PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM...

31
May 2015 DocID027783 Rev 1 1/31 31 AN4687 Application note PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A PD converter based on the PM8803 controller Roberto Baragetti Introduction This document describes a reference design for a PoE+, high efficiency, 3.3 V - 6 A flyback converter based on the PM8803 PoE controller. The PM8803 is highly integrated device embedding an IEEE802.3at compliant “Powered Device” (PD) interface together with a PWM controller and support for auxiliary sources. The STEVAL-TSP009V2 reference design is based on an isolated flyback topology CCM converter with synchronous rectification and gate driver transformer. The same PCB can be populated in different ways to support various configurations and topologies (flyback with diode rectification, synchronous flyback with or without active clamp, self-driven synchronous flyback). Figure 1. STEVAL-TSP009V2 evaluation board photo www.st.com

Transcript of PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM...

Page 1: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

May 2015 DocID027783 Rev 1 1/31

31

AN4687Application note

PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A PDconverter based on the PM8803 controller

Roberto Baragetti

Introduction

This document describes a reference design for a PoE+, high efficiency, 3.3 V - 6 A flyback converter based on the PM8803 PoE controller.

The PM8803 is highly integrated device embedding an IEEE802.3at compliant “Powered Device” (PD) interface together with a PWM controller and support for auxiliary sources.

The STEVAL-TSP009V2 reference design is based on an isolated flyback topology CCM converter with synchronous rectification and gate driver transformer. The same PCB can be populated in different ways to support various configurations and topologies (flyback with diode rectification, synchronous flyback with or without active clamp, self-driven synchronous flyback).

Figure 1. STEVAL-TSP009V2 evaluation board photo

www.st.com

Page 2: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Contents AN4687

2/31 DocID027783 Rev 1

Contents

1 Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . . . 4

2 Schematic and BOM for 3.3 V at 6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Measurements results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Efficiency comparison with three rectification bridge options . . . . . . . . . . 14

3.2 Converter efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Voltage ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Primary side waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Secondary side waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Load transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 PoE to auxiliary switchover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Gloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Support material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 PCB layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Electrical diagram general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Page 3: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 3/31

AN4687 List of figures

31

List of figures

Figure 1. STEVAL-TSP009V2 evaluation board photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. STEVAL-TSP009V2 circuit schematic (1 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 3. STEVAL-TSP009V2 circuit schematic (2 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 4. Schematic Schottky bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 5. Schematic full active bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 6. Schematic half active bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 7. Comparison efficiency bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 8. Overall and DC/DC efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 9. Output voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 10. Ripple on 3.3 V at 0.6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 11. Ripple on 3.3 V at 6 A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 12. Ripple before and after input filter with 3.3 V at 0.6 A

(measured on C26 and C28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 13. Ripple before and after input filter with 3.3 V at 6 A

(measured on C26 and C28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 14. Startup from Microsemi 9001G injector - 3.3 V at 0.6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 15. Startup from Microsemi 9001G injector - 3.3 V at 6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 16. Startup from Microsemi 9501G injector - 3.3 V at 0.6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 17. Startup from Microsemi 9501G injector - 3.3 V at 6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 18. Detail of the output voltage at startup with no load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 19. Detail of the output voltage at startup with 6 A load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 20. Primary steady state 0.6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 21. Primary steady state 6 A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 22. Detail of primary drain at 6 A load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 23. Secondary steady state 0.6 A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 24. Secondary steady state 6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 25. Detail of secondary drain at 6 A load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 26. Secondary steady state 0.6 A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 27. Secondary steady state 6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 28. Detail of secondary drain at 6 A load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 29. Gloop 48 V at 6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 30. Gloop 48 V at no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 31. Gloop 40 V at 6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 32. Gloop 57 V at no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 33. PCB top assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 34. PCB bottom assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 35. PCB layer 1 top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 36. PCB layer 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 37. PCB layer 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 38. PCB layer 4 bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Figure 39. Schematic 1 of 2 (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Figure 40. Schematic 2 of 2 (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Page 4: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Main characteristics and circuit description AN4687

4/31 DocID027783 Rev 1

1 Main characteristics and circuit description

The main characteristics (reference and electrical specifications) of the converter are listed in Table 1 and Table 2.

This document details the characteristics and performances of the PM8803 evaluation kit STEVAL-TSP009V2, which has been designed to cover a broad range of Power over Ethernet (PoE) applications.

The PM8803 is a highly integrated device embedding an IEEE802.3af/at compliant powered device (PD) interface together with a PWM controller and support for auxiliary sources.

Table 1. Reference

Reference code

Device PM8803

Evaluation board STEVAL-TSP009V2

Table 2. Electrical specification

Parameter Specifications

Input voltage supplies VIN [VDC] From 40 to 60 V

Auxiliary input voltage range From 30 to 60 V

Output voltage VOUT [VDC] 3.3 VDC ±5% at 6 A

Peak to peak output ripple < 25 mVPP

Efficiency DC-DC at full-load > 90%

Efficiency overall at full load > 87%

Transient response ∆VOUTPK to 50% load step < 250 mV

∆VOUT in load line case < 0.5%

GLOOP bandwidth > 4 kHz

GLOOP phase margin at 0 dB > 60 deg.

GLOOP dB margin at 0 deg. > 10 dB

Page 5: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 5/31

AN4687 Main characteristics and circuit description

31

Even though PM8803 device can be configured to work in several isolated topologies, self-driven or a transformer gate driven; this application note focuses on a high efficiency isolated flyback converter topology with synchronous rectification, 3.3 V output voltage with 6 A output current capability.

Auxiliary sources can be connected to the board on two different input connectors. One input (AUX II) allows prevalence of the auxiliary sources with respect to the PoE, while the other input ( AUX I ) allows the usage of a wall adaptor with voltage lower than the internal PoE UVLO threshold and still benefits from the inherent inrush and DC current limit.

The possible configurations supported by the PM8803 demonstration kit as options on the same PCB are:

Alternative input bridge rectification: 4 possible options including standard diode bridges, discrete schottky diode bridges, half active bridges and full active bridges; schottky diode bridges are mounted on this eval board.

Optional 4 pairs detection circuit, to detect if power is provided on 2 pairs or on 4 pairs by a high power PSE source; this circuit is not used on this eval board.

Optional booster circuit, to increase the max. input current over 1A; this circuit is not used on this eval board.

Diode or synchronous rectification; 4 package options for the diode and 2 package options for the MOSFET;

Primary side snubber; 3 options included an active clamp; a simple R-C snubber is used on this eval board.

Power transformer; 3 size options for transformer gate driven solutions and 2 size options for self-driven applications.

The bill of material (BOM) in Table 3, provides the list of components to be mounted to obtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A evaluation board.

