PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY...

39
FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Dorota Kotowska Department of Biology Copenhagen University Health promoting effects of bioactive compounds in plants

Transcript of PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY...

Page 1: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

F A C U L T Y O F S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N

 

PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Health promoting effects of bioactive compounds in plants

Page 2: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Dissertation  for  the  degree  of  Doctor  of  Philosophy  Copenhagen  University,  Department  of  Biology  

Copenhagen,  Denmark                                                                        Author:  Dorota  Kotowska  Title:  Health  promoting  effects  of  bioactive  compounds  in  plants.  Academic  advisors:    Karsten  Kristiansen,  Department  of  Biology,  Copenhagen  University,  Copenhagen,  Denmark  Submitted:  June  2013    

Page 3: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

English  abstract     While  type  2  diabetes  is  an  increasing  problem  worldwide,  there  is  still  no  cure  and  therefore  search  for  the  new  insulin  sensitizer  continues.  Plants  are  a  natural  source  of  bioactive   compounds  and  have  been  used   to   improve  human  health  and  wellbeing  for  centuries.  Today,  several  studies  concentrate  on  screening  plant  extracts  commonly  used  in  folk  medicine  for  pure  compounds,  exploiting  promising  results  in  treatment  of,  among   others,   type   2   diabetes.   Another   area   of   diabetes   research,   focused   on   the  complex   biology   of   adipose   tissue   and   its   influence   on   the   development   of   insulin  resistance.  Moreover,   the   crosstalk   between   gut   bacteria   and   insulin   sensitive   tissues  like   fat,  pancreas  and  skeletal  muscle  has   received  much  attention  and  all  aspects  are  important  in  order  to  better  understand  the  basics  of  this  disease.       This   PhD   thesis   is   based   on   5   scientific   papers   focusing   on   plant   derived  compounds   and   their   influence   on   adipocyte   differentiation,   lipid   storage,   glucose  uptake  and  gut  microbiota.      

Dansk  resumé     Selv   om   type   2   diabetes   er   et   stigende   problem  på   verdensplan,   er   der   stadig  ingen   kur   og   der   søges   til   stadighed   efter   nye  måder   at   øge   sensitiviteten   for   insulin.    Planter   er   en   naturlig   kilde   til   bioaktive   stoffer   og   har   været   brugt   til   at   forbedre  menneskers  helbred  i  århundreder.  Nu  til  dags  er  de  fleste  studier  koncentreret  om  at  screene  planter,  almindeligt  brugt   i   folkemedicin,   for  de   rene  stoffer.  Det  udnyttes,  at  visse  planter  udviser  lovende  resultater  i  behandlingen  af  bl.a.  type  2  diabetes.  Diabetes  forskningen   fokuserer  også  på  den  komplekse  biologi   i   fedtvæv  og  dets   indflydelse  på  udviklingen   af   insulinresistens.   Kommunikationen   mellem   tarmbakterier   og   insulin-­‐sensitive   væv   som   fedt,   bugspytkirtel   og   skeletmuskulatur,   er   også   blevet   et  fokusområde,   og   alle   er   vigtige   for   bedre   at   forstå   sygdomsmekanismen   i   type   2  diabetes.     Denne  ph.d.-­‐afhandling  er  baseret  på  5  videnskabelige  artikler,  der  fokuserer  på  stoffer   baseret   på   planteudtræk  og   deres   indflydelse   på   fedtcelle   differentiering,   lipid  opbevaring,  glucose-­‐optagelse  og  tarmflora.                      

Page 4: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

   

List  of  papers  included  in  the  thesis     1.  K.B.  Christensen,  M.  Jørgensen,  D.  Kotowska,  R.K.  Petersen,  K.  Kristiansen,  L.P.  Christensen,  2010,  Activation  of  the  nuclear  receptor  PPARγ  by  metabolites  isolated  from  sage  (Salvia  officinalis  L.),  J.  Ethnophamacology,  132(1):127-­‐33   2.  R.  B.  El-­‐Houri,  D.  Kotowska,  L.  C.  B.  Olsen,  S.  Bhattacharya,  L.  P.  Christensen,  K.  Grevsen,   N.   Oksbjerg,   N.   Færgeman,   K.   Kristiansen,   K.   B.   Christensen,   Screening   for  Bioactive   Metabolites   in   Plant   Extracts   Modulating   Glucose   Uptake   and   Fat  Accumulation,  manuscript     3.   C.   Andersen,   D.   Kotowska,   C.   G.   Tortzen,   K.   Kristiansen,   J.   Nielsen,   R.   K.  Petersen,   2-­‐(2-­‐bromophenyl)-­‐formononetin   and   2-­‐heptyl-­‐formononetin   are   PPARγ  partial  agonists  and  reduce  lipid  accumulation  in  3T3-­‐L1  adipocytes,  manuscript     4.  D.  Kotowska,  J.  Olesen,  M.  Hansen,  R.  S.  Bienso,  C.  M.  Kristensen,  N.  Brandt,  S.  A.  B.  Larsson,  W.  A.  Al-­‐Soud  ,L.  Hansen,  K.  Kristiansen,  H.  Pilegaard,  Resveratrol,  exercise  and  gut  microbiota,  manuscript     5.   D.   Kotowska,   R.   B.   El-­‐Houri,   K.   B.   Christensen,   X.   Frette,   K.   Grevsen,   L.   P.  Christensen,   K.   Kristiansen,   Novel   PPARγ   partial   agonist   isolated   from   Echinacea  purpurea  exploits  insulin  sensitizing  effect  in  3T3-­‐L1  adipocytes,  manuscript     6.  E.  Sokol,  R.  Almeida,  H.  K.  Hannibal-­‐Bach,  D.  Kotowska,  J.  Vogt,  J.  Baumgart,,  R.  Nitsch,  O.  N.  Jensen,  J.  Knudsen,  C.  S.  Ejsing1,  Quantitative  profiling  of  lipid  species  by  normal-­‐phase  liquid  chromatography,  chip-­‐based  nanoelectrospray  ionization  and  hybrid  ion  trap-­‐orbitrap  mass  spectrometry,  manuscript  

