Proposals for Memristor Crossbar Design and Applications

59
Proposals for Memristor Crossbar Design and Applications Blaise Mouttet George Mason University Memristors and Memristive Systems Symposium UC Berkeley November 21, 2008

description

Presentation from 2008 Memristor and Memristive System Symposium

Transcript of Proposals for Memristor Crossbar Design and Applications

Page 1: Proposals for Memristor Crossbar Design and Applications

Proposals for Memristor Crossbar Design and Applications

Blaise MouttetGeorge Mason University

Memristors and Memristive Systems SymposiumUC Berkeley November 21, 2008  

Page 2: Proposals for Memristor Crossbar Design and Applications

• Design should be compatible with standard manufacturing techniques to facilitate wide use and experimentation by many participants (i.e. universities, research labs, existing fabs, etc.) without a significant investment in new equipment.

• Design should be easy to integrate with standard electronics components and materials.

• Design should incorporate materials capable of RHIGH>>RLOW. • Design should be robust to both temporal and spatial  

variation of memristance.  • Design should avoid internal feedback current paths in 

crossbar which can limit speed and ability to read resistance states reliably.

• Design should allow ease of reconfiguration of resistance states.

Desirable Manufacturing Goals to EaseAdoption of Memristor Crossbars

Page 3: Proposals for Memristor Crossbar Design and Applications

• Some applications may not require nanowiresto provide competitive solutions in a variety of areas (e.g. signal processing, pattern recognition)

• Near‐term implementation is likely to be easier and more readily adopted using microscale wires which can avoid the problems of nanowire defects, addressing, etc.

Nanowire vs. Microscale Wire Crossbars

Page 4: Proposals for Memristor Crossbar Design and Applications

Ideally, the detected resistance state of a selected crossbar junction should be independent of other resistance states in the

crossbar.

Vread

1 0 0 0

1

0

0

Low resistancejunction

(i.e. logic 1)

High resistancejunction

(i.e. logic 0)

Page 5: Proposals for Memristor Crossbar Design and Applications

However, this is not the case for simple crossbar designs due tointernal currents. 

Vread

1 0 0 0

1

0

0

Page 6: Proposals for Memristor Crossbar Design and Applications

Silicon wafer

SiO2

metal layer  (e.g. Al)

p‐doped polysilicon

n‐doped polysilicon

A simple solution compatible with microfabricationtechniques is the incorporation of pn junctions in the crossbar  (taught by Ovshinsky for phase change crossbar memory in US Patent 4,597,162). One variation of this solution adapted to bilayer oxide memristive films is as follows:  

A)  Film deposition of metal layer and silicon layers

Page 7: Proposals for Memristor Crossbar Design and Applications

Silicon wafer

SiO2

P

B) Etch metal and semiconductor layers to form crossbar columns.

N

P

N

P

N

P

N

Al Al Al Al

Page 8: Proposals for Memristor Crossbar Design and Applications

Silicon wafer

SiO2

P

C) Deposit SiO2 in gaps to provide isolation and planarize surfaceD) Deposit memristor oxide bilayer (e.g. TiO2/TiO2‐x) E) Deposit and pattern top metal layer to form crossbar row wires   

N

P

N

P

N

P

N

Al Al Al Al

SiO2 SiO2 SiO2

Pt

TiO2/TiO2‐x

Page 9: Proposals for Memristor Crossbar Design and Applications

Desirable Goals for MemristorCrossbar Array Applications  

• Complement (not conflicting with) existing technologies and markets to achieve ease of acceptance

• Identify uses compatible with smaller emerging markets with potential for high growth (e.g. FPAAs , commercial robotics, neural interfaces)

• Solve problems for which conventional electronic hardware and software do not provide efficient solutions but which memristors can (e.g. pattern recognition, traveling salesman problem) 

Page 10: Proposals for Memristor Crossbar Design and Applications

R1

+_

RF

Vout = - [V1(RF/R1)+V2(RF/R2)+V3(RF/R3)+V4(RF/R4)]

