Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation,...

65
Radical Cations •+ : Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Transcript of Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation,...

Page 1: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Radical Cations•+: Generation, Reactivity, Stability

MacMillan Group Meeting 4-27-11

by Anthony Casarez

R A R A

Page 2: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Three Main Modes to Generate Radical Cations

  Electrochemical oxidation (anodic oxidation)

  Chemical oxidation

  Photoinduced electron transfer (PET)

D A D A

DAnode

D

D A D A* D Ah!

D A D* A D Ah!

1)

2)

Page 3: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Chemical Oxidation

  Stoichiometric oxidant: SET

MacMillan et al. Science 2007, 316, 582. Booker-Milburn, K. I. Synlett 1992, 809.

H

hexyl

DME

N

NBn

O Me

t-Bu

H

hexyl

N

NBn

O Me

t-BuCe(NH4)2(NO3)6

OMe3SiOFeCl3, DMF

Me3SiO

Page 4: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Photoinduced Electron Transfer

  PET: Organic arene

OMe

NC CN

h!, MeCN, MeOH

OMe

CN

CN

  PET: Metal mediated

Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc. 1976, 98, 5931. Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.

R

MeOh!, MgSO4,

MeNO2, Ru(bpy)32+

MeN NMeR

MeO

Page 5: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Electrochemical Oxidation

  Anodic oxidation

Ponsold, K.; Kasch, H. Tetrahedron Lett. 1979, 4463. M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.

MeO

MeO

anode, MeOH

DCM, NaClO42,6-lutidine

MeO

MeO

NH

N

EtCO2Me

anode, 2,6-lutidine

MeCN, Et4NClO4 NH

N

EtCO2Me

Page 6: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

  A radical cation will be generated from the electrophore on the molecule with the lowest oxidation potential (usually π or n, where n = nonbonding electrons).

  The chemistry of the resultant radical cation is determined from the functionality around its periphery.

  Deprotonation of the radical cation is a major pathway, resulting in a radical which adheres to typical radical reactivity patterns.

  Secondary reactions play a major role in our generation and use of radical cations.

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Key Points

Page 7: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or π-A+ + B• A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 8: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or π-A+ + B• A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 9: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Nicholas, A. M. de P.; Arnold, D. R. Can. J. Chem. 1982, 60, 2165.

Thermochemical Cycle: Calculating pKaʼs

  ΔG = –nF[Eox(RH) – Eox(R–)]

  pKa(RH•+) = ΔG/2.303RT

R-H

Eox(RH)

R-H!G[pKa(RH•+)]

R• + H+

!G[pKa(RH)]

Eox(R–)

R– + H+

Page 10: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Deprotonation

a) Bordwell et al. J. Phys. Org. Chem. 1988, 1, 209. b) Bordwell et al. J. Phys. Org. Chem.1988, 1, 225. c) Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1989, 111, 1792. d) Bordwell, F. G.; Satish, A. V. J. Am. Chem. Soc. 1992, 114, 10173. e) Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1988, 110, 2872. f) Bordwell, F. G.; Cheng, J.-P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867.

  Acidity of a radical cation is severely increased compared to the neutral counterpart.

R-H pKa (π-RH•+) pKa (π-RH) reference

PhCH2CN –32 21.9 a

PHCH2SO2Ph –25 23.4 b

Ph2CH2 –25 32.2 c

PhCH3 –20 43 c

indene (3-H) –18 20.1 d

CpH –17 18.0 c,e

fluorene (9-H) –17 22.6 f

C5Me5H –6.5 26.1 e

H

H

H

H

HH–B

+

B

Page 11: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Deprotonation

Bordwell, F. G.; Zhang, X. J. Org. Chem. 1992, 57, 4163.

R-H pKa (RH•+) pKa (RH)

–13 27.9

–11 27.0

–11 24.4

N

NO

Ph

H

Me

Me

N

NO

Ph

H

Et

Et

Ph

O

N

O

2

H

N N

OPh

H B

H–B+MeMe

N N

OPh

MeMe

Page 12: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Secondary Reactions

  Secondary Reactions play a major role in “radical cation” chemistry.