                                 

Page 5: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

       Table  of  contents    English  abstract  ..................................................................................................  3  Dansk  resumé  .....................................................................................................  3  List  of  papers  included  in  the  thesis  ...........................................................  4  List  of  abbreviation  ...........................................................................................  6  1.  Introduction  ....................................................................................................  7  1.1  Obesity,  insulin  resistance  and  pharmacology  .................................................................  8  1.2  Plant  derived  compounds  ..........................................................................................................  9  1.3  Adipocytes  and  3T3-­‐L1  model  ..............................................................................................  18  1.4  New  player:  microbiota  ...........................................................................................................  20  

2.  Discussion  of  the  papers  ..........................................................................  22  PAPER  I  ...................................................................................................................................................  23  PAPER  II  .................................................................................................................................................  24  PAPER  III  ................................................................................................................................................  25  PAPER  IV  ................................................................................................................................................  26  PAPER  V  ..................................................................................................................................................  28  OTHER  PAPERS  ...................................................................................................................................  29  2.1  Concluding  remarks  ..................................................................................................................  30  

Literature  ..........................................................................................................  31  Annex  ..................................................................................................................  39  

 

 

 

 

 

 

 

Page 6: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

 

List  of  abbreviation       TZDs     Thiazolidinediones     PPARγ     Peroxisome-­‐proliferator  activated  receptor  gamma     EGCG     Epigallocatechin  gallate     ERK1/2     Extracellular-­‐signal-­‐regulated  kinase   AMPK     AMP-­‐activated  kinase     Irs     Insulin  receptor  substrate   Glut     Glucose  transporter     Akt     Protein  kinase  B     Sirt2     NAD-­‐dependent  deacetylase  sirtuin-­‐2   LDL     Low  density  lipoprotein     2BrPhF     2-­‐(2-­‐bromophenyl)-­‐formononetin     C7F     2-­‐heptyl  formononetin     MSC     Mesenchymal  stem  cell     C/EBP     CCAAT/enhancer  binding  protein     SREBP     Sterol  regulatory  element  binding  protein     aP2     Fatty  acid  binding  protein  2     IR     Insulin  receptor     FAS     Fatty  acid  synthase     ACC     Acetyl-­‐CoA  carboxylase     PI3K     Phophatidyloinositol  3-­‐kinase     Fiaf     Fasting-­‐induced  adipocyte  protein     LPL     Lipoprotein  lipase     SCFA     Short  chain  fatty  acid     LXR     Liver  X  receptor     MAPK       Mitogen-­‐activated  protein  kinase     TIMP1     Tissue  inhibitor  of  metalloproteinases  1                          

Page 7: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

   

1.  Introduction    Plants   are   the   natural   source   of   compounds   and   have   been   used   to  maintain  

human   health   and   improve   the   quality   of   life   for   hundreds   of   years.   Traditional  medicine,   using   plant   extracts,   herbal  mixtures   and   natural   compounds   isolated   from  various   species   of   plants,   is   still   used   for   primary   health   care,   despite   the   growth   of  pharmaceutical   industry   (Egan,   C.D.,  2002).   At   the   same   time,   WHO   estimates,   that  approximately  two  thirds  of  modern  drugs  originate  from  plants.  

Apart  from  being  the  great  source  of  bioactive  compounds  and  drugs,  plants  are  also  important  sources  of  food.  It  is  well  known  that  intake  of  various  types  of  fruits  and  vegetables   has  health  promoting   effect   and  may  prevent  modern   life   style   associated  diseases   such   as   obesity,   diabetes,   atherosclerosis   and   metabolic   syndrome.   Indeed,  thorough  and  careful  exploration  for  novel,  natural  compounds  has  attracted  renewed  interest   worldwide,   especially   in   case   of   search   for   new   insulin   sensitizers   and   anti-­‐obesity   agents.   The   era   of   TZDs   as   potent   insulin   sensitizers   and   full   PPARγ   agonists  seem  to  come  to  the  end,  mostly  because  TZDs’  unwanted  side  effects  like  weight  gain,  edema  or  fluid  retention.  Therefore  new  compounds,  able  to  increase  insulin  sensitivity,  prevent  development  of   type  2  diabetes  and  avoid   causing  unwanted   side  effects   are  needed,  and  plants  may  be  excellent  sources  of  new,  health  promoting  compounds.  

First  line  of  therapy  for  managing  obesity  and  the  related  metabolic  syndrome  is  to  modify  patient’s  lifestyle.  However,  while  a  Mediterranean  type  of  diet,  rich  in  fruits  and   vegetables,   is   considered   first   line   treatment   to   improve   one’s   health,   change   to  more  active  lifestyle  is  also  needed.  It   is  known,  that  exercise  has  a  beneficial  effect  in  both   animal  models   and   human.   Exercise   promotes   weight   loss   and   improves   insulin  sensitivity   and   therefore   physical   activity  may   be   considered   an   environmental   factor  influencing  health  and  welfare  together  with  a  diet.  