Page 6: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Schematic and BOM for 3.3 V at 6 A AN4687

6/31 DocID027783 Rev 1

2 Schematic and BOM for 3.3 V at 6 A

2.1 Schematic

Figure 2. STEVAL-TSP009V2 circuit schematic (1 of 2)

R37

0R0

1206

R1

75R

0603

C12

2.2n

F18

122K

V

C9

2.2n

F18

122K

V

R32

15K

0805

C14

1nF

10%

0603

100V

D1

STT

H30

2SS

MC

C16

1nF

10%

0805

100V

R2

75R

0603

C18

0.1u

F 10

%08

0510

0V

TP22

Red

R5

75R

0603

C5

10nF

10%

0603

100V

C7

10nF

10%

0603

100V

R26

0R0

1206

D12

STP

S2H

100A

SMA

D7

STP

S2H

100A

SM

A

R12

50R

0

1206

D14

STPS

2H10

0AS

MA

J2 SP

1 2 3

TP24

BLA

CK

R17

0R01

206

R11 75R

0603

R12 75R

0603

TP3

BLA

CK

J4

DAT

A O

UTP

UT

1 2 3 4 5 6 7 8

910

D4

STP

S2H

100A

SM

A

R7

75R

0603

R13

75R

0603

J3

DAT

A &

PO

WE

R IN

PUT

1 2 3 4 5 6 7 8

910

C8

10nF

10%

0603

100V

D8

STP

S2H

100A

SM

A

R10

75R

0603

C21

1nF

10%

0603

100V

T1

ETH

1-46

0

2322 242120196 5 47 3 128910

1817161514131112

R43

0R0

1206

D11

SM

AJ5

8AS

MA

D17

STP

S2H

100A

SM

A

TP2

Red

TP23

BLA

CK

D9

STPS

2H10

0AS

MA

D13

STP

S2H

100A

SM

A

C6

10nF

10%

0603

100V

PO

E+F SS VSS VSSVSSVSSVS SVSS VSSVS SVSSVSSVSSVSSVSS VSSVSSVSSVS SVSSVSSVS SV

Cha

ssis

Cha

ssis

Cha

ssis

Cha

ssis

Cha

ssis

Cha

ssis

RTN

PO

E+F

VS

S

SP

AU

X 1

IXUAro latnorf tupn i yrailixuA

GSPG17042015DI1215

Page 7: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 7/31

AN4687 Schematic and BOM for 3.3 V at 6 A

31

Figure 3. STEVAL-TSP009V2 circuit schematic (2 of 2)

Pow

ercir

cuit

Ou

tpu

tFi

lter Fe

edba

ckci

rcui

t

48V

AU

X2

Inpu

tFilt

er

NO

TEfo

rR

esis

tors

Whe

reno

tind

icat

edth

ebo

dyis

0603

and

tole

ran

ce5%

NO

TEfo

rC

apac

itors

Whe

reno

tind

icat

ed th

ebo

dyis

0603

and

the

volta

geis

50V

NO

TETh

eA

RTN

isa

dedi

cate

dpl

ane

ofsi

gnal

grou

ndth

atw

illbe

conn

ecte

dto

the

RTN

pow

ergr

ound

plan

ecl

ose

topi

n4

and

9of

PM

8803

NO

TEfo

r Ju

mpe

rsJM

1an

dJM

2M

ove

the

shor

ton

both

jum

pers

atth

esa

me

time:

-sh

ort

betw

een

pin

1an

d2

whe

nus

edA

UX

2in

put

-sh

ort

betw

een

pin

2an

d3

whe

nus

edA

UX

1in

put.

Aux

iliary

pres

ent

T2P

pres

ent

VSS

POE+

F

SP

SA

T2P

SP

VC T2P

VC

SA

VSS

RTN

ARTN

ARTN

RTN

ARTN

RTN

RTN

RTN

RTN

ARTN

RTN

R23

100R

1206

D32

MM

3Z15

VT1

SOD

323

R90

750R

R94

21K-

1%1%

TP5

Red

C53

1uF

C44

0.1u

F

Q17

Si4

848D

YSO

84

5 123

678

TP4

Red

R93

510R

R51

15K

0805

D57

BAT4

6JSO

D32

3

JM1

Jum

per-

dopp

io

1

2

3

C60 1nF

0805

100VR58

27K

C36

0.1u

D34 BA

T46J

SOD

323

C27

22uF

1206

16V

C30

150p

F08

0510

0V

R44

1K

C35

22uF

1206

16V

D39

BA

T46J

SOD

323

Q18

MM

BT39

04LT

1SO

T23

TP6

Red

C59

1uF

25V

0603

C67 22uF

1206

16V

TP9

Red

D28

BAT4

6JSO

D32

3

C28

2.2u

1210

100V

R91 10R

J5

11

22

C50

100n

F

R10

710

K

R66

10R

TP8

BLAC

K

R84 0R

0

C33

22uF

1206

16V

D36

BAT4

6JSO

D32

3

TP10

Red

TP14

Red

R12

2 0R0

C55

100p

F

R72

120K

-1%

1%

R13

1

30R

9 1

%R

0805

C61

2.2n 18

12

2KV

U1

PM

8803

HTS

SOP2

0-LA

RG

E

VDD

12D

ET13

SP14

CLS

15G

AT1

5R

TN4

CS

3

ARTN

8

DC

CL

16SA

17D

T18

T2P

20

RTN

9

GAT

27

VC6

ExPad21

VSS

10

VB2

CTL

1

FRS

19

VDD

11

TP11

BLAC

K

C41

1uF

25V

0603

U3

Fairc

hild

FO

D81

7AS

41 2

3

D20

Aux

det

C29

2.2u

1210

100V

R10

124

.9K-

1%1%

TP15

Red

R62

10R

C48

1uF

25V

0603

R45

24.9

K

C19

10nF

TP19

BLAC

K

R96

0R0

C34

330u

F

8x10

.216

V

T8

CO

ILC

RAF

T D

A231

9-AL

4 631

TP18

Red

R89 4.

3K

C69

10nF

C56

47nF

U4

TS43

1AIL

TSO

T23-

5

3 5

4 12

U7

Fairc

hild

FO

D81

7AS

41 2

3

R10

90.

30 o

hm -

1%12

06

C39

1uF

25V

0603

R10

3

510R

TP12

BLAC

K

D21

STT

H30

2SSM

C

Q12

Pow

erFL

AT™

5x6

STL

66N

3LLH

5

4

5123

678

TP21

Red

R27

27K

R11

73.

3K

C38

10nF

C64

2.2u

1210

100V

J1 SA

1 2 3

D26

Out det

L510

uH

MSS

7341

-103

ML

12

C45

0.1u

F

R10

80.

