PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar...

24
PY2N20-5 PY2N20 Material Properties and Phase Diagrams Lecture 5 P. Stamenov, PhD School of Physics, TCD

Transcript of PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar...

Page 1: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

PY2N20-5

PY2N20

Material Properties and

Phase Diagrams

Lecture 5

P. Stamenov, PhD

School of Physics, TCD

Page 2: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Phase Diagrams - Introduction

• How much can be done with pure elemental

compounds?

• How many combinations of elements could be

imagined? – 2100 ???

• How many of these combinations will have the

structure (crystallographic, nanoscale, microscale,

etc. ) of the end members?

• How is mixing them going to affect the resulting

mechanical, electronic and other physical and

chemical properties?

• Can the properties of the end members be improved on?

Page 3: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

• When we combine two or more constituents (elements)... what equilibrium state do we get?

• In particular, if we specify... c, p, T, but also H, E

(all are intensive thermodynamic parameters) - composition (e.g., wt% Cu - wt% Ni), and

- temperature (T ) then... How many phases do we get?

What is the composition of each phase?

How much of each phase do we get?

Phase Diagrams – Why?

Phase B Phase A

Nickel atom Copper atom

Does this phase

segregation really

occur for Cu1-xNix?

Page 4: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Phase Equilibria: Solubility Limit

Introduction

– Solutions – solid solutions, single phase

– Mixtures – more than one phase

• Solubility Limit: Max concentration for

which only a single phase

solution occurs.

Question: What is the

solubility limit at 20°C?

Answer: 65 wt% sugar. If Co < 65 wt% sugar: syrup

If Co > 65 wt% sugar: syrup

+ sugar.

65

Sucrose/Water Phase Diagram

Pu

re

Su

gar

Tem

pera

ture

(°C

)

0 20 40 60 80 100 Co =Composition (wt% sugar)

L (liquid solution

i.e., syrup)

Solubility Limit L

(liquid)

+ S

(solid sugar) 20

4 0

6 0

8 0

10 0

Pu

re

Wa

ter

Page 5: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

• Components: The elements or compounds which are present in the mixture

(e.g., Al and Cu)

• Phases: The physically and chemically distinct material regions

that result (e.g., a and b).

Aluminum-

Copper

Alloy

Components and Phases

a (darker

phase)

b (lighter

phase)

Page 6: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Effect of T & Composition (Co)

• Changing T can change # of phases:

D (100°C,90)

2 phases

B (100°C,70)

1 phase

path A to B.

• Changing Co can change # of phases: path B to D.

A (20°C,70)

2 phases

70 80 100 60 40 20 0

Te

mp

era

ture

(°C

)

Co =Composition (wt% sugar)

L ( liquid solution

i.e., syrup)

20

100

40

60

80

0

L (liquid)

+ S

(solid sugar)

water-

sugar

system

Page 7: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Phase Equilibria

0.1278 1.8 FCC Cu

0.1246 1.9 FCC Ni

r (nm) Electroneg. Crystal Structure

• Both have the same crystal structure (FCC) and have

similar electronegativities and atomic radii (W. Hume –

Rothery rules) suggesting high mutual solubility.

Simple solution system (e.g., Ni-Cu solution)

• Ni and Cu are totally miscible in all proportions. Hence, the

answer to the earlier question…is No…

Page 8: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Phase Diagrams

• Indicate phases as function of T, Co, and P.

• For this course: -binary systems: just 2 components.

-independent variables: T and Co (P = 1 atm is almost always used).

• Phase

Diagram

for Cu-Ni

system

• 2 phases: L (liquid)

a (FCC solid solution)

• 3 phase fields:

L

L + a

a

wt% Ni 20 40 60 80 100 0 1000

1100

1200

1300

1400

1500

1600 T(°C)

L (liquid)

a

(FCC solid solution)

Page 9: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

wt% Ni 20 40 60 80 100 0 1000

1100

1200

1300

1400

1500

1600 T(°C)

L (liquid)

a (FCC solid solution)

Cu-Ni

phase

diagram

Phase Diagrams:

Number and types of phases

• Rule 1: If we know T and Co, then we know: - the number and types of phases present.

