Plant Communities Structure

17
Biologia 66/6: 1027—1043, 2011 Section Botany DOI: 10.2478/s11756-011-0113-3 Plant communities structure and composition in three coastal wetlands in southern Apulia (Italy) Valeria Tomaselli 1 *, Romeo Di Pietro 3 & Saverio Sciandrello 2 1 C.N.R., Institute of Plant Genetics, via G.Amendola 165/A, I-70126 Bari, Italy; e-mail: [email protected] 2 Department of Botany, University of Catania, via A. Longo 18, I-95125 Catania, Italy; e-mail: [email protected] 3 Department DATA, University of Rome La Sapienza, via Flaminia 70, I-00196 Rome, Italy; e-mail: romeo.dipietro@uniroma1.it Abstract: In this paper the results of a study on the composition and the distribution of the plant communities in three coastal areas of southern Apulia are presented. A total of about 180 vegetation relevés were performed following the Braun- Blanquet phytosociological method. Vegetation data were analysed using both classification (UPGMA, similarity ratio) and ordination methods (including Non-metric Multidimensional Scaling (NMS) and Detrended Correspondence Analysis (DCA). The relevés are distributed in the following classes: Molinio-Arrhenateretea, Phragmito-Magnocaricetea, Juncetea maritimi, Sarcocornietea fruticosae, Saginetea maritimae, Thero-Salicornietea, Helianthemetea guttati. Detailed information about structure and zoning of the detected plant communities are here provided. Two new associations, belonging to the Alkanno-Maresion nanae alliance (microphytic ephemeral plant communities growing on sandy soils, Helianthemetea guttati class) have been described here, both in the “Torre Guaceto” site. The area of “Le Cesine” showed the highest total number of plant communities, while the “Saline di Punta della Contessa” site revealed the largest number of Sarcocornietea fruticosae plant communities. Key words: Apulia; coastal wetlands; cluster analysis; ordination; salt marshes; vegetation; southern Italy Introduction Coastal wetlands, with their habitats of salt marsh veg- etation, are distributed throughout the Mediterranean area (Géhu 1999). In addition to hosting very rare plant species and communities, the coastal wetlands are important areas for the nesting and the staging of birds. In the Adriatic region, the salt marsh vegeta- tion prevails in the western and northern coasts, the east coast being mostly rocky (Pandža et al. 2007). Within the Italian side of the Adriatic Sea, the salt marsh vegetation has been the object of various phy- tosociological studies (Pignatti 1966; Corbetta 1968; Géhu et al. 1984; Biondi et al. 1989; Géhu & Biondi 1996; Piccoli et al. 1996; Biondi 1999; Poldini et al. 1999; Pirone et al. 2001). Nevertheless, a systematic study on the vegetation of these areas is still lacking, and the only phytosociological data available to date come from a few contributions that are often limited to very small areas (Corbetta 1970; Macchia & Vita 1973; Taffetani & Biondi 1989; Mariotti et al. 1992; Beccarisi et al. 2003a,b; Biondi et al. 2006). It is well- known that coastal wetlands are habitats of great bio- logical importance and high taxonomical richness, but, at the same time, they are extremely vulnerable to human activities and disturbances and, for this rea- son they require constant protection. Their monitor- ing and safeguard is one of the priorities for a suit- able management of coastal environments. In recent decades, these habitats have been subject to intense human pressure, largely due to tourist activities and the subsequent building and infrastructure prolifera- tion and to the development of intensive agriculture. Moreover, the creation of industrial areas has led to the devastation of highly valuable coastal areas. Having a comprehensive knowledge framework on these areas and their conservation status is an essential starting- point for the planning of future measures of protec- tion. The present study is a part of an INTERREG project III A Italy-Greece 2000–2006 (Development of an integrated informative system for the monitoring and the management of Natura 2000 protected areas in Geece and in Italy), aimed at the monitoring and the management of common ecosystems. The study is fo- cused on three of the most significant coastal humid ar- eas of Apulia region: “Torre Guaceto”, “Saline di Punta della Contessa” and “Le Cesine”, on the Adriatic side of southern Apulia. Composition of the vegetation occur- ring in these three coastal areas is here analyzed, focus- ing particularly on plant communities of salt marshes and their zoning. * Corresponding author c 2011 Institute of Botany, Slovak Academy of Sciences

Transcript of Plant Communities Structure

Biologia 66/6: 1027—1043, 2011Section BotanyDOI: 10.2478/s11756-011-0113-3

Plant communities structure and composition in three coastalwetlands in southern Apulia (Italy)

Valeria Tomaselli1*, Romeo Di Pietro3 & Saverio Sciandrello2

1C.N.R., Institute of Plant Genetics, via G.Amendola 165/A, I-70126 Bari, Italy; e-mail: [email protected] of Botany, University of Catania, via A. Longo 18, I-95125 Catania, Italy; e-mail: [email protected] DATA, University of Rome La Sapienza, via Flaminia 70, I-00196 Rome, Italy;e-mail: [email protected]

Abstract: In this paper the results of a study on the composition and the distribution of the plant communities in threecoastal areas of southern Apulia are presented. A total of about 180 vegetation relevés were performed following the Braun-Blanquet phytosociological method. Vegetation data were analysed using both classification (UPGMA, similarity ratio)and ordination methods (including Non-metric Multidimensional Scaling (NMS) and Detrended Correspondence Analysis(DCA). The relevés are distributed in the following classes: Molinio-Arrhenateretea, Phragmito-Magnocaricetea, Junceteamaritimi, Sarcocornietea fruticosae, Saginetea maritimae, Thero-Salicornietea, Helianthemetea guttati. Detailed informationabout structure and zoning of the detected plant communities are here provided. Two new associations, belonging to theAlkanno-Maresion nanae alliance (microphytic ephemeral plant communities growing on sandy soils, Helianthemetea guttaticlass) have been described here, both in the “Torre Guaceto” site. The area of “Le Cesine” showed the highest total number ofplant communities, while the “Saline di Punta della Contessa” site revealed the largest number of Sarcocornietea fruticosaeplant communities.

Key words: Apulia; coastal wetlands; cluster analysis; ordination; salt marshes; vegetation; southern Italy

Introduction

Coastal wetlands, with their habitats of salt marsh veg-etation, are distributed throughout the Mediterraneanarea (Géhu 1999). In addition to hosting very rareplant species and communities, the coastal wetlandsare important areas for the nesting and the staging ofbirds. In the Adriatic region, the salt marsh vegeta-tion prevails in the western and northern coasts, theeast coast being mostly rocky (Pandža et al. 2007).Within the Italian side of the Adriatic Sea, the saltmarsh vegetation has been the object of various phy-tosociological studies (Pignatti 1966; Corbetta 1968;Géhu et al. 1984; Biondi et al. 1989; Géhu & Biondi1996; Piccoli et al. 1996; Biondi 1999; Poldini et al.1999; Pirone et al. 2001). Nevertheless, a systematicstudy on the vegetation of these areas is still lacking,and the only phytosociological data available to datecome from a few contributions that are often limitedto very small areas (Corbetta 1970; Macchia & Vita1973; Taffetani & Biondi 1989; Mariotti et al. 1992;Beccarisi et al. 2003a,b; Biondi et al. 2006). It is well-known that coastal wetlands are habitats of great bio-logical importance and high taxonomical richness, but,at the same time, they are extremely vulnerable tohuman activities and disturbances and, for this rea-

son they require constant protection. Their monitor-ing and safeguard is one of the priorities for a suit-able management of coastal environments. In recentdecades, these habitats have been subject to intensehuman pressure, largely due to tourist activities andthe subsequent building and infrastructure prolifera-tion and to the development of intensive agriculture.Moreover, the creation of industrial areas has led tothe devastation of highly valuable coastal areas. Havinga comprehensive knowledge framework on these areasand their conservation status is an essential starting-point for the planning of future measures of protec-tion.The present study is a part of an INTERREG

project III A Italy-Greece 2000–2006 (Development ofan integrated informative system for the monitoringand the management of Natura 2000 protected areas inGeece and in Italy), aimed at the monitoring and themanagement of common ecosystems. The study is fo-cused on three of the most significant coastal humid ar-eas of Apulia region: “Torre Guaceto”, “Saline di Puntadella Contessa” and “Le Cesine”, on the Adriatic side ofsouthern Apulia. Composition of the vegetation occur-ring in these three coastal areas is here analyzed, focus-ing particularly on plant communities of salt marshesand their zoning.

* Corresponding author

c©2011 Institute of Botany, Slovak Academy of Sciences

1028 V. Tomaselli et al.

Fig. 1. Study area.

Fig. 2. Cluster analysis of halophilous and hygrophilous perennial vegetation.

