POLYMER‐TO‐CERAMIC TECHNOLOGY FOR FRICTION …

4
Riverside Technology Park ‐ 2165 Technology Drive Schenectady, NY 12308‐1143 Copyright ® 2010‐2011 Starfire Systems, Inc. All rights reserved. Rev date: 03/12 Phone: 518.899.9336 Fax: 518.289.2261 www.starfiresystems.com POLYMER-TO-CERAMICTECHNOLOGY POLYMER‐TO‐CERAMIC TM TECHNOLOGY FOR FRICTION APPLICATIONS Starfire Polymer‐to‐Ceramic Composite (PTCC) materials are carbon fiber reinforced ceramic composites which utilize Starfire Polymer‐to‐Ceramic TM technology and produce tough, high thermally stable composites. These PTCCs can be designed and used for frictional, structural, and thermal applications. Manufacture of Starfire PTCCs is simple and does not require expensive equipment, is easily machinable, and is environmentally friendly. The processing of PTCCs relies exclusively on pyrolysis of the thermoset resin to form a ceramic—no hazardous precursors are required, and no conversion reaction takes place which can compromise fibers, interface coatings, and negatively impact production yields. Why Ceramic Composites? Carbon fiber reinforced ceramic composites are especially important because when compared with metal, they offer such advantages as significant heat and corrosion resistance, high strengths at elevated temperatures, and reduced weight for a host of uses. However, one weakness of the material system is brittleness which is significantly improved by reinforcing the ceramic with tough, carbon fibers. Depending on the cost target and application, different reinforcements are available to address brittleness and encourage tough behavior. For high stress applications, continuous fiber reinforcement is available, and for lower stress and cost sensitive applications, short, chopped fiber reinforcement is available. Table 1 below describes some typical properties for composites produced with Starfire PTCCs. Because Starfire Systems develops and designs custom polymers, the possibilities are endless for a PTCC to perform to a customer requirement. In a friction application for automobiles and motorcycles, using a PTCC rotor, with a 70% reduction in mass compared to an iron rotor, can reduce total vehicle and rotating mass which improves gas mileage, and improves acceleration and vehicle handling. In aircraft friction, using PTCC rotors to replace carbon‐carbon is envisioned to yield reduced wear and increased brake life, reduced brake stack heights, and improved static coefficients, all at comparable cost of manufacture. Other ceramic composite technologies do exist in production. Each offers distinct advantages and disadvantages, and each has a place in the market. Table 2 below summarizes three (3) competing technologies and some details related to their relative cost to manufacture, temperature capability, and strengths. Starfire PTCC materials utilize LPI technology and are considered the most cost effective and safest means to create ceramic composites available. Table 1: Summary of Typical Data utilizing Starfire Polymer‐to‐Ceramic TM Technology Reinforcement Type – Starfire PTCC Cost Flexural Strength (ksi) Tensile Strength (ksi) Thermal Conductivity (W/m*°K) Z‐direction X‐Y‐direction Non‐Woven $$ 20‐24 15‐18 4 ‐‐‐ 2‐D Laminate $$$ 35‐42 35‐40 2 10 Chopped Fiber $ 15‐25 3‐6 4 8

Transcript of POLYMER‐TO‐CERAMIC TECHNOLOGY FOR FRICTION …

Page 1: POLYMER‐TO‐CERAMIC TECHNOLOGY FOR FRICTION …

RiversideTechnologyPark‐2165TechnologyDrive Schenectady,NY12308‐1143 Copyright®2010‐2011StarfireSystems,Inc.Allrightsreserved.Revdate:03/12

