Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels...

40
Posterior Cram ´ er-Rao bounds for estimation in graphical models Blabla 31.03.2005 Justin Dauwels [email protected] | www.dauwels.com Signal and Information Processing Laboratory Department of Information Technology and Electrical Engineering ETH Zurich, Switzerland 1

Transcript of Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels...

Page 1: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Posterior Cramer-Rao boundsfor estimation in graphical models

Blabla 31.03.2005

Justin [email protected] | www.dauwels.com

Signal and Information Processing Laboratory

Department of Information Technology and Electrical Engineering

ETH Zurich, Switzerland

1

Page 2: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Motivation

Estimation

X Y

noisy channel

X andY continuousrandom vectors

Estimators• Block/Symbol MAP• Block/Symbol ML• Minimum mean squared error (MMSE)

Ofteninfeasible!

2

Page 3: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Motivation (2)

−1 0 1 2 3 4

10−4

10−3

10−2

10−1

100

Algorithm A

Algorithm B

Algorithm C

?

AS

E

SNR [dB]

How close to MMSE estimator?Partialanswer:lower boundon MSE of “any” estimator

3

Page 4: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Motivation (3)

−1 0 1 2 3 4

10−4

10−3

10−2

10−1

100

Algorithm A

Algorithm B

Algorithm C Bound 2

Bound 1

AS

E

SNR [dB]

Can onlyconfirmthat algorithm isclose to optimal!

4

Page 5: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Overview

• Posterior Cramér-Rao bound• Message passing algorithm• Applications

• State space models• Joint decoding and channel estimation• Coupled hidden Markov models

• Conclusion• Outlook

5

Page 6: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Notation/ Definitions

• X△

= (X1,X2, . . . ,XN )T , Y△

= (Y1, Y2, . . . , YM )T , andXi, Yi ∈ R.• p(x, y) joint probability functionof X andY .

• X(Y ) estimateof X based on observationsY .

• Error matrixE△

= EXY [(X(Y ) − X)(X(Y ) − X)T ].• Posterior information matrixJ

Jij△

= EXY

[

∇xilog p(x, y)∇T

xjlog p(x, y)

]

.

• Information matrixI(θ)

Iij(θ)△

= EY

[

∇θilog p(y|θ)∇T

θjlog p(y|θ)

]

.

6

Page 7: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Posterior Cramér-Rao bound

Theorem(Van Trees ’68)

If

1. the posterior information matrixJ existsand isnon-singular,

2.∫

x∇xj

[B(x)p(x)]dx = 0 , whereB(x) =∫

y[x(y) − x]p(y|x)dy,

thenE � J−1 (posterior Cramér-Rao bound).

In words:D

= E− J−1 is positive semi-definite, i.e.,vT Dv ≥ 0,∀v ∈ RN .

Holds forbiasedx(y)!

7

Page 8: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Posterior Cramér-Rao bound (2)

= ==

p(x0)

X0 X1 X2 X3

Y1 Y2 Y3

FromPCRB, it follows

• E[(Xi(Y ) − Xi)2] = Eii �

[

J−1]

ii

•∑

i E[(Xi(Y ) − Xi)2] =

i Eii ≥∑

i

[

J−1]

ii.

Observations• Only need thediagonal elementsof J−1.• J is oftensparse.• Inversion can be doneefficientlyby matrix inversion lemma.

8

Page 9: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

PCRB for estimation in graphical models

= ==

p(x0)

X0 X1 X3

Y1 Y2 Y3

• ThePCRBsof estimation incycle-freegraphical modelscan becomputed efficiently bymessage passing.

• Messages arematrices.• Messages are updated at each node according to specificupdate rule.• ThePCRBsare computed bycombiningthosemessages.

9

Page 10: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

PCRB for estimation in graphical models (2)Differentiable node function

X1

XN

YJx1→f

JxN→f f Jf→y

...

J−1f→y(Y ) =

Jx1→f (X1) + E[−∆x1x1

log f ] . . . E[−∆xN

x1log f ] E[−∆y

x1 log f ]... . . . . . .

...

E[−∆x1xN

log f ] . . . JxN→f (XN ) + E[−∆xN

xNlog f ] E[−∆y

xNlog f ]

E[−∆x1y log f ] . . . E[−∆xN

y log f ] E[−∆yy log f ]

−1

N+1,N+1

with ∆xjxi

= ∇xi∇T

xj

Remarks

• Expectations E[∆xj

xi log f ] supposed to bewell-defined.

• They caneasilybe computednumerically.

• Rows and corresponding columns can beexchanged.

