PhDSTUDENT OXYGEN EVOLUTION REACTION (OER) Fabrizio ...

15
ADVISOR: Prof. Marie-Pierre GAIGEOT (Université d’Evry Val d’Essonne) PARTNERSHIP: Prof. Philippe ALLONGUE (Ecole Polytechnique) PhD STUDENT: Fabrizio CREAZZO OXYGEN EVOLUTION REACTION (OER) OXYGEN EVOLUTION REACTION (OER) OXYGEN EVOLUTION REACTION (OER) OXYGEN EVOLUTION REACTION (OER) AT AT AT AT - - -WATER INTERFACES: WATER INTERFACES: WATER INTERFACES: WATER INTERFACES: electrocatalysis by MetD & DFT-MD simulations LAMBE UMR8587 CNRS, Laboratory for Analysis & Modelling for Biology and Environment, Université d’Evry Val d’Essonne FUNDING BY ‘’Laboratoire d’ Excellence CHAR AT’’ 24/06/2019, TGCC CEA Journée Grands Challenges 2019

Transcript of PhDSTUDENT OXYGEN EVOLUTION REACTION (OER) Fabrizio ...

ADVISOR:Prof. Marie-Pierre GAIGEOT

(Université d’Evry Val d’Essonne)

PARTNERSHIP:Prof. Philippe ALLONGUE

(Ecole Polytechnique)

PhD STUDENT:Fabrizio CREAZZO

OXYGEN EVOLUTION REACTION (OER)OXYGEN EVOLUTION REACTION (OER)OXYGEN EVOLUTION REACTION (OER)OXYGEN EVOLUTION REACTION (OER)

AT AT AT AT ��� �����----WATER INTERFACES: WATER INTERFACES: WATER INTERFACES: WATER INTERFACES:

electrocatalysis by MetD

& DFT-MD simulations

LAMBE UMR8587 CNRS, Laboratory for Analysis &Modelling for Biology and Environment,

Université d’Evry Val d’Essonne

FUNDING BY

‘’Laboratoire d’ Excellence CHAR�AT’’24/06/2019,TGCC CEA

Journée Grands Challenges 2019

COBALT-BASED MATERIALS IN THE FIELDS OF CATALYSIS:catalytic activity for hydrogen generation (Toyota Central R&D Laboratories, Kojima, Y. et al)

2

Creazzo Fabrizio BACKGROUND: ....HOW TO PRODUCE � VIA A ‘’GREEN WAY’’? 06/2019, TGCC CEA

HYDROGEN PRODUCTION METHODS*:

96 % by STEAM REFORMING = 9 kg of ��� to produce 1 Kg of �

4% by ELECTROLYSIS OF WATER = GREEN HYDROGEN

COBALT-BASED MATERIALS USAGE:

- Solid-state gas sensors- Magnetic materials- Electrochromic devices- High-temperature solar collectors- Gas & Fluid storage- ……….... - nm battery, cryo-cell, photovoltaic

TARGET:

- A good catalyst- Chemically stable- Earth-abundant- Not expensive

Creazzo Fabrizio OUR APPROACH / ‘’GRAND CHALLENGE TARGET’’ 06/2019, TGCC CEA

WATER WATER WATER WATER SPLITTING (OER) SPLITTING (OER) SPLITTING (OER) SPLITTING (OER) IN IN IN IN ELECTROCATALYSISELECTROCATALYSISELECTROCATALYSISELECTROCATALYSIS CONDITIONS CONDITIONS CONDITIONS CONDITIONS

FROM EXPERIMENTS…..

OER:

ANODE

CATHODE

* Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Angew. Chem., Int. Ed. 2011, 50, 7238−7266.* Jiao, F.; Frei, H. Energy Environ. Sci. 2010, 3, 1018−1027.