30 o

hm -

1%12

06

U2

Fairc

hild

FO

D81

7AS

41 2

3

R11

112

.4K-

1%1%

R83

10K

D44

T2P

det

R10

44.

7K-1

%

1%

R80

27R

C37 22uF

1206

16V

TP20

Red

Q16

MM

BT39

06LT

1SO

T23

D52 BA

T46J

SOD

323

R65

1K

R49

0R0

1206

R53 1R

0

0805

R38

1k

C68 22uF

1206

16V

C26

33uF

- 20

%10

0V10

x10.

2

R70

10K-

1%1%

TP13

Red

C22

TBD

1812

2KV

R64

0R0

C54

470p

C49

3.3n

F

R21 220R

1206

R95

24.9

K-1

%1%

R11

91K

R99 47K

T5

CO

ILC

RAF

T JA

4173

- AL

4 516 9

2

7 10

R54 0R

012

06

C40

1uF

25V

0805

C23

470n

F 1

0% 50V

0603

R92

10R

R08

05

L60.

33uH

DO

1813

-331

ML

12

TP16

Red

R52

1K

TP7

Red

C31

1.5n

F

0805

R11

2N

M1%

JM2

Jum

per-

dopp

io

1

2

3

R9

1K 1

%R

0603

D40

BA

T46J

SOD

323

GSPG20042015DI1120

Page 8: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Schematic and BOM for 3.3 V at 6 A AN4687

8/31 DocID027783 Rev 1

2.2 Bill of material

Table 3. STEVAL-TSP009V2 evaluation board BOM

Item Ref. Description Value PCB footprint Supplier Voltage

1 C5 Ceramic Capacitor 10 nF - 10% C0603 TDK 100 V

2 C6 Ceramic Capacitor 10 nF - 10% C0603 TDK 100 V

3 C7 Ceramic Capacitor 10 nF - 10% C0603 TDK 100 V

4 C8 Ceramic Capacitor 10 nF - 10% C0603 TDK 100 V

5 C9 Ceramic Capacitor 2.2 nF C1812 AVX 2 kV

6 C12 Ceramic Capacitor 2.2 nF C1812 AVX 2 kV

7 C14 Ceramic Capacitor 1 nF - 10% C0603 TDK 100 V

8 C16 Ceramic Capacitor 1 nF - 10% C0805 TDK 100 V

9 C18 Ceramic Capacitor 0.1 µF - 10% C0805 TDK 100 V

10 C19 Ceramic Capacitor 10 nF C0603 Several 50 V

11 C21 Ceramic Capacitor 1 nF - 10% C0603 TDK 100 V

12 C22 Ceramic Capacitor TBD C1812 AVX 2 kV

13 C23 Ceramic Capacitor 470 nF - 10% C0603 Several 50 V

14 C26 Aluminium Capacitor 33 µF - 20% C-POL8-10Panasonic

EEEFK2A330P100 V

15 C27 Ceramic Capacitor 22 µF C1206Murata -

GRM31CR61C226ME15L

16 V

16 C28 Ceramic Capacitor 2.2 µF C1210Murata -

GRM32ER72A225KA35L

100 V

17 C29 Ceramic Capacitor 2.2 µF C1210Murata -

GRM32ER72A225KA35L

100 V

18 C30 Ceramic Capacitor 150 pF C0805 TDK 100 V

19 C31 Ceramic Capacitor 1.5 nF C0805 Several 50 V

20 C33 Ceramic Capacitor 22 µF C1206Murata -

GRM31CR61C226ME15L

16 V

21 C34 Aluminium Capacitor 330 µF C-POL8-10Panasonic

EEEFK1C331P16 V

22 C35 Ceramic Capacitor 22 µF C1206Murata -

GRM31CR61C226ME15L

16 V

23 C36 Ceramic Capacitor 0.1 µF C0603 Several 50 V

24 C37 Ceramic capacitor 22 µF C1206Murata -

GRM31CR61C226ME15L

16 V

Page 9: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 9/31

AN4687 Schematic and BOM for 3.3 V at 6 A

31

25 C38 Ceramic capacitor 10 nF C0603 Several 50 V

26 C39 Ceramic capacitor 1 µF C0603 KEMET 25 V

27 C40 Ceramic capacitor 1 µF C1206 KEMET 25 V

28 C41 Ceramic capacitor 1 µF C0603 KEMET 25 V

29 C44 Ceramic capacitor 0.1 µF C0603 Several 50 V

30 C45 Ceramic capacitor 0.1 µF C0603 Several 50 V

31 C48 Ceramic capacitor 1 µF C0603 KEMET 25 V

32 C49 Ceramic capacitor 3.3 nF C0603 Several 50V

33 C50 Ceramic capacitor 100 nF C0603 Several 50 V

34 C53 Ceramic capacitor 1 µF C0603 KEMET 25 V

35 C54 Ceramic capacitor 470 p C0603 Several 50 V

36 C55 Ceramic capacitor 100 pF C0603 Several 50 V

37 C56 Ceramic capacitor 47 nF C0603 Several 50 V

38 C59 Ceramic capacitor 1 µF C0603 KEMET 25 V

39 C60 Ceramic capacitor 1 nF C0805 TDK 100 V

40 C61 Ceramic capacitor 2.2 nF C1812 AVX 2 kV

41 C64 Ceramic capacitor 2.2 µF C1210Murata -

GRM32ER72A225KA35L

100 V

42 C67 Ceramic capacitor 22 µF C1206Murata -

GRM31CR61C226ME15L

16 V

43 C68 Ceramic capacitor 22 µF C1206Murata -

GRM31CR61C226ME15L

16 V

44 C69 Ceramic capacitor 10 nF C0603 Several 50 V

45 D1 Diode STTH302S SMC STM

46 D4 Schottky diode STPS2H100A SMA STM

47 D7 Schottky diode STPS2H100A SMA STM

48 D8 Schottky diode STPS2H100A SMA STM

49 D9 Schottky diode STPS2H100A SMA STM

50 D11 TVS diode SMAJ58A SMA STM

51 D12 Schottky diode STPS2H100A SMA STM

52 D13 Schottky diode STPS2H100A SMA STM

53 D14 Schottky diode STPS2H100A SMA STM

54 D17 Schottky diode STPS2H100A SMA STM

55 D20 Diode LED Aux det KA-3528SGT Kingbright

Table 3. STEVAL-TSP009V2 evaluation board BOM (continued)

Item Ref. Description Value PCB footprint Supplier Voltage

Page 10: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Schematic and BOM for 3.3 V at 6 A AN4687