Code Secondary Rxn Product Oxidation System

R•ox R• R+ cation anode, chemical

R•red R• R– anion PET

R•rad typical radical behavior various all

R•add.ox R• + C=C R–C–C• R–C–C+ cation anode, chemical

R•add.red R• + C=C R–C–C• R–C–C– anion PET

R•RA R• + R•– R–R•– anion PET

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Page 13: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Ponsold, K.; Kasch, H. Tetrahedron Lett. 1979, 4463.

π-RH•+ Deprotonation

  π-RH•+ deprotonation followed by a secondary reactivity pathway (benzylic radical)

MeO

MeO

anode, MeOH

DCM, NaClO4

2,6-lutidine95%

MeO

MeO

HB

MeO

MeO

anode

MeO

MeO

MeOH

B

MeO

MeO

MeO

HMe

O

MeO

MeO

Page 14: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Determining n vs π Electrophores

  Oxidation with typically take place at the center with the lower ionization potential

  Consider the ionization potential of the separate n- and π- moieties

NH

H

NMe

Me

NH3

9.24 eV 10.17 eV

HNMe2

9.24 eV 8.24 eV

7.69 eV

7.17 eV

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. H. M. Rosenstock et al. J. Phys. Chem. Ref. Data 1977, 6, Suppl. 1.

Page 15: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

T. Shono et al. J. Am. Chem. Soc. 1982, 104, 5753.

n-RH•+ Deprotonation

  n-RH•+ deprotonation followed by a secondary reactivity pathway (α-amino radical)

NMe

Me

anode, MeOH

KOH, 73%

N

Me

H

H

H

OH

N

Me

H H

N

Me

OMe

N

Me

OMe

n donor

Page 16: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

T. Shono et al. J. Am. Chem. Soc. 1982, 104, 5753.

n-RH•+ Deprotonation

NH

H

! donor

anodeN

H

H

H2N NH2

HN

NH2

N

N

  Typical arene oxidation products are observed

  Observation of these products indicates that the arene is the site of oxiation, not N-lone pairs

Page 17: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Albini et al. J. Chem. Soc. Chem. Commun. 1995, 41.

σ-CH•+ Deprotonation

  Deprotonation of the radical ion pair happens by the solvent

NC CN

CNNC

h!, 81%

MeCN

NC CN

CNNCH

MeCN

Page 18: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Albini et al. J. Chem. Soc. Chem. Commun. 1995, 41.

σ-CH•+ Deprotonation

  Deprotonation of the radical ion pair happens by the solvent

NC CN

CNNC

h!, 81%

MeCN

NC CN

CNNCH

MeCN

NC CN

CNNC

NCCN

CNNC

Adm

Adm CN

CNNC

Page 19: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Morrow, G. W.; Chen, Y. Swenton, J. S. Tetrahedron 1991, 47, 655.

π-AH•+ Deprotonation

  π-OH•+ deprotonation is very prevalent while π-NH•+ deprotonations are rare.

OOMe

HO

anode, MeOH

MeCN, 69%

Page 20: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Morrow, G. W.; Chen, Y. Swenton, J. S. Tetrahedron 1991, 47, 655.

π-AH•+ Deprotonation

  π-OH•+ deprotonation is very prevalent while π-NH•+ deprotonations are rare.

O

HO

MeCN

O

OOOMe

HOMe

–H+

HO

anode, MeOH

MeCN, 69%

Page 21: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

T. Osa et al. J. Chem. Soc. Chem. Commum. 1994, 2535.

π-AH•+ Deprotonation

  Reaction at the ortho-position can also occur

OH

TEMPO-modifiedanode

(–)-sparteine, 91%

OH

OH

98% ee

  Implementing a biased substrate forces reaction at the ortho-position

Page 22: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Shine, H. J.; Hoque, A. K. M. M. J. Org. Chem. 1988, 53, 4349.

n-AH•+ Deprotonation: Very Limited

  The details surrounding the cycloaddition below are speculative at best.

