Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi...

40
Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima, 2009-

Transcript of Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi...

Page 1: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Potential-Based Entropy Adaptive Routingfor Disruption Tolerant Networks

Hideya Ochiai Hiroshi EsakiThe University of Tokyo / NICT

DTNRG, IETF 76 Hiroshima, 2009-11-13

Page 2: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Outline

• Introduction• Potential-based entropy adaptive routing• Prototype implementation• Campus-wide experiment• Conclusion

Page 3: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Introduction• DTN for opportunistic networking

– Isolated sensor networking / vehicular ad-hoc networks– Intermittent connectivity / isolated networks

• API– void sendMessage(ID dst, String msg);– void recvMessage(ID src, String msg);

• All the nodes are always virtually connected.

1

34

2

5

7

6Intermittent Connectivity

8

Isolated Networks

Mobile Node

Page 4: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Contributions of this work

Implementation and deployment of potential-based entropy adaptive routing (PEAR)

– PEAR autonomously enables message delivery in ad-hoc manner.

– In general, the performance of routing algorithms are strongly dependent on mobility patterns.

– PEAR dynamically adapts to wide-range of mobility patterns without being aware of mobility pattern itself.

Page 5: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Outline• Introduction• Potential-based entropy adaptive routing• Prototype implementation• Campus-wide experiment• Conclusion

xDis

trib

utio

nP

oten

tial

DestinationNode

SourceNode

Intermediate Nodes

Source

DestinationIntermediate

tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

Message Delivery

Dis

trib

utio

n

IntermediateNodes

Source Node

Destination Node

SourceNode

DestinationNode

xD

ire

ct P

ath

Po

ten

tial

tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

PossibleIntermediate Nodes

Small entropy case Large entropy casePotential-field

Page 6: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Characterize Mobility Pattern by Entropy

Small Entropy Case Large Entropy CaseLocally Distributed Widely Distributed

Delivery by hop-by-hop forwarding Delivery by the movement of the nodes

Page 7: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Entropy and Delivery Pattern

1

d

2

s

3 1

d

2

s

3

Small Entropy Case Large Entropy Case

A bolder link indicates larger contact time.

Biased contact Uniform contact

It should choose the best path It should improve delivery rate by increasing redundancy.

Page 8: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

How does PEAR achieve that ??

• For choosing the next hop node:– Potential-based routing– Potential-field construction (inspired by diffusion

theory)

• For message delivery– Copy-based message delivery

  Transfer-based message delivery

Page 9: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

SensorTruck

InternetGateway

Live E!

To deliver sensor readings to the Internet GW

Potential

Data Flow

Data Flow

: Wireless Device

Potential-Based Routing

Page 10: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

Potential-Field Construction in PEAR

0,,

00,,

tdVt

nVNnd

d

.)0(),0( constD

Potential-Field Construction

)(

,,,1,nnbrk

dddd tnVtkVDtnVtnV

Diffusion Equation

Page 11: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Potential-Field Construction

)(

,,,1,nnbrk

dddd tnVtkVDtnVtnV tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

0,, tdVt d

d

Page 12: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

)(

,,,1,nnbrk

dddd tnVtkVDtnVtnV tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

0,, tdVt d

d

d

ConstructedPotential-Field

Page 13: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Potential and Message Routing

Small Entropy Case

xDis

trib

utio

nP

oten

tial

DestinationNode

SourceNode

Intermediate Nodes

Source

DestinationIntermediate

tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

Message Delivery

Page 14: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Potential and Message Routing

Large Entropy CaseD

istr

ibut

ion

IntermediateNodes

Source Node

Destination Node

SourceNode

DestinationNode

x

Dire

ct P

ath

Pot

entia

l

tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

PossibleIntermediate Nodes

Page 15: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Transfer-Based v.s. Copy-Based Message Delivery

Transfer-BasedMessage Delivery

Copy-BasedMessage Delivery

PEAR

Page 16: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Copy-Based Message Transfer in PEAR

nn-1

n+1

H BODY

s

d

source

destination

H BODYH BODY

H BODY

For each k in nexthopstat := check_message_status(k,m)if stat = NEIGHBOR_NOT_FOUND then

continue

if stat = MESSAGE_DELIVERED thendelete_content(m)m.IsDelivered:=truecontinue

if m.DisseminationTTL>0 Thenif stat = NOT_HAVE Then

copy(k,m)

if m.DisseminationTTL > DISSEMINATION_MODE_TIME thenm.DisseminationTTL :=DISSEMINATION_MODE_TIME

Do you have any information about msg_id= XXXX ??

