads to a high temperature contribution to the specific heat that is linear in temperature. The latter is an indication of the origin of thermal expansion (and the proper sign of the coefficient) In addition to above the tutorial will also consist of solving problems

given in the Text and References books. Text and Reference Books

X-ray crystallography : Azaroff : Elementary Dislocation Theory : Weertman & Weertman Crystallography for Solid State Physics : Verma & Srivastava : Solid State Physics : Kittel The Powder Method : Azaroff & Buerger Crystal Structure Analysis : Buerger Transmission Electron Microscopy : Thomas : Multiple Beam Interferometry : Tolansky Thin films : Heavens : Physics of thin film : Chopra Introduction to Solid State Theory : Medelung : Quantum Theory of Solid State : Callaway

Page 29: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

29

SPECIAL ELECTIVE PAPER III & IV (B)

PHY SE – 304

ELECTRONICS - I

60+40= 100 MARKS 5 CREDITS

UNIT - I

Communication Electronics

Amplitude modulation- Generation of AM waves- Demodulation of AM waves DSBSC modulation. Generation of DSBSC waves, Coherent detection of DSBSC waves, SSB modulation, Generation and detection of SSB waves. Vestigial sideband modulation. Frequency division multiplexing (FDM).

Microwave

Advantages and disadvantages of microwave transmission, loss in free space, propagation of microwaves, atmospheric effects on propagation, Fresnel zone problem, ground reflection, fading sources, detectors, components, antennas used in MW communication systems.

Introduction to satellite communication, Geostationary satellite, orbital patterns, satellite systems link modules.

UNIT-II

Microwave and Radar

Klystrons, Magnetrons and Travelling Wave Tubes, Velocity modulation, Basic principles of two cavity Klystrons and Reflex Klystrons, principles of operation of magnetrons. Helix Travelling Wave Tubes, Wave Modes.

Radar block diagram and operation, radar frequencies, pulse considerations. Radar range equation, minimum detectable signal, derivation of radar range equation, Antena parameters, system losses, propagation losses, Rader transmitters- receivers, display.

UNIT-III

Introduction to Intel 8085 microprocessor, instruction for 8085, and addressing modes, Data Transfer, Arithmetic, Logical and branch group of instructions. Stack, I/O and machine control group. (Examples related to each group of instructions). Timing and operation status, Memory read write, I/O read, I/O write, register move, and move immediate, Timing diagrams.

Interrupts : Various interrupts handling facilities of inlet 8085 vector and non vectored interrupt Maskable and non maskable interrupts.

Page 30: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

30

UNIT-IV

Programmable Interface devices:

Internal Architecture and pin out diagrams of 8155 and 8255 programmable interface. Programmable interrupt controller Intel 8259, Direct memory access and 8257 DMA controller 8279 display/ key board controller.

Interfacing with D/A and A/D converters

Elementary method of digital to analog conversion. Working of DAC 0808 and programme for interfacing with 8255 in 8085 based system.

Basic technique for analog to digital conversion. Internal block diagram of ADC 809 and working. Interfacing of IC 809 with 8085 based system.

UNIT – V

This unit will have four short questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are : 1. Effect of frequency and phase error in detection of DSBSC and SSBC

signals.

2. Frequency considerations in satellite communication.

3. Make a clear distinction between velocity modulation and current modulation. Show how each occurs in Klystron amplifier, and explain how current modulation is necessary if the tube is to have significant power gain.

4. Different type of Radar system.

5. Timing diagrams for 8085 microprocessor instruction for fetch and execute machine cycles and calculation of T states used.

6. Program with flow chart to take in ten data samples of one microsecond interval and store them in memory.

7. Interfacing of 8255 with 8085 in MOD 0 and MOD 1.

8. Program for a interrupt driven clock using 50 Hz mains as an interrupting source.

In addition to above the tutorial will also consist of solving problems given in the Text and References books.

Text and Reference Books

Vacuums Tubes : Karl R. Spangenberg McGraw Hill Communication System : Taub and Schilling McGraw Hill Communication Electronics : John Kennedy Microprocessor Architecture : Ramesh S. Gaonkar Programming &Application with 8085 Microprocessors : B. Ram Microcomputer : Malvino Microwaves : K.L. Gupta Advance Electronics : Wayne Tamasi Communication System

Page 31: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

31

SPECIAL ELECTIVE PAPER III & IV (C)

PHY SE – 305

MATERIALS SCIENCE – I

60+40= 100 MARKS 5 CREDITS

UNIT - I

Introduction to Materials Science

A brief introduction to general engineering materials (Metals, alloys, glasses, ceramics, polymers, composites), General classification based on structure and properties, Fusion and crystallization, glass transition, significant difference between crystalline and non-crystalline materials.

Atomic bonding and Coordination

Individual atoms and ions, molecules, macromolecules, three dimensional bonding, interatomic distances, Generalizations based on atomic bonding, crystalline phases, cubic structures, non-cubic structures, imperfection in crystalline solids, grains and grain boundaries, non-crystalline materials, order and disorder in polymers, solid solutions, solid solutions in ceramic and metallic compounds and polymers.

UNIT - II

Phase Equilibria and Reaction Rates

Introduction, phase diagram (Qualitative) chemical compositions of equilibrated phases, phase rule, quantities of phases in equilibrated mixtures, Invariant reactions, Deferred reactions (Glasses), Segregation during solidification, Nucleation.

Diffusion in Materials

Introduction to kinetics and diffusion, Atomic Vibration, Atomic Diffusion, mechanism of diffusion, macroscopic and microscopic view points, Ficks laws of diffusion, Einstein's relation, (relation between diffusivity and mobility) solution of Ficks second law and its application, Kirkendall effect, diffusion tensors experimental determination of diffusion coefficient.

UNIT - III

Preparation of Materials

Growth of single crystals; vapour – solid, liquid – solid, solid - solid and zone refining process. Preparation of polymers, ceramics, composites and nanomaterials. Introduction to preparation of thin films.

Page 32: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

32

Characterization of materials using x-ray diffraction

Measurement of diffraction pattern of crystals, Inter planar spacing, Diffraction analysis, Determination of Lattice constant.