The   work   presented   in   this   thesis   was   initiated   as   part   of   collaboration   between  three   Danish   universities   with   a   goal   of   identifying   new   plant   compounds   exhibiting  health  promoting  effects.  In  order  to  address  this  broad  topic  we  focused  our  attention  on   insulin   resistance   and   the   development   of   adipocytes   based   on   established   cell  culture  model.  By  using  unique   rational   combination  of   screening  modalities  we  were  able   to   identify   two   polyacetylens   (falcarinol   and   falcarindiol)   isolated   from   Daucus  carrota   and   dodeca-­‐2E,4E,8Z,10E/Z   tetraenoic   acid-­‐   2-­‐   methylbutylamides-­‐   novel  compound   isolated   from   Echinacea   purpurea.   Both   polyacetylenes   and   Echinacea  alkamide   show   promising   insulin   sensitizing   effects   and   may   serve   as   leads   for   the  development  of   the  next   generation  of   pharmaceuticals   targeting  obesity   and  obesity  related  disorders.    

   

 

Page 8: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

1.1  Obesity,  insulin  resistance  and  pharmacology  Obesity   is   now   considered   major   problem   for   public   health   in   developing   and  

developed  countries.  According  to  WHO  over  four  hundred  million  adults  are  considered  obese   and   approximately   1,6   billion   are   overweight   (http://www.who.int).  Corresponding  with  an   increased  number  of  obese   individuals   is  an   increasing  number  of  people  suffering  from  obesity  related  disorders  such  as  type  2  diabetes  (T2D),  cancer  and   hypertension   (Rappange,   D.   R.,   et   al.,   2009).   This   rapid   growth   in   the   number   of  obese   individuals   is  most   probably   connected   to   altered   dietary   intake   versus   energy  expenditure  on  top  of  a  genetic  makeup  responsible  for  adipose  tissue  development.    

Adipocytes   play   important   role   in   metabolic   regulation   by   storing   lipids   (and  releasing   fatty   acids)   and   secreting   adipokines,   which   regulate   insulin   sensitivity   and  therefore  regulate  systemic  energy  balance.  In  the  normal  healthy  person,  energy  intake  is  balanced  by  energy  expenditure.  Excess  energy  is  stored  in  adipocytes  in  form  of  fat  droplets   and   released   as   fatty   acids   when   energy   intake   is   scarce.   However,   when  energy   intake   continuously   exceed   energy   expenditure   adipocyte   tissue   expands   first  due   to   hypertrophy   and   later   due   to   hyperplasia.   Hypertrophied   adipocytes   secrete  large   amounts   of   adipokines,   which   are   known   to   not   only   interfere   with   insulin  signaling   pathways   but   also   recruit   macrophages.   In   turn,   recruited   macrophages  secrete  pro-­‐inflammatory  cytokines,  inducing  an  inflamed  state  in  the  tissue  and  further  increase  the  level  of  insulin  resistance  in  the  adipocytes.  Moreover,  secreted  cytokines  cause   a   decrease   in   the   net   flux   of   fatty   acids   into   the   adipocytes   and,   as   a   result,  increase   deposition   of   fatty   acids   in   other   tissues   such   as   liver,  muscle   and   pancreas  (Siersbaek,  R.  et  al.,  2010).  The  ectopic  fatty  acid  deposition  leads  to  insulin  resistance  in  these  tissues  and  further,  to  systemic  insulin  resistance  and  type  2  diabetes,  if  need  for  insulin  exceed  the  secretory  capacity  of  the  beta  cells  (Lehrke,  M.  et  al.,  2005).    

Before  insulin  therapy  in  1922,  starvation  and  traditional,  herbal  medicine  were  the  only  treatments  for  diabetic  patients  but  as  soon  as  insulin  was  introduced  to  broad  use,  traditional   treatments  were   forgotten.  However,   insulin   is   a   life-­‐   saver,   but   it   is   not   a  cure  and  therefore  other  kind  of  drugs  was  needed.  In  the  late  1990s  TZDs  (glitazones)  were   introduced   as   a   new   class   of   anti-­‐diabetic,   insulin   sensitizers.   Thiazolidinediones  are   selective   agonists   of   peroxisome   proliferated-­‐   receptor   gamma.   When   PPARγ   is  activated  by  TZDs,  differentiation  of  non-­‐  visceral  adipose  depots  is  initiated.  Fatty  acid  storage   in  peripheral   tissues   is   increased,   creating  “lipid   steal”  phenomenon,  which   in  turn   leads   to   lower   levels   of   circulating   fatty   acids   and   reduced   concentration   of  triglycerides   in  muscles  and   liver.    At   the  same  time  thiazolidinediones  acutely   reduce  insulin  levels  and  arrest  the  decline  in  beta-­‐cell  function  in  the  long  run.    

Promotion  of  peripheral   tissue  adipogenesis   is  only  one  of   the  ways   that  TZDs  are  working.  Adipocytes  per  se  are  endocrine  organ  secreting  adipokines  (including  leptins,  adiponectin,  resistin  and  TNFα)  and  TZDs,  via  PPARγ  pathway,   increase  the  production  of   adiponectin   and   reduce   secretion   of   TNFα   and   resistin,   responsible   for   impaired  insulin  actions  (Gurnell,  M.  et  al.,  2003,  Mudaliar,  S.  et  al.,  2001,  Greenfield,  J.  R.,  2004,  Tang,  W.  et  al.,  2011,  Cariou,  B.,  2012).  

Page 9: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Despite   their   therapeutic   abilities,   exploit   of   TZDs   was   challenged   by   observed   in  clinical   use   side   effects,   which   include   severe   weight   gain,   edema,   fluid   retention,  cardiac   failure   and  bone   fractures.   Recently,   two  drugs,   rosiglitazone  and   troglitazone  were  withdrawn  from  the  market  due  to  observed  hepatotoxicity  and  a  remaining  drug,  pioglitazone,  has  been  reassessed  in  light  of  increased  risk  of  bladder  cancer  (Cariou,  B.  et  al.,  2012,  Kahn,  B.  B.  et  al.,  2010).    