• NOT_HAVE• ALREADY_HAVE• DELIVERED

Algorithm

Page 17: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Rough Simulation-Based Evaluation

Page 18: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Delivery Rate

100%

Mobility Pattern

PEAR

Link State Based

Spray and Wait

Rough Simulation-Based Evaluation (Summary)

Village-to-village Human-to-human

Page 19: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Outline• Introduction• Potential-based entropy adaptive routing• Prototype implementation• Campus-wide experiment• Conclusion

Page 20: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Software Design of PEAR

),( tnV

),( tkV)(nnbrk

Adv

ertis

emen

t M

anag

er

Mes

sage

Man

ager

Potential Table Nexthop Table

Application(Message Send / Receive)

Message CopyAdvertisement

)(nnexthop MessagePool

),( tkV)(nnbrk

),( tnV

InvestigationAbout 3000 lines in C.Footprint is 34k byte in object code.

Page 21: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Armadillo220

Battery(6.0V 2100mAh)Power Circuit

Wifi 802.11gStorage(2GByte)

Page 22: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Armadillo-220

Page 23: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,
Page 24: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,
Page 25: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,
Page 26: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,
Page 27: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Outline• Introduction• Potential-based entropy adaptive routing• Prototype implementation• Campus-wide experiment• Conclusion

Sensor2

Sensor1

電気系会議室3

Group1

Group2

Group3

Gateway

50m

Contact graph Experiment settingsDelivery pattern

Page 28: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Members for the experiment

• The University of Tokyo– Ochiai, Shimotada, Fujita, Kawakami, Himura,

Sugita, Lert, Wan, Minshin, Motodate, Kure, Kawaguchi, Ishizuka

• Nara Institute of Science and Technology– Dr. Matsuura

• Keio University– Dr. Miyakawa, Yamanouchi

• Cisco Systems, Inc.– Momose

Page 29: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Scenario Overview

Wifi Interface (USB)

Storage (USB)

Armadillo-220

リチウムイオン蓄電池

Wifi Interface (USB)

Storage (USB)

Armadillo-220

リチウムイオン蓄電池

Wifi Interface (USB)

Storage (USB)

Armadillo-220

リチウムイオン蓄電池

Wifi Interface (USB)

Storage (USB)

Armadillo-220

リチウムイオン蓄電池

Wifi Interface (USB)

Storage (USB)

Armadillo-220

リチウムイオン蓄電池

SensorStatic (#1)Wifi Interface (USB)

Storage (USB)

Armadillo-220

リチウムイオン蓄電池

SensorStatic (#2)

InternetGW (#99)

Mobile Node (#3)

Mobile Node (#4)

Mobile Node (#5)

1. Deploy sensors in remote sites.2. Sensors periodically transmit data to the GW3. Mobility of nodes enables delivery of data from sensors to the GW.

Wifi Interface (USB)

Storage (USB)

Armadillo-220

リチウムイオン蓄電池

Wifi Interface (USB)

Storage (USB)

Armadillo-220

リチウムイオン蓄電池

Page 30: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Sensor2

Sensor1

電気系会議室3

Group1

Group2

Group3

Gateway

50m

Page 31: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

The number of received neighbor advertisement packets.e.g., node 8 received 45 advertisement from sensor 1.

Contact Graph

Mobility Entropy 2.1≒

Page 32: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Potential for the Gateway

Page 33: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Message Flow (1/2)

Red arrow: messages from sensor 1 (#1)Blue arrow: messages from sensor 2 (#2)GW: #99

Page 34: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Message Flow (2/2)

The number along with an arrow indicates the time of the transfer

Page 35: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Distribution of Delivery Latency

E.g., 50 = [0,100]

Page 36: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Collected Temperature Data from Sensor 1

Delivery Rate = 100 %

Page 37: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Collected Temperature Data from Sensor 2

Delivery Rate = 100 %

Page 38: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Outline

• Introduction• Potential-based entropy adaptive routing• Prototype implementation• Campus-wide experiment• Conclusion

Page 39: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Conclusion• We proposed PEAR for opportunistic networking

– It directly forwards a message at small entropy cases– It replicates a message to improve delivery latency at

large entropy cases

• Implementation and deployment of PEAR– Prototype system with embedded computers– 10-node scale campus wide experiment

• PEAR has achieved 100% delivery rate with reasonable delay on the experiment settings.

Page 40: Potential-Based Entropy Adaptive Routing for Disruption Tolerant Networks Hideya Ochiai Hiroshi Esaki The University of Tokyo / NICT DTNRG, IETF 76 Hiroshima,

Thank you...

Armadillo220

Battery(6.0V 2100mAh)Power Circuit

Wifi 802.11gStorage(2GByte)

Dis

trib

utio

nP

oten

tial

DestinationNode

SourceNode

Intermediate Nodes

Source

DestinationIntermediate

tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

Message Delivery

Dis

trib

utio

n

IntermediateNodes

Source Node

Destination Node

SourceNode

DestinationNode

Dir

ect

Pat

h

Pot

entia

l

tnVtkVDtnVtnV dd

nnbrk

dd ,,min,1,)(

PossibleIntermediate Nodes

Delivery Rate

100%

Mobility Pattern

PEAR

Link State Based

Spray and Wait

Google by "Mobility Entropy and Message Routing"

Small entropy case Large entropy case

PEAR maintains high delivery rate over wide-range of mobility patternsPrototype implementation