UNIT IV

Micro Structures

Single phase materials, Grains, ASTM Grain size numbers, Grain growth, phase distributions (Precipitates) - precipitation rates, inter-granular and intra-granular precipitation; phase distribution (Eutectoid Decomposition)- Pearlite, Hypo and Hyper eutectoid microstructures, Isothermal Decomposition of Austenite; modification of microstructures- coalescence, Spheroidization, Martensite, Tempered Martensite; Microstructures within polymers-crystallinity in polymers, polyblends.

Optical and Thermal Characterization Techniques

Electron microscopy, scanning and transmissions, optical microscopy and topography by multiple beam interferometry, brief introduction to Auger, ESCA, FIM and AFM, DTA, DSC and TGA techniques.

UNIT – V

The unit will have four short questions based on the tutorial problems covering all the four units. The students will have to answer any two questions. The samples problems are:

1. Which part has the greater stress : (a) a rectangular aluminum bar of 24.6 mm × 1.21 in) in cross section, under a load of 7640 kg and therefore a force of 75,000 N (16,800 lb); or (b) a round steel bar whose cross sectional diameter is 12.8 mm (0.505 in), under a 5000 - kg (11,000 lb) load ?

2. How much energy is required, + (or, released, -) if 2.6 kg of acetylene C2H2, react with hydrogen to produce ethylene, C2H4 ?.

3. A plastics molding company buys a phenol formaldehyde raw material that is only two thirds polymerized; that is there is an average of only two - CH2 bridges joining each phenol rather than the maximum three.

(a) How many g of additional formaldehyde are required per kg of the above raw material to complete the network formation (that is, to make the phenols fully trifunctional ? (b) How many g of water will be formed in this thermosetting step ?

4. For Ag-Cu system . (a) Locate the liquidus and solidus (b) How many phases are present where the two meet ?

5. To produce a p-type semiconductor, the third column element boron is doped in pure silicon. The doping is done through a B2 O3 vapour phase of partial pressure equal to 1.5 Nm-2. This atmosphere is equivalent to surface concentration of 3 × 1026 boron atoms per m3. Calculate the time required to get a boron content of 1023 atoms per m3

Page 33: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

33

at a depth of 2µm. The doping temperature is 1100oC and In-Si at this

temperature is 4 × 10-17 m2 5-1.

6. At 500 oC (7773 k) a diffusion experiment indicates that one out of

1010 atoms has enough activation energy to jump out of its lattice site

into an interstitial position. At 600 oC (873 k), this fraction is increased

to 10-9 (a) what is the activation energy required for this jump ? (b)

what of the atoms has enough energy at 700 oC (973 k) ?.

7. Discuss the method of preparation of (one) (i) Alkali halide crystal using Kyropolous technique, (ii) BaTiO3 using solid state ceramic method (iii) Polymer blends. 8. A diffraction pattern of a cubic crystal of lattice parameter a 3.16 Å is

obtained with a monochromatic X-ray beam of wavelength 1.54 Å. The first four lines on this values :

Line θ (in degrees) 1 20.3 2 29.2 3 36.7 4 43.0

Determine the inter planner spacing and the auller indices of the reflecting planes.

9. From a powder diameter 114.6mm, using X-ray beam of wavelength 1.54 Å, the following 5 values in mm are obtained for a material :

86, 100, 148, 180, 188, 232 and 272. Determine the structure and the lattice parameter of the material. 10. Calculate the density of fully crystalline poly ethylene whose chains

are aligned longitudinally. The unit cell is orthorhombic with 90o

angles. The unit cell parameters are 0.740 nm, 0.493 nm and 0.253 nm. 11. What do you understand by ASTM Grain size numbers? Explain the

procedure to obtain it giving examples. 12. Discuss the application of DTA, DSC and TGA techniques in the

development of material.

In addition to above the tutorial will also consist of solving problems given in the text and reference books.

Text and Reference Books

� Elements of Materials Science and Engineering (Sixth Edition)-Lawrence H., Van Vlacle, Addition Wesley (1989).

� Elements of Solid State Physics-J.P. Shrivastava- Premtice Hall India (2001).

Page 34: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

34

� Materials Science and Engineering-V. Raghwan-Fourth Edition-Prentice Hall (2000).

� The Structure and Properties of Materials Vol. I, II, III, and IV –John Wulff et al. Wiley Eastern Limited.

� Physical Metallurgy Principles Robert E-Reed-Hill, East West Press New Delhi.

� Introduction to Solid-A Zroff. � Materials Science and Processes– Hajra Choudhry Indian Book Distribution

co. � Materials Science and Engineering- William D. Callister Jr, John Wiley

(2001). � Experiments in Materials Science- E.C. Subbarao, L.K. Swghal, D.

Chakraborty, M.F. Merriam and V.Raghavan, Tata McGraw Hill, New Delhi.

SPECIAL ELECTIVE PAPER III & IV (D)

PHY SE – 306

COMPUTATIONAL PHYSICS – I

60+40= 100 MARKS 5 CREDITS

UNIT – I

Introduction to C++

General concepts, structure of C++ program, variables and constants, operators and expression, Flow of control, conditional and unconditional loops, Data types, Array, functions, standard Library functions, Programming methodology, type of errors, Scientific programmes with examples, organization and handling of files in C++.

UNIT – II

Interfacing and computer controlled Laboratory, Brief review of instruments used in computer controlled instrumentation : Logic Gates (AND, OR, NOT, NAND, NOR, EXCLUSIVE-OR) and their truth tables, Flip-flops (SR. JK, Master-slave, JK, D,T) counters shift registers, encoders, decoders, multiplexing, demultiplexing, General ideas of 8-bit microprocessors (8085), 8086 based microcomputer system, programming and interfacing with ADC, and DAC, use of IEEE 488 OR RS 232 interfaces with application.

UNIT – III

Computer Application to problems in Physics - I : (1) propagation of elastic waves in crystalline solid, (2) Bifurcation points of one- dimensional logistic maps using Newton’s method, (3) Phase Trajectory of chaotic pendulum, (4) Study of poincare section, (5) Study of motion of charged particle in an Electric field.

Page 35: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

35

UNIT – IV

Computer Application to problems in Physics - II : (1) Study of Electronic configuration of any Element, (2) Study of Electromagnetic Oscillation in LC circuit, (3) Study of Fourier Analysis of Harmonic wave, (4) Study of circuit with Inductors, capacitors and Registers, (5) Acceleration of a charged particle in cyclotron.