Material and methods

Study area (Fig. 1)Torre Guaceto is a Ramsar site, a Marine Protected Areaand a National Natural Reserve. The Natural Reserve coversan area of about 1.200 ha. According to the EU Directives“Habitat” and “Bird”, this site is a proposed Site of Com-munity Interest (pSCI) (IT9140005) and a Special Protec-tion Area (SPA) (IT9140008). The coastal strip is charac-terized by both rocky and sandy shores. Owing to drainageworks and partial silting in the past century to create new

areas for agriculture, the coastal lagoons occupy only smallsurfaces. The main risk factors are coastal erosion and fire,which periodically afflicts the protected area.

Saline di Punta della Contessa (LS) is a Regional Nat-ural Park which covers an area of 1960 ha. It is also a pSCI(IT9140003) and a SPA (IT9140003). Most of the protectedarea is occupied by farmlands, while the wet area lies be-tween the cultivated groves and the sandy coastline. Theretrodunal coastal area consists of a system of intercon-nected ponds and marshes which are characterised by sev-eral halophytic communities. The main risk factor is the

Plant communities in coastal wetlands in southern Apulia 1029

Fig. 3. NMS ordination analysis of halophilous and hygrophilous perennial vegetation Axis 1 explains a part of the variance (r squared0.384; the total of explained variance is of 0.745) and is related mainly to a soil salinity gradient. The distribution along the axis 2and the axis 3 does not seem to reveal any particularly defined correlation (r squared values are, respectively, 0.219 and 0.142).

presence of some industrial factories which produce highlevels of pollutants in waters and soils. Marine erosion hascaused a progressive reduction of the sandbank, leading tothe increasing salinity in the retrodunal lagoons.

Le Cesine (LC) is a Ramsar site and a National NaturalReserve covering about 350 ha. It is also a pSCI (IT9150032)and SPA (IT9150014). The coastal strip consists almost en-tirely of sandy shores. The retrodunal humid area is one ofthe most important in southern Italy and it is formed bytwo large water pools and various channels, marshes, andwet grasslands. The main risk factors are coastal erosion

and fire. In recent decades, marine erosion has caused aprogressive reduction of the sandbank, causing a slight butprogressive increase in salt rates of the coastal lagoons.

Vegetation sampling and analysisThe vegetation analysis was carried out following the zurich-montpellier phytosociological method (Braun-Blanquet1964). Phytosociological relevés (180 relevés) have been per-formed in the period April 2007–October 2009 and mappedusing GPS. The size of plots varies from a maximum of 100

1030 V. Tomaselli et al.

Fig. 4. DCA of the data-set of sub-halophilous helophytic communities and grasslands. The r squared values of axes 1 and 2 are,respectively, 0.324 and 0.204 and are related to an increasing soil salinity and to a decreasing flooding period.

m2 to 5 m2, depending on vegetation type and microtopog-raphy.

The nomenclature of plant species follows Conti et al.(2005). A specific data base has been implemented with co-ordinates, list of plant species, cover values, geographicaland topographic features of each phytosociological relevé.The phytosociological relevés have been arranged in two dif-ferent matrix: halophilous-higrophilous perennial vegetation(112 plots × 154 species) and therophytic vegetation (bothxerophilous and hygrophilous, 96 plots × 180 species). Rarespecies were not excluded from the analysis. For each data-set, similarity analyses of the relevés were carried out us-ing the SYN-TAX 2000 software (Podani 2001). OriginalBraun-Blanquet sampling scale has been transformed intothe ordinal scale according to Van der Maarel (1979). Ahierarchic classification method (UPGMA) was performed.Dissimilarity of the relevés was measured using the Simi-

larity ratio. Clusters of relevés were classified into syntaxaaccording to Rivas-Martinez et al. (2001, 2002). We referredto Perez Prieto & Font (2005) for the Helianthemetea guttaticlass.

The ordination of the data-sets was performed us-ing the PC-ORD 4.34 software. In the ordination anal-yses we ran both Nonmetric Multidimensional Scaling(NMS) and Detrended Correspondence Analysis (DCA),based on the Euclidean distance. The two methods gaveconsistent ordination diagrams. NMS is a non-parametricordination technique based on the ranked compositionaldissimilarities among sites, and therefore has advantagesover parametric ordination techniques in which the un-derlying assumptions are rarely satisfied in field com-munity data (Clarke 1993). The autopilot routine inthe NMS program of PC-ORD showed that a threeaxes NMS was appropriate, though we have chosen to

Plant communities in coastal wetlands in southern Apulia 1031

Fig. 5. DCA of the data-set of the halophilous perennial vegetation. Along the axis 1 (r squared, 0.437) a good defined ecologicalgradient related to the soil salinity and along the axis 2 a gradient of increasing granulometry (sand percentage).

display only two axes where there is a greater vari-ance.

Detrended Correspondence Analysis (DCA) (Hill &Gauch 1980) was used to establish ecological patternsin the scattergram and to generate hypotheses aboutvegetation-environment relationships. The data set of thehalo-hygrophilous perennial vegetation has been dividedinto two separate arrays in order to highlight the ecolog-ical pattern: in the first one only the halophilous, scrubbyand helophytic communities (63 plots × 66 species) were in-cluded, while the second one included the rest of the plantcommunities (non-halophilous helophytic communities andgrasslands, 49 plots × 99 species).

Results

Halophilous and hygrophilous perennial vegetationCluster analysis identifies two main clusters, A and B(Fig. 2), separating respectively the halophilous (A)from the sub-halophilous (B) communities. In clus-ter A, three sub-clusters are identified: A1, A2, A3.Cluster A1 includes the chamaephytic halophilous veg-etation characterized by succulent chenopodiaceousdwarf shrubs (Sarcocornietea fruticosae class, Sarco-

cornietalia fruticosae order). Cluster A2 includes thehelophytic grasslands of salt marshes (Juncetea mar-itimi class), while cluster A3 includes the helophyticsubhalophilous vegetation of Limonio-Juncetum ger-ardi (Juncetea maritimi) and Scirpetum maritimae(Phragmito-Magnocaricetea). Cluster B includes thehelophytic communities of Phragmito-Magnocaricetea(sub-cluster B1), and the mesophilous Molinio-Arrhe-nateretea communities (sub-cluster B2).The NMS (Fig. 3) shows a fair significance only

along the axis 1 and it is related mainly to a soilsalinity gradient. The group of Phragmition (in red)and Paspalo-Polypogonion viridis (in yellow), which oc-cupy the left part of the diagram, are clearly sepa-rate from the halophilous communities of Sarcocorni-etea fruticosae and of Juncetea maritimi (in black,in the right part of the graph). The DCA analy-sis clarifies the ecological gradients of the two maingroups of relevés. The DCA of the data-set of non-halophilous/sub-halophilous communities allows identi-fying fairly good defined ecological gradients along axes1 and 2 (Fig. 4) related, respectively, to increasing soilsalinity and a decreasing flood period. In this case, the

1032 V. Tomaselli et al.

Fig. 6. Cluster analysis of therophytic vegetation.

halophilous group of Scirpion communities (in the rightpart of the graph) is well segregated from the Phrag-mition and the Paspalo-Polypogonion viridis commu-nities (in the left part). The DCA of the data-set ofthe halophilous communities allows identifying a well-defined ecological gradient along the axis 1 related todecreasing soil salinity (Fig. 5): the Sarcocornietea fru-ticosae communities are arranged in the graph, fromleft to right, from the Arthrocnemum macrostachyumgroups (higher level of soil salinity) to the Limbardiacrithmoides groups (medium level of soil salinity). Inthe right part, the Juncetea maritimi relevés fall in twomain groups: the Juncion maritimi sandy communi-ties (top right) and the Plantaginion crassifoliae comm.(bottom right), according to a gradient of increasinggranulometry recognizable along axis 2.