10

Page 11: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

PCRB for estimation in graphical models (3)Equality constraint node

X1

XN

Y=Jx1→f

JxN→fJf→y

...

Jf→y =∑N

i=1 Jxi→f

Terminal nodeX

f Jf→x

Jf→x = −E[∆xx log f ]

PCRB

X

f g

Jf→X Jg→X

Jtot = Jf→X + Jg→X

11

Page 12: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

State space model: filteringForward sweep[Tichavský et al., 1998]

(JFk+1)

−1 =

0�24 JFk − E[∆

xkxk

log p(xk+1|xk)] −E[∆xk+1xk

log p(xk+1|xk)]

−E[∆xkxk+1 log p(xk+1|xk)] −E[∆

xk+1xk+1 log p(xk+1|xk)]

35−11A22

=

0�24 JFk + J11

k J12k

J21k J22

k

35−11A22

JFk+1 = J

22k − J

21k (JF

k + J11k )−1

J12k

JFk+1 = −E[∆

xk+1xk+1 log p(yk+1|xk+1)] + J

Fk+1

= JUk+1 + J

Fk+1.

= ==

p(x0)

X0 X1 X2 X3

Y1 Y2 Y3

JF1 J

F2

JF2

JU2

12

Page 13: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

State space model: smoothing

Forward + backward sweep

= ==p(x0)

X0 X1 X2 X3

Y1 Y2 Y3

JF2 JF

2

JB2 JB

2

JU2

Posterior CRB

Jtotk = JF

k + JBk + JU

k .

13

Page 14: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

ExampleRandom walk phase model

Θk+1 = (Θk + Wk) mod2π

Yk = exp(jΘk) + Vk,

Wk andVk: i.i.d. (mean free) Gaussian RVswith varianceσ2θ and2σ2

0 resp.,andk = 1, . . . , L.

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

k

Θk

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Re[Yk]

Im[Y

k]

14

Page 15: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Example (2)

Random walk phase model(L = 100)

0 20 40 60 80 1000.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

k

1/J

1/jf

1/jb

1/jtot

−1 0 1 2 3 410

−3

10−2

10−1

100

SNR (dB)

1/J

σφ = 0

σφ = 0.001

σφ = 0.01

σφ = 0.1

σφ = 1

σ20 = 0.1991, σ2

φ = 0.01

15

Page 16: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Channel with freely evolving state

= ==

p(x0)

X0 X1 X2

U1 U2 U3X3

Y1 Y2 Y3

Error correcting code

= ==

p(x0)

X0 X1 X2

U1 U2 U3

X3

Y1 Y2 Y3

16

Page 17: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Channel with freely evolving state (2)

• Independence assumption +exactmarginals ofUk ⇒ exactPCRB• Independence assumption +approximatemarginals ofUk ⇒ ?• KnownUk ⇒ lower boundon PCRB• UnknownUk with uniform prior⇒ upper boundon PCRB

= ==

p(x0)

X0 X1 X2

U1 U2 U3

X3

Y1 Y2 Y3

17

Page 18: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

ExampleΘk+1 = (Θk + Wk) mod2π

Yk = Uk exp(jΘk) + Vk,

Wk andVk: i.i.d. (mean free) Gaussian RVswith varianceσ2θ and2σ2

0 resp.Uk: M-ary symbolsprotected by anerror correcting code

= ==p(θ0)

Θ0

Θ1 Θ2 Θ3

S1 S2 S3

hhh

× ××

Z1 Z2 Z3

U1 U2 U3

Y1 Y2 Y3

p(y1|z1)

p(θ1|θ0)

Si△

= exp(jΘi)

18

Page 19: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Example (2)

4-PSK; 3-6 LDPC of length 100;σφ = 0.01

−1 0 1 2 3 410

−3

10−2

10−1

SNR (dB)

1/J

known datauniform priorapproximate marginalsparticle filter

19

Page 20: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Coupled hidden Markov models

=

= ==

= =X0

X1 X2 X3

Y1 Y2 Y3

Θ0 Θ1 Θ2

=

= ==

= =

Θ0 Θ1 Θ2

X0X1 X2 X3

Y1 Y2 Y3

20

Page 21: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Coupled hidden Markov models (2)

=

=Xk Xk+1

Yk

Θk Θk+1 =

=Xk Xk+1

Yk

Θk Θk+1

• Message= 2 × 2 block matrix• In general: N coupled HMMs⇒ message= N × N block matrix• Updated by applying“PCRB rules”.

21

Page 22: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Conclusion

• Posterior Cramér-Rao bound =lower bound on MSEE.• Canconfirmthatpracticalalgorithm iscloseto optimal.• Efficiently/easilycomputed bymessage passing algorithm.• Tight in interestingSNR region.• Applications

• Filtering/smoothing in state space models• Joint decoding + channel estimation• Coupled hidden Markov models.