UNIT - V

This unit will have four short question based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are: 1. (a) write a programme to calculate and print roots of a quadratic

ax2+bx+c = 0 (a≠ 0) . (b) Write a programme to add and multiply two matrices.

2. Illustrate the use of function by a program. 3. Explain the meaning of latches and multiplexing. 4. Using a block diagram explain the computer interfacing of a spectrum

analyzer. 5. Modeling and simulation of predator and prey problem. 6. Charged particle in a magnetic field. 7. Study of convection of fluids. 8. Discuss Lorentz system and Lorentz attractors.

In addition to above the tutorial will also consist of solving problems given in the text and reference books. Text and Reference Books

Computational Physics - R.C. Verma, P.K. Ahluwalia and K.C. Sharma, New Age Publishers (1999)

Programming in ANSI C, - E. Balaguruswami Tata Mc Graw Hill (1994)

Numerical Recipes in FORTRAN

- Press W.H., Teukolsky S.A. Vellerling W.T. and Flannery B.P. (Cambridge Univ. Press 1992)

Simulation using Personal Computers

- Carroll, J.M. (Prentice Hall, 1987)

FORTRAN-77 with applications for Scientists and Engineers

- Rama, M. Reddy and Carola, Ziegler.

Page 36: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

36

M.Sc. PHYSICS FOURTH SEMESTER

CORE PAPER – I

PHY C - 401

ATOMIC AND MOLECULAR PHYSICS

60+40= 100 MARKS 5 CREDITS

UNIT –I

Quantum states of one electron atoms Atomic orbitals, Hydrogen spectrum, Paulis principle. Spectra of alkali elements, spin orbit interaction and line structure of alkali spectra, Methods of molecular Quantum Mechanics, Thomas Fermi Statistical Model, Hartree and Hartree Fock Method. Two electron system, interaction energy in LS and JJ coupling, Hyperfine structure (qualitative), line broadening mechanisms (general ideas).

UNIT – II

Types of molecules, Diatomic linear, symmetric top, asymmetric top and spherical top molecules, Rotational spectra of diatomic molecules as a rigid rotator, Energy level and spectra of non-rigid rotator, intensity of rotational lines.

UNIT – III

Vibrational energy of diatomic molecule, diatomic molecule as a simple harmonic oscillator, Energy levels and spectrum, Morse potential energy curve, Molecules as vibrating rotator, vibration spectrum of diatomic molecule PQR branches IR spectrometer (qualitative).

UNIT – IV

Introduction to ultraviolet, visible and infra-red spectroscopy, Raman spectroscopy : Introduction, Pure rotational and vibrational spectra, Techniques and instrumentation, Stimulated Raman spectroscopy, Experimental techniques : Photo electron spectroscopy, Elementary idea about photoacoustic spectroscopy and Mossbauer spectroscopy and NMR Spectroscopy.

UNIT –V

This unit will have four short questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are:

1. Write all possible term symbols for the following electron configurations (a) [Be]2p3p (b) [He]2s2p (c) [Be]2p3d 2. Normal and anamalous Zeeman effect 3. Paschen Back effect, Stark effect.

Page 37: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

37

4. The measured value of the first line (J = 0) in the rotational spectrum of carbon monoxide is 3.84235 cm-1. Determine the moment of inertia and bond length of the molecule.

5. The data for the 1H35Cl molecule are : Bond length = 127.5 pm Bond force constant = 516.3 Nm-1

Atomic masses : 1H = 1.673 × 10-27kg, 35Cl = 58.066 ×10-27 kg Determine the following

(a) The energy of fundamental vibration νo. (b) The rotational constant B. (c) The wave numbers of the line P(1), P(2), R(0), R(1) and R(2). (d) Sketch the expected vibration-rotation

6. How many normal models of vibration are possible for the following molecules :

HBr,02, OCS (linear), SO2 (bent), BCl3, HC ≡ CH, CH4, CH3I, C6H6? 7. With which type of spectroscopy would one observe the pure rotational

spectrum of H2? If the bond length of H2 is 0.07417 nm. What would be the spacing of the lines in the spectrum ?

8. Raman Spectrum of Chloroform, CHCl3, molecule shows that Raman lines appear at 262, 366, 668, 761, 1216 and 3019 cm-1 on low frequency side of exciting line. Comment of the spectrum.

9. The strongest lines in the Infra-red and Raman spectra of nitrous oxide are shown in the table Vcm-1 Infra-red Raman 589 Strong; PQR contour - 1285 Very strong; PR contour Very strong; polarized 2224 Very strong; PR contour Strong; depolarized Comment on the spectra.

In addition to above the tutorial will also consist of solving problems given in the Text and References books.

Text and Reference Books

� Introduction to Atomic Spectra : H.E. White

� Fundamentals of molecular spectroscopy : C.B. Banwell

� Spectroscopy vol.I, II & III : Walker and Stanghen

� Introduction to molecular spectroscopy : G.M. Barrow

� Spectra of diatomic molecules : Herzberg.

� Molecular spectroscopy : Jeanne L. Mc Hale

� Molecular spectroscopy : J.M.Brown

� Spectra of atoms and molecules : P.F.Bemath.

� Modern spectroscopy : J.M. Halian

Page 38: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

38

PAPER - II

ELECTIVE PAPERS (ANY ONE TO BE OPTED)

PHY E - 402

II (A) : PHYSICS OF LASERS ITS APPLICATIONS

60+40= 100 MARKS 5 CREDITS

UNIT –I

Working principle of laser, threshold condition characteristics of laser, Gaussian beam and its properties, optical Resonators, longitudinal and transverse modes of laser cavity, mode selection, gain in a Regenerative Laser cavity. Rate equations and threshold for 3 and 4 level systems. Q switching, mode locking and obtaing altrashort pulses. Spectral narrowing.

UNIT – II

Ruby laser, He-Ne laser, Nd based lasers, semiconductor lasers, Nitrogen laser, CO2 laser, ionlaser Dye laser, chemical laser, excimer laser, Higher power laser systems.

UNIT –III

Laser fluorescence and Raman scattering and their use in ranging and pollution studies; ultra high resolution spectroscopy with laser, and its application in isotope separation, single atom detection and rotational and vibrational level of molecules. Optical fibers, use of lasers in light waves communication. Qualitative treatment of medical and engineering applications of lasers.