Besides   TZDs,   other   anti-­‐obesity   and   anti-­‐diabetes   therapies   are   introduced,   but  there   is  still  no   ideal  drug  on  the  market.  The  only  drug  approved   in  Europe   is  orlistat  (Baretic,  M.,  2012),  working  as  pancreatic   lipase  inhibitor,  which  results   in  secretion  of  undigested   fatty   acids   through   feces.   Until   recently   sibutramine,   an   appetite  suppressant,  working  via  inhibition  of  reuptake  of  serotonin  and  norepinephrine,  was  an  alternative  to  orlistat,  but  was  withdrawn  due  to  cardiovascular  side  effects  (James,  W.  P.  et  al.,  2010).    

Taken  together,  novel  compounds  able  to  increase  insulin  sensitivity  without  causing  unwanted   side   effects   are   needed.   As  mentioned   before,   plants   have   long   history   of  preventing  diseases  and   improving  human  health  and  they  are  usually  considered   less  toxic  and  elucidate  less  side  effects  compared  to  synthetic  drugs  (Yeh,  G.  Y.  et  al.,  2003)  therefore  can  be  considered  excellent  source  of  bioactive  agents.      

1.2  Plant  derived  compounds  Phytochemicals   are   reported   to   have   beneficial   effect   on   prevention   of  

cardiovascular   diseases,   inflammation,   glucose   intolerance   and   obesity   and   plant  extracts  and  purified  plant  compounds  are  gaining  more  and  more   interest   since   they  are   components   of   the   every-­‐   day   diet.   In   vivo,   they   work   via   different   pathways  causing,  among  others,  inhibition  of  nutrient  absorption,  appetite  suppression,  increase  of  energy  expenditure  and  modulation  of  fat  storage.    Below,  there  are  few  examples  of  plants  derived   compounds   and  extracts,   showing  promising   effects   in   case  of   treating  obesity  and  type  2  diabetes.  

Catechins   are   main   compounds   of   green   tea,   which   is   one   of   the   most   popular  beverages   in   the   world   (right   after   water).   Green   tea   contains   five   major   catechins,  including:   catechin,   epicatechin,   epicatechin   gallate,   epigallocatechin   and  epigallocatechin  gallate  (EGCG),  and  the  anti-­‐obesity  effect  is  mostly  attributed  to  EGCG.  The  mechanism  of   action  of   EGCG   involves   inhibition  of   adipocyte   differentiation   and  proliferation,  inhibition  of  fat  absorption  from  gut  and  inhibition  of  fatty  acids  oxidation  in  brown  adipose  tissue  (Hursel,  R.  et  al.,  2010,  Lin,  J.  K.,  2006,  Ikeda,  I.,  2005).    In  3T3-­‐L1  cells,   EGCG   inhibited   adipocyte   proliferation   by   decreasing   levels   of   phosphorylated  ERK1/2   and   inducing   apoptosis   in   mature   cells   (Lin,   J.,   et   al.,   2005)   and   increasing  phosphorylation  of  AMPK  (Murase,  T.,  et  al.,  2009).  

Green   tea   is   only   one   of   the   extracts   exhibiting   beneficial   effects   in   anti-­‐obesity  treatment.  Another  example   is  an  extract  of   chokeberry   (Aronia  melanocarpa),   rich   in  anthocyanins.   In   rats,   consumption   of   chokeberry   extract   together  with   high   fructose  diet,  improved  insulin  sensitivity  in  epididymal  adipose  tissue  via  Irs1  and  Irs2  pathway  and   increased   expression   of   Glut1   and   Glut4   (Qin,   B.,   et   al.,   2011).   Therefore,   it   was  

Page 10: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

concluded   that   chokeberry   extract   may   be   promising   diet   supplement,   but   human  studies  are  still  needed  to  assess  the  beneficial  effects  vs.  risk  factors.  

 Moderate   red   wine   intake   was   positively   correlated   with   lower   occurrence   of  cardiovascular  and  metabolic  diseases,  including  obesity  and  type  2  diabetes  (Zoechling,  A.,   et   al.,   2011).   A   grape   skin   ethanol   extract  was   also   found   to   decrease   adipogenic  transcription   factor   gene  expression  and   therefore   inhibit   triglyceride   accumulation   in  3T3-­‐L1   adipocytes  mostly  via   PPARγ   signaling  pathway   (Jeong,   Y.   S.,   et   al.,   2012),   and  grape  seed  extract  was  reported  to  lower  triglyceride  and  total  cholesterol  levels  in  the  plasma  of  rats  fed  high-­‐fat  diet  (Charrad,  K.,  et  al.,  2011).  These  studies  correlate  with  reports   of   the   pure   compound,   resveratrol,   found   in   grapes,   pistachios,   red  wine   and  berries.   Resveratrol   is   well-­‐   studied   polyphenol   and   has   been   suggested   to   have  beneficial  effect  in  preventing  several  diseases,  including  cancer,  cardiovascular  disease,  obesity  and  diabetes  (Hung,  L.  M.  et  al.,  2000,  Atten,  M.  J.,  et  al.,  2005,  van  der  Spuy,  W.  J.   et   al.,   2009).   In   rodents   fed  high   fat   diet   supplemented  with   resveratrol,   significant  reduction  of  body  fat  depots  was  observed  (Ahn,  J.  et  al.,  2008,  Macarulla,  M.  T.,  et  al.,  2009,  Shang,  J.,  et  al.,  2008,  Lagouge,  M.,  et  al.,  2006,  Baile,  C.  A.,  et  al.,  2011).  Also,  our  own  study   confirms   these   findings.   In  our   setup,  mice   fed  high   fat  diet   supplemented  with   resveratrol   at   dose   4g/kg   food   at   libitum   feeding   were   protected   against   diet  induced  obesity  and  their  body  weight  was  not  significantly  different  from  body  weight  of  mice  from  control  group  fed  with  standard,  chow  diet  (PAPER  IV).    