Therophytic vegetationThe cluster analysis forms two main groups, A (tem-porary inundated soils) and B (dry and pioneer soils)(Fig. 6). Cluster A is divided into two subclusters, A1and A2. Cluster A1 includes the ephemeral halophilousSaginetea maritimae communities which developes intemporary inundated soils. A1 is further divided intoA1.1 and A1.2. The sub cluster A1.1 includes the Para-pholis filiformis halo-subnitrophilous communities andsub cluster A1.2 groups microphytic halophilous com-munities characterized by Isolepis cernua.Cluster A2 groups the glasswort pioneer halophi-

lous communities of temporary inundated salt marshes,belonging to Thero-Salicornietea class. Cluster A2 isdivided into two sub clusters: A2.1, including the halo-

subnitrophilous communities (Thero-Suaedetalia) andA2.2 including the halophytic communities (Thero-Salicornietalia). The Thero-Suaedetalia group includesthe communities dominated by Suaeda maritima andCressa cretica, while the Thero-Salicornietalia groupincludes Salicornia patula and Bassia hirsuta commu-nities.Cluster B is divided in two sub-clusters. Sub-

cluster B1 includes the Malcolmietalia therophyticplant communities and is divided into two furthersub-clusters: B1.1 (Anthemis tomentosa and Rostrarialitorea communities) and B1.2 (Plantago albicans com-munities and Romulea rolii communities). Anthemis to-mentosa and Rostraria litorea communities are here de-scribed as two new associations, respectively Alkanno-Plantaginetum albicantis and Rostrario litoreae-Anthe-midetum tomentosae. Sub-cluster B2 includes thosetherophytic communities characterized by the domi-nance of Ornithopus compressus (Helianthemietalia or-der).The NMS have not shown any significant differ-

ences among the three axes: only the axis 3 seems tobe related to a coarse gradient of salinity (Fig. 7).The DCA analysis allowed identifying some well-defined ecological gradients which follow Axis 1 andwhich are related to both an increasing soil salin-ity and moisture and to a decreasing soil contentin sand. Fig. 8 shows how the identified communi-ties are arranged, from left to right, along a gra-dient which ranges from the psammophilous com-munities of the dunes (Malcolmietalia) on the leftside of the diagram, to the halophilous communi-

Plant communities in coastal wetlands in southern Apulia 1033

Fig. 7. NMS ordination analysis of therophytic vegetation doesn’t show significant difference among the three axes. The r squaredvalues of axes 1, 2 and 3 are, respectively, 0.286, 0.276 and 0.293, so it is not easy to identify the precise ecological correlations.

ties of salt marshes (Saginetea maritimae and Thero-Salicornietea.

Discussion

Plant communities of salt marshes are spatially ar-ranged on the basis of their microecological characteris-tics, especially soil salinity and moisture (Boisset 1985;Rogel et al. 2000; Molina et al. 2003). Soil salinity grad-ually increases with soil elevation, reaching a maximumjust above mean high sea level (MHSL) (Sanchez et al.1996; Adam 1990; Bockelmann et al. 2002). Above theMHSL, the salinity tends to decrease due to progres-sively less frequent flooding (Adam 1990). Nevertheless,this relationship between soil salinity and elevation onlypartially explains the vegetation zoning, since physio-logical responses of plants to salinity are heavily speciesdependent and respond to a combination of biotic andabiotic factors (Silvestri et al. 2004).

Perennial salt-marsh communities, characterizedby succulent chenopodiaceous dwarf shrubs, are in-cluded in Sarcocornietea fruticosae class and Sarco-cornietalia order, with several alliances: Sarcocornionalpini, salt-marshes submerged by tides for long pe-riods (Puccinellio-Sarcocornietum alpini, Sarcocorniaalpini comm.); Sarcocornion fruticosae, saltworks andwet salt-marshes submerged for short periods (Junco-Sarcocornietum fruticosae); Arthrocnemion glauci, oc-curring on salt-marshes with very-salted soils (Ar-throcnemo-Juncetum subulati) (Rivas-Martinez et al.2001); Inulion crithmoidis (Agropyro scirpei-Inuletumcrithmoidis and Limonio-Artemisietum coerulescentis),typical of the higher levels occasionally reached by tidesand on well-drained and relatively salted soils (Brullo& Furnari 1976; Frondoni & Iberite 2002). In Table 1,the synoptic table of the six Sarcocornietea fruticosaeplant communities detected in the three study sites isreported.

1034 V. Tomaselli et al.

Fig. 8. DCA ordination analysis of therophytic vegetation, Axis 1 (r squared 0.345), is related to an increasing soil salinity and soilmoisture and to a decreasing soil granulometry (% of sand).

Table 1. Synoptic table of Sarcocornietea fruticosae communities.

Vegetation unit 1 2 3 4 5 6Nr. of relevés 10 4 5 4 4 7

Percentage FrequencyChar. and Diff. Ass.

Puccinellia festuciformis (Host) Parl. 100 . 80 75 . 86

Sarcocornia fruticosa (L.) A.J. Scott 40 . 100 75 50 71

Arthrocnemum macrostachyum (Moric.) Moris 50 . 80 100 . 29

Elytrigia scirpea (C. Presl.) Holub 20 75 20 . 100 100

Limonium narbonense Mill. 90 100 60 25 100 100Artemisia caerulescens L. . . . . . 100

Char. Sarcocornietea fruticosae

Sarcocornia alpini (Lag.) Rivas Martinez 100 100 80 25 75

Halimione portulacoides (L.) Aellen 100 . 100 100 100 100Juncus subulatus Forssk. 80 25 60 100 50 57Limbarda crithmoides (L.) Dumort. 20 50 40 . 100 100Aeluropus littoralis (Gouan) Parl. . 50 . . 75 .Limonium virgatum (Willd.) Fourr. . . . . 50 .Triglochin bulbosum L. subsp. barrelieri (Loisel.) Rouy . . . . 25 .

Vegetation units: 1: Puccinellio-Sarcocornietum alpini, 2: Sarcocornia perennis communities, 3: Junco-Sarcocornietum fruticosae,4: Arthrocnemo-Juncetum subulati, 5: Agropyro-Inuletum crithmoidis, 6: Limonio narbonensis-Artemisietum coerulescentis

Sarcocornia alpini occurs in all the study ar-eas although in Saline di Punta della Contessa only,

it is particularly widespread together with Puccinel-lia festuciformis subsp. festuciformis in the form of

Plant communities in coastal wetlands in southern Apulia 1035

the association Puccinellio-Sarcocornietum alpini (Ta-ble 1, columns 1 and 2). This community is typicalof substrates that are flooded for long periods (Fron-doni & Iberite 2002) and grows on the lower belt ofsalt marshes. When both moisture and salinity de-gree increase, the Sarcocornia alpini communities arereplaced by Sarcocornia fruticosa and Artrochnemummacrostachyum communities. In particular, on slightlymore elevated sites, which are still submerged in win-ter, Junco-Sarcocornietum fruticosae occurs (Table 1,column 3). This association is well-adapted to colo-nize compact salty-clayey soils. In those areas which areflooded for only short periods in winter Arthrocnemummacrostachyum populations become dominant in theform of the association Junco subulati-Arthrocnemetumglauci (Brullo & Furnari 1976; Table 1, column 4) nom.inv. prop. (=Arthrocnemo-Juncetum subulati Brullo &Furnari 1976), developing on soils which generally showthe highest degree of salt content among the Sarco-cornietea communities.On those stands that are only rarely flooded, Lim-

bardia crithmoidis communities prevail. The Inulioncrithmoidis communities show relatively low salt val-ues. Agropyro scirpei-Inuletum crithmoidis grows onthose high and peripheral sites which are not subjectto submersion in winter (Table 1, column 5). Limonio-Artemisietum coerulescentis (Table 1, column 6) is anendemic Illyrian-Apennine association that developsoutside of the tidal zone, on low salty substrates whichare only sporadically submerged and which are com-pletely dry in spring and summer. It can be considereda spatial transition between the true coastal halophilousvegetation of Sarcocornietea fruticosaeand the vegeta-tion of Juncetea maritimi (Pandža et al. 2007).Juncetea maritimae class (Juncetalia maritimi or-

der) includes perennial grasslands and wet communi-ties of salt marshes (Juncion maritimi), as well as thecoastal halophilous vegetation typical of well-drainedsandy soils (Plantaginion crassifoliae). The synoptic ta-ble of the four Juncetea maritimi plant communitiesdetected in the three study sites is shown in Table 2.Spartina versicolor forms thick grasslands which

usually tend to occupy the transition belt betweenthe dunes and the alluvial plain (Frondoni & Iberite2002) on coarse sandy soils and can be referred toSpartino-Juncetum maritimi (Table 2, column 1). Thetemporary inundated sands characterizing the retro-dunal areas are populated by perennial grasslandsdominated by Schoenus nigricans and Plantago cras-sifolia, belonging to Schoeno-Plantaginetum crassifo-liae (Table 2, column 2). Generally this plant com-munity develops in the external parts of the brack-ish slush and behaves as a transition belt betweenthe halophilous vegetation of Sarcocornietea fruti-cosae and the communities of Juncetea maritimi.In the reserve of Torre Guaceto, also the Plan-tagini crassifoliae-Caricetum extensae (Table 2, col-umn 3), which was described by Géhu & Biondi(1988) for the southern Apulia, and the Limonio-Juncetum gerardi (Table 2, column 4) have been found.

Table 2. Synoptic table of Juncetea maritimi communities.