• More informationhttp://www.dauwels.com/files/CRB_long.pdf

22

Page 23: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Outlook

• PCRBs for somestandard problemsin signal processing.• Design ofpilot sequences.• Extension todiscrete variables.

23

Page 24: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Thank you for your attention!

24

Page 25: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Posterior Cramer-Rao boundsfor estimation in graphical models

Blabla 31.03.2005

Justin [email protected] | www.dauwels.com

Signal and Information Processing Laboratory

Department of Information Technology and Electrical Engineering

ETH Zurich, Switzerland

25

Page 26: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Posterior information matrix

Posterior information matrixJ(X) can be computed inseveralways

Jij(X)△

= EXY

[

∇xilog p(x, y)∇T

xjlog p(x, y)

]

(L1)

= −EXY

[

∇xi∇T

xjlog p(x, y)

]

= −EXY

[

∇xi∇T

xjlog p(y|x)

]

− EX

[

∇xi∇T

xjlog p(x)

]

(L2 & L3)

= EXY

[

∇xilog p(y|x)∇T

xjlog p(y|x)

]

+ EX

[

∇xilog p(x)∇T

xjlog p(x)

]

26

Page 27: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Posterior information matrix (2)Lemma 1If

1. ∇xjp(x, y) and∇xi

∇Txj

p(x, y) exist∀x andy,

2.

R

x

R

yp(x, y)∇xi

log p(x, y)∇Txj

log p(x, y)dxdy andR

x

R

yp(x, y)∇xi

∇Txj

log p(x, y)dxdy exist,

3.

R

x,y∇xi

∇Txj

p(x, y)dxdy = 0,

thenEXY

h

−∇xi∇T

xjlog p(x, y)

i

= EXY

h

∇xilog p(x, y)∇T

xjlog p(x, y)

i.

Proof:Since (1) holds,∇T

xjp(x, y) = p(x, y)∇T

xjlog p(x, y) and

∇xi∇T

xjp(x, y) = ∇xi

p(x, y)∇Txj

log p(x, y)

�= p(x, y)∇xi

log p(x, y)∇Txj

log p(x, y) + p(x, y)∇xi∇

Txj

log p(x, y).

Integrating both sides overx andy and using (2) and (3), one obtainsZ

x

Z

y

p(x, y)∇xilog p(x, y)∇

Txj

log p(x, y)dxdy +

Zx

Zy

p(x, y)∇xi∇

Txj

log p(x, y)dxdy = 0.

Thus

EXY [∇xi∇T

xjlog p(x, y)] = −EXY [∇xi

log p(x, y)∇Txj

log p(x, y)].

27

Page 28: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Posterior information matrix (3)Lemma 2If

1. ∇xjp(y|x) and∇xi

∇Txj

p(y|x) exist∀x andy,

2.

R

x

R

yp(x, y)∇xi

log p(y|x)∇Txj

log p(y|x)dxdy and

R

x

R

yp(x, y)∇xi

∇Txj

log p(y|x)dxdy exist,

thenEXY

h

−∇xi∇T

xjlog p(y|x)

i

= EXY

h

∇xilog p(y|x)∇T

xjlog p(y|x)

i.

Proof:Differentiate both sides of the equation

R

yp(y|x)dy = 1 wrp toxj . Since (1) holds, one can differentiate under

the integral sign (Leibniz’s formula). As a consequenceZ

y

∇Txj

p(y|x)dy =

Z

y

p(y|x)∇Txj

log p(y|x)dy = 0.

Differentiate a second time (under the integral sign), it followsZ

y

p(y|x)∇xi∇

Txj

log p(y|x)dy +

Zy

∇xip(y|x)∇

Txj

log p(y|x)dy = 0.

Multiply both sides withp(x) and integrate overx using (2). As a consequence

EXY [∇xi∇

Txj

log p(y|x)] = −EXY [∇xilog p(y|x)∇

Txj

log p(y|x)].

28

Page 29: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Posterior information matrix (4)Lemma 3If

1. ∇xjp(x) and∇xi

∇Txj

p(x) exist∀x,

2.

R

xp(x)∇xi

log p(x)∇Txj

log p(x)dx and

R

xp(x)∇xi

∇Txj

log p(x)dx exist,

3.

R

x∇xi

∇Txj

p(x)dx = 0,

thenEX

h

−∇xi∇T

xjlog p(x)

i

= EX

h

∇xilog p(x)∇T

xjlog p(x)

i.