NNHPh

Ph

H

Th•+ ClO4–

MeCN

NNHPh

Ph

H

N Me

–e–

–2H+ N

NPh

N

Me

Ph

  The limited examples show how rare these deprotonations are

Page 23: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or n-A• + B+ A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 24: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-A-B•+ Bond Dissociation

O

Me

OTMS

MeCN, 77%

Ce(NH4)2(NO3)6

H

O

Me

O

Me3Si

  Dienolether has a lower oxidation potential than the enolether

OMe3Si

–e–

O

SiMe3+

H

CH2

Me

OTMS

H

O

Me

OTMS

–e––SiMe3+

  Eventhough [O] may happen at n (lone pairs), the resonance structure affords the π-oxidized product.

Ruzziconi et al. Tetrahedron Lett. 1993, 34, 721.

Page 25: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-A-B•+ Bond Dissociation

  Certain Mukaiyama–Michael reactions are postulated to operate via a radical cation initiated fragmentation

OEt

OTES

DCM , –78 °C

LA

Ph

O

Ph

O

Me

Me

OEt

OTES

Me

Me

Me Me

Me Me

OEt

O

Lewis Acid 4°–4° product 4°–2° product Product ratio

Bu2Sn(OTf)2 85 0 100:0

SnCl4 95 0 100:0

Et3SiClO4 93 0 100:0

TiCl4 97 2.4 97:3

J. Otera et al. J. Am. Chem. Soc. 1991, 113, 4028.

Page 26: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Mukaiyama–Michael Proposed Catalytic Cycle

J. Otera et al. J. Am. Chem. Soc. 1991, 113, 4028.

SnCl4Ph

O

Me

Me

OEt

OTES

Me

MeOEt

OTES

Me

Me

Ph

O

Me

Me

SnCl4

Ph

O

Me

Me

SnCl3

Cl–Et3SiCl

Ph

O

Me

Me

OEt

O

Me

Me

Cl3Sn

Et3SiCl

Ph

Et3SiO Me Me

Me Me

OEt

O

e– transfer

R•–R• coupling complexation

catalyst regeneration

Page 27: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

n-A-B•+ Bond Dissociation

Adam, W.; Sendelbach, J. J. Org. Chem. 1993, 58, 5316.

N

N

Me

Me

OHh!, DCA

Ph2

O Me

Me

N

N

Me

Me

OHN2

OH

Me

Me

Me

OH

Me

BET

  Limited mostly to azoalkanes and triazines

Page 28: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or n-A• + B+ A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 29: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-C-C•+ Bond Dissociation

  Fragmentation of a β-ether generates an oxocarbenium ion

Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc. 1976, 98, 5931.

MeO

NC CN

h!, MeCN, MeOH

MeOMeO

HOMe

OMeMeO

DCB

–H+

H+

Page 30: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Stereoelectronic Effects in Deprotonation and Fragmentation

Poniatowski, A.; Floreancig, P. A. In Carbon-Centered Free Radicals and Radical Cations; Forbes, M. E., Ed.; Wiley & Sons: New Jersey, 2010; Vol 3., pp 43-60. D. R. Arnold et al. Can. J. Chem. 1997, 75, 384.

  Deprotonation   Fragmentation

Me

h!, DCB

collidine, MeCN

N.R.

Me

h!, DCB

collidine, MeCN

Me

H

HH

O

Ph

RH

H

Me

OMe

R

Ph

H

R

Me

"*Ph

Ph

O

Page 31: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-C-C•+ Bond Dissociation

  Nucleophile assisted C–C bond fragmentation with complete inversion of stereochemistry

Dinnocenzo et al. J. Am. Chem. Soc. 1990, 112, 2462.

Ph

Ph

Me

D

h!, 1-CN

MeCN, MeOH

Ph

Ph

Me

D

HOMe

Ph

Ph

OMe

Me D

–H+

1-CN

H+ Ph

Ph

OMe

Me D

  Nucleophile assisted π-C-C•+ fragmentation is limited to strained systems

Page 32: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

n-C-C•+ Bond Dissociation

  To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical must be stabilized by a moiety on the molecule

M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.