Phone:518.899.9336Fax:518.289.2261

www.starfiresystems.com

POLYMER-TO-CERAMIC™ TECHNOLOGY

POLYMER‐TO‐CERAMICTMTECHNOLOGYFORFRICTIONAPPLICATIONSStarfirePolymer‐to‐CeramicComposite(PTCC)materialsarecarbonfiberreinforcedceramiccompositeswhichutilizeStarfirePolymer‐to‐CeramicTMtechnologyandproducetough,highthermallystablecomposites.ThesePTCCscanbedesignedandusedforfrictional,structural,andthermalapplications.ManufactureofStarfirePTCCsissimpleanddoesnotrequireexpensiveequipment,iseasilymachinable,andisenvironmentallyfriendly.TheprocessingofPTCCsreliesexclusivelyonpyrolysisofthethermosetresintoformaceramic—nohazardousprecursorsarerequired,andnoconversionreactiontakesplacewhichcancompromisefibers,interfacecoatings,andnegativelyimpactproductionyields.

WhyCeramicComposites?Carbonfiberreinforcedceramiccompositesareespeciallyimportantbecausewhencomparedwithmetal,theyoffersuchadvantagesassignificantheatandcorrosionresistance,highstrengthsatelevatedtemperatures,andreducedweightforahostofuses.However,oneweaknessofthematerialsystemisbrittlenesswhichissignificantlyimprovedbyreinforcingtheceramicwithtough,carbonfibers.Dependingonthecosttargetandapplication,differentreinforcementsareavailabletoaddressbrittlenessandencouragetoughbehavior.Forhighstressapplications,continuousfiberreinforcementisavailable,andforlowerstressandcostsensitiveapplications,short,choppedfiberreinforcementisavailable.Table1belowdescribessometypicalpropertiesforcompositesproducedwithStarfirePTCCs.BecauseStarfireSystemsdevelopsanddesignscustompolymers,thepossibilitiesareendlessforaPTCCtoperformtoacustomerrequirement.

Inafrictionapplicationforautomobilesandmotorcycles,usingaPTCCrotor,witha70%reductioninmasscomparedtoanironrotor,canreducetotalvehicleandrotatingmasswhichimprovesgasmileage,andimprovesaccelerationandvehiclehandling.Inaircraftfriction,usingPTCCrotorstoreplacecarbon‐carbonisenvisionedtoyieldreducedwearandincreasedbrakelife,reducedbrakestackheights,andimprovedstaticcoefficients,allatcomparablecostofmanufacture.

Otherceramiccompositetechnologiesdoexistinproduction.Eachoffersdistinctadvantagesanddisadvantages,andeachhasaplaceinthemarket.Table2belowsummarizesthree(3)competingtechnologiesandsomedetailsrelatedtotheirrelativecosttomanufacture,temperaturecapability,andstrengths.StarfirePTCCmaterialsutilizeLPItechnologyandareconsideredthemostcosteffectiveandsafestmeanstocreateceramiccompositesavailable.

Table1:SummaryofTypicalDatautilizingStarfirePolymer‐to‐CeramicTMTechnology

ReinforcementType–StarfirePTCC Cost Flexural

Strength(ksi)TensileStrength

(ksi)ThermalConductivity(W/m*°K)Z‐direction X‐Y‐direction

Non‐Woven $$ 20‐24 15‐18 4 ‐‐‐2‐DLaminate $$$ 35‐42 35‐40 2 10ChoppedFiber $ 15‐25 3‐6 4 8

Page 2: POLYMER‐TO‐CERAMIC TECHNOLOGY FOR FRICTION …

RiversideTechnologyPark‐2165TechnologyDrive Schenectady,NY12308‐1143 Copyright®2010‐2011StarfireSystems,Inc.Allrightsreserved.Revdate:03/12

Phone:518.899.9336Fax:518.289.2261

www.starfiresystems.com

ApplicationsinFrictionMotorcycle,automobileandaircraftbrakesmadefromStarfirePTCCmaterialsareonelogicalselectionofthematerialsystemduetoitshighthermalcapability,highstrengthandtoughness,andlowweightcomparedtometalalternatives.

Inlimitedproductionvolume,StarfirePTCCmaterialswereutilizedasmotorcyclebrakerotorsunderthetradename,STARBlade®asshowninFigure1.Thesesingle‐blade,non‐ventilatedC/SiCrotorswerewellreceivedbythestreetdriverandtrackraceralikeastheyofferedamazingbrakingcapacitywithnofade.Structurally,itwasshowntheseSTARBlade®rotorswerestrong,tough,anddurableenoughtolast>100,000mileswithvirtuallynorotorwear.Duetotheirreducedweightcomparedtometalbrakerotors,handlingwassignificantlyimprovedfor

thebikerider.Inadditiontothemotorcyclebrakerotor,StarfirehasdemonstratedthatPTCCmaterialshavemorethanadequatestrength,toughness,anddurabilitytoprovideabrakingsolutionforhighperformanceautomobiles.Figure2demonstratesthataSTARBlade®PTCCautomotiverotorcanbemoldednearlynetinshape,includingattachmentlugs,crossdrillholesandventilation,andiscomprisedofaStarfirebasedchoppedfiberreinforcedmoldingcompound.StarfirehasalsodemonstratedinFigure3thesecompositerotorscanbemadeinvolume.

Ifmoldednetshape,themoldedpartrequiresonlyminimalfinishgrindingoftherotorsurfaces,significantlyreducingrawmaterialandmachiningcosts.TheexpectedproductioncostofthisStarfirePTCCrotorislowerthanEuropeancarbon‐ceramicbrakesnowofferedonlyonhighendperformancecars,likePorscheandFerrari.

FrictionalperformanceandwearofStarfirePTCCautorotorsisoutstanding.Withanaveragecoefficientoffrictionofabout0.46,stablefrictionandlowweararealreadypossibleusingcommerciallyavailablesemi‐metallicpads,andwearisexpectedtoimprovewithspeciallyformulatedpadliningmaterials.Forthistest,highspeed,lowvehiclemasssuper‐carconditionswereselectedtoillustrateperformancecapability.Figure4showsafadeandhotperformancesectionofadynotest,andillustratesthestabilityofthefrictioncoefficientwithincreasingtemperature,butalsoshowssomepressuresensitivity.Inadditiontooutstandingperformance,othertestinghasshownthisSTARBlade®PTCCformulationtowithstand

MaterialType

ReinforcementType Cost Technical

Maturity

TemperatureCapability

(°C)

ThermalConductivity–Z‐direction

Toughness Strength

LPI–LiquidPolymerInfiltrationTechnology(PTCC)

•ContinuousFiber/Fabric•ChoppedFiber•Non‐Woven

$ Moderate >1,400°C Low High High

LSI–LiquidSiliconizationTechnology

•ChoppedFiber•Non‐Woven $$ High 1,400°CMax Medium/

High Low Moderate

CVI–ChemicalVaporInfiltrationTechnology

•Continuous•Fiber/Fabric•Non‐Woven

$$$$ Moderate >1,600°C Medium High High

Figure1:STARBlade®PTCCMotorcycleRotor

Figure3:394mmand380mmPTCCSTARBlade®rotorsin‐processforqualificationtesting

Figure2:SingleoperationmoldedautoPTCCSTARBlade®rotorwithfeatures

Figure4:ISO26867PerformanceTest;3609024;Fade,HotPerformance

Table2:Assessmentofvariousleadingfiberreinforced,ceramiccompositetechnology

Page 3: POLYMER‐TO‐CERAMIC TECHNOLOGY FOR FRICTION …

RiversideTechnologyPark‐2165TechnologyDrive Schenectady,NY12308‐1143 Copyright®2010‐2011StarfireSystems,Inc.Allrightsreserved.Revdate:03/12

Phone:518.899.9336Fax:518.289.2261

www.starfiresystems.com

torquesgreaterthan4,800N*m—4xgreaterthanthemaximumdesignallowableforthiscomponent.ExceptionalperformancewasachieveddespiteutilizingcommerciallyavailablepadliningswhichwerenotspecificallydesignedfortheStarfirePTCCceramicrotortechnology.PerformancecanonlybeimprovedonceapadliningmaterialisspecificallydesignedtomatchtheuniquepropertiesoftheStarfirePTCCrotormaterialsystem.

PerformanceofPTCCRotorsComparedtoIronRotorsWhilePTCCrotorsare1/3thedensityofironrotors,theyarealsolowerinthermalmassandthermalheatcapacity(Cp),thecapacitytostoreheatwhichcomesaboutfromtheconversionofkineticenergytothermalenergyduringbraking.Thecurrentstateoftheartpadliningslimittheoverallcapabilityoftheceramicbrakesystemandstarttoexhibitfadecharacteristicswhenthepadliningsreachtheiruppertemperatureandpressurelimitations.Thispadfadebehaviorisevidentforbothironrotors,aswellasceramicrotorsofanyformulation.Starfirehasevaluated,atnearlyidenticaltestconditions,aStarfirePTCCrotor(A)andastandardironrotor(B)usingpadsdesignedforagenericceramicrotor,andaniron

rotorrespectivelyasshowninFigure5.Thetestsimulatedalarge,fullsizedSUVvehicleoperatingathighspeeds,startedthetestatrotortemperaturesof150°Cand500°C,andincreasedthebrakecaliperpressuretonearitsdesignmaximum.Inbothcases,thesystemsdemonstrateacceptableperformance,withsomevariation,butshowednoticeablepadfade.Thisperformancefadeisapaddominatedcharacteristicanditisclearperformancedegradesasthepadsarepushedbeyondtheirdesignlimitandultimatelyreducestheperformancepotentialofthesystem.

TheStarfirePTCCrotorformulationismorethancapableofhandlingtheenergyrequiredtofunctionasabrake,however,eventhecurrenthigh‐performancesemi‐metallicliningsstruggletokeepup.Starfirehasthecapabilitytoformulatespecializedpolymersaspadadditivesandcan,withtheassistanceofapadliningformulator,co‐developapaddesignedfortheuniquecharacteristicsofthePTCCrotortechnology.WithapadliningspecificallyformulatedandmodifiedforStarfirePTCCs,itispossibletohaveaceramicbrakingsolutionwhichoffersequivalentperformancetothatofanironrotor,butwiththereducedweightandimprovedwearconsistentwithaceramiccomposite.

AlternateFrictionMaterialsforRotorsandPadLiningsWhenselectingarotorandpadliningpair,itisclearthereisnoone‘best’materialforallapplicationsandconditions.Whatmustbeconsideredarefactorssuchas:maturityofthetechnology,cost,size,performance,andthermalmanagement.Whilesomeformulationsshowexceptionalpropertiesinonearea,theymaystumbleinothers.Asceramiccompositetechnologyisfurthermatured,itsreliabilitywillcontinuetoimprove,ceramicmanufacturingtechniqueswillbemoreaccepted,andcostwillcontinuetogodown.Thesebenefitswillcontinuetomakeceramictechnologymoreattractiveforlargevolumemanufacturing.SomerelativecharacteristicsofeachfrictiontechnologyareshowninTable3below.

Material Densityg/cc ThermalConductivity CTE Cost

Iron 7‐8 High High $StarfirePTCCC/SiCorC/SiOC 2.2‐2.3 Low Low $$$Carbon‐CeramicLSI 2.2‐2.4 Medium Low $$IronCladAluminum 6.0 Medium Medium $$AluminumMMC 2.5‐3.5 High High $$Titanium 4.5 Low Medium $$$

Figure5:ISO26867PerformanceTest;PTCCSTARBlade®Rotor,andIronRotor;HotPerformanceandPressureLine

Table3:ComparativeTypicalPropertiesofVariousCommonFrictionMaterials

Page 4: POLYMER‐TO‐CERAMIC TECHNOLOGY FOR FRICTION …

RiversideTechnologyPark‐2165TechnologyDrive Schenectady,NY12308‐1143 Copyright®2010‐2011StarfireSystems,Inc.Allrightsreserved.Revdate:03/12

Phone:518.899.9336Fax:518.289.2261

www.starfiresystems.com

AircraftBrakeFrictionStarfireparticipatedintheCeramicCompositeAircraftBrake(CCAB)programwhichwasfundedbytheAirForceResearchLab(AFRL)andtheOhioAerospaceInstitute(OAI)todevelopaceramicbrakingsystemforcommercialaircraftwithgreatsuccess.StarfirewonthePhaseIsub‐scaleportionwithoutstandingpropertiesandthelowestwearofallparticipants.Propertiesgeneratedfromthisprogramaresummarizedinthetable4below.

PhaseIIfullsizedtestingyieldedopportunitiestooptimizethedesignasStarfireC/SiCmaterialexperiencedhighwear.Althoughlittletestingofthefullsizedpartstookplace,StarfirefeelsthePTCCmaterialsystemcanbecommercializedasafunctionalaircraftbrakesystemandcanyieldthepromiseofalowwearingceramicbrake,onewithsimilarmasstocarbon‐carbonbutwithbetteroverallperformance.

HeavyVehicle,IndustrialBrakeStarfirehastestedPTCCrotortechnologyonheavy,industrialvehicleapplicationswithmixedresults.Initialtestswereconductedusingoriginalequipment(OE)liningsdesignedspecificallyformetallicrotors,insteadofliningsspecificallydesignedforceramicrotors,whichwouldalsoincludegreatersweptpadcontactarea.Figure6illustratesoneofthetwo(2)testedsystems,bothyieldedlowwear,loweffectivenessvalues.Astested,thesystemswerepressurelimitedduetothecapabilityoftheexistingbrakingcalipersusedinthefieldtoday.Encouragingly,therotorswerecapableofhandlingsufficienttorque(>1,350N*m),generatedfrictionandyieldedlowwear,butfellshortofasuccessduetoanon‐optimizedpadlining.Toimproveperformanceonthisandsimilartests,Starfirehasthecapabilitytodevelopspecializedpolymerpadadditives.Withtheseadditives,andwiththeassistanceofapadliningformulator,Starfirecanco‐developapaddesignedfortheuniquecharacteristicsofthePTCCrotortechnology.Additionally,thistestingindicatesadrop‐in‐replacementceramicrotorispossibleandcanpotentiallyofferareduced‐massceramicbrakerotoroptiontoexistingvehiclesinthefield,providedanimprovedliningcanbeoffered.

VersatileHybridRotorDesign–PTCC+MMC=HighPerformanceUtilizingStarfireSystems’proprietaryPTCCfrictionmaterialandametalmatrixcomposite(MMC)core,TurbineRotorshasdevelopedapatentedhybridautorotorconceptwhichoffersthebenefitofreducedweightcomparedtoironandsteel,thehighperformanceofanexoticceramiccompositefrictionmaterial,allatalowprice.Atbrakingtemperatureswherenormalmetallicfrictionsolutionssoften,oxidize,warpanddistort,orexhibitfade,theTurbineRotorshybridconceptshines.Thisdesign,showninfigure7,combinesprovenmetalmatrixcompositecastingtechnologytocreateastructuralcore,withtheestablishedtechnologyofaStarfirePTCCfrictionalsurfacetoofferafrictionalsystemcapableofgettingnoticed.WithmultiplePTCCfrictionsurfacestochosefrom,rangingfromaggressivetolowimpact,theTurbineRotorsconceptisgame‐changingtechnologyfortheracingcommunity.

Property UnitofMeasure Value

CarbonPreformType ‐‐‐ Non‐WovenDensity g/cc 2.0‐2.3FlexuralStrength,20°C ksi 24‐25CompressiveStrength ksi 63InterlaminarShear ksi 12‐13ThermalConductivity,800C‐1000°C W/m*°K 5.0‐5.5

Toughness mPa*m(1/2) 7

Table4:ThermalandMechanicalDataofStarfireC/SiCPTCCmanufacturedfortheCCABAirCraftBrakeDevelopmentProgram

Figure6:STARBlade®PTCCRotorPostTest

Figure7:TurbineRotors'HybridRotor