• Examples:

A(1100°C, 60): 1 phase: a

B (1250°C, 35): 2 phases: L + a

B (

12

50°C

,35)

A(1100°C,60)

Page 10: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

wt% Ni

20

1200

1300

T(°C)

L (liquid)

a

(solid)

30 40 50

Cu-Ni system

Composition of phases

• Rule 2: If we know T and Co, then we know: - the composition of each phase.

• Examples: T A

A

35 C o 32

C L

At T A = 1320°C:

Only Liquid (L) C L = C o ( = 35 wt% Ni)

At T B = 1250°C:

Both a and L

C L = C liquidus ( = 32 wt% Ni here)

C a = C solidus ( = 43 wt% Ni here)

At T D = 1190°C:

Only Solid ( a )

C a = C o ( = 35 wt% Ni )

C o = 35 wt% Ni

B T B

D T D

tie line

4 C a 3

Page 11: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

• Rule 3: If we know T and Co, then we know: - the amount of each phase (given in wt%), via the so-called:

‘centre of gravity principle’ or the ‘lever rule’…

• Examples:

At T A : Only Liquid (L)

W L = 100 wt%, W a = 0

At T D : Only Solid ( a )

W L = 0, W a = 100 wt%

C o = 35 wt% Ni

Weight fractions of phases

wt% Ni

20

1200

1300

T(°C)

L (liquid)

a

(solid)

3 0 4 0 5 0

Cu-Ni system

T A A

35 C o 32

C L

B T B

D T D

tie line

4 C a

3

R S

At T B : Both a and L

% 733243

3543wt

= 27 wt%

WL S

R + S

Wa R

R + S

Page 12: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Tie line – connects the phases in equilibrium with

each other - essentially an isotherm

The Lever Rule

How much of each phase?

Think of it as a lever

ML Ma

R S

RMSM L a

L

L

LL

LL

CC

CC

SR

RW

CC

CC

SR

S

MM

MW

a

a

a

a

a

00

wt% Ni

20

1200

1300

T(°C)

L (liquid)

a

(solid)

3 0 4 0 5 0

B T B

tie line

C o C L C a

S R

Page 13: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

wt% Ni 20

120 0

130 0

3 0 4 0 5 0 110 0

L (liquid)

a

(solid)

T(°C)

A

35 C o

L: 35wt%Ni

Cu-Ni

system

• Phase diagram: Cu-Ni system.

• System is: - binary i.e., 2 components:

Cu and Ni.

- isomorphous i.e., complete

solubility of one

component in

another; a phase

field extends from

0 to 100 wt% Ni.

• Consider Co = 35 wt%Ni.

Cooling in the Cu-Ni Binary System

46 35

43 32

a : 43 wt% Ni

L: 32 wt% Ni

L: 24 wt% Ni

a : 36 wt% Ni

B a: 46 wt% Ni L: 35 wt% Ni

C

D

E

24 36

Page 14: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

• Ca changes as we solidify.

• Cu-Ni case:

• Fast rate of cooling: Cored structure

• Slow rate of cooling: Equilibrium structure

First a to solidify has Ca = 46 wt% Ni.

Last a to solidify has Ca = 35 wt% Ni.

Cored vs Equilibrium Phases

First a to solidify:

46 wt% Ni

Uniform C a :

35 wt% Ni

Last a to solidify:

< 35 wt% Ni

Page 15: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Mechanical Properties: Cu-Ni System

• Effect of solid solution strengthening on:

- Tensile strength (TS) - Ductility (%EL,%AR)

- Maximum as a function of Co - Minimum as a function of Co

Tensile

Str

ength

(M

Pa)

Composition, wt% Ni

Cu Ni 0 20 40 60 80 100

200

300

400

TS for pure Ni

TS for pure Cu

Elo

ngation (

%E

L)

Composition, wt% Ni Cu Ni 0 20 40 60 80 100

20

30

40

50

60

%EL for pure Ni

%EL for pure Cu

Page 16: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Binary Eutectic Systems

ευτηκτικός - from Greek ‘easiest to melt’

Page 17: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

: Composition with

min. melting TE

Binary-Eutectic Systems

• Eutectic transition

L(CE) a(CaE) + b(CbE)

• 3 single phase regions

(L, a, b

) • Limited solubility:

a : mostly Cu

b : mostly Ag

• TE : No liquid below TE

• CE

Cu-Ag system

Cu-Ag system

L (liquid)

a L + a L + b b

a b

Co , wt% Ag 20 40 60 80 100 0

200

1200 T(°C)

400

600

800

1000

CE

TE 8.0 71.9 91.2 779°C

)

Page 18: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

L + a L + b

a + b

200

T(°C)

18.3

C, wt% Sn

20 60 80 100 0

300

100

L (liquid)

a 183°C

61.9 97.8

b

Pb-Sn

system

Pb-Sn Eutectic System (1)

150

40 Co

11 Ca

99 Cb

S R

Adapted from Fig. 9.8,

Callister 7e.