10/31 DocID027783 Rev 1

56 D21 Diode STTH302S SMC STM

57 D26 Diode LED Out det KA-3528SGT Kingbright

58 D28 Schottky Diode BAT46J SOD323 STM

59 D32 Zener diode MM3Z15VT1 SOD323 Onsemi

60 D34 Schottky diode BAT46J SOD323 STM

61 D36 Schottky diode BAT46J SOD323 STM

62 D39 Schottky diode BAT46J SOD323 STM

63 D40 Schottky diode BAT46J SOD323 STM

64 D44 Diode LED T2P det KA-3528SGT Kingbright

65 D52 Schottky diode BAT46J SOD323 STM

66 D57 Schottky diode BAT46J SOD323 STM

67 JM1 Connector Jumper-doppio 3PIN-P254 Several

68 JM2 Connector Jumper-doppio 3PIN-P254 Several

69 J1 Connector SAP-JACK-RAPC722

Several

70 J2 Connector SPP-JACK-RAPC722

Several

71 J3 ConnectorData & power

inputRJ45-8PIN Molex

72 J4 Connector Data output RJ45-8PIN Molex

73 J5 ConnectorMOR-10X10.5-

P5-2PINMOR-2POLI-508 Several

74 L5 Inductor 10 µHMSS7341-

103MLCoilcraft

75 L6 Inductor 0.33 µH DO1813H Coilcraft

76 Q12 MOSFET STL66N3LLH5PowerFLAT™

5x6STM

77 Q16 MOSFET MMBT3906LT1 SOT23 Several

78 Q17 MOSFET Si4848DY so8pwrpak-SO8 VISHAY

79 Q18 MOSFET MMBT3904LT1 SOT23 Several

80 R1 Resistor 75 R R0603 Several

81 R2 Resistor 75 R R0603 Several

82 R5 Resistor 75 R R0603 Several

83 R7 Resistor 75 R R0603 Several

84 R9 Resistor 1K - 1% R0603 Several

85 R10 Resistor 75 R R0603 Several

86 R11 Resistor 75 R R0603 Several

Table 3. STEVAL-TSP009V2 evaluation board BOM (continued)

Item Ref. Description Value PCB footprint Supplier Voltage

Page 11: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 11/31

AN4687 Schematic and BOM for 3.3 V at 6 A

31

87 R12 Resistor 75 R R0603 Several

88 R13 Resistor 75 R R0603 Several

89 R17 Resistor 0R0 R0805 Several

90 R21 Resistor 220 R R1206 Several

91 R23 Resistor 100 R R1206 Several

92 R26 Resistor 0R0 R1206 Several

93 R27 Resistor 27 K R0603 Several

94 R32 Resistor 15 K R0805 Several

95 R37 Resistor 0R0 R1206 Several

96 R38 Resistor 1 k R0603 Several

97 R43 Resistor 0R0 R0805 Several

98 R44 Resistor 1 k R0603 Several

99 R45 Resistor 24.9 k R0603 Several

100 R49 Resistor 0R0 R1206 Several

101 R51 Resistor 15 K R0805 Several

102 R52 Resistor 1 K R0603 Several

103 R53 Resistor 1R0 R1206 Several

104 R54 Resistor 0R0 R1206 Several

105 R58 Resistor 27 K R0603 Several

106 R62 Resistor 10 R R0603 Several

107 R64 Resistor 0R0 R0603 Several

108 R65 Resistor 1 K R0603 Several

109 R66 Resistor 10 R R0603 Several

110 R70 Resistor 10 K-1% R0603 Several

111 R72 Resistor 120 K-1% R0603 Several

112 R80 Resistor 27 R R0805 Several

113 R83 Resistor 10 K R0603 Several

114 R84 Resistor 0R0 R0603 Several

115 R89 Resistor 4.3 K R0603 Several

116 R90 Resistor 750 R R0603 Several

117 R91 Resistor 10 R R0603 Several

118 R92 Resistor 10 R R0805 Several

119 R93 Resistor 510 R R0603 Several

120 R94 Resistor 21 K-1% R0603 Several

121 R95 Resistor 24.9 K-1% R0603 Several

Table 3. STEVAL-TSP009V2 evaluation board BOM (continued)

Item Ref. Description Value PCB footprint Supplier Voltage

Page 12: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Schematic and BOM for 3.3 V at 6 A AN4687

12/31 DocID027783 Rev 1

122 R96 Resistor 0R0 R0603 Several

123 R99 Resistor 47 K R0603 Several

124 R101 Resistor 24.9 K-1% R0603 Several

125 R103 Resistor 510 R R0603 Several

126 R104 Resistor 4.7 K-1% R0603 Several

127 R107 Resistor 10 K R0603 Several

128 R108 Resistor 0.30 Ω - 1% R1206 Bourns

129 R109 Resistor 0.30 Ω - 1% R1206 Bourns

130 R111 Resistor 12.4 K-1% R0603 Several

131 R112 Resistor NM R0603 Several

132 R117 Resistor 3.3 K R0603 Several

133 R119 Resistor 1K R0603 Several

134 R122 Resistor 0R0 R0603 Several

135 R125 Resistor 0R0 R1206 Several

136 R131 Resistor 30R9 -1% R0805 Several

137 TP2 Test point Red TH-5013 Keystone

138 TP3 Test point Black TH-5013 Keystone

139 TP4 Test point Red TH-5013 Keystone

140 TP5 Test point Red TH-5013 Keystone

141 TP6 Test point Red TH-5013 Keystone

142 TP7 Test point Red TH-5013 Keystone

143 TP8 Test point Black TH-5013 Keystone

144 TP9 Test point Red TH-5013 Keystone

145 TP10 Test point Red TH-5013 Keystone

146 TP11 Test point Black TH-5013 Keystone

147 TP12 Test point Black TH-5013 Keystone

148 TP13 Test point Red TH-5013 Keystone

149 TP14 Test point Red TH-5013 Keystone

150 TP15 Test point Red TH-5013 Keystone

151 TP16 Test point Red TH-5013 Keystone

152 TP18 Test point Red TH-5013 Keystone

153 TP19 Test point Black TH-5013 Keystone

154 TP20 Test point Red TH-5013 Keystone

155 TP21 Test point Red TH-5013 Keystone

156 TP22 Test point Red TH-5013 Keystone

157 TP23 Test point Black TH-5013 Keystone

Table 3. STEVAL-TSP009V2 evaluation board BOM (continued)