UNIT – IV

Crystal optics, propagation of light in a medium with variable refractive index, Electro, optical effect. Non-linear interaction of light with matter, laser induced multiphoton processes, second harmonic generation phase matching, third harmonic generation optical mixing, Parametric generation of light self focusing of light, Frequency mixing in gases and vapours, Optical bistability and optical phose condugation, Frequency up coversion.

UNIT – V

This unit will have four short questions based on tutorial problems covering all the four units. The students will have to answer any two questions some sample problems are:- 1. Calculation of threshold population inversion for laser action in a

cavity of given parameters. 2. Calculation of gain coefficient. 3. Determining line width of laser line. 4. Determining line pulse duration in case of Q switched or mode locked

laser. 5. Calculation of power of the laser output in case of certain laser system. 6. Tuning of laser in order to obtain- a particular wave length

Page 39: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

39

7. Finding distance of an object by laser range finder. 8. Determining vibrational levels of molecule by scattering of laser light. 9. Calculation of intensity of second harmonic and third harmonic

generated by non-linear interaction of laser light with matter. 10. Calculate the wave length separation between the longitudinal modes

of a 1530 nm semiconductor laser in which the active layer in 0-2 µm long and has a refractive index of 4.0.

In addition to above the tutorial will also consist of solving problems given in the Text and References books. Text and Reference Book

� Svelte : Lasers � Yariv : Optical Electronics. � Demtroder : Laser spectroscopy � Letekhov : Non-Linear Laser spectroscopy � Lasers : A.L. Siegman � Optical Electronics : K.Tyagrajan & A.K. Ghatak.

PHY E - 403

II (B) NONLINEAR DYNAMICS\

60+40= 100 MARKS 5 CREDITS

UNIT – I Introduction to Dynamical Systems

Physics of nonlinear systems, dynamical equations of motion, phase space, fixed points, stability analysis, bifurcations and their classifications, Poincare section and iterative maps.

UNIT- II

Dissipative Systems

One-dimensional noninvertible maps, simple and strange attractors, iterative maps, period doubling and universality, intermittency, invariant measure, Lyapunov exponents, higher-dimensional systems, Henon map, Lorenz equation. Fractal geometry, generalized dimensions, examples of fractals.

UNIT – III

Hamiltonian Systems

Integrability, Liouville’s theorem, action-angle variables, introduction to perturbation techniques, KAM theorem, area presserving maps, concepts of chaos and stochasticity.

UNIT- IV

Advanced Topics

Completely integrable systems, Solitons solution, Sine-Gordon and Kartweg devries solitons, Perturbation of solitons, Baclund transformation,

Page 40: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

40

Solitons like solutions, φ4 theories with both signs, Magnetic monopole and vortex solutions.

UNIT - V

This unit will have four short questions based on tutorial problems covering all the four units. Students will have to answer any two questions out of four. Some sample problems are: 1. Saddle Points, solitons and homoclinic orbits. 2. Limit cycles. 3. Rossten’s equations and strange attractors. 4. Mandelbrot set. 5. Sine Gordon solutions 6. Lorentz equations and strange attractor 7. Logistic map, period doubling and Lypunov exponents 8. Backlund transformations 9. Davydov soliton In addition to above the tutorial will also consist of solving problems given in the Text and References books. Text and Reference Books

Introduction to Dynamics : Percival and D. Richards Nonlinear Dynamics I & II : E.A. Jackson Introduction to Dynamical Systems : R.L. Devaney Chaos : Hao Bai-lin Regular and Stochastic Motion : A.J. Lichtenberg and M.A. Lieberman CHAOS IN CLASSICAL AND : M.C. GUTZWILLR, E. Ott, M. Tabor

PHY E - 404

II (C) PHYSICS OF NANOMATERIALS

60+40= 100 MARKS 5 CREDITS

UNIT-I

Concept of Quantum Confinement

Free electron theory (qualitative ideas) and its features. Idea of band structure, Metals, insulators and semiconductors, Density of states in bands, Variation of density of states with energy. Electron confinement in infinitely deep square well, confinement in two and three dimension, Idea of quantum well, quantum wire and quantum dots, classification of nanostructured materials.

Page 41: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

41

UNIT-II

Quantum wells and Superlattices

Energy levels and density of states in quantum wells. Band structure in quantum well, coupling between the wells, multiple quantum well structure, superlattice dispersion relation and density of states, Band structure in superlattice, Types of superlattices. Techniques of Fabrication of MQW and SL structures (MBE, MOCVD, LPE etc).

UNIT-III

Nanoparticles

Synthesis of nanoparticles: Bottom up: cluster beam evaporation, ion beam deposition, chemical bath deposition with capping techniques; and Top up: Ball milling. Physical properties of nanoparticles: Impurities and composition surface roughness, structure, thermodynamic properties. Determination of particle size by width of XRD peaks.

UNIT-IV

Characteristics of nanoperticles

Optical properties : Absorption spectra, luminescence, Raman scattering, spectral response. Determination of particle size by shift in photoluminescence peaks. Electrical properties of nanoparticles, nanostructured magnetic materials, stability of nanocrystals. Application of nanostructured materials.

UNIT-V

This unit will have four short questions based on tutorial problems covering all the four units. The student will have to answer any two questions out of four. Some sample examples are: (1) Density of state function in 1D, 2D and 3D systems. (2) Calculation of energy levels and change in band gap in a quantum well

of given dimensions. (3) Energy difference between two levels in a double QW. (4) Variation of specific heat with size of crystal. (5) Calculation of crystal size from XRD peaks. (6) Calculation of crystal size from PL peaks. In addition to above the tutorial will also consist of solving problems given in the Text and References books.

Text and References Books

� Nanotechnology Molecularly designed material by Gan-Moog, Chow , Kenneth. E Gonsalves, AmericanChemical Society.

� Quantum dot heterostructure by D. Bimerg, M. Grundmann and N.N. Ledentsov John Wiley and sons 1998.

Page 42: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

42

� Nanotechnology: Molecular Speculations on global abundance by B.C. Gran dall MIT Press 1996.

� Physics of low dimensional semiconductors by John W. Davies, Cambridge Univ. Press 1999.

� Physics of semiconductor nanostructures by K.R. Jain Narosa 1999 � Nano-fabrication and bio-systems: Integrating materials science

engineering Science and biology by Harvey C. Hoch, Harold G. Craighead and Lynn Jelinski, Cambridge Univ. Press- 1996.