• For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find... - the phases present:

- compositions of phases:

CO = 40 wt% Sn

- the relative amount

of each phase:

Ca = 11 wt% Sn

Cb = 99 wt% Sn

W a = Cb - CO

Cb - Ca

= 99 - 40

99 - 11

= 59

88

= 67 wt%

S R+S

=

W b = CO - Ca

Cb - Ca

= R

R+S

= 29

88

= 33 wt% = 40 - 11

99 - 11

Page 19: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

L + b

a + b

200

T(°C)

C, wt% Sn

20 60 80 100 0

300

100

L (liquid)

a b

L + a

183°C

• For a 40 wt% Sn-60 wt% Pb alloy at 220°C, find... - the phases present: Pb-Sn

system

Pb-Sn Eutectic System (2)

a + L

- compositions of phases:

CO = 40 wt% Sn

- the relative amount

of each phase:

W a = CL - CO

CL - Ca

= 46 - 40

46 - 17

= 6

29

= 21 wt%

W L = CO - Ca

CL - Ca

= 23

29

= 79 wt%

40 Co

46 CL

17 Ca

220 S R

Ca = 17 wt% Sn

CL = 46 wt% Sn

Page 20: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

• Co < 2 wt% Sn

• Result:

- at extreme ends - polycrystal of a grains

i.e., only one solid phase.

Microstructures

in Eutectic Systems: I

0

L + a

200

T(°C)

Co , wt% Sn 10

2

20 Co

300

100

L

a

30

a + b

400

(room T solubility limit)

TE

(Pb-Sn System)

a L

L: Co wt% Sn

a: Co wt% Sn

Page 21: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

• 2 wt% Sn < Co < 18.3 wt% Sn

• Result: Initially liquid + a

then a alone

finally two phases

a polycrystal

fine b-phase inclusions

Microstructures

in Eutectic Systems: II

Pb-Sn

system

L + a

200

T(°C)

Co , wt% Sn 10

18.3

20 0 Co

300

100

L

a

30

a + b

400

(sol. limit at TE)

TE

2 (sol. limit at T room )

L

a

L: Co wt% Sn

a b

a: Co wt% Sn

Page 22: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

• Co = CE

• Result: Eutectic microstructure (lamellar structure)

- alternating layers (lamellae) of a and b crystals.

Microstructures

in Eutectic Systems: III

Adapted from Fig. 9.14, Callister 7e.

160 m

Micrograph of Pb-Sn eutectic microstructure

Pb-Sn

system

L b

a b

200

T(°C)

C, wt% Sn

20 60 80 100 0

300

100

L

a b

L + a

183°C

40

TE

18.3

a: 18.3 wt%Sn

97.8

b: 97.8 wt% Sn

CE 61.9

L: Co wt% Sn

Page 23: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

Lamellar Eutectic Structure

← Other possible eutectic

structures are: rod-like, globular

and acicular.

Page 24: PY2N20 Material Properties and Phase Diagrams€¦ · • Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of a and b crystals. Microstructures

• 18.3 wt% Sn < Co < 61.9 wt% Sn

• Result: a crystals and an eutectic microstructure

Microstructures

in Eutectic Systems: IV

18.3 61.9

S R

97.8

S R

primary a

eutectic a

eutectic b

WL = (1- W a ) = 50 wt%

C a = 18.3 wt% Sn

CL = 61.9 wt% Sn S

R + S W a = = 50 wt%

• Just above TE :

• Just below TE :

C a = 18.3 wt% Sn

C b = 97.8 wt% Sn S

R + S W a = = 73 wt%

W b = 27 wt%

Pb-Sn

system L + b 200

T(°C)

Co, wt% Sn

20 60 80 100 0

300

100

L

a b

L + a

40

a + b

TE

L: Co wt% Sn L a L a