Item Ref. Description Value PCB footprint Supplier Voltage

Page 13: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 13/31

AN4687 Schematic and BOM for 3.3 V at 6 A

31

158 TP24 Test point Black TH-5013 Keystone

159 T1 Data transfo ETH1-460 ETH1-460 Coilcraft

160 T5 Power transfoCOILCRAFT JA4173 - AL

PA2328NL Coilcraft

161 T8 Power transfoCOILCRAFT DA2319-AL

DA2318-AL Coilcraft

162 U1 Controller IC PM8803HTSSOP20-

LARGESTM

163 U2 OptocouplerFairchild

FOD817ASFOD817 Fairchild

164 U3 OptocouplerFairchild

FOD817ASFOD817 Fairchild

165 U4 Voltage reference TS431AILT SOT23-5L STM

166 U7 OptocouplerFairchild

FOD817ASFOD817 Fairchild

Table 3. STEVAL-TSP009V2 evaluation board BOM (continued)

Item Ref. Description Value PCB footprint Supplier Voltage

Page 14: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Measurements results AN4687

14/31 DocID027783 Rev 1

3 Measurements results

3.1 Efficiency comparison with three rectification bridge options

STEVAL-TSP009V2 provides different rectification bridge options: single Schottky diode, half active bridge, full active bridge and diode bridge. They are alternatively usable thanks the options available on the STEVAL-TSP009V2 demo’s PCB. Efficiency measurements have been executed to compare the different characteristics cost/efficiency through three different rectification bridge options. Here below the schematics:

Figure 4. Schematic Schottky bridge

R37

0R01206

R3215K0805

D13STPS2H100ASMA

R26

0R01206

D8STPS2H100ASMA

TP2Red

C15NM0805

TP3BLACK

D12STPS2H100ASMA

D14STPS2H100ASMA

D17STPS2H100ASMA

D9STPS2H100ASMA

D4STPS2H100ASMA

D1

STTH302SSMC

J2

SP

123

D7STPS2H100ASMA

T1 pin.4 T1 pin.10T1 pin.1 T1 pin.7SP

POE+F

VSS

AUX 1

GSPG22042015DI1500

Page 15: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 15/31

AN4687 Measurements results

31

Figure 5. Schematic full active bridge

Figure 6. Schematic half active bridge

C77NM

R291M

0603

Q4P-Ch. 100V

SO8

4

51

6 7 8

2 3

R37

0R01206

R20200K

0603

C75NM

R19200K0603

D3

MM3Z15VT1SOD323

R34

1M0603

R281M

0603R311M

0603

R26

0R01206

R3215K0805

Q7N-Ch. 100V

SO8

4

51 2 3

6 7 8

R40200K

0603

R25200K0603

R39200K0603

C79NM

D6MM3Z15VT1SOD323

R301M

0603

R361M

0603

D2MM3Z15VT1SOD323

Q1P-Ch. 100V

SO8

4

51

6 7 8

2 3

C73NM

D15MM3Z15VT1SOD323

C15

NM0805

R42200K0603

C78NM

D18MM3Z15VT1SOD323

D19MM3Z15VT1SOD323

D5MM3Z15VT1SOD323

C72NM

Q5N-Ch. 100V

SO8

4

51 2 3

6 7 8

TP3BLACK

Q6N-Ch. 100V

SO8

4

51 2 3

6 7 8

D16MM3Z15VT1SOD323

R41200K0603

R351M0603

R331M

0603

C76NM

C74NM

TP2Red

D1

STTH302SSMC

Q2P-Ch. 100V

SO8

4

51

6 7 8

2 3

J2

SP

123

Q3P-Ch. 100V

SO8

4

51

6 7 8

2 3

R22200K0603

Q8N-Ch. 100V

SO8

4

51 2 3

6 7 8

SP

T1 pin.4 T1 pin.10

T1 pin.1 T1 pin.7

POE+F

VSS

AUX 1

GSPG22042015DI1505

R26

0R01206

R331M

0603

C76NM

D7STPS2H100ASMA

C15NM0805

R40200K0603

R42200K0603

C78NM

TP2Red

R39200K0603

Q6N-Ch. 100V

SO8

4

51 2 3

6 7 8 Q8N-Ch. 100V

SO84

51 2 3

6 7 8

R41200K0603

J2

SP

123

R341M

0603

R361M

0603

D1

STTH302SSMC

D16MM3Z15VT1SOD323

D18MM3Z15VT1SOD323

Q5N-Ch. 100V

SO8

4

51 2 3

6 7 8

C79NM

D8STPS2H100ASMA

D15MM3Z15VT1SOD323

R37

0R01206

C77NM

D4

STPS2H100ASMA

TP3BLACK

R3215K0805

R351M

0603

D19MM3Z15VT1SOD323

D9STPS2H100ASMA

Q7N-Ch. 100V

SO8

4

51 2 3

6 7 8

SP

T1 pin.4 T1 pin.10T1 pin.1 T1 pin.7

VSS

POE+F

AUX 1

GSPG22042015DI1510

Page 16: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Measurements results AN4687

16/31 DocID027783 Rev 1

The measurement has been executed providing a 48 V on the RJ45 connector and connecting the Poe+/Vss (TP22 vs TP23) with external electronic load with different current values to cover around 40 W of input power.

Figure 7. Comparison efficiency bridge

Figure 7 shows the input stage efficiency comparison with three different bridge rectification type. The green line shows the efficiency of the Schottky diode bridge option, the cheaper of them, populated with four Schottky diodes STPS2H100A of each bridge. The yellow line shows the efficiency of the full active bridge, the most efficient, using two 100 V - 240 mΩ, P-channel MOSFET on high side and two 100 V - 65 mΩ N-channel MOSFET on low side of each bridge. The red line shows the half active bridge solution, which represent a right compromise in term of cost vs. efficiency.

Changing the input bridge it is possible to gain up to 2% about on the overall converter efficiency.

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%0

100

200

300

400

500

600

700

800

Efficiency [%]

Input Current [mA]

Efficiency Data Transfo + Bridge

Schottky Diode Bridge

Full Active Bridge

Half Active Bridge

Page 17: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 17/31

AN4687 Measurements results

31

3.2 Converter efficiency

Figure 8. Overall and DC/DC efficiency

Figure 8 shows overall and DC/DC efficiencies for the converter at 48 Vindc.

The dotted green line is the STEVAL-TSP009V2 DC-DC efficiency. The measurement has been executed supplying 48 V to the input RJ45 connector J1 and measuring the input voltage by TP22/TP23, input voltage of DC/DC converter stage. Figure 8 shows also the overall efficiency comparison measured with the same DC-DC converter stage connected to the three different rectification bridge stages previously mentioned.

Please note that:

Overall efficiency includes all loss from RJ45 to the output voltage rail.

DC/DC efficiency is a figure of merit of the converter standalone and typically does not include the losses associated to the PoE interface section that are: the RJ45 connector, data transformer, bridges, power consumption of the I/F of the PM8803 device.

On the STEVAL-TSP009V2 eval board is mounted the simple Schottky diodes bridge solution (green line).

