QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

18
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 75001 PARIS (FR) (19) EP 2 029 170 B1 & (11) EP 2 029 170 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention of the grant of the patent: 28.10.2009 Bulletin 2009/44 (21) Application number: 07859275.5 (22) Date of filing: 06.11.2007 (51) Int Cl.: A61K 39/39 (2006.01) (86) International application number: PCT/IB2007/004229 (87) International publication number: WO 2008/056263 (15.05.2008 Gazette 2008/20) (54) QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS CONTAINING SQUALENE QUALITÄTSPRÜFUNGSVERFAHREN FÜR ÖL-IN-WASSER-EMULSIONEN MIT SQUALEN MÉTHODES DE CONTRÔLE QUALITÉ POUR DES ÉMULSIONS D’HUILE DANS L’EAU CONTENANT DU SQUALÈNE (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR Designated Extension States: AL BA HR MK RS (30) Priority: 08.11.2006 GB 0622282 (43) Date of publication of application: 04.03.2009 Bulletin 2009/10 (60) Divisional application: 09075409.4 (73) Proprietor: Novartis AG 4056 Basel (CH) (72) Inventor: KLEIN, Norbert 035041 Marburg (DE) (74) Representative: Marshall, Cameron John Carpmaels & Ransford 43-45 Bloomsbury Square London WC1A 2RA (GB) (56) References cited: EP-A- 0 399 843 EP-A- 0 745 387 WO-A-99/02132 OTT G. ET AL.: "The Adjuvant MF59: A 10-Year Perspective" METHODS IN MOLECULAR MEDICINE, vol. 42, 15 April 2000 (2000-04-15), pages 211-228, XP002501687 SPANGGORD ET AL: "Enhancement of an analytical method for the determination of squalene in anthrax vaccine adsorbed formulations" JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, NEW YORK, NY, US, vol. 42, no. 4, 11 October 2006 (2006-10-11), pages 494-499, XP005657193 ISSN: 0731-7085 MILES A P ET AL: "MontanideR ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations" VACCINE, BUTTERWORTH SCIENTIFIC. GUILDFORD, GB, vol. 23, no. 19, 31 March 2005 (2005-03-31), pages 2530-2539, XP004887459 ISSN: 0264-410X DEREK T O’HAGAN: "MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection" EXPERT REV. VACCINES, vol. 6, no. 5, 2007, pages 699-711, XP002501795 WACK ET AL: "Combination adjuvants for the induction of potent, long-lasting antibody and T- cell responses to influenza vaccine in mice" VACCINE, BUTTERWORTH SCIENTIFIC. GUILDFORD, GB, vol. 26, no. 4, 26 December 2007 (2007-12-26), pages 552-561, XP022418985 ISSN: 0264-410X

Transcript of QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

Page 1: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

Note: Within nine months of the publication of the mention of the grant of the European patent in the European PatentBulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with theImplementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has beenpaid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)E

P2

029

170

B1

��&�� � �������(11) EP 2 029 170 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 28.10.2009 Bulletin 2009/44

(21) Application number: 07859275.5

(22) Date of filing: 06.11.2007

(51) Int Cl.:A61K 39/39 (2006.01)

(86) International application number: PCT/IB2007/004229

(87) International publication number: WO 2008/056263 (15.05.2008 Gazette 2008/20)

(54) QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS CONTAINING SQUALENE

QUALITÄTSPRÜFUNGSVERFAHREN FÜR ÖL-IN-WASSER-EMULSIONEN MIT SQUALEN

MÉTHODES DE CONTRÔLE QUALITÉ POUR DES ÉMULSIONS D’HUILE DANS L’EAU CONTENANT DU SQUALÈNE

(84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TRDesignated Extension States: AL BA HR MK RS

(30) Priority: 08.11.2006 GB 0622282

(43) Date of publication of application: 04.03.2009 Bulletin 2009/10

(60) Divisional application: 09075409.4

(73) Proprietor: Novartis AG4056 Basel (CH)

(72) Inventor: KLEIN, Norbert035041 Marburg (DE)

(74) Representative: Marshall, Cameron JohnCarpmaels & Ransford 43-45 Bloomsbury SquareLondon WC1A 2RA (GB)

(56) References cited: EP-A- 0 399 843 EP-A- 0 745 387WO-A-99/02132

• OTT G. ET AL.: "The Adjuvant MF59: A 10-Year Perspective" METHODS IN MOLECULAR MEDICINE, vol. 42, 15 April 2000 (2000-04-15), pages 211-228, XP002501687

• SPANGGORD ET AL: "Enhancement of an analytical method for the determination of squalene in anthrax vaccine adsorbed formulations" JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, NEW YORK, NY, US, vol. 42, no. 4, 11 October 2006 (2006-10-11), pages 494-499, XP005657193 ISSN: 0731-7085

• MILES A P ET AL: "MontanideR ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations" VACCINE, BUTTERWORTH SCIENTIFIC. GUILDFORD, GB, vol. 23, no. 19, 31 March 2005 (2005-03-31), pages 2530-2539, XP004887459 ISSN: 0264-410X

• DEREK T O’HAGAN: "MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection" EXPERT REV. VACCINES, vol. 6, no. 5, 2007, pages 699-711, XP002501795

• WACK ET AL: "Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice" VACCINE, BUTTERWORTH SCIENTIFIC. GUILDFORD, GB, vol. 26, no. 4, 26 December 2007 (2007-12-26), pages 552-561, XP022418985 ISSN: 0264-410X

Page 2: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] This invention is in the field of vaccine adjuvantmanufacture and, in particular, quality control assays foroil-in-water emulsion adjuvants that contain squalene.

BACKGROUND ART

[0002] The vaccine adjuvant known as ’MF59’ [1-3] isa submicron oil-in-water emulsion of squalene, Tween80, and Span 85. It may also includes citrate ions e.g.10mM sodium citrate buffer. The composition of theemulsion by volume can be about 5% squalene, about0.5% polysorbate 80 and about 0.5% Span 85. The ad-juvant is described in more detail in Chapter 10 of ref. 4and chapter 12 of ref. 5. The oil droplets in MF59 aresmall enough to be sterile-filtered through a 0.2Pm filter.[0003] Because it is an adjuvant for administration tohumans (e.g. it is included in the FLUID™ vaccine) thenquality control of the vaccine is particularly important, andlot-to-lot variation has to be controlled within narrow lim-its. Parameters that are important for MF59 include themean droplet size in the emulsion, the bioburden, the pH,the visual appearance, and the presence of breakdownproducts or of common contaminants of its ingredients.[0004] It is an object of the invention to provide furtherand improved assays for quality control of oil-in-wateremulsion adjuvants such as MF59.

DISCLOSURE OF THE INVENTION

[0005] It has now been found that measurements ofthe squalene content in lots of the MF59 adjuvant can beused as a way of checking for problems during produc-tion. In particular, it has been found that a drop insqualene content can indicate that filtration problems oc-curred. Testing the squalene content in the final lots iseasier than investigating the characteristics of the filter,particularly if the filter is part of an apparatus that is beingmaintained in GMP conditions; and so a squalene assaysimplifies the quality control of oil-in-water emulsions.[0006] Thus the invention provides a quality controltest method for an oil-in-water emulsion adjuvant, where-in the adjuvant comprises squalene, and wherein themethod comprises a step of comparing the actualsqualene content of the adjuvant to a standard squalenecontent. If the actual squalene content differs from thestandard content then there has been a production failureand so the adjuvant fails the quality control test; if theactual content is acceptable, however, the adjuvant pass-es the quality control test and can be used for vaccinemanufacture.[0007] The invention also provides a process for man-ufacturing an oil-in-water emulsion adjuvant, comprisingthe steps of: (i) preparing a submicron oil-in-water emul-sion using known amounts of an aqueous carrier, a sur-

factant and squalene; (ii) subjecting the emulsion to filtersterilization, to provide a sterilized emulsion; and (iii)measuring the squalene content of the sterilized emul-sion. The squalene content measured in step (iii) can becompared to the squalene content known from step (i).If this comparison reveals that the squalene content hassignificantly changed then there has been a productionfailure and so the adjuvant fails the quality control test.[0008] Before being administered to a patient, an emul-sion adjuvant is usually admixed with an antigen. Themixing may take place extemporaneously, at the time ofuse (in which case the antigen and adjuvant are pack-aged separately), or can take place during vaccine man-ufacture, before filling. In the former situation, the qualitycontrol test will be performed on the adjuvant itself. Inthe latter situation, the quality control test may take placeon the adjuvant before being mixed with the antigenand/or on the adjuvant-antigen admixture.[0009] Thus the invention also provides a quality con-trol test method for a vaccine that includes an oil-in-wateremulsion adjuvant including squalene, wherein the meth-od comprises the steps of: (i) comparing the actualsqualene content of the adjuvant to a standard squalenecontent; and, if the actual squalene content is acceptable,(ii) preparing the vaccine by combining the adjuvant withan antigen. Step (ii) may involve packaging the adjuvantand antigen separately, such that they can be admixedat the time of use, or it may involve admixing them beforeor during filling.[0010] Similarly, the invention provides a quality con-trol test method for a vaccine that includes an antigenand an oil-in-water emulsion adjuvant includingsqualene, wherein the method comprises a step of com-paring the actual squalene content of the vaccine to astandard squalene content. If the actual squalene contentdiffers from the standard content then there has been aproduction failure and so the vaccine fails the quality con-trol test; if the actual content is acceptable, however, thevaccine passes the quality control test and can be re-leased for sale and/or distribution.[0011] The invention is particularly useful during themanufacture of influenza virus vaccines, and so the in-vention provides a method comprising a step of mixing(i) an influenza virus antigen and (ii) an oil-in-water emul-sion adjuvant that includes squalene, and wherein themethod also includes a step in which squalene contentis measured (a) in the adjuvant before the mixing stepand/or (b) in the antigen-adjuvant mixture after the mixingstep. As mentioned above, the measured squalene con-tent(s) can be compared to standard squalene content(s) in order to check for production failure.