Op‐amps are well known to be implemented as summing amplifiers 

R2

R3

R4

V1

V2

V3

V4

Page 11: Proposals for Memristor Crossbar Design and Applications

R1 R2 R3 R4

M41 M42 M43 M44

M31 M32 M33 M34

M21 M22 M23 M24

M11 M12 M13 M14

V1 V2 V3 V4

+_

RF

Vout

Integrating Memristor Crossbar Array with Op‐Amp Circuitry = Matrix Summing Amplifier

Page 12: Proposals for Memristor Crossbar Design and Applications

∑−=ij

ijF II

For an ideal op‐amp:

∑ +−

−=ij iij

lossi

F

out

RMVV

RV

)()(

)()()()( lossi

ijij

ijlossi

iij

Fout VVMTVV

RMRV −−=−+

−= ∑∑

Page 13: Proposals for Memristor Crossbar Design and Applications

To achieve behavior similar to binary logic requires T(Mij=RHIGH)=0 and T(Mij=RLOW)=1

By setting the fixed column resistors Ri = RF‐RLOW then T(RLOW)=1 is achievable. However, T(RHIGH) is not able to be zero since this would require RF = 0. Thus a low bit error (LBE) exists and a tolerable LBE should satisfy: 

T(RHIGH)= LBE ≥ 1/[1+(RHIGH‐RLOW)/RF]

Solving for RF produces:

RF ≤ [LBE/(1‐LBE)] (RHIGH‐RLOW)

This inequality sets an upper limit to RF based on a maximum allowable low bit error and the high and low resistance values of the memristor.

Page 14: Proposals for Memristor Crossbar Design and Applications

Analysis for memristor (Mij) variation

For an allowable bit sensitivity σ(Mij), 

)()(

|)(| 2 ijiij

ijFij M

RMdMR

MTd σ<+

=

The maximum allowable value of d|T(Mij)| is at Mij = RLOWand for Ri = RF‐RLOW

)()( 2 ij

F

ij

LOWFLOW

ijF MR

dMRRR

dMRσ<=

−+

Page 15: Proposals for Memristor Crossbar Design and Applications

Analysis for memristor (Mij) variation

Combining the previous conditions the optimum range for RF canbe determined based on the memristance sensitivity and low bit error as:

)(1)( LOWHIGHF

ij

ij RRLBE

LBERM

dM−

−<<

σ

Page 16: Proposals for Memristor Crossbar Design and Applications

Analysis for memristor (Mij) variation

A possible rule of thumb is to set the allowable low bit error and bit sensitivity in terms of the number of columns of the crossbar (=N). For example, if all of the crosspoints have a low bit error and sensitivityof 1/N a total of 1 bit error is produced at the output. The range of RFmay then be expressed as:

)(/11

/1LOWHIGHFij RR

NNRNdM −

−<<

Page 17: Proposals for Memristor Crossbar Design and Applications

Analysis for memristor (Mij) variation

For large N the above inequality can be approximated to find themaximum allowable variation in Mij as:

2

)(N

RRdM LOWHIGHij

−<

In case of relaxing the maximum bit error and sensitivity constraints to allow for n total bit errors for N columns the above equationbecomes:

2

2 )(N

RRndM LOWHIGHij

−<

Page 18: Proposals for Memristor Crossbar Design and Applications

Potential Application #1 Programmable Drive Waveforms  

Page 19: Proposals for Memristor Crossbar Design and Applications

Problems with Conventional Drive Waveform Circuits

• In many electronics applications variation of circuit parameters due to temperature change, aging, etc.  require adjustment of drive waveforms (e.g. LEDs may require a higher amplitude voltage drive over time to produce a consistent light output).

• Waveform adjustment is also desirable for mode adjustment in various applications (e.g. inkjet printheads changing resolution or drop size often involves timing or amplitude adjustment of drive signal for heater or piezo.)

• Timing modulation and amplitude modulation circuits implemented in hardware can require complex circuitry and have limitations in adaptability and the range of possible waveforms.