Thanks to the bridge rectification options foreseen on the pcb it is then possible to select the best compromise cost/efficiency depending on the target request.

75.0%

77.5%

80.0%

82.5%

85.0%

87.5%

90.0%

92.5%

95.0%

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Efficiency

Iout [mA]

3.3 Vout Overall and DC/DC Efficiency

Overall with Schottky

Overall FAB

Overall HAB

DC-DC

Page 18: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Measurements results AN4687

18/31 DocID027783 Rev 1

Figure 9. Output voltage drift

3.3 Voltage ripple

Above measurements are referred at the output voltage ripple.

3.330

3.332

3.334

3.336

3.338

3.340

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Output Voltage

Iout [mA]

3.3 Vout changhe with load

drift 3V3 at 48V

Figure 10. Ripple on 3.3 V at 0.6 A Figure 11. Ripple on 3.3 V at 6 A

Page 19: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 19/31

AN4687 Measurements results

31

In Figure 12 and Figure 13 a measurement of the ripple on the input voltage has been done, to give an indication of the noise at the input of the converter.

3.4 Startup

Figure 12. Ripple before and after input filter with 3.3 V at 0.6 A (measured on C26 and C28)

Figure 13. Ripple before and after input filter with 3.3V at 6A (measured on C26 and C28)

Figure 14. Startup from Microsemi 9001G injector - 3.3 V at 0.6 A

Figure 15. Startup from Microsemi 9001G injector - 3.3 V at 6 A

Page 20: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Measurements results AN4687

20/31 DocID027783 Rev 1

Figure 16. Startup from Microsemi 9501G injector - 3.3 V at 0.6 A

Figure 17. Startup from Microsemi 9501G injector - 3.3 V at 6 A

Figure 18. Detail of the output voltage at startup with no load

Figure 19. Detail of the output voltage at startup with 6 A load

Page 21: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 21/31

AN4687 Measurements results

31

3.5 Primary side waveforms

Figure 20. Primary steady state 0.6 A Figure 21. Primary steady state 6 A

Figure 22. Detail of primary drain at 6 A load

Page 22: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Measurements results AN4687

22/31 DocID027783 Rev 1

3.6 Secondary side waveforms

3.7 Load transients

Figure 23. Secondary steady state 0.6 A Figure 24. Secondary steady state 6 A

Figure 25. Detail of secondary drain at 6 A load

Figure 26. Secondary steady state 0.6 A Figure 27. Secondary steady state 6 A

Page 23: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 23/31

AN4687 Measurements results

31

3.8 PoE to auxiliary switchover

In Figure 28 is shown a smooth transition from a PoE line set to 54 V toward an auxiliary adapter at 44 V; the output voltage is maintained stable during the transition.

3.9 Gloop

Figure 28. Detail of secondary drain at 6 A load

Figure 29. Gloop 48 V at 6 A Figure 30. Gloop 48 V at no load

Gloop 48V 6AMag [B/A] (dB)

30.000

-30.000

24.000

18.000

12.000

6.000

0.000

-6.000

-12.000

-18.000

-24.000

Phase [B-A] (deg)

100.000

-100.000

80.000

60.000

40.000

20.000

0.000

-20.000

-40.000

-60.000

-80.000

1 k 10 k 100 k

1 2

01/23/14 09:46:34

M1 M2Frequency 4.68 kHz 20.30 kHzMagnitude -0.001 dB -10.094 dBPhase 67.018 deg -0.024 deg

Gloop 48V 0AMag [B/A] (dB)

30.000

-30.000

24.000

18.000

12.000

6.000

0.000

-6.000

-12.000

-18.000

-24.000

Phase [B-A] (deg)

100.000

-100.000

80.000

60.000

40.000

20.000

0.000

-20.000

-40.000

-60.000

-80.000

1 k 10 k 100 k

1 2

01/23/14 09:51:50

M1 M2Frequency 5.71 kHz 26.12 kHzMagnitude -0.002 dB -11.404 dBPhase 69.669 deg -0.013 deg

Page 24: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Measurements results AN4687

24/31 DocID027783 Rev 1

Figure 31. Gloop 40 V at 6 A Figure 32. Gloop 57 V at no load

Gloop 40V 6AMag [B/A] (dB)

30.000

-30.000

24.000

18.000

12.000

6.000

0.000

-6.000

-12.000

-18.000

-24.000

Phase [B-A] (deg)

100.000

-100.000

80.000

60.000

40.000

20.000

0.000

-20.000

-40.000

-60.000

-80.000

1 k 10 k 100 k

1 2

01/23/14 09:49:07

M1 M2Frequency 4.00 kHz 19.54 kHzMagnitude -0.001 dB -10.901 dBPhase 64.426 deg -0.010 deg

Gloop 57V 0AMag [B/A] (dB)

30.000

-30.000

24.000

18.000

12.000

6.000

0.000

-6.000

-12.000

-18.000

-24.000

Phase [B-A] (deg)

100.000

-100.000

80.000

60.000

40.000

20.000

0.000

-20.000

-40.000

-60.000

-80.000

1 k 10 k 100 k

1 2

01/23/14 09:53:09

M1 M2Frequency 6.27 kHz 26.28 kHzMagnitude -0.002 dB -10.647 dBPhase 69.901 deg -0.018 deg

Page 25: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 25/31

AN4687 Support material

31

4 Support material

4.1 PCB layers

Figure 33. PCB top assembly

Figure 34. PCB bottom assembly

Page 26: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Support material AN4687

26/31 DocID027783 Rev 1

Figure 35. PCB layer 1 top

Figure 36. PCB layer 2

Figure 37. PCB layer 3

Page 27: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 27/31

AN4687 Support material

31

Figure 38. PCB layer 4 bottom

Page 28: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Electrical diagram general AN4687

28/31 DocID027783 Rev 1

5 Electrical diagram general

Figure 39. Schematic 1 of 2 (general)