The testing method

[0012] The methods of the invention are used with oil-in-water emulsion adjuvants that include squalene, andinvolve measuring the squalene content of either (i) theadjuvant itself, and/or (ii) a vaccine composition that in-

1 2

Page 3: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

3

5

10

15

20

25

30

35

40

45

50

55

cludes the adjuvant in admixture with an antigen.[0013] Various squalene assays are known in the art.For example, reference 6 discloses a quantitative color-imetric assay for squalene. Reference 7 discloses a high-temperature gas chromatography flame ionization detec-tion method for quantification of squalene in the presenceof free fatty acids, free sterols and acylglycerol molecularspecies. Reference 8 discloses a validated assay usinghigh performance liquid chromatography with ultravioletdetection, with a limit of detection of 140 parts per billion.Reference 9 discloses the use of supercritical fluid chro-matography in the quantitative analysis of squalene. Ref-erence 10 discloses laser desorption/ionization time-of-flight mass spectrometry methods for assaying squalene.Reference 11 discloses the use of gas chromatography-mass spectrometry and high-performance liquid chroma-tography with supercritical CO2 extraction for assayingsqualene content. Reference 12 discloses a simple andreliable procedure for the quantification of squalene, α-tocopherol and sterols by a direct method involving gaschromatographic analysis of unsaponifiable material af-ter silylation. Reference 13 discloses a procedure whereunsaponifiable material is fractionated by normal phaseHPLC on a silica gel column using a mobile phase con-sisting of hexane/propanol-2/water, the eluate is moni-tored at 215nm, and squalene in the hydrocarbon fractionthus collected is quantified on an analytical column elutedwith hexane. Direct and indirect assays can be used e.g.squalene may first be subjected to cold saponification,followed by gas chromatography-mass spectrometry ofthe hexane extract.[0014] When the squalene content of an adjuvant oran antigen has been measured, it is compared to a stand-ard squalene content. A standard squalene content canbe an amount which is known to be acceptable for ad-ministration to patients for the adjuvant in question. It canbe the amount of squalene that was used to prepare theadjuvant, thereby allowing the final amount of squaleneto be compared to the starting amount.[0015] The standard content may be provided in vari-ous forms. For instance, a positive control sample of ad-juvant can be assayed in parallel to the test adjuvant,such that their squalene contents can be compared. Asan alternative, the positive control could be analysed be-fore or after the test adjuvant to provide a figure for com-parison. As a further alternative, the standard contentmay be an absolute figure based on previous analyses.In all cases, however, the method will reveal if thesqualene content in the adjuvant being tested is accept-able for quality control purposes. If the measuredsqualene content differs from the standard content thenthis difference indicates a production failure.[0016] The standard content may be an absoluteamount or concentration, or it may be a relative amounte.g. measured relative to surfactant content or to antigencontent. An absolute amount or concentration is moreusual.[0017] The standard content may be a precise figure

or may be a range. For instance, it may be an absoluteamount with an acceptable percentage deviation e.g.�10%, �5%, etc. A measured content can then be com-pared to a standard content range and, if it falls outsidethe range, the assay is failed. Typical absolute standardsqualene contents for oil-in-water emulsion adjuvantsmay be, for instance, between 40-45mg/ml (e.g.43mg/ml), between 36-42mg/ml (e.g. 39mg/ml), between20-25mg/ml (e.g. 21.5mg/ml), between 18-21 mg/ml(e.g. 19.5mg/ml), etc.[0018] In accordance with normal statistical standards,squalene content will typically be measured for severalsamples in order to minimise the effects of experimentaldeviation. Thus the invention may involve a comparisonof an average value against the standard content.[0019] As explained in more detail below, the squaleneassay can be performed on an adjuvant before beingmixed with antigen, on antigen/adjuvant mixtures, on bulkmaterial prior to filling, on filled material that has beenextracted from bulks, etc.

The adjuvant

[0020] The methods of the invention are used with oil-in-water emulsion adjuvants. The adjuvants includesqualene, which is an unsaturated terpenoid oil (C30H50;[(CH3)2C [=CHCH2CH2C (CH3)]2=CHCH2-]2;2,6,10,15,19,23- hexamethyl- 2,6,10,14,18,22- tetra-cosahexaene; CAS RN 7683-64-9).[0021] The adjuvants may also include other oils in ad-dition to squalene. Preferably, any further oils are biode-gradable (metabolisable) and biocompatible. The adju-vants may also include oils such as those from an animal(such as fish) or vegetable source. Sources for vegetableoils include nuts, seeds and grains. Peanut oil, soybeanoil, coconut oil, and olive oil, the most commonly availa-ble, exemplify the nut oils. Jojoba oil can be used e.g.obtained from the jojoba bean. Seed oils include safflow-er oil, cottonseed oil, sunflower seed oil, sesame seedoil and the like. In the grain group, corn oil is the mostreadily available, but the oil of other cereal grains suchas wheat, oats, rye, rice, teff, triticale and the like mayalso be used. 6-10 carbon fatty acid esters of glyceroland 1,2-propanediol, while not occurring naturally in seedoils, may be prepared by hydrolysis, separation and es-terification of the appropriate materials starting from thenut and seed oils. Fats and oils from mammalian milk aremetabolizable and may therefore be used in the practiceof this invention. The procedures for separation, purifi-cation, saponification and other means necessary for ob-taining pure oils from animal sources are well known inthe art. Most fish contain metabolizable oils which maybe readily recovered. For example, cod liver oil, sharkliver oils, and whale oil such as spermaceti exemplifyseveral of the fish oils which may be used herein. Anumber of branched chain oils are synthesized biochem-ically in 5-carbon isoprene units and are generally re-ferred to as terpenoids, which include squalene.

3 4

Page 4: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

4

5

10

15

20

25

30

35

40

45

50

55

Squalane, the saturated analog to squalene, can also beused. Fish oils, including squalene and squalane, arereadily available from commercial sources or may be ob-tained by methods known in the art. Other preferred oilsare the tocopherols. Where a composition includes a to-copherol, any of the α, β, γ, δ, ε or ξ tocopherols can beused, but α-tocopherols are preferred. The tocopherolcan take several forms e.g. different salts and/or isomers.Salts include organic salts, such as succinate, acetate,nicotinate, etc. D-α-tocopherol and DL-α-tocopherol canboth be used. A preferred α-tocopherol is DL-α-tocophe-rol. If a salt of this tocopherol is to be used, the preferredsalt is the succinate.[0022] In addition to the presence of squalene (and,optionally, one or more further other oils), the emulsionincludes an aqueous phase and a surfactant. The sur-factant is preferably biodegradable (metabolisable) andbiocompatible. Surfactants can be classified by their’HLB’ (hydrophile/lipophile balance). Preferred sur-factants of the invention have a HLB of at least 10, pref-erably at least 15, and more preferably at least 16. Theinvention can be used with surfactants including, but notlimited to: the polyoxyethylene sorbitan esters sur-factants (commonly referred to as the Tweens), espe-cially polysorbate 20 and polysorbate 80; copolymers ofethylene oxide (EO), propylene oxide (PO), and/or buty-lene oxide (BO), sold under the DOWFAX™ tradename,such as linear EO/PO block copolymers; octoxynols,which can vary in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100,or t-octylphenoxypolyethoxyethanol) being of particularinterest; (octylphenoxy)polyethoxyethanol (IGEPAL CA-630/NP-40); phospholipids such as phosphatidylcholine(lecithin); polyoxyethylene fatty ethers derived from lau-ryl, cetyl, stearyl and oleyl alcohols (known as Brij sur-factants), such as triethyleneglycol monolauryl ether (Brij30); polyoxyethylene-9-lauryl ether; and sorbitan esters(commonly known as the SPANs), such as sorbitan tri-oleate (Span 85) and sorbitan monolaurate. Preferredsurfactants for including in the emulsion are Tween 80(polyoxyethylene sorbitan monooleate), Span 85 (sorb-itan trioleate), lecithin and Triton X-100.[0023] Mixtures of surfactants can be used e.g. Tween80/Span 85 mixtures, or Tween 80/Triton-X100 mixtures.A combination of a polyoxyethylene sorbitan ester suchas polyoxyethylene sorbitan monooleate (Tween 80) andan octoxynol such as t-octylphenoxypolyethoxyethanol(Triton X-100) is also suitable. Another useful combina-tion comprises laureth 9 plus a polyoxyethylene sorbitanester and/or an octoxynol.[0024] Preferred amounts of surfactants (% by weight)are: polyoxyethylene sorbitan esters (such as Tween 80)0.01 to 1%, in particular about 0.1 %; octyl- or nonylphe-noxy polyoxyethanols (such as Triton X-100, or other de-tergents in the Triton series) 0.001 to 0.1 %, in particular0.005 to 0.02%; polyoxyethylene ethers (such as laureth9) 0.1 to 20 %, preferably 0.1 to 10 % and in particular0.1 to 1 % or about 0.5%.

[0025] The aqueous phase of the emulsion is prefer-ably buffered e.g. phosphate buffered saline.[0026] The oil droplets in the emulsion are typically lessthan 1 Pm in diameter (on average). Sub-micron diam-eters can easily be achieved with a microfluidiser to pro-vide stable emulsions. Droplets with a size less than220nm are particularly preferred, as they can be subject-ed to filter sterilization. Emulsions in which at least 80%by number of the droplets have a diameter in the rangeof 50-200nm are particularly useful.[0027] Specific oil-in-water emulsion adjuvants thatcontain squalene and can be tested by the methods ofthe invention include, but are not limited to:

• A submicron emulsion of squalene, Tween 80, andSpan 85. The composition of the emulsion by volumecan be about 5% squalene, about 0.5% polysorbate80 and about 0.5% Span 85. In weight terms, theseamounts become 4.3% squalene, 0.5% polysorbate80 and 0.48% Span 85. This adjuvant is known as’MF59’. The MF59 emulsion advantageously in-cludes citrate ions e.g. 10mM sodium citrate buffer.

