PREDSTAVITEV: EKOPOIEZA MARSA – PRILOŽNOSTI IN OVIRE, KI JIH PREDSTAVLJA INŽENIRING NOVEGA...

14
EKOPOIEZA Od puščavsko rdeče do domače zelenice. UNIVERZA V LJUBLJANI BIOTEHNIŠKA FAKULTETA ODDELEK ZA BIOLOGIJO Seminarska naloga pri predmetu Uvod v odnose med organizmi (mentor: prof. dr. Rok Kostanjšek) Ljubljana, 2013 Nejc DRAGANJEC

Transcript of PREDSTAVITEV: EKOPOIEZA MARSA – PRILOŽNOSTI IN OVIRE, KI JIH PREDSTAVLJA INŽENIRING NOVEGA...

EKOPOIEZAOd puščavsko rdeče do domače zelenice.

UNIVERZA V LJUBLJANIBIOTEHNIŠKA FAKULTETAODDELEK ZA BIOLOGIJO

Seminarska naloga pri predmetu Uvod v odnose med organizmi(mentor: prof. dr. Rok Kostanjšek)

Ljubljana, 2013

Nejc DRAGANJEC

Dokaz vode na Marsu!

Struktura predstavitve• definicija naslova• primeri iz dvorišča• zakaj vedno ravno ta Mars?!• simbioze v ekstremnih pogojih• rezultati

• VPRAŠANJA!

Definicija naslova

EKOPOIEZAVzpostavitev umetno sestavljenega, a stabilnega in samozadostnega ekosistema na planetu brez življenja (Fogg, 1998).

Fogg M. J. 1998. Terraforming Mars: a review of current research. Adv. Space Res., 22, 3: 415–420

Ekopoieza je ekstremni primer:• bioremediacije okolja

● običajno zaradi delovanja človeka (npr. onesnaženje, ekološke katastrofe… )

http://www.sheqplus.co.za/bio-remediation1.html

Ekopoieza je ekstremni primer:• obnove ekosistema

● pretirano izkoriščanje (npr. izsekavanje)● naravne nesreče (npr. požar)

http://legalplanet.wordpress.com http://en.wikipedia.org/wiki/Forest_restoration

Mars kot platforma ekopoieze• dosegljivost

● tehnološke zmožnosti● oddaljenost

● min. 54.000.000 km

Parameter Mars Zemlja

Povprečna temperatura - 60 °C + 15 °C

Območje temperature - 145 °C do + 20 °C - 60 °C do + 50 °C

Sončna obsevanost (PAR) 860 µmol kvanta m-2s-1 2,000 µmol kvanta m-2s-1

UV obsevanost > 190 nm > 300 nm

Atmosferski pritisk 5 – 10 mbar 1,013 mbar

Atmosferska sestava    

N2 0,189 mbar (2,7 %) 780 mbar (78 %)

O2 0,009 mbar (0,13 %) 210 mbar (21 %)

CO2 6,67 mbar (95,3 %) 0,38 mbar (0,038 %)

Ar 0,112 mbar (1,6 %) 10,13 mbar (1 %)

• ključni pogoji biosfere● C, H, N, O, P, S (šnops)● aw● energija za biološke procese

Graham J. M. 2004. The biological terraforming of Mars: planetary ecosynthesis as ecological succession on global scale. Astrobiology, 4, 2: 168–195

Od puščavsko rdeče do domače zelenice.

http://svs.gsfc.nasa.gov

Lišaji kot modelni organizem• Xanthoria elegans• listasti lišaj• simbioza

● mikobiont● fotobiont (Chlorophyceae ali Cyanobacteriae)

Klasifikacija

kraljestvo Fungi

deblo Ascomycota 

razred Peltigerales

red Teloschistales

družina Teloschistaceae

rod Xanthoria

vrsta Xanthoria elegans

http://www.botanicalgarden.ubc.ca/

http://w

ww

. svaro

g.si/bio

logija

/

Rezultati izpostavljenosti Marsovim razmeram

● vitalnost simbiontov lišaja po izpostavljenosti Marsovem okolju (~600 Pa; 95 % CO2; 22 dni)