NH

N

EtCO2Me

anode, 2,6-lutidine

MeCN, Et4NClO4

NH

N

EtCO2MeNH

N

EtCO2Me

–e–

N

N

EtCO2Me

N

N

H

EtOMe

OHMeO2CAcO

NH

N

EtCO2MeV

NaBH4

NH

N

H

CHO2MeV

Et

Me

Page 33: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

n-C-C•+ Bond Dissociation

  To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical must be stabilized by a moiety on the molecule

M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.

NH

N

EtCO2Me

anode, 2,6-lutidine

MeCN, Et4NClO4

NH

N

EtCO2MeNH

N

EtCO2Me

–e–

N

N

EtCO2Me

N

N

H

EtOMe

OHMeO2CAcO

NH

N

EtCO2MeV

NaBH4

NH

N

H

CHO2MeV

Et

Me

Page 34: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Me

AcO

O

O

TCB, h!

RSH, H2O, 90%

AcO

Me

O

O

OHTCB

Me

AcO

O

O

AcO

Me

O

O

TCB

H2O

n-C-C•+ Bond Dissociation

A. Albini et al. Tetrahedron Lett. 1994, 50, 575.

  Easily oxidized acetal

Page 35: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

σ-C-C•+ Bond Dissociation

Booker-Milburn, K. I. Synlett 1992, 809.

Me3SiOFeCl3, DMF

OH

H

Cl

H

Cl3Fe

–SiMe3

64%

Me3SiO

  Trapping of the pendant olefin and Cl• abstraction form the bicycle

  ESR studies on strained systems show that the inner C-C bond is selectively weakened

Page 36: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or n-A• + B+ A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 37: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-C-X•+ Bond Dissociation: Calculated BDEʼs

  Aromatic ionization severely weakens the adjacent bond by ~30 kcal/mol on average

  Si and Sn are the most common X-groups used as fragmentation substrates

Reaction ΔHR(p-C-X•+)

BDE kcal/mol ΔHR(p-C-X)

BDE kcal/mol Ref PhCH2–SiMe3

•+ PhCH2• + Me3Si+ +30 +77 a

PhCH2–Cl•+ PhCH22+ + Cl• +40 +72 b

PhCH2–Br•+ PhCH22+ + Br• +26 +58 b

PhCH2–OMe•+ PhCH22+ + •OMe +43 +71 b

PhCH2–SMe•+ PhCH22+ + •SMe +38 +61 b

PhS–Xan•+ PhS• + Xan+ –11 +26.4 c

PhS–TPCP•+ PhS• + TPCP+ –18.6 +40.3 c

a) J. P. Dinnocenzo et al. J. Am. Chem. Soc. 1989, 111, 8973. b) Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550. c) E. M. Arnett el al. J. Am. Chem. Soc. 1992, 114, 221.

Xan = 9-xanthyl; TPCP = 1,2,3-triphenylcyclopropenyl

Page 38: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-C-X•+ Bond Dissociation

J. Yoshida et al. Tetrahedron Lett. 1986, 27, 3373. P. S. Mariano et al. J. Am. Chem. Soc. 1984, 106, 6439.

  R3Si– and R3Sn– moieties can be used as “super protons”

  The dependence of k on MeOH, H2O, Bu4NF indicates Nu-assisted Si-bond cleavage

SiMe3 OMeanode, Et4NOTs

MeOH, 91%

Page 39: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-C-X•+ Bond Dissociation

J. Yoshida et al. Tetrahedron Lett. 1986, 27, 3373. P. S. Mariano et al. J. Am. Chem. Soc. 1984, 106, 6439.

  R3Si– and R3Sn– moieties can be used as “super protons”