• An emulsion of squalene, a tocopherol, and Tween80. The emulsion may include phosphate bufferedsaline. It may also include Span 85 (e.g. at 1%)and/or lecithin. These emulsions may have from 2to 10% squalene, from 2 to 10% tocopherol and from0.3 to 3% Tween 80, and the weight ratio of squalene:aocopherol is preferably ≤1 as this provides a morestable emulsion. Squalene and Tween 80 may bepresent volume ratio of about 5:2. One such emul-sion can be made by dissolving Tween 80 in PBS togive a 2% solution, then mixing 90ml of this solutionwith a mixture of (5g of DL-α-tocopherol and 5mlsqualene), then microfluidising the mixture. The re-sulting emulsion may have submicron oil dropletse.g. with an average diameter of between 100 and250nm, preferably about 180nm. The emulsion mayalso include a 3d-MPL and/or a saponin (e.g. QS21).

• An emulsion of squalene, a tocopherol, and a Tritondetergent (e.g. Triton X-100). The emulsion may alsoinclude a 3-O-deacylated monophosphoryl lipid A(’3d-MPL’). The emulsion may contain a phosphatebuffer.

• An emulsion comprising squalene, Pluronic F-68block co-polymer, egg phosphatidyl choline, glyceroland a tocopherol [14].

• An emulsion comprising squalene, a polysorbate(e.g. polysorbate 80), a Triton detergent (e.g. TritonX-100) and a tocopherol (e.g. an α-tocopherol suc-cinate). The emulsion may include these three com-ponents at a mass ratio of about 75:11:10 (e.g.750Pg/ml polysorbate 80, 1 10Pg/ml Triton X-100and 100Pg/ml α-tocopherol succinate), and these

5 6

Page 5: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

5

5

10

15

20

25

30

35

40

45

50

55

concentrations should include any contribution ofthese components from antigens. The emulsion mayalso include a 3d-MPL. The emulsion may also in-clude a saponin, such as QS21. The aqueous phasemay contain a phosphate buffer.

• An emulsion comprising squalene, an aqueous sol-vent, a polyoxyethylene alkyl ether hydrophilic non-ionic surfactant (e.g. polyoxyethylene (12) cetostear-yl ether) and a hydrophobic nonionic surfactant (e.g.a sorbitan ester or mannide ester, such as sorbitanmonoleate or ’Span 80’). The emulsion is preferablythermoreversible and/or has at least 90% of the oildroplets (by volume) with a size less than 200 nm[15]. The emulsion may also include one or more of:alditol; a cryoprotective agent (e.g. a sugar, such asdodecylmaltoside and/or sucrose); and/or an alkyl-polyglycoside. It may also include a TLR4 agonist,such as one whose chemical structure does not in-clude a sugar ring [16]. Such emulsions may belyophilized.

• An emulsion of squalene, poloxamer 105 and Abil-Care [17]. The final concentration (weight) of thesecomponents in adjuvanted vaccines are 5%squalene, 4% poloxamer 105 (pluronic polyol) and2% Abil-Care 85 (Bis-PEG/PPG-16/16 PEG/PPG-16/16 dimethicone; caprylic/capric triglyceride).

The antigen

[0028] Although it is possible to administer oil-in-wateremulsion adjuvants on their own to patients (e.g. to pro-vide an adjuvant effect for an antigen that has been sep-arately administered to the patient), it is more usual toadmix the adjuvant with an antigen prior to administra-tion. This admixing may take place during manufacture,such that the distributed vaccine product is ready for ad-ministration, or can take place at the time of use.[0029] Various antigens can be used with oil-in-wateremulsions, including but not limited to: viral antigens,such as viral surface proteins; bacterial antigens, suchas protein and/or saccharide antigens; fungal antigens;parasite antigens; and tumor antigens.[0030] The invention is particularly useful for vaccinesagainst influenza virus, HIV, hookworm, hepatitis B virus,herpes simplex virus, rabies, respiratory syncytial virus,cytomegalovirus, Staphylococcus aureus, chlamydia,SARS coronavirus, varicella zoster virus, Streptococcuspneumoniae, Mycobacterium tuberculosis, Bacillus an-thracis, Epstein Barr virus, human papillomavirus, etc.

• Influenza virus antigens. These may take the formof a live virus or an inactivated virus. Where an in-activated virus is used, the vaccine may comprisewhole virion, split virion, or purified surface antigens(including hemagglutinin and, usually, also includingneuraminidase). Influenza antigens can also be pre-

sented in the form of virosomes [18]. The antigensmay have any hemagglutinin subtype, selected fromH1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12,H13, H14, H15 and/or H16. Vaccine may include an-tigen(s) from one or more (e.g. 1, 2, 3, 4 or more)influenza virus strains, including influenza A virusand/or influenza B virus. The influenza virus may bea reassortant strain, and may have been obtainedby reverse genetics techniques [e.g. 19-23]. Thusthe virus may include one or more RNA segmentsfrom a A/PR/8/34 virus (typically 6 segments fromA/PR/8/34, with the HA and N segments being froma vaccine strain, i.e. a 6:2 reassortant). The virusesused as the source of the antigens can be growneither on eggs (e.g. embryonated hen eggs) or oncell culture. Where cell culture is used, the cell sub-strate will typically be a mammalian cell line, suchas MDCK; CHO; 293T; BHK; Vero; MRC-5; PER.C6;WI-38; etc.. Preferred mammalian cell lines for grow-ing influenza viruses include: MDCK cells [24-27],derived from Madin Darby canine kidney; Vero cells[28-30], derived from African green monkey (Cerco-pithecus aethiops) kidney; or PER.C6 cells [31], de-rived from human embryonic retinoblasts. These celllines are widely available e.g. from the AmericanType Cell Culture (ATCC) collection [32], from theCoriell Cell Repositories [33], or from the EuropeanCollection of Cell Cultures (ECACC). For example,the ATCC supplies various different Vero cells undercatalog numbers CCL-81, CCL-81.2, CRL-1586 andCRL-1587, and it supplies MDCK cells under catalognumber CCL-34. PER.C6 is available from theECACC under deposit number 96022940. As a less-preferred alternative to mammalian cell lines, viruscan be grown on avian cell lines [e.g. refs. 34-36],including cell lines derived from ducks (e.g. duck ret-ina) or hens e.g. chicken embryo fibroblasts (CEF),etc. Where virus has been grown on a mammaliancell line then the composition will advantageously befree from egg proteins (e.g. ovalbumin and ovomu-coid) and from chicken DNA, thereby reducing aller-genicity.

• Human immunodeficiency virus, including HIV-1and HIV-2. The antigen will typically be an envelopeantigen.

• Hepatitis B virus surface antigens. This antigen ispreferably obtained by recombinant DNA methodse.g. after expression in a Saccharomyces cerevisiaeyeast. Unlike native viral HBsAg, the recombinantyeast-expressed antigen is non-glycosylated. It canbe in the form of substantially-spherical particles (av-erage diameter of about 20nm), including a lipid ma-trix comprising phospholipids. Unlike native HBsAgparticles, the yeast-expressed particles may includephosphatidylinositol. The HBsAg may be from anyof subtypes ayw1, ayw2, ayw3, ayw4, ayr, adw2,

7 8

Page 6: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

6

5

10

15

20

25

30

35

40

45

50

55

adw4, adrq- and adrq+.

• Hookworm, particularly as seen in canines (Ancy-lostoma caninum). This antigen may be recombinantAc-MTP-1 (astacin-like metalloprotease) and/or anaspartic hemoglobinase (Ac-APR-1), which may beexpressed in a baculovirus/insect cell system as asecreted protein [37,38].

• Herpes simplex virus antigens (HSV). A preferredHSV antigen for use with the invention is membraneglycoprotein gD. It is preferred to use gD from a HSV-2 strain (’gD2’ antigen). The composition can use aform of gD in which the C-terminal membrane anchorregion has been deleted [39] e.g. a truncated gDcomprising amino acids 1-306 of the natural proteinwith the addition of aparagine and glutamine at theC-terminus. This form of the protein includes the sig-nal peptide which is cleaved to yield a mature 283amino acid protein. Deletion of the anchor allows theprotein to be prepared in soluble form.

• Human papillomavirus antigens (HPV). PreferredHPV antigens for use with the invention are L1 capsidproteins, which can assemble to form structuresknown as virus-like particles (VLPs). The VLPs canbe produced by recombinant expression of L1 inyeast cells (e.g. in S.cerevisiae) or in insect cells(e.g. in Spodoptera cells, such as S.frugiperda, orin Drosophila cells). For yeast cells, plasmid vectorscan carry the L1 gene(s); for insect cells, baculovirusvectors can carry the L1 gene(s). More preferably,the composition includes L1 VLPs from both HPV-16 and HPV-18 strains. This bivalent combinationhas been shown to be highly effective [40]. In additionto HPV-16 and HPV-18 strains, it is also possible toinclude L1 VLPs from HPV-6 and HPV-11 strains.The use of oncogenic HPV strains is also possible.A vaccine may include between 20-60Pg/ml (e.g.about 40Pg/ml) of L1 per HPV strain.

• Anthrax antigens. Anthrax is caused by Bacillus an-thracis. Suitable B.anthracis antigens include A-components (lethal factor (LF) and edema factor(EF)), both of which can share a common B-compo-nent known as protective antigen (PA). The antigensmay optionally be detoxified. Further details can befound in references 41 to 43].

• Cancer antigens. A variety of tumour-specific anti-gens are known. The invention may be used withantigens that elicit an immunotherapeutic responseagainst lung cancer, melanoma, breast cancer, pros-tate cancer, etc.