Resveratrol’s   beneficial   effects   on   obesity   are   reported   to   be   due   to   not   only   to  AMPK  phosphorylation  but  also  Akt  and  Sirt1  signaling  pathway  (Zang,  M.,  et  al.,  2006,  Ahn,   J.,   et   al.,   2008,   Floyd,   Z.   E.,   et   al.,   2008).   All   these   studies,   including   our   own,  suggest   that  grape  derived  compound  resveratrol  contributes  to  prevention  of  obesity  through   multiple   pathways.   However,   thorough   clinical   trials   on   healthy   and   obese  subjects  are  needed  to  support  data  obtained  in  the  cell  cultures  and  animals.  

Another   compound   exhibiting   anti-­‐   obesity   properties   is   berberine   isolated   from  Cortidis  rhizoma.  Cortidis  rhizoma  extract  is  known  in  traditional  Chinese  medicine  as  an  anti-­‐bacterial  drug  and  in  the  recent  studies  of  rat  islets  pretreated  with  this  extract,  a  retained  insulin-­‐  secretion  capacity  was  found.  Berberine  was  shown  to  inhibit  adipocyte  proliferation  and  differentiation  and  decrease  lipid  accumulation  in  3T3-­‐L1  cells.  In  high  fat  diet  fed  animals,  berberine  was  shown  to  reduce  serum  cholesterol,  triglycerides  and  LDL-­‐cholesterol.   Reduction   of   LDL-­‐cholesterol   was   also   observed   in   hyper-­‐cholesterolemic  patients  and   in  diabetic  animal  models  hypoglycemic  action  of   insulin  was  enhanced  (Kwon,  K.  B.,  et  al.,  2005).       Berberine,   resveratrol   and   EGCG  were   reported   to   activate  multiple   pathways,  including  PPARγ,  AMPK,  Akt,  Sirt1  and  ERK1/2  (Huang.  C.,  et  al.,  2006,  Kong,  W.,  et  al.,  2004,  Brusq,  J.  M.,  et  al.,  2006,  Ko,  B.  S.,  et  al.,  2005).  It  has  been  suggested  that  natural  compounds,  in  contrast  to  synthetic  ones,  may  work  through  many  pathways,  activating  them   simultaneously.   Resveratrol,   berberine   and   EGCG   but   also:   curcumin   (isolated  from  turmeric,  activating  AMPK  and  PPARγ  pathway),  kaempferol  and  quercetin   (main  compounds   in  Euonymus   alatus,   activating   PPARγ   and   IκB),   artepillin   C   (isolated   from  Brazilian  propolis,  working  via   PPARγ   and  PKC  pathways)   and  piperine   (component  of  black  pepper,  activating  PPARγ  and  LXRα)   (Table  1)  are   the  examples  of  plant  derived  

Page 11: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

compounds  supporting  multiple  pathway  hypothesis  (Ejaz,  A.  et  al.,  2009,  Wu,  Z.,  1995,  Fang,  X.-­‐  K.,  et  al.,  2007,  Choi,  S.-­‐S.  et  al.,  2011,  Park,  U.-­‐H.,  et  al.,  2012).            

Compound   Plant  of  origin   Activated  pathways   Reference  

Curcumin   turmeric   AMPK,  PPARγ   Ejaz,  A.  et  al.,  2009  

Kaempferol   Euonymus  alatus   PPARγ,  IκB   Wu,   Z.,   1995,   Fang,   X.-­‐K.,  et  al.,  2007  

Quercetin   Euonymus  alatus   PPARγ,  IκB   Wu,   Z.,   1995,   Fang,   X.-­‐K.,  et  al.,  2007  

Artepillin  C   Brazilian  propolis   PPARγ,  PKC   Choi,  S.-­‐S.  et  al.,  2011  

Piperline   Black  pepper   PPARγ,  LXRα   Park,  U.-­‐H.,  et  al.,  2012  

Berberine   Cortidis  rhizoma     PPARγ,  AMPK   Kwon,  K.  B.,  et  al.,  2005    

Resveratrol   Grapes,  pistachios,  berries  

AMPK,  Akt,  Sirt1   Zang,   M.,   et   al.,   2006,  Ahn,   J.,   et   al.,   2008,  Floyd,  Z.  E.,  et  al.,  2008    

EGCG   Camellia  sinensis   AMPK,  ERK1/2   Murase,  T.,  2009    

Table  1.  Examples  of  plant  derived  compounds  activating  multiple  signaling  pathways.         Isolation  and  identification  of  new,  bioactive  compounds  from  plant  extracts  can  be  performed  in  two  ways:  1)  plant  extracts  showing  promising  properties  are  scanned  and   one   or   two  major   compounds   are   isolated   and   tested   further,   or   2)   extracts   are  fractionated   and   fractions   are   next   submitted   to   bioassay   guided   fractionations.  Scanning   for   major   bioactive   compounds   is   more   commonly   used,   as   it   is   faster   and  cheaper   to   perform.   However,   major   phytochemicals   are   not   always   the   ones  responsible   for   beneficial   effects   of   the  plant.  Moreover,   synergistic   effects   of   two  or  more  compounds  may  occur  and  will  be  missed   if  bioassay  guided  fractionation   is  not  performed.      