Vegetation unit 1 2 3 4Nr. of relevés 15 7 3 4

Percentage FrequencyChar. and Diff. Ass.

Spartina versicolor Fabre 100 . . .

Schoenus nigricans L. 33 100 100 .

Carex extensa Gooden. 7 57 100 .

Juncus gerardii Loisel. . . . 100

Char. Juncion maritimi and Juncetea maritimiJuncus acutus L. 73 100 100 75Juncus maritimus Lam. 80 100 100 .Centaurium spicatum (L.) Fritsch 7 43 67 .Carex hispida Willd. 20 . 33 .Lotus corniculatus L. . . 100 .subsp. preslii (Ten.) Fourn.

Sonchus maritimus L. 13 14 . .Scirpoides holoschoenus (L.) Soják 7 . 67 .Tripolium pannonicum (Jacq.) Dobrocz.. 14 33 .. Samolus valerandi L. . . 33 .Juncus subulatus Forssk. 7 . . .

Char. Plantaginion crassifoliae

Plantago crassifolia Forssk. 7 100 100 .

Cladium mariscus (L.) Pohl 27 . . .Centaurium tenuiflorum 7 . . .(Hoffmanns. Link) Fritsch

Ipomea sagittata Poir. 7 . . .

Vegetation units: 1: Spartino-Juncetum maritimi, 2: Schoeno-Plantaginetum crassifoliae, 3: Plantagini crassifoliae-Caricetumextensae, 4: Limonio-Juncetum gerardi

These two associations occur in small and scatteredpatches.All the swampy helophytic communities dominated

by perennial graminoids, typical of fresh and brack-ish waters, belong to the Phragmito-Magnocaricetea. Inthis vegetation type the following environments wereidentified: brackish water communities (Scirpetaliacompacti, Scirpion compacti: Scirpetum compacti, Scir-petum compacto-littoralis) and fresh water communities(Phragmitetalia, Phragmition: Phragmitetum commu-nis, Iridetum pseudacori, Soncho-Cladietum marisci,Sparganietum erecti). In Table 3, the synoptic tableof the five Phragmito-Magocaricetea plant communitiesdetected in the three study sites is reported.Scirpetum compacti is dominated by Bolboschoe-

nus maritimus (Table 3, column 1), and grows on saltclay flooded soils (dry in summer), along the banksof the coastal lagoons. Scirpetum compacto-littoralis,which is dominated by Schoenoplectus litoralis (Ta-ble 3, column 2), forms tall helophyte communitiesgrowing on brackish mud flooded for most of the year.Phragmitetum communis occurs in the damp stationssubmerged for most of the year. Physionomically, itis characterized by Phragmites australis which formsmonophytic populations (Table 3, column 3) widely dis-tributed in the three study areas, Phragmites australisbeing an invasive species which spreads easily after cut-ting or fire (often causing the detriment of other natural

1036 V. Tomaselli et al.

Table 3. Synoptic table of Phragmito-Magnocaricetea communities.

Vegetation unit 1 2 3 4 5Nr. of relevés 8 3 5 3 14

Percentage FrequencyChar. and Diff. Ass.

Bolboschoenus maritimus (L.) Palla 100 100 . . .

Schoenoplectus litoralis (Schrad.) Palla . 100 . . .

Phragmites australis (Cav.) Trin. ex Steud. 25 100 100 33 79

Iris pseudacorus L. . . 20 100 7

Sonchus maritimus L. . . . . 86

Char. Phragmito-MagocariceteaCladium mariscus (L.) Pohl . . 20 100 100Mentha acquatica L. . . 20 . 64Cirsium creticum (Lam.) d’Urv. subsp. triunfetti (Lacaita) Werner . . 40 33 36Lythrum salicaria L. . . 20 . 50Ipomea sagittata Poir. . . . . 57Samolus valerandi L. . . 40 . 36Carex hispida Willd. . . . 67 29Euphorbia hirsuta L. . . . . 21Galium palustre L. subsp. elongatum (C. Presl) Lange . . . . 21Typha angustifolia L. . . . . 14Alisma lanceolatum With. . . . 67 .Schoenoplectus tabernaemontani (C.C. Gmel.) Palla . . . 67 .Lycopus auropaeus L. . . . 33 .Eupatorium cannabinum L. . . . 33 .Typha latifolia L. . . 20 . .Persicaria decipiens (R.Br.) K.L. Wilson . . 20 . .

Vegetation units: 1: Scirpetum compacti, 2: Scirpetum compacto-litoralis, 3: Phragmitetum communis, 4: Iridetum pseudoacori, 5:Soncho maritimi-Cladietum marisci

Phragmitetea communities, such as Soncho-Cladietummarisci). Especially in Torre Guaceto it covers a widesurface formerly occupied by coastal lagoons and sub-sequently buried and used for agricultural purposes andfinally abandoned. It is likely that the permanence ofPhragmites australis could be favoured by fire (thatperiodically occurs in this area). On soils submergedfor the most of the year by oligoaline waters, swampyplant communities dominated by Cladium mariscus oc-cur (Table 3, column 5). In the reserve of Le Cesine,Soncho-Cladietum marisci covers a wide surface, whilein Torre Guaceto it occurs only in a small surface prob-ably due to competition with Phragmites australis. Iri-detum pseudoacori grows mainly along some drainageditches at the boundary between wetlands and culti-vated areas (Table 3, column 4) and forms a typicalmosaic with Sparganietum erecti, which requires flowingfresh waters. The distribution of Phragmitetea commu-nities is mainly influenced by the flooding period length.Scirpion communities occur in those areas where thewater salinity shows significant values.The wet meadows developed on deep and moist

soils are here represented by different types of Mediter-ranean summer green grasslands growing on damp,meso-eutrophic and base-rich soils (Holoschoenetaliavulgaris, Molinio-Holoschoenion: Schoeno nigricantis-Erianthetum ravennae) and on eutrophic soils floodedfor a large part of the year by fresh waters (Paspalo-Heleochloetalia, Paspalo-Polygonion viridis: Loto te-nuis-Paspaletum paspaloidis, Hydrocotile vulgaris com-

munities). The synoptic table of the three Molinio-Arrhenatheretea plant communities detected in thethree study sites is shown in Table 4. The Schoeno-Erianthetum ravennae (Table 4, column 2) often formsa mosaic with the oligohaline communities of Phrag-mitetea class. The plant communities dominated byPaspalum distichum (Table 4, column 1), develop-ing in late summer-autumn in correspondence of hol-lows within cultivated areas, are here referred tothe Loto-Paspaletum paspaloidis. The presence of hy-grophilous species of Phragmito-Magnocaricetea andIsoeto-Nanojuncetea is to be related to the period offlooding, decreasing from the middle part towards theoutlying belts. Hydrocotile vulgaris communities (Ta-ble 4, column 3) occur on stagnant and oligotrophic wa-ters (Rivas Martinez et al. 2001, 2002) and often formmosaic with the Soncho-Cladietum marisci.Saginetea maritimae class includes ephemeral,

halo-subnitrophilous communities occurring on saltmarshes during springtime. The synoptic table is in Ta-ble 5. In the study areas we have found two differentassociations, Parapholidetum filiformis and Isolepido-Saginetum maritimae (Frankenietalia pulverulentae).Parapholidetum filiformis (Table 5, column 1) generallycolonises sandy soils rich in organic matter, completelydry in summer (Brullo et al. 1994). This ephemeralvegetation occurs in spatial contact with Sarcocorni-etea fruticosae communities. Isolepido-Saginetum mar-itimae (Table 5, column 2) usually grows in the form ofsmall-size patches on sandy-silty soils which are flooded

Plant communities in coastal wetlands in southern Apulia 1037

Table 4. Synoptic table ofMolinio-Arrhenatheretea communities.

Vegetation unit 1 2 3Nr. of relevés 11 1 3

Percentage FrequencyChar. and Diff. Ass.

Lotus tenuis Waldst.& Kit. ex Willd. 55 . .

Erianthus ravennae (L.) P. Beauv. . 100 .Schoenus nigricans L. . 67 33

Hydrocotyle vulgaris L. . . 100

Char. Paspalo-Polypogonion viridis

Paspalum distichum L. 100 33 33Lythrum junceum Banks & Solander 27 . .