[0031] The invention is also useful with antigens basedon hybrid or fusion proteins that comprise a viral surfaceantigen and a heterologous antigen. For instance, it is

known to fuse the HBsAg sequence to heterologous an-tigens to exploit HBsAg’s ability to assemble into parti-cles. For example, reference 44 reports fusions of HIV-1 gp120 to HBsAg to give a protein that spontaneouslyassembled into particles that resemble native HBsAgparticles. This approach has also been used for malariavaccines. Reference 45 reports that epitopes of up to61aa from the malaria gp190 antigen were inserted intothe HBsAg sequence, and that the expressed hybrid par-ticles could elicit an anti-gp190 immune response in an-imals. Reference 46 report an protein having 16 repeatsof a 4-mer sequence of the circumsporozoite protein ex-pressed as a fusion protein with HBsAg. Reference 47reports the production in yeast of virus-like particles com-posed of Pfsl6 fused to HBsAg. Reference 48 disclosesa hybrid antigen in which the circumsporozoite protein isfused to HBsAg. Reference 49 discloses a fusion of theC-terminal region of the merozoite surface 1 protein ofP.vivax, which formed immunogenic particles of 20-45nm size. The use of HBsAg for presenting malarial anti-gens in self-assembling particulate form is therefore wellknown in the art. Thus the invention can be used withhybrid antigens that comprise a viral surface antigen anda heterologous antigen. Particularly where the viral sur-face antigen is HBsAg, the heterologous antigen may befrom HIV, Plasmodium falciparum, Plasmodium vivax,Plasmodium malariae or Plasmodium ovale. SuitableHIV antigens for making HBsAg hybrids include envelopeglycoprotein gp120 or antigenic fragments thereof [44].Suitable P.falciparum antigens for making HBsAg hy-brids may be based on a subunit of the circumsporozoitesurface antigen ("CSP") e.g. they may include between3 and 20 repeats of its NANP motif, and/or they mayinclude the C-terminal region of CSP (but typically notincluding the final 12 amino acids from the C-terminal).For example, the invention may use the antigen knownas "RTS", which contains a large portion of the C-terminalof CSP from the NF54 or 7G8 isolate of P.falciparum(amino acids 210 to 398, which includes 19 NANP re-peats and the T cell epitope region at amino acids 367to 390), fused to the N-terminus of HBsAg by four aminoacids of the preS2 portion of HBsAg. The sequence ofRTS can thus contain: (i) a N-terminus methionine resi-due; (ii) Met-Ala-Pro; (iii) 189 amino acids correspondingeither to amino acids 210-398 of CS protein from P.fal-ciparum 7G8 or to amino acids 207-395 of CS proteinfrom P.falciparum NF54; (iv) Arg or Gly; (v) Pro-Val-Thr-Asn from hepatitis B Pre-S2 protein; and (vi) HBsAg.

The vaccine

[0032] Emulsion adjuvants that have been tested bythe methods of the invention can be used to manufacturevaccines. As mentioned above, mixing and emulsion andantigen may take place extemporaneously, at the timeof use, or can take place during vaccine manufacture.The methods of the invention can be applied when mak-ing both types of vaccine. For a pre-mixed vaccine, the

9 10

Page 7: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

7

5

10

15

20

25

30

35

40

45

50

55

method can be performed on the adjuvant before it ismixed with antigen, and/or it can be performed after mix-ing, and vaccine that passes quality control testing canthen be released for sale and/or distribution. For a vac-cine supplied in a form for extemporaneous mixing, themethod will be performed on the adjuvant prior to pack-aging it in a kit together with antigen.[0033] Thus a method of the invention which tests anadjuvant may include a further process step of admixingthe adjuvant with an antigen. As an alternative, it mayinclude a further step of packaging the adjuvant into a kitas a kit component together with an antigen component.These further steps will usually take place only if the ad-juvant has passed the quality control test.[0034] Methods of the invention will usually be per-formed on a small sample of a bulk adjuvant or admixedvaccine. Quality control will be performed on this sample,and the bulk will be packaged into doses only if the sam-ple passes the quality control test. Thus a method of theinvention may involve: extracting a sample from a bulkadjuvant; testing that sample as described above; andthen, if the sample passes the test, combining that bulkwith a bulk mixture of antigen. Unit doses of the mixedbulks can then be extracted and packaged for sale and/ordistribution.[0035] In an alternative embodiment, a method of theinvention may involve: extracting a sample from a bulkadjuvant; testing that sample, as described above; andthen, if the sample passes the test, extracting unit dosesfrom the bulk adjuvant for mixing with unit doses of anti-gen.[0036] In a further alternative embodiment, a methodof the invention may involve: extracting a sample from abulk adjuvant; testing that sample, as described above;and then, if the sample passes the test, extracting unitdoses from the bulk adjuvant for packaging as kit com-ponents, as described above, for extemporaneous use.[0037] In a further alternative embodiment, a methodof the invention may involve: extracting a sample from abulk mixture of antigen and adjuvant; testing that sample,as described above; and then, if the sample passes thetest, extracting unit doses from the bulk mixture for pack-aging.[0038] For influenza vaccines, unit doses of vaccineare typically standardized by reference to hemagglutinin(HA) content, typically measured by SRID. Existing vac-cines typically contain about 15Pg of HA per strain, al-though lower doses can be used, particularly when usingan adjuvant. Fractional doses such as � (i.e. 7.5Pg HAper strain), � and 1/8 have been used [50,51], as havehigher doses (e.g. 3x or 9x doses [52,53]). Thus vaccinesmay include between 0.1 and 150Pg of HA per influenzastrain, preferably between 0.1 and 50Pg e.g. 0.1-20Pg,0.1-15Pg, 0.1-10Pg, 0.1-7.5Pg, 0.5-5Pg, etc. Particulardoses include e.g. about 15Pg, about 10Pg, about 7.5Pg,about 5Pg, about 3.8Pg, about 1.9Pg, about 1.5Pg, etc.per strain.[0039] Overall, therefore, the invention can be used

when preparing mixed vaccines or when preparing kitsincluding antigen and adjuvant ready for mixing. Wheremixing takes place during manufacture then the volumesof bulk antigen and adjuvant that are mixed will typicallybe greater than 1 liter e.g. ≥5 liters, ≥10liters, ≥20 liters,≥50 liters, etc. Where mixing takes place at the point ofuse then the volumes that are mixed will typically besmaller than 1 milliliter e.g. ≤0.6ml, ≤0.5ml, ≤0.4ml,≤0.3ml, ≤0.2ml, etc. In both cases it is usual for substan-tially equal volumes of emulsion and antigen solution tobe mixed i.e. substantially 1:1 (e.g. between 1.1:1 and1:1.1, preferably between 1.05:1 and 1:1.05, and morepreferably between 1.025:1 and 1:1.025). In some em-bodiments, however, an excess of adjuvant or an excessof antigen may be used. Where an excess volume of onecomponent is used, the excess will generally be at least1.5:1 e.g. ≥2:1, ≥2.5:1, ≥3:1, ≥4:1, ≥5:1, etc.[0040] Where antigen and adjuvant are presented asseparate components within a kit, they are physicallyseparate from each other within the kit, and this separa-tion can be achieved in various ways. For instance, thecomponents may be in separate containers, such as vi-als. The contents of two vials can then be mixed whenneeded e.g. by removing the contents of one vial andadding them to the other vial, or by separately removingthe contents of both vials and mixing them in a third con-tainer.[0041] In a preferred arrangement, one of the kit com-ponents is in a syringe and the other is in a containersuch as a vial. The syringe can be used (e.g. with a nee-dle) to insert its contents into the second container formixing, and the mixture can then be withdrawn into thesyringe. The mixed contents of the syringe can then beadministered to a patient, typically through a new sterileneedle. Packing one component in a syringe eliminatesthe need for using a separate syringe for patient admin-istration.[0042] In another preferred arrangement, the two kitcomponents are held together but separately in the samesyringe e.g. a dual-chamber syringe, such as those dis-closed in references 54-61 etc. When the syringe is ac-tuated (e.g. during administration to a patient) then thecontents of the two chambers are mixed. This arrange-ment avoids the need for a separate mixing step at thetime of use.[0043] The contents of the various kit components willgenerally all be in aqueous form. In some arrangements,a component (typically the antigen component ratherthan the emulsion component) is in dry form (e.g. in alyophilised form), with the other component being inaqueous form. The two components can be mixed in or-der to reactivate the dry component and give an aqueouscomposition for administration to a patient. A lyophilisedcomponent will typically be located within a vial ratherthan a syringe. Dried components may include stabilizerssuch as lactose, sucrose or mannitol, as well as mixturesthereof e.g. lactose/sucrose mixtures, sucrose/mannitolmixtures, etc. One possible arrangement uses an aque-

11 12

Page 8: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

8

5

10

15

20

25

30

35

40

45

50

55

ous emulsion component in a pre-filled syringe and alyophilised antigen component in a vial.[0044] If vaccines contain components in addition tothe adjuvant and the antigen then these further compo-nents may be included in one these two kit components,or may be part of a third kit component.[0045] Suitable containers for mixed vaccines of theinvention, or for individual kit components, include vialsand disposable syringes. These containers should besterile.[0046] Where a composition/component is located ina vial, the vial is preferably made of a glass or plasticmaterial. The vial is preferably sterilized before the com-position is added to it. To avoid problems with latex-sen-sitive patients, vials are preferably sealed with a latex-free stopper, and the absence of latex in all packagingmaterial is preferred. The vial may include a single doseof vaccine, or it may include more than one dose (a ’multi-dose’ vial) e.g. 10 doses. Preferred vials are made ofcolorless glass.[0047] A vial can have a cap (e.g. a Luer lock) adaptedsuch that a pre-filled syringe can be inserted into the cap,the contents of the syringe can be expelled into the vial(e.g. to reconstitute lyophilised material therein), and thecontents of the vial can be removed back into the syringe.After removal of the syringe from the vial, a needle canthen be attached and the composition can be adminis-tered to a patient. The cap is preferably located inside aseal or cover, such that the seal or cover has to be re-moved before the cap can be accessed.[0048] Where a composition/component is packagedinto a syringe, the syringe will not normally have a needleattached to it, although a separate needle may be sup-plied with the syringe for assembly and use. Safety nee-dles are preferred. 1-inch 23-gauge, 1-inch 25-gauge and5/8-inch 25-gauge needles are typical. Syringes may beprovided with peel-off labels on which the lot number,influenza season and expiration date of the contents maybe printed, to facilitate record keeping. The plunger inthe syringe preferably has a stopper to prevent the plung-er from being accidentally removed during aspiration.The syringes may have a latex rubber cap and/or plunger.Disposable syringes contain a single dose of vaccine.The syringe will generally have a tip cap to seal the tipprior to attachment of a needle, and the tip cap is pref-erably made of a butyl rubber. If the syringe and needleare packaged separately then the needle is preferablyfitted with a butyl rubber shield. Preferred syringes arethose marketed under the trade name "Tip-Lok"™.[0049] Containers may be marked to show a half-dosevolume e.g. to facilitate delivery to children. For instance,a syringe containing a 0.5ml dose may have a mark show-ing a 0.25ml volume.[0050] Where a glass container (e.g. a syringe or avial) is used, then it is preferred to use a container madefrom a borosilicate glass rather than from a soda limeglass.[0051] A kit or composition may be packaged (e.g. in

the same box) with a leaflet including details of the vac-cine e.g. instructions for administration, details of the an-tigens within the vaccine, etc. The instructions may alsocontain warnings e.g. to keep a solution of adrenalinereadily available in case of anaphylactic reaction follow-ing vaccination, etc.