Proof:Since (1) holds,∇T

xjp(x) = p(x)∇T

xjlog p(x) and

∇xi∇

Txj

p(x) = ∇xi

p(x)∇Txj

log p(x)

�= p(x)∇xi

log p(x)∇Txj

log p(x) + p(x)∇xi∇

Txj

log p(x).

Integrating both sides overx and using (2) and (3), one obtainsZ

x

p(x)∇xilog p(x)∇T

xjlog p(x)dx +

Zx

Zy

p(x)∇xi∇T

xjlog p(x)dx = 0.

Thus

EX [∇xi∇T

xjlog p(x)] = −EX [∇xi

log p(x, y)∇Txj

log p(x)].

29

Page 30: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

PCRBProof

∇xj[Bi(x)p(x)] = ∇xj

Z

y

[xi(y) − xi]p(y|x)p(x)dy

= ∇xj

Z

y

[xi(y) − xi]p(x, y)dy

(1)&(2)= −δij

Z

y

p(x, y)dy +

Zy

[xi(y) − xi]∇xjp(x, y)dy

Integrate wrp toxZ

x

∇xj[Bi(x)p(x)]dx = −δij

Z

x,y

p(x, y)dxdy +

Zx,y

[xi(y) − xi]∇xjp(x, y)dxdy

(3)

0 = −δij +

Zx,y

[xi(y) − xi]∇xjp(x, y)dxdy

= −δij +

Zx,y

[xi(y) − xi]p(x, y)∇xjlog p(x, y)dxdy

Define vectorv = [X1(Y ) − X1, . . . , XN (Y ) − XN ,∇x1 log p(x, y), . . . ,∇xNlog p(x, y)]T and

Cv△= E[vvT ] =

"

E I

I J(X)

#, whereI is theN × N unity matrix;

Cv � 0, sinceuTCvu = uT E[vvT ]u = E[uT vvT u] = E[(uT v)2] ≥ 0,∀u.

As a consequence of Lemma 4,E � J(X)−1.

30

Page 31: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

PCRB (2)

Lemma 4

Let A =

"

A11 A12

A21 A22

#

� 0, whereA22 is nonsingular.

Then(A11 − A12A−122 A21) � 0.

Proof:A � 0, which by definition means thatvT

Av ≥ 0,∀v.

Let v = [v1v2]T , thenvT

Av = vT1 A11v1 + vT

1 A12v2 + vT2 A21v1 + vT

2 A22v2 ≥ 0.

Let vT2

△= −vT

1 A12A−122 , then

vTAv = v

T1 A11v1 + v

T1 A12v2 + v

T2 A21v1 + v

T2 A22v2

= vT1 A11v1 + v

T1 A12A

−122 A22v2 + v

T2 A21v1 + v

T2 A22v2 (A22 is invertible)

= vT1 A11v1 − v

T2 A22v2 + v

T2 A21v1 + v

T2 A22v2

= vT1 A11v1 − v

T1 A12A

−122 A21v1 ≥ 0,∀v1.

As a consequence,(A11 − A12A−122 A21) � 0.

31

Page 32: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

PCRB and the Kalman filter

Nonlinear time-varying dynamical system

Xk+1 = fk(Xk) + Wk

Yk = hk(Xk) + Vk,

where

• fk andhk are in generalnon-linearfunctions

• Wk andVk arei.i.d. (mean free) Gaussianrandom variables with covariance

matricesQk andRk resp.

32

Page 33: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

PCRB and the Kalman filter (2)Nonlinear time-varying dynamical system(morespecificcase)

JF (Xk+1) = Q−1

k − Q−1

k E[Ak+1](JF (Xk) + E[ATk+1Q

−1

k Ak+1])−1E[ATk+1]Q−1

k

+E[BTk+1R

−1

k+1Bk+1]

= JFk + E[BT

k+1R−1

k+1Bk+1]

with ATk+1

= ∇xkfT

k (xk) andBTk+1

= ∇xk+1hTk+1

(xk+1)

+ =

+

Ak+1

Bk+1

Yk+1

Vk+1(Rk+1)

Xk Xk+1

Wk(Qk)

JFk

JFk+1

JFk

Update equation forJF/Bk similar toKalmanupdate ofinverse covariance matrix

⇒ Kalman filter/smootherachieves PCRBfor estimating the state oflinearsystems with

Gaussiannoise sources

33

Page 34: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

PCRB and the Kalman filter (3)

Node Update rule

X

Y

Z

A

mZ=mX + VXAT G(mY − AmX)

VZ=VX − VXAT GAVX

WZ=WX + AT WY A

ξZ=ξX + AT ξY

with G = (VY + AVXAT )−1

X

Y

Z

A

mZ=mX + AmY

VZ=VX + AVY AT

WZ=WX − WXAHAT WX

ξZ=ξX + WXAH(ξY − AT ξX)

with H = (WY + AT WXA)−1

34

Page 35: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Matrix inversion lemmaLet A =

"

A11 A12

A21 A22

#

, whereA11 andA22 are nonsingular, such that(A11 − A12A−1

22A21)

and(A11 − A22A−1

11A12) are also nonsingular.

ThenA is also nonsingular with�

A−1

11= A−1

11+ A−1

11A12(A22 − A21A

−1

11A12)−1A21A

−1

11

= (A11 − A12A−1

22A21)−1�

A−1

12= −A

−1

11A12(A22 − A21A

−1

11A12)−1

= −(A11 − A12A−1

22A21)−1A12A

−1

22�

A−1

21= −(A22 − A21A

−1

11A12)−1A21A

−1

11

= −A−1

22A21(A11 − A12A

−1

22A21)−1�

A−1

�22

= A−1

22+ A

−1

22A21(A11 − A12A

−1

22A21)−1A12A

−1

22

= (A22 − A21A−1

11A12)−1.

35

Page 36: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Markov model

= ==p(x0)

X0 X1 X2 X3

Y1 Y2 Y3

f1 f2 f3

E[(X2(Y ) − X2)2] �

J−1

22

J−1

22=

0BBBBB�2666664

f000

+ f001

f011

0 0

f101

f111

+ f112

+ f11Y1

f212

0

0 f212

f222

+ f223

+ f22Y2

f233

0 0 f323

f333

+ f33Y3

3777775

−11CCCCCA

22

with f ij △

= −E[∇xi∇T

xjlog f ]

36

Page 37: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Markov model (2)

= ==p(x0)

X0 X1 X2 X3

JF1JF

0

Y1 Y2 Y3

J−1

22=

0BBBBB�2666664

f000

+ f001

f011

0 0

f101

f111

+f112

+ f11Y1

f212

0

0 f212

f222

+ f223

+ f22Y2

f233

0 0 f323

f333

+ f33Y3

3777775−11CCCCCA

22

=

0BBB�2664 f112

+ f11Y1

+JF1

f212

0

f212

f222

+ f223

+ f22Y2

f233

0 f323

f333

+ f33Y3

3775−1

1CCCA

11

with JF1

=

0�0�24 f000

+ f001

f011

f101

f111

35−11A11

1A−1

=

0�0�24 JF0

+ f001

f011

f101

f111

35−11A

11

1A−1

37

Page 38: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Markov model (3)

= ==p(x0)

X0 X1 X2 X3

JF1 JF

1

JU1

JF2

Y1 Y2 Y3

J−1

22=

0BBB�2664 f112

+ f11Y1

+ JF1

f212

0

f212

f222

+f223

+ f22Y2

f233

0 f323

f333

+ f33Y3

3775−1

1CCCA

11

=

0�24 f223

+ f22Y2

+JF2

f233

f323

f333

+ f33Y3

35−11A

00

with JF2

=

0�0�24 f112

+ JF1

f122

f212

f222

35−11A11

1A−1

andJF1

= JF1

+ JU1

= JF1

+ f11Y1

38

Page 39: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Markov model (4)

= ==p(x0)

X0 X1 X2 X3

JB3JB

2JF2

Y1 Y2 Y3

JU2 JU

3

J−1

22= (JF

2 + JU2 + JB

2 )−1

with JB2

=

0�0�24 f223

f232

f323

f333

+ JB3

35−11A00

1A−1

JB3

= JU3

= f33Y3

JU2

= f22Y2

39

Page 40: Posterior Cramer-Rao bounds´ for estimation in graphical ... · Blabla 31.03.2005 Justin Dauwels dauwels@isi.ee.ethz.ch | Signal and Information Processing Laboratory Department

Cramér-Rao bound

Information matrixI(θ)

Iij(θ)△

= EY

[

∇θilog p(y|θ)∇T

θjlog p(y|θ)

]

.

Error matrixE(θ)

Eij(θ)△

= EY

[

(θ(y) − θ)(θ(y) − θ)T]

.

Theorem(Fisher, ’22; Dugué, ’37; Rao, ’45; Cramér, ’46)If

1. the information matrixI(θ) existsand isnon-singular,

2.∫

y(θ(y) − θ)p(y|θ)dy = 0, i.e., the estimatorθ(y) is unbiased

thenE(θ) � I−1(θ) (Cramér-Rao bound).

40