Char. Molinio-Arrhenatheretea and Holoschoenetalia vulgarisJuncus articulatus L. 100 . 100Lippia nodiflora (L.) Michx. 73 . 67Pulicaria dysenterica (L.) Bernh. 45 33 100Plantago major L. 73 . .Rumex conglomeratus Murray 73 . .Cirsium creticum (Lam.) d’Urv. . 100 100subsp. triunfetti (Lacaita) Werner

Scirpoides holoschoenus (L.) Soják 18 67 33Dorycnium rectum (L.) Ser. . 67 67Epilobium tetragonum L. 36 . .Kickxia commutata 27 . .(Bernh. ex Rchb.) Fritsch

Trifolium fragiferum L. 27 . .Verbena officinalis L. 27 . .Orchis palustris Jacq. . . 67Festuca arundinacea Schreb. 18 . .Agrostis stolonifera L. 9 . .Trifolium repens L. 9 . .Potentilla reptans L. . . 33

Vegetation units: 1: Loto tenuis-Paspaletum paspaloidis, 2:Schoeno nigricantis-Erianthetum ravennae, 3: Hydrocotyle vul-garis communities

in winter. Usually it forms a small-scale mosaic with theJuncetea maritimi class communities.The Thero-Salicornietea class, including the pio-

neer communities rich in glasswort and other succu-lent plants of salt marshes, usually appearing duringthe late summer-autumn period, is represented by thetwo orders Thero-Suadetalia and Thero-Salicornietalia.The synoptic table of the three Thero-Salicornieteaplant communities detected in the three study sites isshown in Table 6. Suaedetum maritimae (Table 6, col-umn 3) and Cressetum creticae (Table 6, column 4)belong to Thero-Suadetalia order, which includes halo-nitrophilous therophytic communities growing usu-ally at the edges of cultivated areas. Suaedo-Salicor-nietum patulae and Suadeo maritimae-Bassietum hir-sutae belong to Thero-Salicornietalia order. Suaedo-Salicornietum patulae (Table 6, column 2) occurs inthe more depressed areas, in the form of narrow stripessurrounding the water bodies. Suadeo maritimae-Bassietum hirsutae (Table 6, column 1) tends to occupythe adjacent external belt, often in close proximity ofthe perennial halophyte communities of Sarcocornieteafruticosae (Géhu 1992).

Table 5. Synoptic table of Saginetea maritimae communities.

Vegetation unit 1 2Nr. of relevés 15 4

Percentage FrequencyChar. and Diff. Ass.

Parapholis filiformis (Roth) C.E. Hubb. 100 75

Isolepis cernua (Vahl) Roem. & Schult. . 100

Char. Saginetea maritimae and Frankenion pulverulentaeJuncus hybridus Brot. 60 100Polypogon maritimus Willd. 73 .Spergularia salina J. & C. Presl 73 .Plantago coronopus L. 40 .Polypogon monspeliensis (L.) Desf. 33 25Centaurium tenuiflorum 20 75(Hoffmanns. & Link) Fritsch

Sagina maritima G. Don . 100Polypogon subspathaceus Req. . 100Anagallis arvensis L. subsp. . 75parviflora (Hoffmanns. & Link) Arcang.

Gaudinia fragilis (L.) P.Beauv. . 50Hordeum marinum Huds 13 .Hainardia cylindrica (Willd.) Greuter 13 .Parapholis incurva (L.) C.E. Hubb. 13 .

Vegetation units: 1: Parapholidetum filiformis, 2: Isolepidocernuae-Saginetum maritimae

Table 6. Synoptic table of Thero-Salicornietea communities.

Vegetation unit 1 2 3 4Nr. of relevés 9 5 6 3

Percentage FrequencyChar. and Diff. Ass.

Suaeda maritima (L.) Dumort. 89 100 100 100

Cressa cretica L. . . 17 100

Char. Thero-Salicornietea

Salicornia patula Duval-Jouve 100 100 50 67

Bassia hirsuta (L.) Asch. 100 60 17 .

Salicornia emerici Duval-Jouve 78 . 100 .Salsola soda L. 11 60 33 .

Trasg. Saginetea maritimaeAtriplex prostrata Boucher ex DC 22 . 83 33Puccinellia convoluta (Hornem.) Hayek . . 50 100Spergularia salina J. & C. Presl . . 33 67Parapholis filiformis (Roth) C.E. Hubb. . . 33 33Hordeum marinum Huds . . 33 .Crypsis aculeata (L.) Aiton . . . 33

Vegetation units: 1: Suaedo maritimae-Bassietum hirtae, 2:Suaedo maritimae-Salicornietum patulae, 3: Suaedetum mariti-mae, 4: Cressetum creticae

Spring and early summer microphytic ephemeralplant communities belong to the Helianthemetea gut-tati class. The vegetation growing on sandy soils is re-ferred to the Malcomietalia order and to the Alkanno-Malkolmion alliance. The synoptic table is in Table 7.Plantago albicans communities (Table 7, column 1 andTable 8, rel. 1–8) occur in the retrodunal area ofthe protected area of Torre Guaceto, and form a mo-

1038 V. Tomaselli et al.

Table 7. Synoptic table of Helianthemetae guttatae communities.

Vegetation unit 1 2 3 4Nr. of relevés 8 3 9 7

Percentage FrequencyChar. and Diff. Ass.

Plantago albicans L. 100 . . .

Romulea rollii Parl. . 100 . .

Rostraria litorea (All.) Holub . . 100 .

Ornithopus compressus L. . . . 100

Char. Alkanno-Malcolmion and MalcolmetaliaMedicago littoralis Loisel. 100 100 100 86Cerastium diffusum Pers. 100 . 67 57Alkanna tinctoria Tausch 100 . . 14Aira cupaniana Guss. . . . 100Romulea rollii Parl. 75 . . .Silene niceensis All. 63 33 . .Pseudorlaya pumila (L.) Grande 63 33 . .Corynephorus divaricatus (Pourr.) . . . 71Breister.

Brassica tournefortii Gouan 50 . . .Lotus parviflorus Desf. . . . 43Vulpia fasciculata (Forssk.) Fritsch . 67 . .Cutandia divaricata (Desf.) Benth. . 33 . .Erodium laciniatum (Cav.) Willd. . 33 . .Herniaria hirsuta L. . . . 14

Char. Helianthemetea guttataeFilago eriocephala Guss. 63 . 89 .Polycarpon tetraphyllum (L.)L. subsp. . 100 78 .diphyllum (Cav.) Bolos & FontQuer

Euphorbia exigua L. 100 . 44 .Anthemis tomentosa L. . . 100 .Hippocrepis ciliata Willd. 50 . . 71Arenaria leptoclados (Rchb.) Guss. 100 . . .Trifolium glomeratum L. . . . 100Linaria pelisseriana (L.) Mill. . . . 100Trifolium arvense L. . . . 100Ornithopus pinnatus (Mill.) Druce . . . 86Tuberaria guttata (L.) Fourr. . . . 71Vulpia ciliata Dumort. . . . 71Trifolium nigrescens Viv. . . . 71Sedum rubens L. . . 56 .Trifolium campestre Schreb. . . . 71Trifolium scabrum L. . . . 71Trisetaria segetum (Savi) Soldano . . . 71Tolpsis umbellata Bertol. . . . 43Rumex bucephalophorus L. 25 . . .Trifolium angustifolium L. . . . 29Trifolium bocconei Savi . . . 29Tuberaria praecox Grosser . . . 29Filago gallica L. . . . 29

Vegetation units: 1: Alkanno-Plantaginetum albicantis (Tab. 9,rel. 1-8), 2: Vulpio-Romuletum rollii, 3: Rostrario-Anthemidetumtomentosae (Tab. 9, rel. 9-17), 4: Ornithopus pinnatus and Tu-beraria guttata communities

saic with the Thymus capitatus garrigues. This plantcommunity exhibits ecological and structural featureswhich are similar to those shown by Anchuso hybridae-Plantaginetum albicantis, association described by Cor-betta et al. (1989) for the Ionian side of the Apu-

lia region. Plantago albicans communities observed inour study site are lacking in Anchusa hybrida, charac-ter species of Anchuso hybridae-Plantaginetum albican-tis. So, here we propose a new association, Alkanno-Plantaginetum albicantis (holotypus: ril. 4, tab. 8)which exhibits a peculiar specific character componentwhen compared to that of Anchuso-Plantaginetum.On the small-size surfaces of the retrodunal areas

of Saline di Punta della Contessa the associationVulpio-Romuletum rollii has been found. This vegetation typeis characterised by the presence of Romulea rollii (Ta-ble 7, column 2). In Torre Guaceto, on coarse soils alongthe rocky coast, a special therophytic vegetation typecharacterized by the dominance of Anthemis tomentosaand Rostraria litorea (Table 7, column 3 and Table 8,rel. 9–17) forms a belt above the Limonietum apuli.For this community a new association named Rostrariolitoreae-Anthemidetum tomentosae (holotypus: ril. 16,tab. 8) is here proposed. This new association exhibitssome similarities in floristic composition with the Med-icagini littoralis-Anthemidetum tomentosae (Géhu etal. 1992) association described for the coast of Rhodesisland (Euphorbion peplis R.Tx. 1950 alliance,Cakileteamaritimae class). Nevertheless, the two plant commu-nities differ for the ecological (edaphic) characteristics.Ephemeral plant communities grow in the inland