Pharmaceutical compositions

[0052] Compositions made using the methods of theinvention are pharmaceutically acceptable. They may in-clude components in addition to the antigen and adjuvante.g. they will typically include one or more pharmaceuticalcarrier(s) and/or excipient(s). A thorough discussion ofsuch components is available in reference 62.[0053] The composition may include preservativessuch as thiomersal or 2-phenoxyethanol. It is preferred,however, that the vaccine should be substantially freefrom (i.e. less than 5Pg/ml) mercurial material e.g. thi-omersal-free [63,64]. Vaccines containing no mercuryare more preferred.[0054] To control tonicity, it is preferred to include aphysiological salt, such as a sodium salt. Sodium chloride(NaCl) is preferred, which may be present at between 1and 20 mg/ml. Other salts that may be present includepotassium chloride, potassium dihydrogen phosphate,disodium phosphate dehydrate, magnesium chloride,calcium chloride, etc.[0055] Compositions will generally have an osmolalityof between 200 mOsm/kg and 400 mOsm/kg, preferablybetween 240-360 mOsm/kg, and will more preferably fallwithin the range of 290-310 mOsm/kg. Osmolality haspreviously been reported not to have an impact on paincaused by vaccination [65], but keeping osmolality in thisrange is nevertheless preferred.[0056] Compositions may include one or more buffers.Typical buffers include: a phosphate buffer; a Tris buffer;a borate buffer; a succinate buffer; a histidine buffer; ora citrate buffer. Buffers will typically be included in the5-20mM range.[0057] The pH of a composition will generally be be-tween 5.0 and 8.1, and more typically between 6.0 and8.0 e.g. between 6.5 and 7.5. A process of the inventionmay therefore include a step of adjusting the pH of thebulk vaccine prior to packaging.[0058] The composition is preferably sterile. The com-position is preferably non-pyrogenic e.g. containing <1EU (endotoxin unit, a standard measure) per dose, andpreferably <0.1 EU per dose. The composition is prefer-ably gluten free.[0059] The composition may include material for a sin-gle immunisation, or may include material for multipleimmunisations (i.e. a ’multidose’ kit). The inclusion of apreservative is preferred in multidose arrangements.[0060] Vaccines are typically administered in a dosagevolume of about 0.5ml, although a half dose (i.e. about0.25ml) may be administered to children.[0061] Compositions and kits are preferably stored at

13 14

Page 9: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

9

5

10

15

20

25

30

35

40

45

50

55

between 2°C and 8°C. They should not be frozen. Theyshould ideally be kept out of direct light.

Methods of treatment, and administration of the vac-cine

[0062] The invention provides kits and compositionsprepared using the methods of the invention. These aresuitable for administration to human patients, and theinvention provides a method of raising an immune re-sponse in a patient, comprising the step of administeringsuch a composition to the patient.[0063] The invention also provides these kits and com-positions for use as medicaments.[0064] The invention also provides the use of: (i) anaqueous preparation of an antigen; and (ii) an oil-in-wateremulsion adjuvant tested according to the invention, inthe manufacture of a medicament for raising an immuneresponse in a patient.[0065] The immune response raised by these methodsand uses will generally include an antibody response,preferably a protective antibody response.[0066] The compositions can be administered in vari-ous ways. The most preferred immunisation route is byintramuscular injection (e.g. into the arm or leg), but otheravailable routes include subcutaneous injection, intrana-sal [66-68], oral [69], intradermal [70,71], transcutane-ous, transdermal [72], etc.[0067] Vaccines prepared according to the inventionmay be used to treat both children and adults. The patientmay be less than 1 year old, 1-5 years old, 5-15 yearsold, 15-55 years old, or at least 55 years old. The patientmay be elderly (e.g. ≥50 years old, preferably ≥65 years),the young (e.g. ≤5 years old), hospitalised patients,healthcare workers, armed service and military person-nel, pregnant women, the chronically ill, immunodeficientpatients, and people travelling abroad. The vaccines arenot suitable solely for these groups, however, and maybe used more generally in a population.[0068] Treatment can be by a single dose schedule ora multiple dose schedule. Multiple doses may be usedin a primary immunisation schedule and/or in a boosterimmunisation schedule. In a multiple dose schedule thevarious doses may be given by the same or differentroutes e.g. a parenteral prime and mucosal boost, a mu-cosal prime and parenteral boost, etc. Administration ofmore than one dose (typically two doses) is particularlyuseful in immunologically naive patients. Multiple doseswill typically be administered at least 1 week apart (e.g.about 2 weeks, about 3 weeks, about 4 weeks, about 6weeks, about 8 weeks, about 12 weeks, about 16 weeks,etc.).[0069] Vaccines of the invention may be administeredto patients at substantially the same time as (e.g. duringthe same medical consultation or visit to a healthcareprofessional) other vaccines.

General

[0070] The term "comprising" encompasses "includ-ing" as well as "consisting" e.g. a composition "compris-ing" X may consist exclusively of X or may include some-thing additional e.g. X + Y.[0071] The word "substantially" does not exclude"completely" e.g. a composition which is "substantiallyfree" from Y may be completely free from Y. Where nec-essary, the word "substantially" may be omitted from thedefinition of the invention.[0072] The term "about" in relation to a numerical valuex means, for example, x�10%.[0073] Unless specifically stated, a process compris-ing a step of mixing two or more components does notrequire any specific order of mixing. Thus componentscan be mixed in any order. Where there are three com-ponents then two components can be combined witheach other, and then the combination may be combinedwith the third component, etc.[0074] Where animal (and particularly bovine) materi-als are used in the culture of cells, they should be ob-tained from sources that are free from transmissiblespongiform encaphalopathies (TSEs), and in particularfree from bovine spongiform encephalopathy (BSE).Overall, it is preferred to culture cells in the total absenceof animal-derived materials.[0075] Where a compound is administered to the bodyas part of a composition then that compound may alter-natively be replaced by a suitable prodrug.

BRIEF DESCRIPTION OF DRAWINGS

[0076] Figure 1 shows squalene content (mg/ml) for avariety of batches of an oil-in-water emulsion. Three de-viations from acceptable squalene content are indicatedas A, B and C.

MODES FOR CARRYING OUT THE INVENTION

[0077] Individual lots of MF59 adjuvant (50 litres each)were prepared by combining squalene, Span 85, Tween80, water and citrate buffer. The components were com-bined in amounts that provide the desired final concen-tration of 5% (vol) squalene, 0.5% (vol) polysorbate 80,0.5% (vol) Span 85 and 10mM citrate buffer. The mixturewas microfluidised at about 700 bar, and the final micro-fluidised mixture was filtered through a 0.2Pm filter.[0078] The target squalene content in these MF59 lotswas 39�3mg/ml. Figure 1 shows the squalene contentof over 150 different manufacturing lots. Three deviationsfrom the target range are apparent, labeled A to C. Whenthe manufacturing apparatus was investigated for the ’A’and ’B’ lots, it was found that the filter was clogged dueto a failed interaction chamber, and the droplet size wasalso seen to rise outside the target upper level for theselots. Filter clogging was also seen for the ’C’ lots, but thistime the cause was that an inappropriate filter type had

15 16

Page 10: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

10

5

10

15

20

25

30

35

40

45

50

55

been used, rather than there being a fault with the inter-action chamber.[0079] Thus the aberrant squalene levels are suitablefor detecting diverse filtration difficulties, without havingto inspect the filter directly.[0080] It will be understood that the invention has beendescribed by way of example only and modifications maybe made whilst remaining within the scope and spirit ofthe invention.