De Vera J. P., Mohlmann D., Butina F., Lorek A., Wenecke R., Ott S. 2010. Survival potential and photosynthetic activity of lichens under Mars-like conditions: A laboratory study. Astrobiology, 10,2: 215–227

kontrolna steljka

apotecij po 22 dneh izpostavljenosti

Rezultati izpostavljenosti Marsovim razmeram

• Fotosintetska aktivnost v simulirani Marsovi atmosferi (95 % CO2; padajoči tlak do 600 Pa; stalna temperatura 15 °C)

De Vera J. P., Mohlmann D., Butina F., Lorek A., Wenecke R., Ott S. 2010. Survival potential and photosynthetic activity of lichens under Mars-like conditions: A laboratory study. Astrobiology, 10,2: 215–227

Vprašanja

Viri• McKay C. P., Toon O. B., Kasting J. F. 1991. Making Mars

habitable. Nature, 352: 489–496• Fogg M. J. 1993. Terraforming: A review for

Environmentalists. The environmentalist, 13, 1: 7–17• Fogg M. J. 1998. Terraforming Mars: a review of current

research. Adv. Space Res., 22, 3: 415–420• Miller W. R. 1998. An ecological approach to terraforming,

mapping the dream. Waterloo, Ontario, Canada, University of Waterloo, 61 str.

• Gerstell M. F., Francisco J. S., Yung Y. L., Boxe C., Aaltonee E. T. 2001. Keeping Mars warm with new super greenhouse gases. PNAS, 98, 5: 21154–2157

• McKay C. P., Marinova M. M. 2001. The physics, biology, and environmental ethics of making Mars habitable. Astrobiology, 1, 1: 89–109

• Graham J. M. 2003. Stages in the terraforming of Mars: the transition to flowering plants. Space technology and applications international forum, 654: 1284–1291

• Graham J. M. 2004. The biological terraforming of Mars: planetary ecosynthesis as ecological succession on global scale. Astrobiology, 4, 2: 168–195

• Rettberg P., Rabbow E., Panitz C., Horneck G. 2004. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues. Advances in space research, 33: 1294–1301

• Badescu V. 2005. Regional and seasonal limitations for Mars intrinsic ecopoiesis. Acta Astronautica, 56: 670–680

• Morozova D., Mohlmann D., Wagner D. 2007. Survival of methanogenic archaea from siberian permafrost under simulated Martian thermal conditions. Orig life Evol Biosph, 37: 189–200

• Morozova D., Wagner D. 2007. Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. FEMS microbial Ecol, 61: 16–25

• Smith D. J., Schuerger A. C., Davidson M. M., et al. 2009. Survivability of Psychrobacter cryohalolentis K5 under simulated Martian surface conditions. Astrobiology, 9, 2: 221–228

• Cockell S. C. 2010. Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends in microbiology, 18: 308–314

• De Vera J. P., Mohlmann D., Butina F., Lorek A., Wenecke R., Ott S. 2010. Survival potential and photosynthetic activity of lichens under Mars-like conditions: A laboratory study. Astrobiology, 10,2: 215–227

• Klitgord N., Segre D. 2010. Environments that induce synthetic microbial ecosystems. PLoS computational biology, 6, 11: 1–17

• Johnson A.P., Pratt L.M., Vishnivetskaya T., et al. 2011. Extended survival of several organisms and amino acids under simulated martian surface conditions. Icarus, 211: 1162–1178

• Raggio J., Pintado A., Ascaso C., De La Torre R., De Los Rios A., Wierzchos J., Horneck G., Sancho L. G. 2011. Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology, 11, 4: 281–292

• Moeller R., Reitz G., Nicholson W. L. et al. 2012. Mutagenesis in bacterial spores exposed to space and simulated Martian conditions: data from the EXPOSE-E spaceflight experiment PROTECT. Astrobiology, 12, 5: 457–468

• Rabbow E., Rettberg P., Barczyk S., et al. 2012. EXPOSE-E: An ESA astrobiology mission 1.5 years in space. Astrobiology, 12, 5: 374–386

• Wassmann M., Moeller R., Rabbow E. et al. 2012. Survival of spores of the UV-Resistant Bacillus subtilis strain MW01 after exposure to low-Earth orbit and simulated Martian conditions: Data from the space experiment ADAPT on EXPOSE-E. Astrobiology, 12, 5: 498–507