areas of Le Cesine, on red soils, characterised by thedominance of Ornithopus pinnatus (Table 7, column4) and of a group of species belonging to the He-lianthemion guttati alliance and to the Helianthemeteaguttati class (Rivas-Martínez et al. 2002, 2001; PerezPrieto & Font 2005).The vegetation of the coastal dunes and of rocky

shores, belonging to Ammophiletea and Crithmo-Li-monietea classes, and the hydrophytic vegetation ofPotametea and Ruppietea classes have been observed inthe field but have not been submitted to multivariateanalysis. Hence, these plant communities are reportedonly in the syntaxonomical scheme. Here follows a briefdescription.The sandy coastline is characterized by the typ-

ical zonation of the dune banks and represented bythe annual psammophilous vegetation (Cakiletea mar-itimae: Salsolo-Cakiletum maritimae) and by dune-colonising vegetation (Ammophiletea: Cypero capitati-Agropyertum juncei, Medicagini-Ammophiletum aus-tralis). A typical rocky shores occurs in Torre Guacetoonly and it is characterized by coastal chasmophyticcommunities (Crithmo-Limonietea: Crithmo-Limonie-tum apuli) and by perennial pioneer grasslands (Arte-misietea vulgaris, Elytrigion athericae: Elytrigietumathericae). The submerged rooted hydrophytes com-munities of the deep waters (Rodwell 1995) belong toPotametea (Potametum pectinati, Potametum colorati)and Ruppietea (Entheromorpho-Ruppietum maritimae,Ruppietum spiralis). These plant communities are welldeveloped in Le Cesine site.This study revealed a very high richness and di-

versity of different plant communities in the three sites.The entire syntaxonomic listing is reported in Ta-

Plant communities in coastal wetlands in southern Apulia 1039

Table 8. Alkanno-Plantaginetum albicantis and Rostrario-Anthemidetum tomentosae.

Alkanno-Plantaginetum albicantis ass. nova (1–8)Rostrario-Anthemidetum tomentosae ass. nova (9–17)

Relev. Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Area (m2) 4 4 4 3 3 5 10 10 4 5 5 5 8 5 10 15 20Cover (%) 85 80 85 90 90 95 90 90 70 60 65 70 90 85 95 95 90Slope (◦) . . . . . . . . . . . . . 5 5 3 .Face . . . . . . . . . . . . . NE NE N .

Diff. Ass.

Plantago albicans L. 4 3 4 4 3 3 4 4 . . . . . . . . .

Rostraria litorea (All.) Holub . . . . . . . . 1 1 2 1 3 1 2 3 +

Char. Alkanno-Malcolmion e MalcolmetaliaMedicago littoralis Loisel. 2 2 1 2 1 1 1 1 1 2 2 3 2 1 1 2 1Cerastium diffusum Pers. 1 1 + 2 1 1 2 1 1 1 2 + + . + . .

Alkanna tinctoria Tausch + + 1 1 + 1 + 1 . . . . . . . . .

Romulea rollii Parl. 1 1 2 1 2 1 . . . . . . . . . . .Silene niceensis All. . . 1 + . + + 1 . . . . . . . . .Pseudorlaya pumila (L.) Grande + . + + + . . + . . . . . . . . .Brassica tournefortii Gouan . . + + . 1 . + . . . . . . . . .

Char. Tuberarietea guttataeFilago eriocephala Guss. . . . 1 + + 1 + + 1 + 1 1 + 1 + .Euphorbia exigua L. + 1 + + 1 1 + + + + . + . . . + .

Anthemis tomentosa L. . . . . . . . . 2 1 + 1 4 4 4 4 4

Arenaria leptoclados (Rchb.) Guss. 1 1 1 2 + 2 1 + . . . . . . . . .Polycarpon tetraphyllum (L.) L. subsp. . . . . . . . . + . 1 1 . + 1 + +diphyllum (Cav.) O. Bolos & Font Quer

Sedum rubens L. . . . . . . . . . + . + + . 1 + .Hippocrepis ciliata Willd. . . . + . 1 + + . . . . . . . . .Rumex bucephalophorus L. . . . . + + . . . . . . . . . . .

Trasg. Saginetea maritimaeCatapodium pauciflorum (Merino) . . . . . . . . + 1 1 + 2 1 1 + 1Brullo, Giusso, Minissale & Spamp.Plantago coronopus L. . . . . . . . . 1 1 + 2 + 1 + 2 .Frankenia pulverulenta L. . . . . . . . . + 1 1 1 + 1 + + 1Catapodium balearicum (Willk.) H.Scholz . . . . . . . . 1 + 3 1 1 2 + 1 +Parapholis incurva (L.) C.E. Hubb. . . . . . . . . . + 1 + 1 2 2 1 2Sagina maritima G. Don . . . . . . . . + 1 2 2 + + + + .Spergularia salina J.& C. Presl . . . . . . . . . + + + . . . . .

Rel. 1-8, 11-03-2008, Torre Guaceto Rel. 9, 11-03-2008, Torre Guaceto Rel. 10-16, 19-05-2008, Torre Guaceto Rel. 17, 22-05-2008, TorreGuaceto

ble 9. Several plant communities were described else-where but were not known for the Adriatic site ofsouthern Italy and the Apulia region, such as Ruppi-etum spiralis, Sparganietum erecti, Agropyro scirpei-Inuletum crithmoidis, Limonio narbonensis-Juncetumgerardi, Parapholidetum filiformis, Cressetum creticae,Elytrigietum athericae (Marchiori & Albano 2007). Twonew associations have been described here (Alkannotinctoriae-Plantaginetum albicantis, Rostrario litoreae-Anthemidetum tomentosae). In Table 10 the list of theplant communities is reported, with the indication ofthe presence in the three study sites. The area of “LeCesine” presents the main number of plant communi-ties and a richness especially in hydrophytic and helo-phytic vegetation types, an indication also of the goodquality of pond environments. The site of “Saline diPunta della Contessa” revealed the largest number of

Sarcocornietea fruticosae communities, due to the phe-nomenon of salinization of ponds occurring in the lastdecades.These highly specific vegetation types identified in

the studied area are severely threatened by human ac-tivities, in particular the development of tourism, whichhave led to the transformation of coastal habitats intobeaches. The plant communities which normally char-acterize the transition belt between the halophilousvegetation of Sarcocornietea fruticosae and the helo-phytic communities of Juncetea maritimi are particu-larly endangered at present. Typical examples are theassociations Limonio-Artemisietum coerulescentis andAgropyro scirpei-Inuletum crithmoidis, which are situ-ated on the borderline between the high and low tide,or Limonio narbonensis-Juncetum gerardi and Plan-tagini crassifoliae-Caricetum extensae which have been

1040 V. Tomaselli et al.

Table 9. Syntaxonomical scheme of the phytosociological units cited in the text.