• Software based solutions require a microprocessor which can be difficult/expensive to miniaturize for several portable electronics applications  

Page 20: Proposals for Memristor Crossbar Design and Applications

1 0 0 0

+_

RF

|Vout/Vin|≈RF/R

Memristor Crossbar Drive Waveform Circuit

R

2R

4R

8R

Voltage Level Converter

Shift Register

Assuming  RLOW of memristors << RF, R

Page 21: Proposals for Memristor Crossbar Design and Applications

0 1 0 0

+_

RF

|Vout/Vin|≈RF/2R

Memristor Crossbar Drive Waveform Circuit

R

2R

4R

8R

Voltage Level Converter

Shift Register

Assuming  RLOW of memristors << RF, R

Page 22: Proposals for Memristor Crossbar Design and Applications

0 0 1 0

+_

RF

|Vout/Vin|≈RF/4R

Memristor Crossbar Drive Waveform Circuit

R

2R

4R

8R

Voltage Level Converter

Shift Register

Assuming  RLOW of memristors << RF, R

Page 23: Proposals for Memristor Crossbar Design and Applications

0 0 0 1

+_

RF

|Vout/Vin|≈RF/8R

Memristor Crossbar Drive Waveform Circuit

R

2R

4R

8R

Voltage Level Converter

Shift Register

Assuming  RLOW of memristors << RF, R

Page 24: Proposals for Memristor Crossbar Design and Applications

Advantages

• Both timing and amplitude of output waveform can be adjusted by binary switching of the memristance states in the crossbar.

• Even with only binary memristance switching, a very large number of possible drive waveforms are available (2NxM) (e.g. 10x10 1030 states).

• Combined with techniques such as hill climbing and genetic algorithms has potential for self‐optimizing drive waveforms and real‐time adaption of circuitry to effects of aging and temperature variation.

Page 25: Proposals for Memristor Crossbar Design and Applications

Potential Application #2 Pattern Recognition

Page 26: Proposals for Memristor Crossbar Design and Applications

Problems with Conventional Pattern Recognition Solutions

• Software‐based solutions require time for data transfer between memory and processor circuits which causes a lag in responsiveness.

• Hardware solutions can be faster but have limits in adaptability and limits in the range of patterns that can be classified.

• Memristors offer a route to a “morphware”pattern recognition solution combining both memory storage and data processing in a common circuit.

Page 27: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Pattern Comparison Circuit (write mode)

V5 V6 V7 V8V1 V2 V3 V4

+_

RF

+_

-Vref

1 0 1 0

1

0

0

0

Voltage Level Converter (V>Vthreshold)

Page 28: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Pattern Comparison Circuit (write mode)

V5 V6 V7 V8V1 V2 V3 V4

+_

RF

+_

-Vref

0 1 1 1

0

1

0

0

Voltage Level Converter (V>Vthreshold)

Page 29: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Pattern Comparison Circuit (write mode)

V5 V6 V7 V8V1 V2 V3 V4

+_

RF

+_

-Vref

1 1 0 0

0

0

1

0

Voltage Level Converter (V>Vthreshold)

Page 30: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Pattern Comparison Circuit (write mode)

V5 V6 V7 V8V1 V2 V3 V4

+_

RF

+_

-Vref

0 0 1 0

0

0

0

1

Voltage Level Converter (V>Vthreshold)

Page 31: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Pattern Comparison Circuit (detect mode)

V5 V6 V7 V8V1 V2 V3 V4

+_

RF

+_

-Vref

0 1 1 1

1

I

0

0

0

Voltage Level Converter (V<Vthreshold)

Page 32: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Pattern Comparison Circuit (detect mode)

V5 V6 V7 V8V1 V2 V3 V4

+_

RF

+_

-Vref

0 1 1 1

0

4I

1

0

0

Voltage Level Converter (V<Vthreshold)

Page 33: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Pattern Comparison Circuit (detect mode)

V5 V6 V7 V8V1 V2 V3 V4

+_

RF

+_

-Vref

0 1 1 1

0

I

0

1

0

Voltage Level Converter (V<Vthreshold)

Page 34: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Pattern Comparison Circuit (detect mode)

V5 V6 V7 V8V1 V2 V3 V4

+_

RF

+_

-Vref

0 1 1 1

0

2I

0

0

1

Voltage Level Converter (V<Vthreshold)

Page 35: Proposals for Memristor Crossbar Design and Applications

Advantages

• Output voltage from 1st op‐amp is analogous to XNOR (bit comparator) function

• Tuning Vref can adjust sensitivity of pattern comparison and adjust allowable bit error between resistance states and voltage states.