Q3

SO

8

4

51678

23

D1

STT

H30

2SS

MC

D25

<Des

crip

tion>

41

32

-+

Q22

2N70

02

D6

SO

D32

3

R13 75R

0603

R7

75R

0603

C5

10nF

0603

100V

D33

BAT

46J

SO

D32

3

R41

0603

C73

D5

SO

D32

3

D13

SM

AS

TPS

2H10

0A

R2

75R

0603

R31

0603

Q6

SO

8 4

5 123

678

D14

SM

AS

TPS

2H10

0A

J4

DAT

A O

UTP

UT

1 2 3 4 5 6 7 8

910

R29

0603

Q2

SO

8

4

51678

23

C74

C13

NM

0603

100V

D8

SM

AS

TPS

2H10

0A

D47

BAT

46J

SO

D32

3

R36

0603

R30

0603

U12

Sha

rp P

C3H

7 - N

M41 2

3

C6

10nF

0603

100V

Q7

SO

8

4

5 123

678

J2 SP

1 2 3

D56

MM

3Z15

VT1

SO

D32

3

Q5

SO

8

4

5 123

678

C14

1nF

0603

100V

R6

1M 0603

D11

SM

AJ5

8AS

MA

R5

75R

0603

D18

SO

D32

3

D12

SM

AS

TPS

2H10

0A

R24

1M 0603

D48

BAT

46J

SO

D32

3

T11

Puls

e P

E65

855N

L - N

M

4

3 2

1

R19

0603

R28

0603

Q1

SO

84

51678

23

R32

15K

0805

D50

4P d

et

R43

0R12

06

C79

R34

0603

R35

0603

D9

SM

AS

TPS

2H10

0A

C77

C72

D3

SO

D32

3

D15

SO

D32

3

D4

SM

AS

TPS

2H10

0A

D19

SO

D32

3D49

BAT

46J

SO

D32

3

U6

Fairc

hild

FO

D81

7AS

41 2

3

C7

10nF

0603

100V

T2

Wur

th 7

4422

6S -

NM

2

34

1

R55

1M 0603

T1

ETH

1-46

0

2322 242120196 5 47 3 128910

181716151413

1112

R20

0603

R16

NM

0805

TP22

Red

R37

0R0

1206

R10 75R

0603

C20

NM

0603

100V

Q4

SO

84

51678

23

D10 NM

SM

AR12

50R

1206

C9

2.2n

F

1812

2KV

C17

NM

0805

100V

R46 47K

D17

SM

AS

TPS

2H10

0A

R8

1M 0603

R25

0603

R10

00N

M

0603

R11 75R

0603

C15

NM

0805

C76

R15

NM

0805

C12

2.2n

F

1812

2KV

TP3

BLA

CK

C8

10nF

0603

100V

D24

<Des

crip

tion>

4

1

3

2

-+

R47

3K3

R26

0R0

1206

C21

1nF

0603

100V

R14

NM

1206

R42

0603

D29

BAT

46J

SO

D32

3

R17

0R12

06

J3

DAT

A &

PO

WE

R IN

PU

T

1 2 3 4 5 6 7 8

910

R33

0603

C75

R12 75R

0603

R40

0603

TP24

BLA

CK

C78

C16

1nF

0805

100V

D7

SM

AS

TPS

2H10

0A

D30

BAT

46J

SO

D32

3

TP23

BLA

CK

Q8

SO

8 4

5 123

678

R1

75R

0603

TP2

Red

D16

SO

D32

3

C18

0.1u

F08

0510

0V

D2

SO

D32

3

R22

0603

TP25

Red

R39

0603

SS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS V

F+EOP

F+EOP

F+EOP

Cha

ssis

Cha

ssis

Cha

ssis

Cha

ssis

Cha

ssis

Cha

ssis

RTN

RTN

PO

E+F

VS

S

Vout

SP

PO

E+F

VS

S

Inpu

t Com

mon

Mod

e Fi

lter

Opt

iona

l 4

pairs

det

ectio

n ci

rcui

t

AUX

1

Auxi

liary

inpu

t fro

ntal

or A

UX

I

4 pa

irs d

etec

tion

sign

al

Page 29: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 29/31

AN4687 Electrical diagram general

31

Figure 40. Schematic 2 of 2 (general)

Q19

MM

BT39

04LT

1SO

T23

TP9

Red

C42

NM

16V

0603

TP11

BLAC

K

R96

0R

Q25

TSSO

P6

3

561

4

2

D46

STPS

8L30

DEE

Pow

erFL

AT 3

x3

D22

STPS

15L4

5CB

DPA

K

A1 K

A2

R117

5.1K

R130

100K

R127

1M

C62

NM

0805

100V

R60

0R

R112

15K

1%

T5

Coilc

raft

HA

3691

-AL

4 516 9

2

7 10

C28

2.2u

1210

100V

D42

NM

SMA

T8CO

ILCR

AFT

DA

2319

-AL

4 631

L70.

33uH

DO

3316

P-10

3ML

12

R56

NM

D52 BA

T46J

SOD

323

C26

33uF

100V

10x1

0.2

R70

21K

1%

C49

10nF

D32

MM

3Z15

VT1

SOD

323

U11

Shar

p PC

3H7

41 2

3

U5

TS24

31A

ILT

SOT2

3

1 3

2

R84 0R

C61

2.2n

1812

2KV

U3

Fairc

hild

FO

D81

7AS

41 2

3

D20

Aux

det

R62

10R

U10

Shar

p PC

3H7

41 2

3

TP5

Red

D28

BAT4

6J

SOD

323

R107

10k

R122 0R

D45

STPS

15L3

0CD

JFPo

wer

FLAT

5x6

A1 K

A2

Q9

MM

BT39

06LT

1 N

MSO

T23

C39

1uF

16V

0603

R108

0.30

ohm

1206

TP13

Red

R92

22R

R080

5

R48

0R

R080

5

R93

1K

R51

15K

0805

R58

27K

R44

1K

R91

10

R67

NM 1%

R89

3.3K

C69

10nF

C45

0.1u

F

T4

PA01

84-P

ulse

1 854

TP20

Red

D23

NM

SMA

C43

NM

4x6

25V

R23

220

1206

C60

1nF 08

05100V

Q18

MM

BT39

04LT

1SO

T23

C71

470p

F50

V

Q11

TBD

SOT2

31

3 2

T9

COIL

CRA

FT G

A32

78-B

L

4 125

711 81210 93 6

TP15

Red

C32

NM

0805

TP12

BLAC

K

R100 NM

C68

10uF

1206

16V

R21 22

012

06

TP4

Red

T7

COIL

CRA

FT P

OE1

3P

4 123

987 10

D39

BAT4

6J

SOD

323

TP8

BLAC

K

C38

10nF

R80

10R

R73

NM

132

R53

10R

0805

C47

NM

R52

1K

D55

MM

3Z15

VT1

SOD

323

Q17

Si48

48D

YSO

84

5 123

678

J5

11

22

C41

1uF

16V

0603

R129

100K

R109

0.30

ohm

1206

D21

STTH

302S

SMC

C24

NM

0805

L510

uH

MSS

7341

-103

ML

12

D44

T2P

det

C37

10uF

1206

16V

R49

0R 1206

R38

1k

R997 N

M 1% R998 N

M 1%

C59

1uF

16V

0603

C63

2.2u

1210

100V

TP10

Red

T6

COIL

CRA

FT P

OE3

00F-

50L

4 12 5

711 812 10 9

3 6

R45

33K

R27

27k

Q16

MM

BT39

06LT

1SO

T23

C22

TBD

1812

2KV

R99

47K

R54

0R 1206

C40

NM

16V

0805

D38 BA

T46J

SOD

323

JM2

Jum

per-

dopp

io

1

2

3

R9 1K 1

%r0

603

D40

BAT4

6JSO

D32

3

R59

0R 1206

R102

NM

0805

1%

C55

100p

F

R131

30R9

1%

r080

5

R101

24.9

K1%

C19

NM

R57

NM

L60.