POTAMETEA Klika in Klika & Novak 1941POTAMETALIA Koch 1926POTAMION (Koch 1926) Libbert 1931Potametum pectinati Cartensen 1955NYMPHAEION ALBAE Oberd. 1957Potametum colorati Allorge 1921RUPPIETEA J.Tx.1960RUPPIETALIA J.Tx.1960RUPPION MARITIMAE Br.-Bl. ex Westhoff in Bennema, Sissingh & Westhoff 1943Ruppietum spiralis Hocquette 1927 corr. Iversen 1934Enteromorpho intestinalidis-Ruppietum maritimae Westhoff ex R.Tx. & Bockelmann 1957PHRAGMITO-MAGNOCARICETEA Klika in Klika & Novák 1941PHRAGMITETALIA Koch 1926PHRAGMITION Koch 1926Phragmitetum communis (Koch 1926) Schmale 1939Iridetum pseudoacori Krzywanski 1974Soncho-Cladietum marisci (Br.-Bl.& O.Bolos 1958) Cirujano 1980Sparganietum erecti Philippi 1973SCIRPETALIA COMPACTI Hejny in Holub et al. 1967 corr. Rivas et al. 1980SCIRPION COMPACTI Dahl & Hadac 1941 corr. Rivas-Martínez et al.1980Scirpetum compacti Van Langendonck 1931 corr. Bueno & F. Prieto in Bueno 1997Scirpetum compacto-littoralis (Br.-Bl. in Br.-Bl. et al. 1952) O. Bolos 1962 corr. RivasCRITHMO-LIMONIETEA Br.-Bl. in Br- Bl., Roussine & Negre 1952CRITHMO-LIMONIETALIA Molinier 1934CRITHMO-LIMONION MOLINIER 1934Crithmo-Limonietum apuli Bartolo, Brullo, Signorello 1989Elytrigietum athericae Corillion 1953 corr. Bueno 1997AMMOPHILETEA Br.-Bl. & R.Tx. ex Westhoff et al. 1946AMMOPHILETALIA Br.-Bl. 1933AMMOPHILION AUSTRALIS Br.-Bl.1921 em. Gehu, Rivas-Martínez & R.Tx. in Rivas-Martínez et al. 1980Medicagini marinae-Ammophiletum australis Br.-Bl. 1921 corr. Prieto & Diaz 1991AGROPYRENION FARCTI Rivas-Martínez, Costa, Castroviejo & Valdes Bermajo 1980Cypero capitati-Agropyretum juncei Kuhnholtz-Lordat (1923) Br.-Bl. 1933CAKILETEA MARITIMAE R.Tx. & Preising in Br.-Bl. & R.Tx.1952CAKILETALIA INTEGRIFOLIAE R.Tx. ex Oberd. 1949 corr. Rivas-Martínez, Costa & Loidi 1992CAKILION MARITIMAE Pignatti 1953Salsolo-Cakiletum maritimae Costa & Mansanet 1981 corr. Rivas-Martínez et al. 1992JUNCETEA MARITIMI Br.Bl. in Br.-Bl., Roussine & Negre 1952JUNCETALIA MARITIMI Br.Bl. ex Horvatic 1934JUNCION MARITIMI Br.Bl. ex Horvatic 1934Spartino-Juncetum maritimi O. Bolos 1962Limonio narbonensis-Juncetum gerardi Gehu et Biondi 1994PLANTAGINION CRASSIFOLIAE Br.-Bl.(1931) 1952Schoeno-Plantaginetum crassifoliae Br.-Bl. in Br.-Bl., Roussine & Negre 1952Plantagini crassifoliae-Caricetum extensae Gehu & Biondi. 1988SARCOCORNIETEA FRUTICOSAE Br.-Bl. & R.Tx. ex A. & O. Bolos 1950SARCOCORNIETALIA FRUTICOSAE Br.-Bl.1933SARCOCORNION ALPINI (Rivas-Martínez et al. 1990) Brullo, Giusso del Galdo, Minissale, Siracusa & Spampinato 2002(Sarcocornienion alpini Rivas-Martínez, Lousa, T.E. Diaz, Fernandez-Gonzalez & J.C. Costa 1990)Puccinellio-Sarcocornietum alpini Castroviejo & Cirujano 1980Sarcocornia alpini comm.ARTHROCNEMION GLAUCI Rivas-Martínez in Rivas-Martínez et al. 1980Junco subulati-Arthrocnemetum glauci Brullo & Furnari 1976 nom. inv. propos. (Arthrocnemo-Juncetum subulati Brullo & Furnariin Not. Fitosoc. 11:13–14, 1976)SARCOCORNION FRUTICOSAE Br.-Bl. 1933 em. Brullo & Furnari 1988Junco-Sarcocornietum fruticosae Brullo, Guarino, Ronsisvalle 2000INULION CRITHMOIDIS Brullo & Furnari 1988Agropyro scirpei-Inuletum crithmoidis Brullo in Brullo et al.1988Limonio-Artemisietum coerulescentis Horvatic (1933)1934MOLINIO-ARRHENATHERETEA R.Tx.1937HOLOSCHOENETALIA VULGARIS Br.-Bl. ex Tchou 1948MOLINIO-HOLOSCHOENION VULGARIS Br.-Bl. ex Tchou 1948Schoeno nigricantis-Erianthetum ravennae Pignatti 1953PASPALO-HELEOCHLOETALIA Br.-Bl. in Br.-Bl. et al. 1952PASPALO-POLYPOGONION VIRIDIS Br.-Bl. in Br.-Bl. et al.1952Loto tenuis-Pasapletum paspaloidis Biondi, Casavecchia & Radetic 2002Hydrocotile vulgaris comm.SAGINETEA MARITIMAE Westhoff, Van Leeuwen & Adriani 1962FRANKENIETALIA PULVERULENTAE Rivas-Martínez ex Castroviejo & Porta 1976FRANKENION PULVERULENTAE Rivas-Martínez ex Castroviejo & Porta 1976Parapholidetum filiformis Brullo, Scelsi & Siracusa 1994Isolepido-Saginetum maritimae Brullo 1988

Plant communities in coastal wetlands in southern Apulia 1041

Table 9. (continued)

THERO-SALICORNIETEA R.Tx. ex Géhu & Géhu-Franck 1984THERO-SALICORNIETALIA R.Tx. ex Géhu & Géhu-Franck 1984SALICORNION PATULAE Géhu & Géhu-Franck 1984Suaedo-Salicornietum patulae Brullo & Furnari ex Géhu & Géhu-Franck 1984Suaedo maritimae-Bassietum hirtae Br.-Bl. 1928THERO-SUAEDETALIA Br.-Bl. & O. Bolos 1958THERO-SUAEDION Br.-Bl. in Br.-Bl., Roussine & Negre 1952Suaedetum maritimae Pignatti 1953Cressetum creticae Brullo & Furnari 1976HELIANTHEMETEA GUTTATI (Br.-Bl. in Br.-Bl., Roussine & Negre 1952) Rivas Goday & Rivas Martínez 1963 em. RivasMartínez 1978HELIANTHEMETALIA GUTTATI Br.-Bl. in Br.-Bl., Molinier & Wagner 1940 (Tuberarietalia guttatae Br.-Bl. in Br.-Bl., Molinier& Wagner 1940 nom. mut.)HELIANTHEMION GUTTATI Br.-Bl., in Br.-Bl., Molinier & Wagner 1940Ornithopus pinnatus and Tuberaria guttata comm.MALCOLMIETALIA Rivas Goday 1958ALKANNO-MARESION NANAE Rivas Goday ex Rivas Goday & Rivas-Martínez 1963 corr. Diaz-Garretas et al. 2001 (= Alkanno-Malcolmion parviflorae Rivas Goday 1958)Vulpio-Romuletum rollii Brullo & Scelsi 1998Alkanno tinctoriae-Plantaginetum albicantis ass. novaRostrario litoreae-Anthemidetum tomentosae ass. nova

Table 10. Presence of the detected plant communities in the three sites (TG: Torre Guaceto; LS: Saline di Punta della Contessa; LC:Le Cesine).

Torre Guaceto Saline di Punta della Contessa Le Cesine

Potametum pectinati X XPotametum colorati XRuppietum spiralis XEnteromorpho intestinalidis-Ruppietum maritimae X XPhragmitetum communis X X XIridetum pseudoacori XSoncho-Cladietum marisci X XSparganietum erecti XScirpetum compacti X X XScirpetum compacto-littoralis XCrithmo-Limonietum apuli XElytrigietum athericae XMedicagini marinae-Ammophiletum australis X X XCypero capitati-Agropyretum juncei X X XSalsolo-Cakiletum maritimae X X XSpartino-Juncetum maritimi X XLimonio narbonensis-Juncetum gerardi XSchoeno-Plantaginetum crassifoliae X X XPlantagini crassifoliae-Caricetum extensae XPuccinellio-Sarcocornietum alpini XSarcocornia alpini comm. X XArthrocnemo-Juncetum subulati XJunco-Sarcocornietum fruticosae XAgropyro scirpei-Inuletum crithmoidis X XLimonio-Artemisietum coerulescentis XSchoeno nigricantis-Erianthetum ravennae XLoto tenuis-Pasapletum paspaloidis XHydrocotile vulgaris comm. XParapholidetum filiformis X X XIsolepido-Saginetum maritimae X X XSuaedo-Salicornietum patulae X XSuaedo maritimae-Bassietum hirtae X XSuaedetum maritimae X X XCressetum creticae XOrnithopus pinnatus comm. XVulpio-Romuletum rollii XAlkanno tinctoriae-Plantaginetum albicantis XRostrario litoreae-Anthemidetum tomentosae X

restricted to a few scattered patches, due to the recla-mation of their potential areas for agricultural use. Oneof the most evident physiognomic effects of the anthro-

pogenic pressures is the passage from the typical homo-geneous and continuous distribution of the salt marshcommunities in the form of concentric belts around the

1042 V. Tomaselli et al.

coastal pools to an extremely fragmented and discon-tinuous mosaic. In order to preserve the remaining highdegree of biological diversity (both in terms of speciesand ecosystems) of these areas, it is necessary to keepup a high level of policy and research monitoring (if pos-sible expanding and diversifying the type of scientificstudies). Indeed, it is likely that in addition to the well-known role of the physical factors in determining thepotential heterogeneity pattern that characterises theseenvironments, there is a complicated network of bioticinterrelationships established between species and/orcommunities which is still not completely understoodor explained.