����� = ANODE MATERIAL IN DFT-BOMD SIMULATIONS

VACUUM

16.5 Å

WATER SLAB (120 water mol.s)

COBALT OXIDE

�����

3

ELECTRO-CHEMISTRY CONDITIONS IN DFT - BOMD SIMULATIONS:

- Water* - Electrolytes- Surface pot. - Chemical reactivity

*F. Creazzo, et al. Journal of Chemical Physics, 2019

COBALT-BASED MATERIALS as CATALYST: -demonstrate a good activity*

- have gained considerable attention*

Creazzo Fabrizio OUTLINE 06/2019, TGCC CEA

STEP 1BULK Co3O4 SOLID STRUCTURE

STEP 2DFT-MD TRAJECTORY

on Co3O4 – WATER INTERFACES

STEP 4 METADYNAMICS FOR CHEMICAL REACTIVITY:

GAS PHASE & LIQUID PHASE

WATER WATER WATER WATER SPLITTING (OER) SPLITTING (OER) SPLITTING (OER) SPLITTING (OER) IN IN IN IN ELECTROCATALYSISELECTROCATALYSISELECTROCATALYSISELECTROCATALYSIS CONDITIONS CONDITIONS CONDITIONS CONDITIONS

4

STEP 3DETAILED CHARACTERIZATION OF INTERFACES

solid surface structure, water structure, dynamics, e. field profile, work function, SFG spectroscopy

DFT-MD COMPUTATIONAL DETAILS:

- DFT with PBE functional + U term (5.9 eV) - Grimme D2 correction - CP2K/Quickstep package :

plane waves E. cut-off = 400 Ry + gaussian basis sets DZVP-MOLOPT

- GTH pseudo-potential- Temperature = 300 K (Nosé-Hoover th.)- Simulation length : 20’ ps

- CUT along (110)-direction- introducing WATERS

*F. Creazzo, et al. Journal of Chemical Physics, 2019

Creazzo Fabrizio IDENTIFY THE ORGANIZATION OF WATER 06/2019, TGCC CEA

(110) SURFACE A (charge +8)(in contact with water)

(110) SURFACE B (charge -8)(in contact with water)

BIL (2.5 Å)

VACUUM

16.5 Å

DL

(7 Å)

SURFACE SITES:

One clear HBonds orientation

DL WATER

ACCEPTOR

SURFACE

HB DONOR

BIL WATER

HB ACCEPTOR

- ‘DISCIPLINED-LIKE’ WATER -

BIL = BINDING INTERFACIAL LAYERDL = DIFFUSE LAYER

SURFACE SITES:

- ‘UNDISCIPLINED-LIKE’ WATER -

v

� ��� � �� ���� ���

DONORv

Wat-Sol HBonds

� ���

���� ���� ����

57% water acceptor

ACCEPTOR

Intra-solid HBs

� ��

����(inner sites)

BIL (2.5 Å)

VACUUM

16.5 Å

DL

(7 Å)

BIL = BINDING INTERFACIAL LAYERDL = DIFFUSE LAYER

5 *F. Creazzo, et al. Journal of Chemical Physics, 2019

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

16

time (ps)

3D -

M.S

.D. (Å2)

Creazzo Fabrizio STEP 3: 3D MEAN-SQUARE-DISPLACEMENT OF WATER 06/2019, TGCC CEA

0 2 4 6 8 10 12 14

time (ps)

0

2

4

6

8

10

12

14

16

3D - M

.S.D

. (Å2)

DL

BIL

TERMINATION A TERMINATION B

(a) More static BIL layer than DL

BIL: DIFF. COEFF. = 0.289 x 10�� (���

�⁄ )

DL: DIFF. COEFF. = 1.34 x 10�� (���

�⁄ )

(b) BIL & DL same diffusivity character

BIL: DIFF. COEFF. = 0.601 x 10��(���

�⁄ )

DL: DIFF. COEFF. = 0.820 x 10��(���

�⁄ )

DL

BIL

TERMINATION AHighly structured BIL

(8.7 Wat-Sol HBs/����

TERMINATION BLess Wat-Sol HBs = More BIL mobility

(7.7 Wat-Sol HBs/����

ACCEPTOR

DONORACCEPTOR

6(DIFF. COEFF. BIL) = � �⁄ (DIFF. COEFF. DL)

*F. Creazzo, et al. Journal of Chemical Physics, 2019

Creazzo Fabrizio STEP 3: ELECTROCHEMISTRY DESCRIPTION OF INTERFACES 06/2019, TGCC CEA

the energy required to move one electron from

a material’s Fermi level to the local vacuum level.