  The dependence of k on MeOH, H2O, Bu4NF indicates Nu-assisted Si-bond cleavage

SiMe3 OMeanode, Et4NOTs

MeOH, 91%

  Iminium salts can act as photo-oxidants under PET conditions

N

SiMe3

MeClO4

–h!, MeCN

70%

N

SiMe3

Me N Me

–Me3Si+

N

Me

Page 40: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

n-C-X•+ Bond Dissociation

J. Yoshida et al. J. Am. Chem. Soc. 2005, 127, 7324.

N

CO2Me

BF4–

N

CO2Me

SiMe3

Bn4NBF4, DCM

anode, –78 °C

N

CO2Me

SiMe3

–F

N

CO2Me

–e–

  Iminium ion used in the “cation pool” method is generated via n-C-X•+ cleavage

  F– assisted C–Si bond cleavage

Page 41: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-C-X•+ Bond Dissociation

  “Cation pool” oxidizes benzylsilane directly

  Oxidation potential of benzylsilane must be <1.5 V, otherwise a catalytic benzylstannane can be added to initiate the reaction

NBF4

CO2Me OMe

Me3Si DCM, –50 °C

N

CO2Me

OMe

88%

1.35 V vs SCE

N

CO2Me Me

Me3Si DCM, –50 °C

N

CO2Me

Me

12%

1.55 V vs SCE

BF4–

J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902.

Page 42: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

π-C-X•+ Bond Dissociation

  “Cation pool” oxidizes benzylsilane directly

  Oxidation potential of benzylsilane must be <1.5 V, otherwise a catalytic benzylstannane can be added to initiate the reaction

NBF4

CO2Me OMe

Me3Si DCM, –50 °C

N

CO2Me

OMe

88%

1.35 V vs SCE

Me

Bu3Sn

10 mol%

J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902.

N

CO2Me Me

Me3Si DCM, –50 °C

N

CO2Me

Me

97%

1.55 V vs SCE

BF4–

Page 43: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

OMe

NCO2Me

BF4–

NCO2Me

BF4–

OMe

Me3Si

OMe

Me3Si

Me3Si+

NCO2Me

NCO2Me

OMe

OMe

Me3Si

NCO2Me

OMe

Propagation

Proposed Mechanism

J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902.

Propagation

Initiation

  Stronger oxidant than iminium ion

Page 44: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

n-C-X•+ Bond Dissociation

Pandy, G.; Reddy, G. D. Tetrahedron Lett. 1992, 33, 6533. Steckhan et al. Angew. Chem. Int. Ed. Engl. 1995, 34, 2137. Mariano et al. J. Org. Chem. 1992, 57, 6037.

N

SiMe3 DCN, h!

i-PrOH, 90% N

HMe

97:3 dr

O

O

NBn

SiMe3

DCA, h!

MeCN, 59%

Nhexyl

O

OMe

SiMe3

DCA, h!, 67%

MeCn/MeOH

NO O

Me

Nhexyl

O

OMe

NO O

Me

N O

N

H

N O

O

O

Bn

Page 45: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

σ-C-X•+ Bond Dissociation

Mariano P. S.; Ohga, K. J. Am. Chem. Soc. 1982, 104, 617. Otsuji et al. Tetrahedron Lett. 1985, 26, 461.

CN

NC

h!, 66%

MeCNSiMe3

NC

NClO4

Me

SiMe3

h!, 42%

N

CO2Me

PhPh

N

Me

Ph SiMe3

–Me3Si+

MeCN

  Coupling of the radical cation to the oxidant is the prominent primary fate after σ-C-X•+ cleavage

Page 46: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or n-A• + B+ A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 47: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Nu-π-A-B•+

Mihelcic, J.; Moeller, K D. J. Am. Chem. Soc. 2004, 126, 9106. Trauner et al. J. Am. Chem. Soc. 2006, 128, 17057.

OTBS

TBSOO

Me

Me

Meanode, LiClO4

2,6-lutidineMeOH/DCM, 88%

O

TBSOO

Me

Me

Me

H

  Moeller en route to (–)-alliacol A

  Trauner en route to (–)-guanacastepene E

O

TBDPSO

MeMe

Me

Me

OBnTBSO

anode, LiClO42,6-lutidine

MeOH/DCM, 81% O

TBDPSO

MeMe

Me

Me

OBnOMeO

H

H

Page 48: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Nu-n-A-B•+

Karady et al. Tetrahedron Lett. 1989, 30, 2191.