Acknowledgements

This phytosociological study is a part of the activities of anINTERREG project (III A Italy-Greece 2000–2006) con-cerning the environmental monitoring of coastal wetlandsbelonging to the Natura 2000 network. The authors wouldlike to thank Dr. Massimo Terzi of CNR-IGV for statisticalconsultation and two anonymous referees for helpful com-ments on the previous version of this paper.

References

Adam P. 1990. Saltmarsh Ecology, Cambridge University Press,Cambridge, UK, 461 pp.

Beccarisi L., Medagli P., Minonne F., Zuccarello V. & MarchioriS. 2003a. Descrizione ed analisi fitostorica della vegetazionedel sito di Torre Guaceto. Thalassia Salentina 27: 99–116.

Beccarisi L., Medagli P., Minonne F., Zuccarello V. & MarchioriS. 2003b. La conservazione della vegetazione nella Riserva diTorre Guaceto. Thalassia Salentina 27: 117–129.

Biondi E. 1999. Diversita fitocenotica degli ambienti costieri ital-iani. Atti XIII Convegno G. Gadio, Arsenale Ed., suppl. Boll.Museo Civ. Sc. Nat. Di Venezia 49(1998): 39–105.

Biondi E., Bruciapaglia E., Allegrezza M. & Balelli S. 1989.La vegetazione del litorale marchigiano (Adriatico centro-settentrionale). Coll. Phytosoc. 19: 430–460.

Biondi E., Casavecchia S. & Radetic Z. 2002. La vegetazione dei“guazzi” e il paesaggio vegetale della pianura alluvionale delFiume Musone (Italia centrale). Fitosociologia 39 (1): 45–70.

Biondi E., Casavecchia S. & Guerra V. 2006. Analysis of vege-tation diversity in relation to the geomorphogical character-istics in the Salento coasts (Apulia-Italy). Fitosociologia 43:25–38.

Bockelmann A.C., Bakker J.P., Neuhaus R. & Lage J. 2002. Therelation between vegetation zonation, elevation and inunda-tion frequency in a Wadden Sea salt marsh. Aquatic Botany73: 211–221.

Boisset F. 1985. Introducción al estudio fito-ecologico de las co-munidades halófilas del Delta del Ebro. Collect. Bot. 16: 187–207.

Braun-Blanquet J. 1964. Pflanzensoziologie. Grundzuge der Veg-etationskunde. 3. Aufl., Springer Verl., Wien & New York,330 pp.

Brullo S. & Furnari F. 1976. Le associazioni vegetali degli ambi-enti palustri costieri della Sicilia. Not. Fitosoc. 11: 1–43.

Clarke 1993. Non parametric multivariate analysis of changes incommunity structures. Australian J. Ecol. 18: 117–143.

Conti F., Abbate G., Alessandrini A. & Blasi C. (eds) 2005. Anannotated checklist of the Italian vascular flora, Palombi Ed.,Roma.

Corbetta F. 1968. La vegetazione delle valli del litorale ferraresee ravennate. Not. Fitosoc. 5: 67–98

Corbetta F. 1970. Lineamenti della vegetazione macrofitica deiLaghi di Lesina e Varano. Giorn. Bot. Ital. 104(3): 165–191.

Corbetta F., Gratani L., Morioni M. & Pirone G. 1989. Linea-menti vegetazionali e caratterizzazione ecologica delle spiaggedell’Arco Jonico da Taranto alla Foce del Sinni. Coll. Phy-tosoc. 19: 461–521.

Frondoni R. & Iberite M. 2002. The halophile vegetation ofthe sedimentary coast of Lazio (central Tyrrhenian district,Italy). Plant Biosystems 136 (1): 49–68.

Géhu J.M. 1999. Schéma synsystématique des principales classesde végétation littorales sédimentaires européennes avec réfé-rences a d’autres territoires holarctiques. Ann. Bot. 56: 5–52.

Géhu J.M. & Biondi E. 1988. Donnes sur la vegetation des cein-tures d’atterrissement des lacs Alimini. Doc. Phytosoc. XI:353–378.

Géhu J.M. & Biondi E. 1996. Synoptique des associations végé-tales du littoral adriatique italien. Giorn. Bot. Ital. 130(1):257–270.

Géhu J.M., Costa M., Scoppola A., Biondi E., Marchiori S., PerisJ.B., Frank J., Caniglia G. & Veri L. 1984. Essai synsysté-matique et synchorologique sur les végétations littorales itali-ennes dans un but conservatoire. Doc.Phytosoc N. S. 8: 393–474.

Hill M.O. & Gauch H.G. 1980. Detrented Correspondence Anal-ysis: an improved ordination technique. Vegetatio 42: 47–58.

Macchia F. & Vita F. 1973. Vegetazione del litorale adriaticodella Puglia centro-meridionale. Atti III Simp. Naz. Conserv.Natura, Bari 2–6 Maggio 1973, Cacucci Ed., Bari, pp. 233–243.

Marchiori S. & Albano A. 2007. Aggiornamento alla lista deisyntaxa segnalati per la Regione Puglia (2000–2004). Fitosoc.44(1): 169–174.

Mariotti M.G., Braggio Morucchio G., Cornara L. & PlacereaniS. 1992. Studio fitosociologico e palinologico della vegetazioneattuale e del passato a Torre Guaceto (Puglia, Italia merid-ionale). Candollea 47: 31–60.

Molina J.A., Casermeiro M.A. & Moreno P.S. 2003. Vegetationcomposition and soil salinity in a Spanish Mediterraneancoastal ecosystem. Phytocoenologia 33(2–3): 475–494.

Pandža M., Franjic J. & Škvorc Ž. 2007. The salt marsh vegeta-tion on the East Adriatic coast. Biologia 62: 24–31.

Pérez Prieto D. & Font X. 2005. Revisión sintaxonómica a nivel desubalianza del orden Helianthemetalia guttati en la PenínsulaIbérica e Islas Baleares. Acta Botanica Malacitana 30: 139–156.

Piccoli F., Corticelli S., Dell’Aquila L., Merloni N. & Pellizzari M.1996. Vegetation map of the Regional Park of the Po Delta(Emilia Romagna Region). Allionia 34: 325–331.

Pignatti S. 1966. La vegetazione alofila della laguna veneta. Mem.Ist. Ven. Sc. Lett. Arti 33(1): 1–174.

Pirone G., Corbetta F., Frattaroli A.R. & Ciaschetti G. 2001.Aspetti della vegetazione costiera d’Abruzzo. Biogeographia22: 169–191.

Podani J. 2001. SYN-TAX 2000, computer program for multivari-ate analysis in ecology and taxonomy. Scientia Publishing,Budapest.

Poldini L., Vidali M. & Fabiani M.L. 1999. La vegetazione dellitorale sedimentario del Friuli-Venezia Giulia (NE Italia) conriferimenti ala regione Alto-Adriatica. Studia Geobotanica17: 3–68.

Rivas Martínez S., Díaz T.E., Fernández González F., Izco J.,Loidi J., Lousa M. & Penas A. 2002. Addenda to the syn-taxonomical checklist of vascular plant communities of Spainand Portugal. Itinera Geobot. 15: 433–922.

Rivas-Martínez S.F., Fernández González F., Loidi J., Lousa M.& Penas A. 2001. Syntaxonomical checklist of vascular plantcommunities of Spain and Portugal to association level. Itin-era Geobot.14: 5–341.

Rogel J.A., Ariza F.A. & Silla R.O. 2000. Soil salinity andmoisture gradients and plant zonation in Mediterranean saltmarshes of Southeast Spain. Wetlands 20: 357–372.

Sanchez J.M., Izco J. & Medrano M. 1996. Relationships betweenvegetation zonation and altitude in a salt-marsh system innorthwest Spain. J. Veg. Sci. 7: 695–702.

Silvestri S., Defina A. & Marani M. 2004. Tidal regime, salinityand salt marsh plant zonation. Estuarine Coastal and ShelfScience 62: 119–130.

Plant communities in coastal wetlands in southern Apulia 1043

Taffetani F. & Biondi E. 1989. La vegetazione del litoralemolisano e pugliese tra le foci dei fiumi Biferno e Fortore(Adriatico centro-meridionale). Coll. Phytosoc. XVIII: 323–350.

Van der Maarel E. 1979. Transformation of cover-abundance val-ues in phytosociology and its effects on community similarita.Vegetatio 39: 97–114.

Received July 26, 2010Accepted November 16, 2010