Page 12: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

  Bioassay   guided   fractionation   was   used   by   Shang,   N.,   et   al.   in   search   for  adipogenic   constituents   from  bark  of  Larix   laricina  du  Roi   for   the   treatment  of   type  2  diabetes   symptoms.   Starting   from   ethanol   extract   of   Larix   laricina   sixteen   primary  fractions   was   obtained   from   silica   gel   column   chromatography.   These   fractions   were  tested  alongside  with   crude  extract   for   ability   to   increase   triglyceride  accumulation   in  3T3-­‐L1   adipocytes.   Six   of   the   tested   fractions   were   found   to   significantly   increase  triglyceride   content   and   pure   compounds   were   isolated   from   these   fractions,   which  resulted   in  discovery  of  new  cycloartane  triterpentoid  (23-­‐oxo-­‐3alpha-­‐hydroxycycloart-­‐24-­‐en-­‐26-­‐oid   acid)   among   the   other   9   compounds.   Interestingly,   23-­‐oxo-­‐3alpha-­‐hydroxycycloart-­‐24-­‐en-­‐26-­‐oid  acid  was  not  the  main  component  of  the  extract  and  still  seemed   to   be   responsible   for   adipogenic   activity   of   the   fraction   it   was   isolated   from  (Shang,  N.,  et  al.,  2012).   Similar  work  was  performed  while  searching  for  anti-­‐adipogenic  activities  of  two  extracts   isolated  from  Alnus  incana  and  Populus  balsamifera  barks  respectively  (Fig.1a,  b).   However   no   new   compounds   were   discovered   during   this   study,   the   isolated  phytochemicals  responsible  for  anti-­‐adipogenic  activity  (oregonin  from  Alnus  incana  and  salicortin  from  Populus  balsamifera)  were  not  major  components  of  the  crude  extracts,  similar  to  the  previously  described  studies  (Martineau,  L.  C.,  et  al.,  2010).    

Page 13: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

 Fig.  1a.  From  Martineau,  L.  C.,  et  al.,  2010;  Outline  for  bioassay  guided  fractionation  of  methanol   extract   of   Alnus   incana   and   chemical   structure   of   isolated   compound:  oregonin.  

Fig. 1a Bioassay-guided fractionation of extractsof Alnus incana (a) and Populus balsamifera (b) wasperformed according to these schemes and re-sulted in the isolation and identification of oregoninand salicortin as the respective active principles. Ateach level of fractionation, all fractions generatedwere tested simultaneously and were compared tothe crude extract tested in parallel. All tests wereperformed at the same concentration used for thecrude extract (50 µg/mL Alnus and 100 µg/mL Pop-ulus). Fractionation was guided by inhibition of adi-pogenesis. For the Populus extract, guiding wasconfirmed by simultaneously testing for inhibitionof proliferation. Mean inhibitory activity for n = 4wells of a single cell preparation is indicated inbrackets under each fraction. Yields are indicated ing or mg beside each fraction.

Fig. 1b Bioassay-guided fractionation of extractsof Populus balsamifera (process described inl" Fig. 1a).

1521

Martineau LC et al. Anti-adipogenic Activities of… Planta Med 2010; 76: 1519–1524

Original Papers

Dow

nloa

ded

by: K

oebe

nhav

ns U

nive

rsite

tsbi

blio

tek.

Cop

yrig

hted

mat

eria

l.

Page 14: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

 Fig.1b.  From  Martineau,  L.  C.,  et  al.,  2010;  Outline  for  bioassay  guided  fractionation  of  methanol  extract  of  Populus  balsamifera  and  chemical  structure  of  isolated  compound:  salicortin.                  

Fig. 1a Bioassay-guided fractionation of extractsof Alnus incana (a) and Populus balsamifera (b) wasperformed according to these schemes and re-sulted in the isolation and identification of oregoninand salicortin as the respective active principles. Ateach level of fractionation, all fractions generatedwere tested simultaneously and were compared tothe crude extract tested in parallel. All tests wereperformed at the same concentration used for thecrude extract (50 µg/mL Alnus and 100 µg/mL Pop-ulus). Fractionation was guided by inhibition of adi-pogenesis. For the Populus extract, guiding wasconfirmed by simultaneously testing for inhibitionof proliferation. Mean inhibitory activity for n = 4wells of a single cell preparation is indicated inbrackets under each fraction. Yields are indicated ing or mg beside each fraction.

Fig. 1b Bioassay-guided fractionation of extractsof Populus balsamifera (process described inl" Fig. 1a).

1521

Martineau LC et al. Anti-adipogenic Activities of… Planta Med 2010; 76: 1519–1524

Original Papers

Dow

nloa

ded

by: K

oebe

nhav

ns U

nive

rsite

tsbi

blio

tek.

Cop

yrig

hted

mat

eria

l.

Page 15: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

  In  2009  Christensen  K.  B.  et  al.,  published  a  bioassay  guided  screening  platform  (Fig.2)   for   identification   of   plant   extracts   with   potential   antidiabetic   properties  (Christensen  K.  B.,  et  al.,  2009).  The  screening  platform  used   in   this   study  served  as  a  base  for  our  own  studies,  in  which  we  performed  bioassays  guided  fractionations  of  two  dichloromethane  extracts  from  roots  of  Daucus  carota  (carrot)  and  Echinacea  purpurea  (Fig.3).        

   Fig.2.  Christensen  K.  B.  et  al.,  2008,  Outline  for  the  analytical  screening  platform  applied  in  the  paper.  