• Allowing for bit error could potentially be very useful to applications such as facial recognition which can require robustness to a large percentage of bit errors.

))]()()()(([2 reflossii

ijlossii

ijout VVVMTVVMTAV −−+−= ∑∑

Page 36: Proposals for Memristor Crossbar Design and Applications

Potential Application #3 FPAAs

Page 37: Proposals for Memristor Crossbar Design and Applications

Problems with Conventional FPAAs

• FPAAs (Field Programmable Analog Arrays) provide reconfigurability of filter designs useful in communications and control systems but are limited in the range of configurable states. 

• Lacks ability to electrically tune the resistance such as provided by memristors to achieve intermediate frequency states (for communication apps.) or pole/zero adjustment (for control apps.) 

Page 38: Proposals for Memristor Crossbar Design and Applications

M21 M22 M23 M24 M25

M11 M12 M13 M14 M15 Vout(t)

C

Vin(t)

R1 C/2 C/4 C/8

CR2 C/2 C/4 C/8

Memristance programming circuitry

Vout(s)/Vin(s) = K(Mij) [1+s/a(Mij)]/[(1+s/b(Mij)]a(Mij)<<b(Mij) high pass filtera(Mij>>b(Mij) low pass filter

By including memristor crossbar junctions in the input and feedback path of an op‐amp capacitor array, a transfer function can be tuned to adjust the 

gain, pole, and/or zero of a filter.   

Page 39: Proposals for Memristor Crossbar Design and Applications

Advantages

• Conversion between low pass and high pass filter by appropriate selection of on/off states of Mij. 

• Tuning of f‐3dB or pole/zero by adjustment of memristance state.

• Cascading multiple stages can provide for tunable bandpass adjustment

• Dynamic PID controllers can be implemented by connecting multiple stages in parallel. 

Page 40: Proposals for Memristor Crossbar Design and Applications

Potential Application #4 Arithmetic Optimization Problems

Page 41: Proposals for Memristor Crossbar Design and Applications

Problems with Conventional Arithmetic Processor Designs

• Segmentation between memory and processor circuitry may produce a bottleneck in speed. New clock independent designs are desirable.  

• Logic based arithmetic is inefficient for some network optimization problems such as the traveling salesman problem involving repeated recalculation of sums  

Page 42: Proposals for Memristor Crossbar Design and Applications

0 1 0 1

+_

R

Vout

Memristor Crossbar Arithmetic Circuit

R

R/2

R/4

R/8

Voltage Level Converter

Assuming  RLOW of memristors << R/8

20

21

22

23

Analog output representative of 2+4

Page 43: Proposals for Memristor Crossbar Design and Applications

1 0 1 0

+_

R

Vout

Memristor Crossbar Arithmetic Circuit

R

R/2

R/4

R/8

Voltage Level Converter

Assuming  RLOW of memristors << R/8

20

21

22

23

Analog output representative of 1+3

Page 44: Proposals for Memristor Crossbar Design and Applications

Advantages

• Although op‐amps are slower than logic circuits the combination of memory and processing in a single circuit reduces the reliance on a clock.

• May be scalable to provide real time solutions to network optimization. For example, in a traveling salesman problem with 100 nodes including 5050 inter‐relational distances, each distance metric can be stored in a different crossbar column. Comparisons between different paths between the nodes only requires changing the bit pattern input to the crossbar rows and detecting the analog level of voltage output. 

Page 45: Proposals for Memristor Crossbar Design and Applications

Potential Application #5 Signal Mixing

Page 46: Proposals for Memristor Crossbar Design and Applications

Problems with Conventional Modulation Systems

• Increase in portable wireless electronics requires more efficient uses of spectrum with techniques such as frequency hopping.  

• Simpler but more secure signal encryption methods are desirable. 

Page 47: Proposals for Memristor Crossbar Design and Applications

Silicon wafer

SiO2

N

Back‐to‐back diode memristor crossbar 

P

N

P

N

P

N

P

Al Al Al Al

SiO2 SiO2 SiO2

TiO2/TiO2‐x Pt Pt Pt Pt

Pt

NP

Al

SiO2

Silicon wafer

Page 48: Proposals for Memristor Crossbar Design and Applications

Equivalent circuit at each crossbar junction 

VeqB = VinB [(Ri+Mij)/(Ri+Rj+Mij)]+ VinA[Rj/(Ri+Rj+Mij)]

For VinB less than the diode threshold voltage, the resistance state of Mij and voltage state of VinA can be used to modulate signal transmission. 

VoutA

VoutB (ZB=∞)

VinB

VinA

Ri

Rj

RL

Mij

VeqB

Page 49: Proposals for Memristor Crossbar Design and Applications

Input Wiring

Vsig1

Vsig2

Vsig4

Vsig3

Vmod1 Vmod2 Vmod3 Vmod4

Page 50: Proposals for Memristor Crossbar Design and Applications

Input Wiring

Vsig1

Vsig2

Vsig4

Vsig3

Vmod1 Vmod2 Vmod3 Vmod4

Page 51: Proposals for Memristor Crossbar Design and Applications

Input Wiring

Vsig1

Vsig2

Vsig4

Vsig3

Vmod1 Vmod2 Vmod3 Vmod4

Page 52: Proposals for Memristor Crossbar Design and Applications

Input Wiring

Vsig1

Vsig2

Vsig4

Vsig3

Vmod1 Vmod2 Vmod3 Vmod4

Page 53: Proposals for Memristor Crossbar Design and Applications

Advantages

• Switching of carrier frequencies allow more efficient use of spectrum and compensation for crowded channels.

• Potential exist for improved signal encryption by sharing a randomized memristanceswitching pattern between sender and receiver.  

Page 54: Proposals for Memristor Crossbar Design and Applications

Potential Application #6Artificial Intelligence

Page 55: Proposals for Memristor Crossbar Design and Applications

Potential Routes to Strong A.I. with Memristor Crossbars

• Neural Networks (feedforward of nonlinear weighted sums of memristance states)

• Genetic Algorithms (selection, crossover, and mutation of memristance states)

• Emergent Complexity from Memory‐Prediction Framework (Hawkins approach)

Page 56: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Circuit Design for Sensor Stimulated Emergent Behavior 

Differential Amplifiers

Vsen1   Vsen2   Vsen3    Vsen4

Summing Amplifiers

V11     V12       V13        V14 V21    V22  V23   V24

Vact1 

Vact2 

Vact3 

Vact4 

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

1st crossbar array

Analog Sensor Voltages

Analog Actuator Voltages

Page 57: Proposals for Memristor Crossbar Design and Applications

Memristor Crossbar Circuit Design for Sensor Stimulated Emergent Behavior 

Differential Amplifiers

Vsen5   Vsen6   Vsen7    Vsen8

Summing Amplifiers

V21     V22       V23        V24 V11    V12  V13   V14

Vact5 

Vact6 

Vact7 

Vact8 

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

2nd crossbar array

Analog Sensor Voltages

Analog Actuator Voltages

Recursive feedback between 1st and 2nd

crossbar can potentially set up a dynamic 

memory‐prediction framework  for intelligence

Page 58: Proposals for Memristor Crossbar Design and Applications

Potential Applications #7 and 8 Neural Interfaces (spike counting and classification) and Robotics (enhanced responsiveness for actuator control) 

‐To be continued at NSTI Nanotech Conference and Expo

May 3‐7, 2009Houston, TX

Page 59: Proposals for Memristor Crossbar Design and Applications

Conclusion

• Thank you to organizers and participants.

• Thank you to Dr. Wei Wang of the College of Nanoscale Science and Engineering for information and feedback on FPAAs and suggestion for error analysis.

• Thank you to Jeff Hawkins for insights on memory‐prediction framework for intelligence as documented in On Intelligence