REFERENCES (the contents of which are hereby incor-porated by reference)

[0081]

[1] WO90/14837.[2] Podda & Del Giudice (2003) Expert Rev Vaccines2:197-203.[3] Podda (2001) Vaccine 19: 2673-2680.[4] Vaccine Design: The Subunit and Adjuvant Ap-proach (eds. Powell & Newman) Plenum Press 1995(ISBN 0-306-44867-X).[5] Vaccine Adjuvants: Preparation Methods and Re-search Protocols (Volume 42 of Methods in Molec-ular Medicine series). ISBN: 1-59259-083-7. Ed.O’Hagan.[6] Rothblat et al. (1962) Anal Biochem 4:52-6.[7] Lau et al. (2005) Lipids 40(5):523-8.[8] Spanggord et al. (2002) J Pharm Biomed Anal 29(1-2):183-93.[9] Choo et al. (2005) Lipids 40(4):429-32.[10] Zambonin et al. (2006) Rapid Commun MassSpectrom 20(2):325-7.[11] Ko et al. (2002) J Agric Food Chem 50(19):5343-8.[12] Giacometti (2001) Analyst 126(4):472-5.[13] Sulpice & Ferezou (1984) Lipids 19(8):631-5.[14] WO99/056776.[15] US-2007/0014805.[16] WO2007/080308.[17] Suli et al. (2004) Vaccine 22(25-26):3464-9.[18] Huckriede et al. (2003) Methods Enzymol 373:74-91.[19] Hoffmann et al. (2002) Vaccine 20:3165-3170.[20] Subbarao et al. (2003) Virology 305:192-200.[21] Liu et al. (2003) Virology 314:580-590.[22] Ozaki et al. (2004) J. Virol. 78:1851-1857.[23] Webby et al. (2004) Lancet 363:1099-1103.[24] WO97/37000.[25] Brands et al. (1999) Dev Biol Stand 98:93-100.[26] Halperin et al. (2002) Vaccine 20:1240-7.[27] Tree et al. (2001) Vaccine 19:3444-50.[28] Kistner et al. (1998) Vaccine 16:960-8.[29] Kistner et al. (1999) Dev Biol Stand 98:101-110.[30] Bruhl et al. (2000) Vaccine 19:1149-58.[31] Pau et al. (2001) Vaccine 19:2716-21.[32] http://www.atcc.org/[33] http://locus.umdnj.edu/

[34] WO03/076601.[35] WO2005/042728.[36] WO03/043415.[37] Williamson et al. (2006) Infection and Immunity74: 961-7.[38] Loukas et al. (2005) PLoS Med 2(10): e295.[39] EP-A-0139417.[40] Harper et al. (2004) Lancet 364(9447):1757-65.[41] J Toxicol Clin Toxicol (2001) 39:85-100.[42] Demicheli et al. (1998) Vaccine 16:880-884.[43] Stepanov et al. (1996) J Biotechnol 44:155-160.[44] Berkower et al. (2004) Virology 321(1):75-86.[45] von Brunn et al. (1991) Vaccine 9(7):477-84.[46] Vreden et al. (1991) Am J Trop Med Hyg 45(5):533-8.[47] Moelans et al. (1995) Mol Biochem Parasitol 72(1-2):179-92.[48] Stoute et al. (1997) NEngl J Med 336(2):86-91.[49] Wunderlich & del Portillo (2000) Mol Med 6(3):238-45.[50] WO01/22992.[51] Hehme et al. (2004) Virus Res. 103(1-2):163-71.[52] Treanor et al. (1996) J Infect Dis 173:1467-70.[53] Keitel et al. (1996) Clin Diagn Lab Immunol 3:507-10.[54] WO2005/089837.[55] US 6,692,468.[56] WO00/07647.[57] WO99/17820.[58] US 5,971,953.[59] US 4,060,082.[60] EP-A-0520618.[61] WO98/01174.[62] Gennaro (2000) Remington: The Science andPractice of Pharmacy. 20th edition, ISBN:0683306472.[63] Banzhoff (2000) Immunology Letters 71:91-96.[64] WO02/097072.[65] Nony et al. (2001) Vaccine 27:3645-51.[66] Greenbaum et al. (2004) Vaccine 22:2566-77.[67] Zurbriggen et al. (2003) Expert Rev Vaccines 2:295-304.[68] Piascik (2003) J Am Pharm Assoc (Wash DC).43:728-30.[69] Mann et al. (2004) Vaccine 22:2425-9.[70] Halperin et al. (1979) Am J Public Health 69:1247-50.[71] Herbert et al. (1979) J Infect Dis 140:234-8.[72] Chen et al. (2003) Vaccine 21:2830-6.

Claims

1. A method for manufacturing an oil-in-water emulsionadjuvant, comprising the steps of: (i) preparing a sub-micron oil-in-watcr emulsion using known amountsof an aqueous carrier, a surfactant and squalene; (ii)subjecting the emulsion to filter sterilization, to pro-

17 18

Page 11: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

11

5

10

15

20

25

30

35

40

45

50

55

vide a sterilized emulsion; (iii) measuring thesqualene content of the sterilized emulsion; and (iv)comparing the squalene content measured in step(iii) to the squalene content known from step (i)wherein, if the comparison in step (iv) reveals thatthe squalene content has significantly changed be-tween steps (i) and (iii), the adjuvant is rejected.

2. The method of claim 1, wherein the adjuvant is re-jected if the content measured in step (iii) differs bymore than �10% from the content known from step(i),

3. The method of claim 1, wherein the squalene contentknown from step (i) is a squalene concentration be-tween 2% and 8% by volume.

4. The method of claim 3, wherein the squalene contentknown from step (i) is a squalene concentration be-tween 4% and 6% by volume.

5. A quality control test method for an oil-in-water emul-sion adjuvant according to claim 1, wherein the ad-juvant comprises squalene, and wherein the methodcomprises a step of comparing the actual squalenecontent of the adjuvant to a standard squalene con-tent

6. The method of any preceding claim wherein, if theadjuvant has an acceptable squalene content, it iscombined with an antigen.

7. The method of any unc or claims 1 to 5 wherein, ifthe adjuvant has an acceptable squalene content, itis packaged into a kit as a kit component togetherwith an antigen component.

8. The method of claim 7, wherein the kit componentsarc in separate vials.

9. The method of claim R, wherein the vials are madefrom a borosilicate glass.

10. The method of claim 7 or claim 8 or claim 9, whereinthe adjuvant is a bulk adjuvant and, if the adjuvanthas an acceptable squalene content, the methodcomprises extracting unit doses from the bulk adju-vant for packaging as kit components.

11. A quality control test method according to claim 1 fora vaccine that includes an oil-in water emulsion ad-juvant including squalene, wherein the method com-prises the steps of: (i) comparing the actual squalenecontent of the adjuvant to a standard squalene con-tent; and, if the actual squalene content is accepta-ble, (ii) either preparing the vaccine by combiningthe adjuvant with an antigen or packaging the adju-vant into a kit as a kit component together with an

antigen component.

12. The method of claim 11, wherein the standardsqualene content is a squalene concentration be-tween 2% and 8% by volume.

13. The method of claim 12, wherein the standardsqualene content is a squalene concentration be-tween 4% and 6% by volume.

14. The method of any one of claims 11 to 13, whereinthe adjuvant is rejected if the actual content differsfrom the standard content by more than � 10%.

15. the method of any one of claims 7 to 14, wherein theantigens is an influenza virus antigen.

16. The method of claim 15, wherein the vaccine in-cludes about 15Pg, about 10Pg, about 7.5Pg, about5Pg, about 3.8Pg, about 1.9Pg, or about 1.5Pg ofhemagglutinin per influenza virus strain.

17. The method nf any one of claims 11 to 16, whereinthe vaccine includes thiomersal or 2-phenoxycthanolpreservative.

18. A method comprising a step of mixing (i) an influenzavirus antigen and (ii) an oil-in-water emulsion adju-vant that includes squalene, wherein the method al-so includes a step in which squalene content ismeasured by the method of claim 1 (a) in the adjuvantbefore the mixing step and/or (b) in the antigen-ad-juvant mixture after the mixing step.

19. The method of claim 18, wherein the squalene con-tent measured in (a) or (b) is compared to standardsqualene contcnt(s) in order to check for productionfailure.

20. The method of claim 19, wherein the standardsqualene content is a squalene concentration be-tween 2% and 8% by volume.

21. The method of claim 20, wherein the standardsqualene content is a squalene concentration be-tween 4% and 6% by volume.

22. The method of any one of claims 18 to 21, whereinthe adjuvant is rejected if the actual content differsfrom the standard content by more than � 10%.

23. The method of any one of claims 18 to 21, whereinsqualene content is measured in both (a) and (b).

24. The method of any one of claims 18 to 21, whereinsqualene content is measured in (a) but not in (b).

25. The method of any one of claims 18 to 21, wherein

19 20

Page 12: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

12

5

10

15

20

25

30

35

40

45

50

55

squalene content is measured in (b) but not in (a).

26. The method of any one of claims 15 to 25, whereinthe influenza virus antigen has hemagglutinin sub-type H5.

27. The method of any preceding claim, wherein theemulsion is a submicron emulsion comprisingsqualene, Tween 80, and Span 85.

28. The method of any one of claims 1 to 26, whereinthe emulsion is an emulsion of squalene, a tocophe-rol, and Tween 80.

29. The method of any one of claims 1 to 26, whereinthe emulsion is an emulsion comprising squalene, apolyoxyethylene alkyl ether hydrophilic nonionic sur-factant and a hydrophobic nonionic surfactant.

30. A method for manufacturing an oil-in-water emulsionadjuvant, comprising the steps of: (i) preparing a sub-micron oil-in-water emulsion using known amountsof an aqueous carrier, a surfactant and squalene; (ii)subjecting the emulsion to filter sterilization, to pro-vide a sterilized emulsion; and (iii) measuring thesqualene content of the sterilized emulsion, whereinthe emulsion is an emulsion of squalene, a tocophe-rol, and Tween 80.

Patentansprüche

1. Verfahren zur Herstellung eines Öl-in-Wasser-Emulsionsadjuvans, bei dem man:

(i) unter Verwendung bekannter Mengen eineswässrigen Trägers, eines Tensids und Squaleneine Submikron-Öl-in-Wasser-Emulsion her-stellt; (ii) die Emulsion einer Filtersterilisation un-terzieht, um eine sterilisierte Emulsion zu erhal-ten; (iii) den Squalen-Gehalt der sterilisiertenEmulsion mißt, und (iv) den in Schritt (iii) gemes-senen Squalen-Gehalt mit dem aus Schritt (i)bekannten Squalen-Gehalt vergleicht, wobeidas Adjuvans verworfen wird, wenn der Ver-gleich in Schritt (iv) ergibt, daß der Squalen-Ge-halt sich zwischen den Schritten (i) und (iii) si-gnifikant geändert hat.

2. Verfahren nach Anspruch 1, wobei das Adjuvansverworfen wird, wenn der in Schritt (iii) gemesseneGehalt um mehr als � 10% von dem aus Schritt (i)bekannten Gehalt abweicht.

3. Verfahren nach Anspruch 1, wobei der aus Schritt(i) bekannte Squalen-Gehalt eine Squalen-Konzen-tration zwischen 2 Vol.% und 8 Vol.% ist.