 

S  T0P  

 Plant  extract  

 PPARγ  transactivation  

 Adipocyte  differentiation  

 Insulin-­‐stimulated  glucose  uptake  

 PPARα+γ  transactivation  

 Co-­‐factor  recruitment  

Yes  

Yes

Yes  

No  

No  

No  

 Pre-­‐clinical  trials

Page 16: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

 

   Fig.3.     Outline   for   bioassays   guided   fractionation   and   compound   purification   used   on  dichloromethane  extracts  of  Daucus  carrota  and  Echinacea  purpurea.          

PPARγ  transactivation

Insulin-­‐stimulated  glucose  uptake  of  fractions,  Adipocyte  differentiation,  PPARγ  transactivation

 

S T0P

 Plant  extract

 Insulin-­‐stimulated  glucose  uptake

 Adipocyte  differentiation  

 Fractionation  of  extract

 

 Pure  compound  identification  and  isolation

Yes

No

Insulin  stimulated  glucose  uptake,  adipocyte  differentiation,  PPARγ  transactivation,  gene  expression,  mechanism  of  action

 

Page 17: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

  Bioassay  guided   fractionation  of   carrot  extract   led  us   to   two  pure   compounds:  falcarinol   and   falcarindiol,  which   chemically   belong   to   the   class   of   polyacetylenes   and  are  one  of  the  most  important  compounds  found  in  carrot  (Killeen,  D.  P.,  et  al.,  2013).  Therefore,   this   study   stays   in   contradiction   to   classical   bioassay   guided   research.  However,  polyacetylenes  are  wildly  researched  group  of  natural  compounds,  mostly   in  anti-­‐cancer,   anti-­‐inflammatory,   anti-­‐bacterial   and   immune   stimulation   studies   (Brandt,  K.,  et  al.,  2004,  Hansen,  S.  L.,  et  al.,  2003,  Metzeger,  B.  T.,  et  al.,  2009),  so  there  came  no  surprise,   the  same  compounds  were  able   to  stimulate  glucose  uptake,   induce   lipolysis  and  not  promote  adipogenesis  in  3T3-­‐L1  adipocytes.     Our  second  study  concentrated  on  bioassays  guided  fractionations  of  extract  of  well-­‐studied  plant:  Echinacea  purpurea.  Echinacea  extracts  from  three  different  species  of   this   flower   (E.   pallida,   E.   augustifolia   and   E.   purpurea)   are   used   commonly   for  treatment   and   prevention   of   upper   respiratory   tract   infections   and   preparations   are  made   from   both   roots   and   aerial   parts.  Main   bioactive  metabolites   of   Echinacea   are  polysaccharides,   caffeic   acid   derivatives   and   alkamides   (Spelman,   K.,   et   al.,   2009,  Starvaggi  Cucuzza,  L.,  et  al.,  2008,  Christensen,  K.  B.,  et  al.,  2009,  Goey,  A.  K.  L.,  et  al.,  2012).   In  our   study,   isolated  and  purified  compound   responsible   for   insulin   sensitizing  effect   in   3T3-­‐L1   adipocytes   belongs   to   the   group   of   alkamides,   therefore   one   of   the  major   bioactive   metabolites   in   Echinacea.   However,   this   compound   (dodeca-­‐2E,4E,8Z,10E/Z  tetraenoic  acid-­‐2-­‐methylbutylamides),  according  to  our  knowledge,  was  never   purified   before   from   Echinacea   and   it’s   structure   was   never   published   and  therefore  it  is  a  novel  compound  working  as  insulin  sensitizer,  inductor  of  adipogenesis  and  partial  agonist  of  PPARγ  (Fig.4)    

   Fig.4.   Chemical   structure   of   falcarinol   and   falcarindiol   (polyacetylenes,   isolated   from  carrot)   and   dodeca-­‐2E,4E,8Z,10E/Z   tetraenoic   acid-­‐2-­‐methylbutylamides   (alkamide,  isolated  from  Echinacea)          

Falcarinol Falcarindiol

dodeca-­‐2E,4E,8Z,10E/Z  tetraenoic  acid-­‐  2-­‐  methylbutylamides

Page 18: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

  Isolated   plant   compounds,   can   be   used   in   their   naïve   form   or   can   be   further  modified   and   introduced  modifications   can  modulate   their   potency.   In   our   study,   we  have   used   formononetin   (4'-­‐O-­‐methyldaidzein,   isoflavon   found   in   red   clover)   main  structure   and   modified   it   by   adding   2-­‐bromophenyl   or   2-­‐heptyl   groups   to   the  formononetin   scaffold.   2-­‐(2-­‐bromophenyl)-­‐formononetin   (2BrPhF)   and   2-­‐heptyl  formononetin  (C7F)  decreased  lipid  accumulation  in  3T3-­‐L1  adipocytes  and  were  acting  as  partial  agonists  of  PPARγ,  while  formonotein  in  its  native  form  increased  triglyceride  accumulation  and  did  not  bind   to  PPARγ.  C7F,  but  not  2BrPhF  and   formononetin,  also  increased  glycerol   release   and   the  upregulation  of   lipolytic   genes  was  observed  when  cells  were   treated  with   this   compound,   therefore   suggesting,   that   small  modifications  can  have  big  impact  on  compounds  potency  and  molecular  mechanisms  (Fig.5)  (PAPER  III).      