33uH

DO

1813

-331

ML

12

TP16

Red

C51

47nF

1206

200V

C44

0.1u

F

Q10 TB

DD

Pack

13

3

2

2

JM1

Jum

per-

dopp

io

1

2

3

Q14

MM

BT39

04LT

1SO

T23

C25

NM

R98

0R

U7

Fairc

hild

FO

D81

7AS 4

1 23

TP21

Red

C64

2.2u

1210

100V

C54

470p

R119

1K

R90

680R

D41

BAT4

6J

SOD

323

TP14

Red

U1

PM88

03H

TSSO

P20-

LARG

E

VDD

12

DET

13

SP14

CLS

15

GAT

15

RTN

4

CS3

ART

N8

DCC

L16

SA17

DT

18

T2P

20

RTN

9

GAT

27

VC6

Ex Pad21

VSS

10

VB2

CTL

1

FRS

19

VDD

11

C48

1uF

16V

0603

TP19

BLAC

K

D31

BAT4

6J

NM

SOD

323

U9

Shar

p PC

3H7

41 2

3

R111

12.4

k1%

R83

10K

C31

1nF

0805

D57

BAT4

6JSO

D32

3

C67

10uF

1206

16V

D51 BA

T46J

SOD

323

Q21

IRF6

216P

bFSO

8

4

5 123

678

R999

NM

1%

U4

TS43

1AIL

TSO

T23-

5

3 5

4 12

D26

Out det

R97 NM

TP7

Red

R94

21k

1%

C53

1uF

C30

100p

F08

0510

0V

D36

BAT4

6JSO

D32

3

D54

BAT4

6JSO

D32

3

C29

2.2u

1210

100V

R106

10K

T10

COIL

CRA

FT F

A27

06-B

L

NM

4 125

711 81210 93 6

Q12

STL6

6N3L

LH5

Pow

er F

lat 5

x6

4

5123

678

J1 SA

1 2 3

R65

1K

R95

24.9

K1%

C57

0.1u

F

R128

NM

D34 BA

T46J

SOD

323

C27

10uF

1206

16V

C35

10uF

1206

16V

R71

NM

TP6

Red

C50

0.1u

F

R66

10R

R18

NM

1206

C70

1 nF 50

V06

03

C34

330u

F

8x10

.26.

3V

C66

NM

C56

47nF

C46

NM

Q15

MM

BT39

04LT

1 N

MSO

T23

C36

0.1u

D35

BAT4

6J N

MSO

D32

3

D43

STPS

2L30

UF

SMB

Q20

Si23

25D

SSO

T23

1

3 2

Q13 TB

DSO

T223

13

3

2

2

R72

100k

1%

Q24 STS4

NF1

00SO

8

4

51

6 7 8

2 3

U2

Fairc

hild

FO

D81

7AS 4

1 23

R104

4.7K

1%

TP17

Red

R64 0R

C23

470n

F 1

0% 50V

0603

C33

10uF

1206

16V

Q23

MM

BTA

92SO

T23

TP18 Re

d

R103

510R

D53

BAT4

6JSO

D32

3

R126

100K

D37

BAT4

6JSO

D32

3

RTN

ART

N

ART

N

RTN

ART

N

RTN

RTN

RTN

RTN

ART

N

RTN

VSS

POE+

F SP

SA

T2P

SP

VAU

X

VAU

X

SA

VC T2P

P_dr

ain

P_so

urce

P_ga

te

P_dr

ain

P_so

urce

P_ga

te

VC

Ano

deKa

thod

e

Kath

ode

Ano

de

Vaux

P

RTN

Vin

Vin

P_dr

ain

Vaux

P

RTN

Kath

ode

Vo

Vgat

e

Vgat

e

SA

VSS

Vo

VSS

POE+

F

Vout

Pow

er c

ircui

t

Out

put F

ilter Fe

edba

ck c

ircui

t

48V

AU

X 2

Inpu

t Filt

er

Boos

ter

NO

TE fo

r Res

isto

rs W

here

not

indi

cate

d th

e bo

dy is

060

3 an

d to

lera

nce

5% N

OTE

for C

apac

itors

Whe

re n

ot in

dica

ted

the

body

is 0

603

and

the

volta

ge is

50V

NO

TE

The

ART

N is

a d

edic

ated

pla

ne o

f sig

nal g

roun

d th

at w

ill b

e co

nnec

ted

to th

e RT

N p

ower

gro

und

plan

e cl

ose

to p

in 4

and

9 o

f PM

8803

Opt

ion

Activ

e Cl

amp

Prev

eder

e fo

otpr

int 1

206,

0805

pe

r C40

I fo

otpr

int d

evon

o es

sser

e il

piu'

pos

sibi

le s

ovra

ppos

ti,

al fi

ne d

i min

imiz

zare

lo

spaz

io u

sato

.

Opt

o :u

n fo

otpr

int n

ell'a

ltro

SOT2

3-6L

Alte

rnat

ive

mos

fet

pack

ages

Alte

rnat

ive

diod

e pa

ckag

es

NO

TE fo

r Jum

pers

JM1

and

JM2

Mov

e th

e sh

ort o

n bo

th ju

mpe

rs a

t the

sam

e tim

e: - s

hort

bet

wee

n pi

n 1

and

3 w

hen

used

AU

X2 in

put

- sho

rt b

etw

een

pin

2 an

d 3

whe

n us

ed A

UX1

inpu

t.

For P

M88

03C

only

Prev

eder

e fo

otpr

int 1

206

e 12

10 p

er C

51

NM

NM

Auxi

liary

pre

sent

T2P

pres

ent

Opt

ion

Boos

ter

Opt

ion

Sel

f Driv

en 2

alte

rnat

ive

pow

er tr

ansf

orm

er

NM

NM

Page 30: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

Revision history AN4687

30/31 DocID027783 Rev 1

6 Revision history

Table 4. Document revision history

Date Revision Changes

25-May-2015 1 Initial release.

Page 31: PoE synchronous flyback, IEEE802.3at compliant, 3.3 V - 6 A · PDF fileobtain a flyback CCM converter with gate transformer driven synchronous rectifier, with 3.3 V output at a 6 A

DocID027783 Rev 1 31/31

AN4687

31

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved