Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell...

26
Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Transcript of Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell...

Page 1: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Polarized Photocathode ResearchCollaboration PPRC

R. Prepost – University of WisconsinCornell ALCW July 13-16 2003

• A. Brachmann• J. Clendenin• E. Garwin• T. Maruyama• D. Luh• S. Harvey• R. Kirby• C. Prescott• R. Prepost

Page 2: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Some Considerations

• Technique is Bandgap Engineering of Strained GaAs.• Polarization will be < 100% - But 90% possible.• Active layer must be < 10% of photon absorption length

to preserve strain and polarization.• Uniform Strain over larger thickness in principle possible

with Superlattice structures• Strained GaAs used at SLAC since 1986 with ~85%

Polarization and ~.2% QE.• R & D has been continuous since 1985.

Page 3: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Outline

• Polarized photoemission• Standard SLC photocathode• Surface charge limit• Charge limit vs. doping• Polarization vs. doping• High gradient doped strained GaAsP• High gradient doped strained superlattice• Atomic-hydrogen cleaning• Summary

Page 4: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Polarized photoemission

• Circularly polarized light excites electron from valence band to conduction band• Electrons drift to surface L < 100 nm to avoid depolarization• Electron emission to vacuum from Negative-Electron-Affinity (NEA) surface

NEA Surface – Cathode “Activation”• Ultra-High-Vacuum < 10-11 Torr• Heat treatment at 600° C• Application of Cesium and NF3

Page 5: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Facilities

• QE and Polarization at 20 kV• QE and Polarization at 120 kV under accelerator condition

Page 6: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Standard SLC Strained GaAs

• 100 nm GaAs grown on GaAsP

• Uniformly doped at 51018 cm-3

• Peak polarization ~80%• QE ~0.2 – 0.3%• Max. charge ~7 1011

e-/270ns

GaAs substrate

GaAs1-xPx x=0.3

GaAs1-xPx x=0 0.3

100 nm GaAs

5

4

3

2

1

0

Far

aday

Cup

Sig

nal (

arb.

uni

ts)

3002001000

Time (ns)

Charge saturation

Page 7: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Beam structure

Page 8: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Surface Charge Limit

• Photon absorption excites electrons to conduction band

• Electrons can be trapped near the surface; electron escape prob. 20%

• Electrostatic potential from trapped electrons raises affinity

• Affinity recovers after electron recombination

• Increasing photon flux counterproductive at extremes

TESLA does not have a charge limit problem.

Page 9: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Charge limit (cont.)

pump probe

Two short pulses

Pro

be s

ign

al

Long pulse

Page 10: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Higher doping solves charge limit problem.

Four samples withdifferent doping level: 51018 cm-3

11019 cm-3

21019 cm-3

51019 cm-3

Phys. Lett. A282, 309 (2001)

Page 11: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

But higher doping depolarizes spin.

Page 12: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

High-gradient doped strained GaAsPNIM A492, 199 (2002)

Page 13: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

80% Polarization and No charge limit

E158 cathode

2.5

2.0

1.5

1.0

0.5

0.0

FA

RC

sig

nal (

arb.

uni

ts)

4003002001000

Time (ns)

Page 14: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

But polarization is still 80%.

Actual strain is 80% of design

Strain relaxation

Page 15: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Strained-superlattice

Strained GaAs

GaAsP

Strained GaAs

GaAsP

Strained GaAs

GaAsP 30 A

40 A

GaAs Substrate

GaAs(1-x)Px Graded Layer

GaAs0.64P0.36 Buffer

Active Region

25m

25m

1000 A

Page 16: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

SBIR with SVT Associates

• July 2001 SBIR Phase I awarded Very first sample produced 85% polarization• Sep. 2002 SBIR Phase II awarded

• MBE growth MOCVD growth• Be doped Zn doped

“Advanced Strained-Superlattice Photocathodes for Polarized Electron Souces”

SLC photocathode

Page 17: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

0 20 40 60 80 100 120 140 160 180

Time (s)

RHEEDSignal GaAs Oscillations

AlAs Oscillations

InAs Oscillations

MBE- In Situ Growth Rate Feedback

Monitoring RHEED image intensity versus timeprovides layer-by-layer growth rate feedback

Growth at monolayer precision

Page 18: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Strained-superlattice band structure

GaAs1-

xPx

GaAs GaAs1-

xPx

GaAs GaAs1-

xPx

CB1

HH1

LH1

1.65 eV

86 meV

1.42 eV

b w

Parameters:barrier layer thickness, 30 Å < b < 100 Å well layer thickness , 30 Å < w < 100 Åphosphorus fraction , 0.3 < x < 0.4No. of periods , active layer ~ 1000 Å

Page 19: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Multiple Quantum Well Simulation

Page 20: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Multiple Quantum Well Simulation

• QE ~ Band Gap• Polarization ~ HH-LH

SplittingEffective Band Gap

HH-LH Splitting

Barrier = 5 nm

x

Page 21: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Polarization and QE

• Peak polarization 85%

• QE ~ 0.8 – 1%

• Wavelength dependence is consistent with the simulation.

80

60

40

20

Po

lariz

atio

n (

%)

820800780760740720700680660

Wavelength (nm)

0.01

0.1

1

QE

(%)

w = 3 nm, b = 3 nm w = 4 nm, b = 4 nm w = 4 nm, b = 3 nm w = 5 nm, b = 3 nm

Page 22: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Rocking Curve (004) scan from SVT-3682

GaAs Bulk

GaAs0.64P0.36

Graded GaAs1-xPx

Additional peaks from

superlattice structure

• Both SVT-3682 and SVT-3984 are superlattice cathodes:

– MBE grown Be-doped (SVT Associates).

– Barrier width: 30Å

– Well width: 30Å

– Phosphorus fraction in GaAsP: 0.36

– Layer number: 16

– Highly-doped surface layer thickness: 50Å

• XRD analysis on SVT-3682– Well Width = Barrier Width = 32Å

– Phosphorus fraction in GaAsP: 0.36

Page 23: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

No Charge Limit

10

8

6

4

2

0

Ch

arg

e (

x1011

pe

r p

uls

e)

50403020100

Laser Energy (uJ)

60 nsec pulse

Before Cesiation

After cesiation

4

3

2

1

0

Farc

Sig

nal (

V)

12080400

Time (ns)

775nm, 60ns

11012 e- in 60 ns

Page 24: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

QE Anisotropy

-10

-5

0

5

10

QE

Ani

sotro

py (%

)

1801501209060300

Angle (degrees)

-3

-2

-1

0

1

2

3

QE

Aniso

tropy

(%)

1801501209060300

Angle (degrees)

EStrain relaxation

Strained GaAs Strained superlattice

10% 1.5%

Page 25: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

E158 again

• Cathode installed in May.

• But it shows a charge limit ~71011 e-/300 ns

• Cannot make NLC train charge but OK for E158.

• What happened?• The 600° C heat-

cleaning is destroying the high gradient doping profile.

Page 26: Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin.

Atomic-Hydrogen Cleaning

Ga2O3 comes off at ~600° C.Ga2O comes off at ~450° C.

Ga2O3 + 4H Ga2O + 2H2O

600° C heat-cleaning: QE ~ 11%AHC + 450 ° C heat-cleaning: QE ~15%

Bulk GaAs