� Nano particles and nano structured films: Preparation, characterization and application, Ed. J. H. Fendler, Jhon Wiley and sons 1998.

� Wave mechanics applied to semiconductor heterostructures by Gerald Bastard.

PAPERS III & IV

SPECIAL ELECTIVE PAPER S

PHY SE - 405

III & IV (A) CONDENSED MATTER PHYSICS – II

60+40= 100 MARKS 5 CREDITS

UNIT – I

[ Interaction of electrons with acoustic and optical phonons, polarons, Superconductivity : Manifestations of energy gap, Cooper pairing due to phonons, BCS theory of superconductivity, Ginzsburg –Landau theory and application to Josephson effect : d-c-Josephson effect, a-c Josephson effect, macroscopic quantum interference. Vortices and type II superconductors, high temperature superconductivity (elementary).

UNIT – II

Point defects : Shallow impurity states in semiconductors. Localized lattice vibrational states in solids, vacancies, interstitial and colour centers in ionic crystals. Structure and symmetries of liquids, liquid crystals and amorphous solids. Aperiodic solids and quasicrystals; Fibonaccy sequence, penrose lattice and their extension to 3-dimensions.

UNIT – III

Special carbon solids; fullerenes and tubules, formation and characterization of fullerenes and tubules. Single wall and multi -wall carbon tubules. Electronic properties of tubules. Carbon nanotubule based electronic devices. Definition and properties of nanostructured materials. Methods of synthesis of nanostructures materials. Special experimental techniques for characterization of nanostructured materials. Quantum size effect and its applications.

Page 43: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

43

UNIT - IV

Disorder in condense matter, subsitutional, positional and topographical disorder, short and long range order, Atomic correlation function and structural descriptions of glasses and liquids. Anderson model for random systems and electron localization, mobility edge, qualitative application of the idea to amorphous semiconductors and hopping conduction.

UNIT - V

This unit will have four short question based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are: 1. Draw diagrams showing some possible two-phonon processes in which

a neutron enters with momentum p and leaves with momentum P’. In labeling the diagrams take due account of the conservation law.

2. The average rate of dissipation of energy for an electromagnetic wave is W = < E.J.> where the average is over a complete cycle. Show that

W = (ωε2/ 8π)Eo2 = σ Eo

2/2 = σ1E2

3. How do the (2l+1) fold degenerate energy levels of a free atom split up in a crystal field invariant to all proper rotations which transform a cube into itself ? The free atom is invariant to operations of the (infinite) rotation group. The characters of the irreducible representations of this group are

λ(l)(ϕ) = sin (l + ½) φ/ sin φ/2

The point group of the crystal field has 24 elements in five classes and hence also five irreducible representations. Set up character table for this group

4. (a) Show whether periodicity can exist together with a periodicity in a structure (b) What is golden mean ratio ? How it is relevant to quasi crystals.

5. Band structure formula for crystals is not quite valid for Nanostructure, why?

6. Distinguish between crystalline, amorphous solids and liquids.

7. What are onion carbon structure ? How are they related with fullerene.

8. Calculate the lifetime of electrons and holes in a semiconductor with recombination centers (acceptors with levels ER in the energy gap) Treat explicitly the limits of large and small defect concentration nr. Discuss the recombination mechanism in both cases. Compare the two possible definitions : δn(t) – exp (-t/ τ) (decay time) and δn = Gτ (steady state).

Page 44: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

44

9. The carbon nanotubles can be both semiconducting and metallic why?

In addition to above the tutorial will also consist of solving problems given in the Text and References books.

Text and References Books

Crystal Structure Analysis : Burger

The Physics of Quasicrystals, : Eds steinhardt and Ostulond

Hand Book of Nanostructured Materials : Ed. Hari Singh Nalwa

and Nanotechnology (Vol. l to 4)

Quantum Theory of Solid State : Callaway

Theoretical Solid State Physics : Huang

Quantum Theory of Solids : Kittle

Introduction to Solid State Theory : Madelung

Solid State Physics : J.P. Shrivastava

X-ray Crystallography : Azaroff

Elementary Dislocation theory : Weertman and Weertman

Crystallography for Solid State Physics : Verma and Shrivastava

Solid State Physics : Kittel

Elementary Solid State physics : M. Ali Omar

SPECIAL ELECTIVE PAPER

PHY SE - 406

III & IV (B) ELECTROINCS – II

60+40= 100 MARKS 5 CREDITS

UNIT-I

Digital Communication

Pulse-Modulation Systems: Sampling theorem- Low pass and Band pass Signals, PAM, Channel Bandwidth for a PAM signal, Natural sampling, Flat-Top sampling, Signal recovery through Holding, Quantization of signal, Quantization, Differential PCM, delta Modulation, Adaptive Delta Modulation, CVSD.

Digital Modulation techniques: BPSK, DPSK, QPSK, PSK, QASK, BFSK, FSK, MSK.

UNIT-II

Noise in pulse code and Delta modulation systems: PCM transmission, calculation of Quantization noise, output-signal power, Effect of thermal noise, Output signal to noise ratio in PCM,DM, Quantization noise in DM, output signal power, DM output-signal –to Quantization- noise ratio. Effect of thermal noise in Delta modulation, output signal- noise ratio in DM.

Page 45: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

45

Computer communication systems: Types of networks, Design of a communication network, examples TYMNET, ARPANET, ISDN, LAN.

Introduction to Mobile radio and satellites: Time division multiple Access (TDMA), Frequency Division Multiple Access (FDMA), ALOHA, Slotted ALOHA, Carrier Sense Multiple Access (CSMA) Poisson distribution, protocols.

UNIT-III

Introduction to 8086, Microprocessor chip, Internal Architecture, Introduction (Basics of) to Programming of 8086 and Assembly language. Programme development steps. Construction of machine code for 8086 Instructions, writing a programme for use with assembler, Assembly language program development tools.

Assembly Language Programming Technique : Simple sequence programmes. Basic idea of flags and jumps, While – Do, IF- THEN, IF –THEN-ELSE structure based simple programs. Writing and using Assembler Macros.

UNIT – IV

8086 System Connection Timings : 8086 Hardware Review, Addressing Memory and ports in microcomputer system , Basic Idea about Timing parameters, Minimum mode waveform and calculation for access time.

Interrupts : 8086 Interrupts and Interrupts response with some hardware applications.

Digital and Analog Interfacing of 8086 : Methods of parallel data transfer, single Handshake I/O , Double Handshake Data transfer. 8255 Handshake applications : Lathe control and speech synthesizer. Display and keyboard interfacing with 8279, D/A interfacing with microcompiler, A/D interfacing (introduction)

Elementary Idea about 80816, 80286, 80386 to Pentium processors

UNIT - V

This unit will have four short question based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are: 1. Explain the meaning of pulse code modulation. Draw one complete

cycle diagram. Draw one complete cycle of some irregular waveform and show it is quantized using eight standard pulses.

2. Efficiency of PCM 3. Noise in PCM system 4. Signal to noise ratio in time division multiplexed PAM systems. 5. Program for creating a delay loop using 16 bit register pair.

Page 46: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

46

6. Program for 8086 in Assembly Language using IF-THEN-ELSE structure.

7. Debugging Assembly Language Programs for 8086 µp with simple examples.

8. Assembly Language for interrupts procedure in 8086. In addition to above the tutorial will also consist of solving problems given in the Text and References books.

Text and References Books

Principles of communication system : Taub & Schilling (1994) II Edition Communication systems : Simon Haylein III Ed. Microprocessors and Interfacing : Douglas Hall 2nd Ed. (1992) Programming and Hardware The Intel Microprocessor 8086/8088/ : Brey & Brey 80186/80286/80386/80486 Pentium and Pentium ProProcessor Architecture Programming and Interfacing

SPECIAL ELECTIVE PAPER

PHY SE - 407

III & IV (C) MATERIALS SCIENCE – II

60+40= 100 MARKS 5 CREDITS

UNIT – I

Mechanical Properties of Materials

Elastic, visco-elastic and plastic deformation. Deformation mechanisms; slip and twinning, origin and multiplication of dislocations, Frank-Read Source, Intersection of dislocations, Fracture, Introduction to hardness and toughness.

Performance of materials in service failure, Corrosion and its control, Delayed fracture, fatigue performance of material at high temperatures, creep, service performance of polymers and ceramics.

UNIT - II

Dielectric Properties of Materials

General theory of dielectric relaxation, cooperative dipolar relaxation in polymers single and multiple dielectric relaxation processes in solids, temperature dependence of electrical properties, Polarization mechanism, dipolar and space charge polarization, thermally stimulated depolarization processes.

Page 47: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

47

Polymers and Electrets

Aspects of molecular characterization, molecular weight its distribution and determination, glass transition temperature, Elastic strain, flow, polymer viscosity, visoelastic deformation, processing of polymers-Addition, fillers, plasticizers, mixing, shaping, molding, spinning. Ionic and electronic conduction in polymers, space charge conduction, charge transport in polymers. Poole Frenkel, Richardson Schottky, tunneling and hopping. Charge storage in polymers electret effect.

UNIT – III

Brief Introduction of piezo, pyro and ferroelectric materials- Idea of theory of ferroelectricity and their applications.

Brief review of diamagnetism, paramagnetism, ferromagnetism and ferri-magnetism, magnetic moments due to electron spin, Domain structure, The hysteresis loop, soft magnetic materials, hard magnetic materials, square loop magnetic materials.

Thin Films

Vacuum deposition, Ion - plasma deposition. Elementary idea about hot - metal spraying, metallization by fusion, chemical deposition, thermochemical and plasma- chemical methods and electrolytic deposition. Electrical conduction in continuous metal films. Theories of size effect, size effect anisotropy ,TCR of continuous films. Galavanomagnetic size effects - Magnetoresistance and Hall effect in thin films. Anomalous skin effect, Eddy current.

Optical properties of thin films, reflectance, transmittance and other optical constant of thin films, absorbing films, Elementary idea about the application of thin films.

UNIT – IV

Ceramics, Glasses and Modern Materials

General introduction to Ceramic materials, Preparation (solid state and wet chemical methods), Processing and sintering, Electronics ceramics, Cermaics structures, Glass, Glass ceramics, Application of ceramics as sensors, I-R and gas sensors, Ferro electric devices, heating elements, optical, Electro-optic ceramic.

Introduction to some of the modern materials like : liquid crystals, quasi crystals, fullerenes, nanostructured materials, Transparent materials, high Tc superconductivity materials, GMR materials, composite materials, Biopolymers and conducting polymers.

Page 48: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

48

UNIT – V

The unit will have four short questions based on the tutorial problems covering all the four units. The students will have to answer any two questions. The samples problems are:

1.(a) The activation volume for dislocation motion in a crystal in 20b3, where b is the Burgers vector of the moving dislocation b = 2 Å. The P-N stress for this crystal is 1000 Mn m-2. For a specified rate of dislocation motion, the activation energy Q = 40 kT. Calculate the stress required energy the dislocation at (i) 0 K (ii) 100 K (iii) 300 K and (iv) 500 K.

(b) The length of a dislocation line between two tie points is on an average equal to the reciprocal of the square root of the dislocation density in a crystal. Calculate the dislocation density in copper, work hardened to a stage where slip occurs at a shear stress of 35MN m-2 (Given shear modulus of copper is 44 GN m-2)

2.(a) A stress of 11 MP a (1600 psi) is required to stretch a 100 mm rubber

band to 140 mm. After 42 days at 20oC in the same stretched position,

the band exerts a stress of only 5.5 Mpa. (800 psi) (i) what is the relaxation time ? (ii) What stress would be exerted by the band in the same stretched position after 90 days ?

(b) The relaxation time at 25oC is 50 days for the rubber band in above

problem. What will be the stress ratio s/so, after 36 days at 30 oC.

3. Assume that all energy required to produce scission in a polyethylene molecule comes from a photon (and that none of the energy is thermal).

(a) What is the maximum wavelength that can be used?

(b) How many eV are involved?

4. Calculate the polarization of a BaTiO3 crystal. The shift of the titanium ion from the body centre is 0.06 Å. The oxygen anions of the side faces shift by 0.06 Å, while the oxygen anions of the top and bottom faces shift by 0.08 Å, all in a direction opposite to that of the titanium ion.

5. The relative dielectric constant for polyvinyl chloride (PVC) are 6.5, 5.6, 4.7, 3.9, 3.3, 2.9, 2.8, 2.6, and 2.6 at frequencies 102, 103, 104, 105, 106, 107, 108, 109 and 1010 Hz respectively. The values of relative dielectric constants at the above frequencies for polytetrafluoroethylene (PTFE) are 2.1. (a) Plot the capacitance versus - frequency curves for three

capacitors with 3.1 cm × 10.2 cm effective area separated by 0.025 mm of (i) vacuum (ii) PVC and (iii) PTFE.

Page 49: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

49

(b) Account for the decrease in the relative dielectric constant of PVC with increased frequency, and for the constancy in the relative dielectric constant of PTFE.

6. The glass-transition temperature of a thermoplastic polymer is 95oC.

The viscosity at 110 oC is four times too great for a particular molding

process. (a) What temperature is required ? Assume that the temperature

cannot be controlled to closer than ± 1 oC.

(b) What viscosity variation might by expected ? 7. Deduce the magnetic moment for formula of the following ferrites : Fe3O4, NiFe2O4, CoFe2O4 and MnFe2O4. In Fe3O4, the ferric ions are

antiferromagnetically coupled. All the divalent cations have lost their 4S electrons. Compare the deduced values with the listed values and explain any discrepancy.

8. Discuses Mangnetoresistance and Hall effect in thin films. 9. Describe the preparation of solid solutions. 1. Discuss the preparation of nanomaterials In addition to above the tutorial will also consist of solving problems given in the Text and References books.

Text and Reference Books

� Elements of Materials Science and Engineering Sixth Edition-Lawrence H., Van Vlacle, Addition Wesley.

� Elements of Solid State Physics-J.P. Shrivastava- Premtice Hall India. � Materials Science and Engineering-V. Raghwan-Fourth Edition-Prentice

Hall. � The Structure and Properties of Materials Vol. I, II, III, and IV –John

Wulff et al. Wiley Eastern Limited. � Physical Metallurgy Principles Robert E-Reed-Hill, East West Press New

Delhi. � Introduction to Solid-A Zroff. � Materials Science and Processes– Hajra Choudhry Indian Book Distribution

co. � Materials Science and Engineering- William D. Callister Jr, John Wiley

(2001). � Experiments in Materials Science- E.C. Subbarao, L.K. Swghal, D.

Chakraborty, M.F. Merriam and V.Raghavan, Tata McGraw Hill, New Delhi.

Page 50: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

50

SPECIAL ELECTIVE PAPER

PHY SE - 408

III & IV (D) : COMPUTATIONAL PHYSICS – II

60+40= 100 MARKS 5 CREDITS

UNIT – I

Basic of Mathematica Programming

Introduction, commands and variables, numerical calculations with examples such as Factorial, Exponential etc. Symbolic calculations : polynomials, equations calculus (differential and integrals) Manipulations with matrices, eigen values and eigen vectors, Plots of data and functions.

UNIT – II

Computer Applications to problem solving in Quantum Mechanics

Solving one dimensional Schrodinger equation for stationary states, solution of time independent Schrodinger equation for linear harmonic osillator. Radial solution of schrodinger equation for three dimensional harmonic oscillator potential, The propagation of free wave packets, study of wave packet propagation through a one-dimensional well.

UNIT – III

Computer Application to problems in Condensed Matter Physics

Simulation of phonon dispersion curves and density of states, The reciprocal lattice and Harrison construction(2D), One dimensional phonon propagation, Two dimensional Lattice vibrations, Two dimensional nearly free electrons.

UNIT – IV

Introduction to Computer Simulation

Molecular Dynamic Simulation Gas with random collisions, N body gas, Monte carlo simulations, The 2-D Ising model for interacting spins, specific heat, average energy, Magnetization, susceptibility.

UNIT - V

This unit will have four short questions based on tutorial problems covering all the four units. The students will have to answer any two questions out of four. Some sample problems are: 1. General ideas of computer algebra software viz mathematic, matlab. 2. Use of Mathematica graphics with examples. 3. Discuss the numerical solution of the Schrodinger equation for an

harmonic oscillator potential . Choose b of different v x x bx( )= +1

22 4

Page 51: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

51

magnitudes and check how the grounds state wave function depends on this.

4. Develop a program to find energy eigen value for a general power law potential. V(r) = a rn , n > 0.

5. In a linear monotomic chain of four atoms, the end atoms are fixed, considering only the nearest neighbour interaction and assuming that the force between any two atoms is proportional to their relative displacement, set up the equation of motion for longitudinal vibrations of the free atoms. Solve this equation numerically and verify that the frequencies of the two normal modes are related as .

6. In a one-dimensional nearly free electron model, solve the schrodinger equation and plot the periodic occurrence of the parabolic energy curves of a free electron in one-dimensional reciprocal space.

7. Simulation of (i) travelling pulse (2) standing wave. 8. Simulation of radio active decay and random walk.

In addition to above the tutorial will also consist of solving problems given in the text and reference books. Text and Reference Books

Computational Physics - R.C. Verma, P.K. Ahluwalia and K.C. Sharma, New Age Publishers (1999)

Programming in ANSI C, - E. Balaguruswami Tata Mc Graw Hill (1994)

Numerical Recips in FORTRAN - Press W.H., Teukolsky S.A. Vellerling W.T. and Flanney B.P. (Cambridge Univ. Press 1992)

Simulation using Personal Computer

- Carroll, J.M. (Prentice Hall, 1987)

w w12

223=

Page 52: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

52

ABILITY ENHANCEMENT AND SKILL DEVELOPMENT

PRACTICAL COURSES

SEMESTER III & IV

M.Sc. (Physics) III & IV Semester :

Note: Appropriate other experiments can be added based on prescribed syllabus in both labs A and B

SPECIAL ELECTIVE PAPER LABORATORY COURSE

PHY L 307/PHY L 308/PHY L 309/ PHY L 310

&

PHY L 409/PHY L 410/PHY L 411/ PHY L 412

(A) CONDENSED MATTER PHYSICS I & II

PHY L 307 & PHY L 409

(Preferably six experiments to be performed by the students) 1. Measurements of lattice parameters and indexing of powder

photographs. 2. Interpretation on transmission Laue photographs. 3. Determination of orientation of a crystal by back reflection Laue

methods. 4. Rotation/Oscillation photographs and their interpretation. 5. To study the modulus of rigidity and internal friction in metals as a

function of temperature. 6. To measure the cleavage step height of a crystal by Multiple Fizeau

fringes. 7. To obtain Multiple beam Fringes of Equal Chromatic Order. To

determine crystal step height and study birefringence. 8. To determine magnetoresistance of a Bismuth crystal as function of

magnetic field. 9. To study hysterisis in the electrical polarization of a TGS crystal and

measure the Curie temperature. 10. To measure the dislocation density of a crystal by etching. 11. Solution of some problems in spherical geometry using stenographic

wulffnet. 12. Study of symmetry of crystal models. 13. Measurement of Hall coefficient. 14. Determination of Lande’s ‘g’ factor using ESR. 15. Determination of Energy band gap 16. Study of Lattice dynamics. 17. Measure of resistivity using four probe. 18. Hysteresis Loop tracer. 19. Study of Luminescence.

Page 53: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

53

Tutorial : Laboratory /Practical Course

CONDENSED MATTER PHYSICS

1. Study of X-ray diffraction from liquid, amorphous materials. 2. Determination of dislocation density by Reflection X-ray topography. 3. To take Buerger Precession photograph of a crystal and index the

reflections. 4. To measure the superconductivity transition temperature and transition

width of high-temperature superconductors. 5. To determine the optical constants of a metal by reflection of light. 6. Model evaluation of dispersion curves of one-dimensional lattice. 7. Creation of low pressure and measurement. 8. Thin film deposition and operation of vacuum coating unit. 9. Data analysis using computers. 10. Operation of Spectrophotometer. 11. NMR Instrumentation. 12. Surface structural study of materials using Carl Zeiss microscope.

(B) ELECTRONICS I & II PHY L 308 & PHY L 410

Preferably six experiments to be performed by the students 1. Amplitude Modulation and Demodulation. 2. TDM PULSE Amplitude Modulation and Demodulation. 3. Study of PCM Receiver and Transmitter. 4. Study of satellite – C Band Receiver. 5. Study of AM – FM Receiver set. 6. Pulse position/ Pulse width Modulation and Demodulation. 7. FSK Modulation. 8. Microwave characterization and measurement. 9. Study of Motor speed control Interface and programming. 10. Temperature control using 8086. 11. Programs for Addition, Division, Subtraction, & Multiplication with

8085 µp system. 12. Programs for (a) To find Largest Number. (b) To find Smellers Number 13. Programme for Addition, Subtraction, Multiplication and Division with

8086. 14. Dielectric measurement of Solid/Liquids using Microwave. 15. SWR Reflection Coefficient Measurement. 16. Study of E Plane , H Plane, Magic Tees Bends. 17. Frequency Guide wavelength measurement.

Page 54: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

54

Tutorials: Laboratory/Practical course ELECTRONICS

1. Digital Communication. 2. Cellular Communication 3. Mobile Communication via satellite 4. Trouble shooting in 8086 Microprocessor System. 5. 8086 Instruction Description 6. Microprocessor based process control system 7. Trouble shooting in 8085 based system 8. Trouble shooting AM based Radio Receiver

(C) MATERIALS SCIENCE - I & II PHY L 309 & PHY L 411

(Preferably six experiments to be performed by the students)

PREPARATION AND CHARACTERIZATION 1. Growth of single crystals from solution 2. X-ray diffraction study of crystal structure and indexing (a) Laue

photograph (b) Rotating Crystal and (c) Powder MICROSTRUCTURE AND IMPERFECTIONS

3. Preparation of specimen for metallographic examination measurment of grain size and amount of constituional phase.

4. Study of dislocations and measurement of dislocation density by etching technique.

5. Application of Fizeau fringes for measurment of step height. 6. Application of FECO for study of pilling-up and sinking- in.

TRANFORMATION AND KINETICS

7. To study the kinetics of crystallization of polyethylene 8. Study of microstructure of metals and alloys after various phase

transformations 9. To demonstrate the electrochemical nature of aqueous corrosion and to

study electrochemical methods of corrosion control 10. Effect of recovery, recrystallization and grain growth on microstructure

and mechanical properties of commercially pure copper. MECHANICAL PROPERTIES

11. To study Griffith flaws in glass. 12. Tensile testing of Aluminium, Copper, Steel etc. 13. Study of hardness of different materials by Vicker’s pyramid hardness tester 14. Fatigue testing of materials

ELECTRICAL PROPERTIES

15. Study of short circuit TSC

Page 55: RANI DURGAVATI VISHWAVIDYALAYA, JABALPUR  · PDF filestring passing over a pulley, ... charge coupled devices (CCD). 6 ... Random walk and metropolis method , Numerical

55

16. Measurement of Transient charging and Discharging current 17. Study of Hall effect and measurement of Hall coefficient 18. Study of dielectric behaviour of barium titanate 19. Determination of energy band gap 20. Determination of Resistivity using four probe method. 21. Hystersis loop of ferroelectric.

DEVICES

22.. Study of Solar Cell 23. Preparation of thermo-electret and measurement of initial surface

charge density 24. To measure the piezoelectric coefficient/P-E curve of barium titanate.

Tutorials : Laboratory/practical course

1. Creation of low pressure and measurement. 2. Thin film deposition and operation of vacuum coating unit. 3. Data Analysis using computer. 4. NMR Instrumentation 5. Preparation of nanomaterials. 6. Preparation of polymer blend materials. 7. Fabrication of high temperature furnaces. 8. Operation of Spectrometer. (D) COMPUTATIONAL PHYSICS – I & II PHY L 310 & PHY L 412

(Preferably six experiments to be performed by the students)

1. Monte Carlo simulation of Radio Active Decay. 2. Determination of Phonon Dispersion Relation. 3. Wave packet propagation through square well potential. 4. Monte Carlo simulation of Two dimensional Ising model. 5. Graphic representation of 3D object. 6. Gas of point particles with Random Elastic collision. 7. Motion of a satellite around a planet. 8. Phase Trajectory of a chaotic pendulecan. 9. Electromagnetic Oscillation of LC Circuit. 10. Motion of charged particle in Electric field. 11. Diffusion as a random walk problem. 12. Simulation of Brownaian motion 13. Lyapunov Exponents and Bifurcation.

Tutorial : Laboratory/ Practical Course

COMPUTATIONAL PHYSICS

Setting up of new experiments will form tutorial for this laboratory course.