Me NHOAc

anode THF, H2O

NaBF4, 70%

Me

NOAc

Me NHOAc

Me

NOAcH

–H+

–e–

Me

NOAc

OHH2O

–H+

  The authors do not rule out the possibility of olefin oxidation as an alternative mechanism

Page 49: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Nu-n-A-B•+

Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163.

NPTOC

t-BuSH, 60%

AcOH NMe

N

S

O

O

PTOC =

Page 50: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Nu-n-A-B•+

Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163.

NPTOC

t-BuSH, 60%

AcOH NMe

NH N

H

HSR

–H+

  Initially formed nitrene is immediately protonated

Page 51: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or n-A• + B+ A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 52: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Cycloaddition

a) Calhoun, G. C.; Schuster, G. B. J. Am. Chem. Soc. 1984, 106, 6870. b) Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157. c) Takamuku et al. J. Org. Chem. 1991, 56, 6240. d) Schepp, N. P; Johnston, L. J J. Am. Chem. Soc. 1994, 116, 6895. e) Schepp, N. P; Johnston, L. J J. Am. Chem. Soc. 1994, 116, 10330.

Reaction k [M–1s–1] comments reference

3 x 108 Mostly [4 + 2] endo adduct; ratio of/to [2 + 2] varied by concentration a, b

<6.7 x 107 1) [2 + 2] terminated by C-H•– deprotonation 2) concerted reaction b

1) 1.4 x 109 2) 1.4 x 109

3) 1 x 1010

1) concerted cycloaddition assumed 2) distonic 1,4-radical cation intermediate c,d

7 x 108 21% Diels–Alder adduct e

1.5 x 106 80% Diels–Alder adduct e

p-An

p-AnMe

p-AnMe

p-AnMe

p-An

p-An

  Experimental kinetic data for radical cation cycloadditions (rt)

Page 53: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Diels–Alder [4 + 2] Cycloaddition

Bauld et al. J. Am. Chem. Soc. 1981, 109, 3163. Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157

Suprafacial selectivity observed

  Shown to operate via a cation radical chain mechanism

DP + Ar3N•+ Ar3N + DP•+

DP•+ + D A•+

A•+ + DP A + DP•+

DCM, 70%

H

H

5:1 endo/exo

Ar3N –SbCl5

2DP•+ dication DP•+ H+ + DP•

Propagation

Termination

k = 3 x 108 [M–1s–1]

Page 54: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Diels–Alder [4 + 2] Cycloaddition

  Shown to operate via a cation radical chain mechanism

DCM, 70%

H

H

5:1 endo/exo

Ar3N –SbCl5

Bauld et al. J. Am. Chem. Soc. 1981, 109, 3163. Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157

Propagator H

H

H

H

Ar3N

Initiator

Page 55: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

[2 + 2] Cycloaddition

  Photoredox catalyzed radical cation formation

Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.

Concerted cycloaddition

–e– +e–

MeO

O

  Electron donating substituent on the arene is necessary to promote the initial oxidation

MeO

O

O

HH

MeO

h!, MgSO4, 88%

MeNO2, Ru(bpy)32+

MeN NMe

Page 56: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

MeO

O

O

HH

MeO

h!, MgSO4, 82%

MeNO2, Ru(bpy)32+

MeN NMe

O

HH

MeO

h!, MgSO4, 71%

MeNO2, Ru(bpy)32+

MeN NMeO

OMe

6:1 dr

5:1 dr

[2 + 2] Cycloaddition

  Stereoconvergent transformation

Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.

isomerization > cycloaddition

Page 57: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or n-A• + B+ A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 58: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Claisen Rearrangement: A Representative Example

  Though potentially powerful, the radical cation Claisen rearrangement has found very limited use in synthsis

Venkatachalam et al J. Chem. Soc Chem. Commun. 1994, 511.

OMe

MeO

O

MeCN, 65%

Ar3N –SbCl5

OMe

MeO

OH

  The radical cation Cope rearrangement seems to be limited to aryl substituted systems.