∅ ���-�

(a) Systematic peaks-intensity decrease adding water: screening effect

(b) Intense E. F. beyond the surface: spread of 4-5 Å

WORK FUNCTION OF Co3O4

6.34 eV

5.27 eV

2.71 eV

*EXP. REFERENCE = 6.34 ! 0.3 eV (bare surface)

(c) Halving of the W. F. value adding explicit water slab

*Greiner, M. T., et al.(2012), Advanced Functional Materials. 7

*F. Creazzo, et al. Journal of Chemical Physics, 2019

*F. Creazzo, et al. Journal of Chemical Physics, 2019

Creazzo Fabrizio ….TO SUMMARIZE 06/2019, TGCC CEA

(a) We Identify BIL and DL water layer different from bulk water:BIL responsible for Wat-Sol HBs and for the electrochemistry at the interfaceDL still feels the surface charge, oriented water molecules

(c) UNDISCIPLINED-LIKE WATER in B-termination BIL: orientation is driven by the local electrostatic oscillation of surface charge; Not only BIL-DL HBs but also INTRA-BIL HBs;

(d) A-termination more hydrophilic than B-termination:Less mobility of the BIL-water & highly structured BIL (more Wat-Sol HBs)

(b) Surface sites responsible for Sol-Wat HBs interaction:

TERMINATION A TERMINATION B

v

8

STEP 4 METADYNAMICS FOR CHEMICAL REACTIVITY:

GAS PHASE & LIQUID PHASE(partnership with DR G. Cassone & DR J. Sponer,

Czech Academy of Sciences, Brno)

Creazzo Fabrizio STEP 4: GAS-PHASE METADYNAMICS for CHEMICAL REACTIVITY of �����06/2019, TGCC CEA

�� � �" release

INITIAL STATE: FINAL STATE:

9

TARGET: (a) FIND THE SURFACE SITES ACTIVE FOR THE OER

������

��

��

�� � �#

� � �" release

OER-WATER SPLITTING:NORSKOV MODEL PATH (gas-phase)

UNCONVENTIONAL METADYNAMICS:

CONTACT MATRIX

� ��

Deprotonated sites:

(b) MINIMUM ENERGY PATH (ENERGY BARRIER KNOWLEDGE)

(c) IS THE NORSKOV REACTION PATH OBSERVED?

OUR APPROACH

* = adsorbed species*NØrskov J.K, et al., Chemcatchem 2011, 3, 1159-1165

* Pietrucci F., Saitta A. M., PNAS, 2015

� �

Creazzo Fabrizio STEP 4: GAS-PHASE OER ON ����� B-SURFACE06/2019, TGCC CEA

Z

Reaction Path = NORSKOV PATH

�" � �$release

5.8 Kcal/mol

0.25 eV

FREE-ENERGY LANDSCAPE:

REACTANTS

PRODUCTS

ENER

GY

PATH 1PATH 1PATH 1PATH 1SURFACE SITES INVOLVED IN THE

MINIMUM ENERGY PATH

� �� ��� inner� �

RATE LIMITING STEP: CREATION OF DEPROTONATED SITES

-1 0 1 2 3 4

-100

-80

-60

-40

-20

0

EN

ER

GY

(kc

al/m

ol)

O-H distance (Å)

Overpotential η=

= �. '()

(* 1.23� � 0.93�*

2.16/�

* J. Chen and A. Selloni, J. Phys. Chem. Lett. 3, (2012).Pham, Hieu H., et al. ACS Catalysis 6.8 (2016).Plaisance, C. P. et al. JACS (2015) 10

11

Creazzo Fabrizio STEP 4: LIQUID-PHASE OER ON ����� B-SURFACE 06/2019, TGCC CEA

180 Kcal/mol

REACTANTSPRODUCTS

7.81 eV

PATH 1PATH 1PATH 1PATH 1 PATH 2PATH 2PATH 2PATH 2

Overpotential 0= 2.68 V

71 Kcal/mol

REACTANTS PRODUCTS

3.08 eV

Overpotential 0= 0.31 V

ZZ

RATE LIMITING STEP:

Water

� ��

���122/3

� �

� ��

� �

v

�# � ��

release �# � ��

release

WATER AS GUEST WATER AS CATALYSER

Creazzo Fabrizio STEP 4: GAS-PHASE & LIQUID PHASE OER ON �����06/2019, TGCC CEA RATE LIMITING STEP:

CREATION OF DEPROTONATED SITES

-1 0 1 2 3 4

-100

-80

-60

-40

-20

0

EN

ER

GY

(kc

al/m

ol)

O-H distance (Å)

2.16/�

71 Kcal/mol

REACTANTS PRODUCTS

3.08 eV

Overpotential 0= 0.31 V

ZWater

� ��

� �

GASGASGASGAS----PHASEPHASEPHASEPHASE

Overpotential 0= 0.93 V

RATE LIMITING STEP: WATER ATTACK & DISSOCIATION

� ��

��� inner

� �

LIQUIDLIQUIDLIQUIDLIQUID----PHASEPHASEPHASEPHASE

ENER

GY

12

�# � ��

release

WATER AS CATALYSER

48 72 96 120 144 168 192 216 240 264 288 3120

1

2

3

4

5

6

7

8

9

time

step

(s)

n° of cores

occigen irene

Creazzo Fabrizio BILANAUTOURDELAMACHINE&COMPUTATIONALPERSPECTIVE06/2019, TGCC CEA

Same time (3 s) but using half n° of cores on Irene- Irene best performances- Gain in consumption of cpu time- Speed-up gain closer to the ideal values

13

N° of cores Time step (s) Speed Up (s) (normalize to 48 cores)

occigen irene occigen irene

48 8.9 8.4 1 1

96 5.6 4.6 1.59 1.83

144 3.7 3.0 2.41 2.9

192 3.4 2.8 2.62 3

288 2.9 2.0 3.0 4.2

48 72 96 120 144 168 192 216 240 264 288 312

1

2

3

4

5

6

occigen irene ideal

n° of cores

spee

d up

(s)

(b) HETEROGENITE-3R CoO(OH)trigonal cell (90°, 90°, 120°)

Creazzo Fabrizio PERSPECTIVES / ONGOING WORKS 06/2019, TGCC CEA

Stable phase of Co-oxides

(a) Determine Thermodynamic properties of hydration water during the OER paths

(partnership with Dr. V. C. Nibali,Rurh-University Bochum, Germany)

Persson R., Heyden M., et al. JCTC (2017)

14

THANK YOU

PhD STUDENT:Fabrizio CREAZZO

PAPERS

- F. Creazzo, D. R. Galimberti, S. Pezzotti, and M. P. Gaigeot, DFT-MD of the (110)-Co3O4 cobalt oxide semiconductor in contact with liquid water: Preliminary chemical and physical insights into the electrochemical environment, J. Chem. Phys. 150, 041721 (2019);

- G. Cassone, F. Creazzo, and F. Saija, “Ionic diffusion and proton transfer of MgCl2 and CaCl2 aqueous solutions: an ab initio study under electric field”, Special Issue in Molecular Simulation , 1–8 (2018).

- F. Creazzo, Ionic Diffusion and Proton Transfer in Aqueous Solutions under an Electric Field: State-of-The-Art, Journal of Molecular Science, Vol. 1, Iss. 1, (2017)

- G. Cassone, F. Creazzo, P. V. Giaquinta, J. Sponer, and F. Saija, “Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts” Physical Chemistry Chemical Physics 19, 20420–20429 (2017).

- G. Cassone, F. Creazzo, P. V. Giaquinta, F. Saija, and A. M. Saitta, “Ab initio molecular dynamics study of an aqueous Nacl solution under an electricfield,” Physical Chemistry Chemical Physics 18, 23164–23173 (2016).

OXYGEN EVOLUTION REACTION AT OXYGEN EVOLUTION REACTION AT OXYGEN EVOLUTION REACTION AT OXYGEN EVOLUTION REACTION AT

��� �����----WATER INTERFACES: WATER INTERFACES: WATER INTERFACES: WATER INTERFACES:

electrocatalysis by MetD & DFT-MD simulations