4. Verfahren nach Anspruch 3, wobei der aus Schritt(i) bekannte Squalen-Gehalt eine Squalen-Konzen-tration zwischen 4 Vol.% und 6 Vol.% ist.

5. Testverfahren zur Qualitätskontrolle für ein Öl-in-Wasser-Emulsionsadjuvans nach Anspruch 1, wo-bei das Adjuvans Squalen umfaßt, und wobei dasVerfahren den Schritt des Vergleichens des tatsäch-lichen Squalen-Gehalts des Adjuvans mit einemStandard-Squalen-Gehalt umfaßt.

6. Verfahren nach einem der vorhergehenden Ansprü-che, wobei das Adjuvans mit einem Antigen kombi-niert wird, wenn das Adjuvans einen akzeptablenSqualen-Gehalt aufweist.

7. Verfahren nach einem der Ansprüche 1 bis 5, wobeidas Adjuvans als Kit-Bestandteil zusammen mit ei-nem Antigen-Bestandteil in ein Kit gepackt wird,wenn das Adjuvans einen akzeptablen Squalen-Ge-halt aufweist.

8. Verfahren nach Anspruch 7, wobei die Bestandteiledes Kits in verschiedenen Behältern vorliegen.

9. Verfahren nach Anspruch 8, wobei die Behälter ausBorsilikatglas hergestellt sind.

10. Verfahren nach Anspruch 7, 8 oder 9, wobei dasAdjuvans ein in großer Menge vorliegendes Adju-vans ist, und das Verfahren die Entnahme von Ein-heitsdosen aus dem in großer Menge vorliegendenAdjuvans für die Verpackung als Kit-Bestandteileumfaßt, wenn das Adjuvans einen akzeptablenSqualen-Gehalt aufweist.

11. Testverfahren zur Qualitätskontrolle nach Anspruch1 für einen Impfstoff, der ein Squalen enthaltendesÖl-in-Wasser-Emulsionsadjuvans umfaßt, wobeidas Verfahren Schritte umfaßt, bei denen man (i)den tatsächlichen Squalen-Gehalt des Adjuvans miteinem Standard-Squalen-Gehalt vergleicht; und,wenn der tatsächliche Squalen-Gehalt akzeptabelist, (ii) den Impfstoff entweder durch Kombinierendes Adjuvans mit einem Antigen herstellt oder dasAdjuvans als Kit-Bestandteil zusammen mit einemAntigen-Bestandteil in ein Kit packt.

12. Verfahren nach Anspruch 11, wobei der Standard-Squalen-Gehalt eine Squalen-Konzentration zwi-schen 2 Vol.% und 8 Vol.% ist.

13. Verfahren nach Anspruch 12, wobei der Standard-Squalen-Gehalt eine Squalen-Konzentration zwi-schen 4 Vol.% und 6 Vol.% ist.

14. Verfahren nach einem der Ansprüche 11 bis 13, wo-bei das Adjuvans verworfen wird, wenn der tatsäch-

21 22

Page 13: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

13

5

10

15

20

25

30

35

40

45

50

55

liche Squalen-Gehalt um mehr als � 10% vom Stan-dard-Squalen-Gehalt abweicht.

15. Verfahren nach einem der Ansprüche 7 bis 14, wobeidas Antigen ein Influenza-Virus-Antigen ist.

16. Verfahren nach Anspruch 15, wobei der Impfstoffetwa 15 Pg, etwa 10 Pg, etwa 7,5 Pg, etwa 5 Pg,etwa 3,8 Pg, etwa 1,9 Pg oder etwa 1,5 Pg Hämag-glutinin pro Influenza-Virus-Stamm umfaßt.

17. Verfahren nach einem der Ansprüche 11 bis 16, wo-bei der Impfstoff das Konservierungsmittel Thiomer-sal oder 2-Phenoxyethanol umfaßt.

18. Verfahren, das einen Schritt umfaßt, bei dem man(i) ein Influenza-Virus-Antigen und (ii) einen Öl-in-Wasser-Emulsionsadjuvans, das Squalen beinhal-tet, mischt, wobei das Verfahren ferner einen Schrittumfaßt, bei dem der Squalen-Gehalt (a) in dem Ad-juvans vor dem Misch-Schritt und/oder (b) in der An-tigen-Adjuvans-Mischung nach dem Misch-Schrittdurch ein Verfahren nach Anspruch 1 gemessenwird.

19. Verfahren nach Anspruch 18, wobei der in (a) oder(b) gemessene Squalen-Gehalt mit Standard-Squa-len-Gehalt(en) verglichen wird, um auf Produktions-fehler zu prüfen.

20. Verfahren nach Anspruch 19, wobei der Standard-Squalen-Gehalt eine Squalen-Konzentration zwi-schen 2 Vol.% und 8 Vol.% ist.

21. Verfahren nach Anspruch 20, wobei der Standard-Squalen-Gehalt eine Squalen-Konzentration zwi-schen 4 Vol.% und 6 Vol.% ist.

22. Verfahren nach einem der Ansprüche 18 bis 21, wo-bei das Adjuvans verworfen wird, wenn der tatsäch-liche Squalen-Gehalt um mehr als � 10% vom Stan-dard-Squalen-Gehalt abweicht.

23. Verfahren nach einem der Ansprüche 18 bis 21, wo-bei der Squalen-Gehalt sowohl in (a) als auch in (b)gemessen wird.

24. Verfahren nach einem der Ansprüche 18 bis 21, wo-bei der Squalen-Gehalt in (a) aber nicht in (b) ge-messen wird.

25. Verfahren nach einem der Ansprüche 18 bis 21, wo-bei der Squalen-Gehalt in (b) aber nicht in (a) ge-messen wird.

26. Verfahren nach einem der Ansprüche 15 bis 25, wo-bei das Influenza-Virus-Antigen den Hämagglutinin-Subtyp H5 aufweist.

27. Verfahren nach einem der vorhergehenden Ansprü-che, wobei die Emulsion eine Submikron-Emulsionist, die Squalen, Tween 80 und Span 85 umfaßt.

28. Verfahren nach einem der Ansprüche 1 bis 26, wobeidie Emulsion eine Emulsion aus Squalen, einem To-copherol und Tween 80 ist.

29. Verfahren nach einem der Ansprüche 1 bis 26, wobeidie Emulsion eine Emulsion ist, die Squalen, ein hy-drophiles, nicht-ionisches Polyoxyethylenalkyle-ther-Tensid und ein hydrophobes nicht-ionischesTensid umfaßt.

30. Verfahren zur Herstellung eines Öl-in-Wasser-Emulsionsadjuvans, bei dem man:

(i) unter Verwendung bekannter Mengen eineswässrigen Trägers, eines Tensids und Squaleneine Submikron-Öl-in-Wasser-Emulsion her-stellt; (ii) die Emulsion einer Filtersterilisation un-terzieht, um eine sterilisierte Emulsion zu erhal-ten; und (iii) den Squalen-Gehalt der sterilisier-ten Emulsion mißt, wobei die Emulsion eineEmulsion aus Squalen, einem Tocopherol undTween 80 ist.

Revendications

1. Procédé de fabrication d’un adjuvant pour émulsionhuile dans l’eau, comprenant les étapes consistantà : (i) préparer une émulsion huile dans l’eau submi-cronique à l’aide de quantités connues d’un véhiculeaqueux, d’un tensioactif et de squalène ; (ii) soumet-tre l’émulsion à une stérilisation par filtration, pourobtenir une émulsion stérilisée ; (iii) mesurer la te-neur en squalène de l’émulsion stérilisée ; et (iv)comparer la teneur en squalène mesurée dans l’éta-pe (iii) à la teneur en squalène connue d’après l’étape(i), dans lequel, si la comparaison dans l’étape (iv)révèle que la teneur en squalène a changé de façonsignificative entre les étapes (i) et (iii), l’adjuvant estrejeté.

2. Procédé selon la revendication 1, dans lequel l’ad-juvant est rejeté si la teneur mesurée dans l’étape(iii) diffère de plus de �10% de la teneur connued’après l’étape (i),

3. Procédé selon la revendication 1, dans lequel la te-neur en squalène connue d’après l’étape (i) corres-pond à une concentration de squalène comprise en-tre 2% et 8% en volume.

4. Procédé selon la revendication 3, dans lequel la te-neur en squalène connue d’après l’étape (i) corres-pond à une concentration de squalène comprise en-

23 24

Page 14: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

14

5

10

15

20

25

30

35

40

45

50

55

tre 4% et 6% en volume.

5. Procédé d’essai de contrôle qualité pour un adjuvantpour émulsion huile dans l’eau selon la revendication1, dans lequel l’adjuvant comprend du squalène, etdans lequel le procédé comprend une étape de com-paraison de la teneur effective en squalène de l’ad-juvant avec une teneur en squalène standard.

6. Procédé selon l’une quelconque des revendicationsprécédentes dans lequel, si l’adjuvant possède uneteneur en squalène acceptable, il est combiné avecun antigène.

7. Procédé selon l’une quelconque des revendications1 à 5 dans lequel, si l’adjuvant possède une teneuren squalène acceptable, il est conditionné dans unetrousse en tant que constituant de la trousse accom-pagné d’un constituant antigène.

8. Procédé selon la revendication 7, dans lequel lesconstituants de la trousse sont placés dans des fla-cons séparés.

9. Procédé selon la revendication 8, dans lequel lesflacons sont faits de verre de borosilicate.

10. Procédé selon la revendication 7 ou la revendication8 ou la revendication 9, dans lequel l’adjuvant est unadjuvant en vrac et, si l’adjuvant possède une teneuren squalène acceptable, le procédé comprend l’ex-traction de doses unitaires de l’adjuvant en vrac àconditionner en tant que constituants de la trousse.