Page 59: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or n-A• + B+ A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

  Both radical (Rad) and radical anion (RA) have been previously discussed

Page 60: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Primary Fate of Radical Cations

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.

Symbol Classification Primary Product A B

CH C–H deprotonation π-C• + H+ or n-C• + H+ C H

AH A–H deprotonation π-A• + H+ O, N, S, X H

AB A–B bond cleavage π-A• + B+ or n-A• + B+ A B

CC C–C bond cleavage π-C• + C+ C C

CX C–X bond cleavage π-C• + X+ C Si, Sn

Nu Nu attack Nu-π-A-B•+ A B

CA cycloaddition cycloaddition A B

R rearrangement rearrangement A B

ET electron transfer π-A-B or π-A-B2+ A B

Rad radical attack R-π-A-B+ A B

RA radical anion attack RA-π-A-B A B

H hydrogen transfer H-π-A-B+ A B

Dim dimerization (π-A-B)22+ A B

Page 61: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Hydrogen Transfer

  The Hofmann–Löffler–Freytag reaction

Kimura, M.; Ban, Y. Synthesis 1976, 201.

NH N

NCS, ether

NEt3, h!, quantN N

Cl

HN N

H

H

N NH

Cl•

HN N

H –H+

Cl

N N–H+

  Typically a 1,5-H-atom abstraction

N–C homolysis

H• abstraction

SN2 ring closure

Page 62: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Hydrogen Transfer

  The Hofmann–Löffler–Freytag reaction

Kimura, M.; Ban, Y. Synthesis 1976, 201.

  Intermediate en route to the synthesis of kobusine

Me

OH

HO

N

NH

MeMe

NCS, DCM

0 °C, 85%N

MeMe

Cl

hν, TFA

KOH, EtOH39%

NN

MeMe

Cl

Me

Page 63: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Radical Cations in Synthesis: Floreancig Lab

  Epoxonium cyclization

Houk and Floreancig et al. J. Am. Chem. Soc. 2007, 129, 7915. Floreancig et al. Angew. Chem. Int. Ed. Engl. 2008, 47, 7317.

  Cyclic acetal formation en route to theopederin D

Bn O

OMe MeO

MeO

Ot-bu

O

h!, NMQPF6, O2

NaOAc, Na2S2O3

DCE, PhMe, 79% O

O

O

OMe

Me

H

H

O

MeO

O

O

OMeH

OMeO

CbzHN

Bn

OO

Me

Me h!, NMQPF6,NaOAc, Na2SO3

DCE, PhMe, 76% O

O

OMeH

O

OMe

CbzHN

O

Me

Me

2:1 dr

Page 64: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Radical Cations in Synthesis

  Used in Moellerʼs synthesis of nemorensic acid

Moeller et al J. Am. Chem. Soc. 2002, 124, 10101. Boger et al J. Am. Chem. Soc. 2008, 130, 420.

  Bogerʼs synthesis of vinblastine

S

OHMe S

Me

O

Me

MeMe

Me

S

S

MeO

anode, 71%

Et4NOTsMeOH/THF

NH

N

EtCO2Me

ii. Fe2(ox)3–NaBH4air, 0 °C, lutidine

43%N

N

H

EtMeO

HO CO2MeOAc

i. FeCl3, 2hNH

N

H

MeO2C

Et

N

N

H

EtMeO

HO CO2MeOAc

OH

Me

Me

Page 65: Radical Cations•+: Generation, Reactivity, Stability · Radical Cations•+: Generation, Reactivity, Stability MacMillan Group Meeting 4-27-11 by Anthony Casarez R A R A

Radical Cations in Synthesis: MacMillan Lab

N

NBn

O Me

t-Bu

R

SOMO-activated

H

R

O

H

R

O

!-enolation

!-allylation

!-vinylation

H

O

R

!-nitroalkylation

HR

O

!-arylation

intramolecular!-arylation

R'

O

H

H

O

R'

R'

R'

R'

H

R

O NO2

R'