11. Procédé d’essai de contrôle qualité selon la reven-dication 1 pour un vaccin qui contient un adjuvantpour émulsion huile dans l’eau renfermant du squa-lène, dans lequel le procédé comprend les étapesconsistant à : (i) comparer la teneur effective ensqualène de l’adjuvant avec une teneur en squalènestandard ; et, si la teneur effective en squalène estacceptable, (ii) préparer le vaccin en combinant l’ad-juvant avec un antigène ou bien conditionner l’adju-vant dans une trousse en tant que constituant de latrousse accompagné d’un constituant antigène.

12. Procédé selon la revendication 11, dans lequel lateneur en squalène standard correspond à une con-centration de squalène comprise entre 2% et 8% envolume.

13. Procédé selon la revendication 12, dans lequel lateneur en squalène standard correspond à une con-centration de squalène comprise entre 4% et 6% envolume.

14. Procédé selon l’une quelconque des revendications11 à 13, dans lequel l’adjuvant est rejeté si la teneur

effective diffère de plus de �10% de la teneur stan-dard.

15. Procédé selon l’une quelconque des revendications7 à 14, dans lequel l’antigène est un antigène duvirus de la grippe.

16. Procédé selon la revendication 15, dans lequel levaccin contient environ 15 Pg, environ 10 Pg, environ7,5 Pg, environ 5 Pg, environ 3,8 Pg, environ 1,9 Pgou environ 1,5 Pg d’hémagglutinine par souche duvirus de la grippe.

17. Procédé selon l’une quelconque des revendications11 à 16, dans lequel le vaccin contient un conserva-teur thiomersal ou 2-phénoxyéthanol.

18. Procédé comprenant une étape de mélange (i) d’unantigène du virus de la grippe et (ii) d’un adjuvantpour émulsion huile dans l’eau qui contient du squa-lène, dans lequel le procédé comprend aussi uneétape dans laquelle la teneur en squalène est me-surée par le procédé de la revendication 1 (a) dansl’adjuvant avant l’étape de mélange et/ou (b) dansle mélange antigène-adjuvant après l’étape de mé-lange.

19. Procédé selon la revendication 18, dans lequel lateneur en squalène mesurée en (a) ou en (b) estcomparée à la ou aux teneur(s) en squalène stan-dard ce qui permet de contrôler une défaillance dela production.

20. Procédé selon la revendication 19, dans lequel lateneur en squalène standard correspond à une con-centration de squalène comprise entre 2% et 8% envolume.

21. Procédé selon la revendication 20, dans lequel lateneur en squalène standard correspond à une con-centration de squalène comprise entre 4% et 6% envolume.

22. Procédé selon l’une quelconque des revendications18 à 21, dans lequel l’adjuvant est rejeté si la teneureffective diffère de la teneur standard de plus de�10%.

23. Procédé selon l’une quelconque des revendications18 à 21, dans lequel la teneur en squalène est me-surée à la fois en (a) et en (b).

24. Procédé selon l’une quelconque des revendications18 à 21, dans lequel la teneur en squalène est me-surée en (a) mais pas en (b).

25. Procédé selon l’une quelconque des revendications18 à 21, dans lequel la teneur en squalène est me-

25 26

Page 15: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

15

5

10

15

20

25

30

35

40

45

50

55

surée en (b) mais pas en (a).

26. Procédé selon l’une quelconque des revendications15 à 25, dans lequel l’antigène du virus de la grippeprésente le sous-type H5 de l’hémagglutinine.

27. Procédé selon l’une quelconque des revendicationsprécédentes, dans lequel l’émulsion est une émul-sion submicronique comprenant du squalène, duTween 80 et du Span 85.

28. Procédé selon l’une quelconque des revendications1 à 26, dans lequel l’émulsion est une émulsion desqualène, d’un tocophérol et de Tween 80.

29. Procédé selon l’une quelconque des revendications1 à 26, dans lequel l’émulsion est une émulsion com-prenant du squalène, un tensioactif non ionique hy-drophile de type éther alkylique de polyoxyéthylèneet un tensioactif non ionique hydrophobe.

30. Procédé de fabrication d’un adjuvant pour émulsionhuile dans l’eau, comprenant les étapes consistantà : (i) préparer une émulsion huile dans l’eau submi-cronique à l’aide de quantités connues d’un véhiculeaqueux, d’un tensioactif et de squalène; (ii) soumet-tre l’émulsion à une stérilisation par filtration, pourobtenir une émulsion stérilisée ; et (iii) mesurer lateneur en squalène de l’émulsion stérilisée, dans le-quel l’émulsion est une émulsion de squalène, d’untocophérol et de Tween 80.

27 28

Page 16: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

16

Page 17: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

17

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the Europeanpatent document. Even though great care has been taken in compiling the references, errors or omissions cannot beexcluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 9014837 A [0081]• WO 99056776 A [0081]• US 20070014805 A [0081]• WO 2007080308 A [0081]• WO 9737000 A [0081]• WO 03076601 A [0081]• WO 2005042728 A [0081]• WO 03043415 A [0081]• EP 0139417 A [0081]• WO 0122992 A [0081]

• WO 2005089837 A [0081]• US 6692468 B [0081]• WO 0007647 A [0081]• WO 9917820 A [0081]• US 5971953 A [0081]• US 4060082 A [0081]• EP 0520618 A [0081]• WO 9801174 A [0081]• WO 02097072 A [0081]

Non-patent literature cited in the description

• Podda ; Del Giudice. Expert Rev Vaccines, 2003,vol. 2, 197-203 [0081]

• Podda. Vaccine, 2001, vol. 19, 2673-2680 [0081]• Vaccine Design: The Subunit and Adjuvant Ap-

proach. Plenum Press, 1995 [0081]• Vaccine Adjuvants: Preparation Methods and Re-

search Protocols. Methods in Molecular Medicine se-ries. vol. 42 [0081]

• Rothblat et al. Anal Biochem, 1962, vol. 4, 52-6[0081]

• Lau et al. Lipids, 2005, vol. 40 (5), 523-8 [0081]• Spanggord et al. J Pharm Biomed Anal, 2002, vol.

29 (1-2), 183-93 [0081]• Choo et al. Lipids, 2005, vol. 40 (4), 429-32 [0081]• Zambonin et al. Rapid Commun Mass Spectrom,

2006, vol. 20 (2), 325-7 [0081]• Ko et al. J Agric Food Chem, 2002, vol. 50 (19),

5343-8 [0081]• Giacometti. Analyst, 2001, vol. 126 (4), 472-5 [0081]• Sulpice ; Ferezou. Lipids, 1984, vol. 19 (8), 631-5

[0081]• Suli et al. Vaccine, 2004, vol. 22 (25-26), 3464-9

[0081]• Huckriede et al. Methods Enzymol, 2003, vol. 373,

74-91 [0081]• Hoffmann et al. Vaccine, 2002, vol. 20, 3165-3170

[0081]• Subbarao et al. Virology, 2003, vol. 305, 192-200

[0081]• Liu et al. Virology, 2003, vol. 314, 580-590 [0081]• Ozaki et al. J. Virol., 2004, vol. 78, 1851-1857 [0081]• Webby et al. Lancet, 2004, vol. 363, 1099-1103

[0081]• Brands et al. Dev Biol Stand, 1999, vol. 98, 93-100

[0081]

• Halperin et al. Vaccine, 2002, vol. 20, 1240-7 [0081]• Tree et al. Vaccine, 2001, vol. 19, 3444-50 [0081]• Kistner et al. Vaccine, 1998, vol. 16, 960-8 [0081]• Kistner et al. Dev Biol Stand, 1999, vol. 98, 101-110

[0081]• Bruhl et al. Vaccine, 2000, vol. 19, 1149-58 [0081]• Pau et al. Vaccine, 2001, vol. 19, 2716-21 [0081]• Williamson et al. Infection and Immunity, 2006, vol.

74, 961-7 [0081]• Loukas et al. PLoS Med, 2005, vol. 2 (10), e295

[0081]• Harper et al. Lancet, 2004, vol. 364 (9447), 1757-65

[0081]• J Toxicol Clin Toxicol, 2001, vol. 39, 85-100 [0081]• Demicheli et al. Vaccine, 1998, vol. 16, 880-884

[0081]• Stepanov et al. J Biotechnol, 1996, vol. 44, 155-160

[0081]• Berkower et al. Virology, 2004, vol. 321 (1), 75-86

[0081]• von Brunn et al. Vaccine, 1991, vol. 9 (7), 477-84

[0081]• Vreden et al. Am J Trop Med Hyg, 1991, vol. 45 (5),

533-8 [0081]• Moelans et al. Mol Biochem Parasitol, 1995, vol. 72

(1-2), 179-92 [0081]• Stoute et al. NEngl J Med, 1997, vol. 336 (2), 86-91

[0081]• Wunderlich ; del Portillo. Mol Med, 2000, vol. 6 (3),

238-45 [0081]• Hehme et al. Virus Res., 2004, vol. 103 (1-2), 163-71

[0081]• Treanor et al. J Infect Dis, vol. 173, 1467-70 [0081]• Keitel et al. Clin Diagn Lab Immunol, 1996, vol. 3,

507-10 [0081]

Page 18: QUALITY CONTROL METHODS FOR OIL-IN-WATER EMULSIONS ...

EP 2 029 170 B1

18

• Gennaro. Remington: The Science and Practice ofPharmacy. 2000 [0081]

• Banzhoff. Immunology Letters, 2000, vol. 71, 91-96[0081]

• Nony et al. Vaccine, 2001, vol. 27, 3645-51 [0081]• Greenbaum et al. Vaccine, 2004, vol. 22, 2566-77

[0081]• Zurbriggen et al. Expert Rev Vaccines, 2003, vol.

2, 295-304 [0081]

• Piascik. J Am Pharm Assoc (Wash DC), 2003, vol.43, 728-30 [0081]

• Mann et al. Vaccine, 2004, vol. 22, 2425-9 [0081]• Halperin et al. Am J Public Health, 1979, vol. 69,

1247-50 [0081]• Herbert et al. J Infect Dis, 1979, vol. 140, 234-8

[0081]• Chen et al. Vaccine, 2003, vol. 21, 2830-6 [0081]