 Fig.5.  Chemical  structure  of  native  structure  of  formononetin  and  its  two  derivatives:  2-­‐(2-­‐bromophenyl)-­‐  formononetin  (2BrPhF)  and  2-­‐heptyl  formononetin  (C7F)      

1.3  Adipocytes  and  3T3-­‐L1  model  Obesity  is  one  of  the  most  challenging  and  common  health  dilemma  throughout  the  

world  and   its   complex  etiology   is   an  obstacle   for  development  of   the  new   treatment.  The   obese   state   is   mainly   caused   by   an   imbalance   between   energy   intake   and  expenditure,  which  results   in  accumulation  of   lipids  and  triglycerides  in  adipose  tissue.  Adipocytes  are  no  longer  believed  to  be  “storage  organ”;  on  the  contrary,  they  play  very  important   role   in   regulation   of   lipid   homeostasis,   glucose   uptake   and   endocrine  communication.   Under   the   conditions   of   excess   energy,   adipose   tissue   increases   the  volume   first   due   to   hypertrophy   and   later   due   to   hyperplasia.   These   fully   functional  adipocytes,   together   with   osteoblasts,   chondrocytes   and   myoblasts   originate   from  mesenchymal   stem   cells   (MSC).   Due   to   differentiation   process   they   become   first  committed  preadipocytes,  then  growth  arrested  preadipocytes,  which  go  through  2  or  3  cycles  of  mitotic  clonal  expansion  and  terminal  differentiation  to  become  lipid-­‐laden  and  insulin-­‐responsive  mature  adipocytes.  The  whole  adipogenesis  process  is  well  organized  and  involves  cascade  of  transcription  factors  such  as  peroxisome  proliferator-­‐activated  receptor   gamma   (PPARγ),   CCAAT/enhancer-­‐binding   proteins   (C/EBPs)   and   sterol  

Formononetin 2BrPhF C7F

Page 19: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

regulatory  element  binding  protein  (SREBP)  family  (Rosen,  E.  D.,  et  al.,  2000).  PPARγ  and  C/EBPα   represent   early   markers   of   adipogenesis   and   are   essential   for   activation   of  downstream,   adipocyte   specific   genes,   such   as:   fatty   acid   binding   protein   2   (aP2),  glucose  transporter  type  4  (Glut4),  leptin,  insulin  receptor  (IR),  fatty  acid  synthase  (FAS)  and   acetyl-­‐CoA   carboxylase   (ACC)   (Lehrke,   M.,   et   al.,   2005).   SREBP-­‐1c   enhances   the  expression  of  genes  related  to  lipid  and  cholesterol  metabolism  (Hsu,  J.  M.,  et  al.,  2003).       Adipocytes,   together   with   muscle   and   liver   are   responsible   for   regulation   of  glucose  homeostasis  and  insulin  sensitivity.     Insulin   is   the   most   potent   anabolic   hormone   known.   It   promotes   storage   of  triglycerides   in   adipocytes   by   multiple   mechanisms,   including   increasing   the  differentiation   of   preadipocytes   to   mature   adipocytes,   synthesis   of   triglycerides  inhibiting   lipolysis   and   stimulating   glucose   uptake   (Taniguchi,   C.   M.,   et   al.,   2006).   In  adipose  tissue,  two  glucose  transporters  were  identified:  Glut4  and  Glut1.  While  Glut4  is  insulin-­‐depended  glucose  transporter  and  its  movement  from  cell  surface  to  within  cell  is   stimulated  via   PI3K  pathway,  Glut1   is   responsible   for  basal   glucose  uptake   required  for   maintaining   respiration   in   cells   and   its   expression   levels   in   cell   membrane   are  increased  by   reduced  glucose   levels   (Karnieli,   E.,   et   al.,   2008).   Simplified   schematic   of  insulin  signaling  pathways  is  presented  on  Fig.6.     Most  of  the  knowledge  about  signaling  pathways  and  molecular  mechanisms   is  obtained  primarily  from  in  vitro  studies.  In  the  subject  of  obesity  and  insulin  sensitivity,  most  of  the  in  vitro  assays  are  performed  in  cell  culture  in  3T3-­‐L1  cell  line,  which  we  also  used   in   our   experiments.   3T3-­‐L1   cell   line   was   established   in   late   seventies   and,  developed  through  clonal  expansion  and   immortalization,  contains  only  one  single  cell  type   (Green,  H.,   et   al.,   1974,  Green,  H.,   et   al.,   1976,   Fernyhough,  M.   E.,   et   al.,   2005).  However   very   widely   used   in   laboratories   all   over   the   world,   3T3-­‐L1   cells   are   not  identical   to   primary   cells   or   in   vivo   adipocytes.   They   follow   different   developmental  patters  and  their  gene  expression,  despite  a  lot  of  similarities,  is  not  identical,  therefore  the  results  obtained  from  cell  cultures  experiments  must  be  confirmed  in  in  vivo  studies  (Poulos,  S.  P.,  et  al.,  2010).        

Page 20: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

   Fig.  6.  Outline  for  selected  insulin  signaling  pathways  in  mature  adipocyte.        

1.4  New  player:  microbiota     Plant   derived   phytochemicals   are   reported   to   influence   the   development   of  adipose  tissue  and  connected  with   it  glucose   intolerance,  obesity  and  type  2  diabetes.  As  components  of  every-­‐day  diet  they  also  have  an  impact  on  gut  microbiota:  an  active  organ  within  the  host  body.       The   gut  microbiota   has   been   considered   forgotten   organ  within   the   body   and  until   recently,   its   role   in   nutrition   and   metabolism   was   neglected.   Accumulating  evidence   indicates  however   that   the  gut  microbiota   is   associated  with   the  etiology  or  development  of  obesity  and  diabetes  (Backhed,  F.,  et  al.,  2004,  Turnbaugh,  P.  J.,  et  al.,  2006).   Diet   and   gut   microbiota   are   strictly   connected:   gut   bacteria   help   to   digest  otherwise   indigestible   food  components   such  as  plant  polysaccharides  or   increase   the  capacity  of   energy  harvest   from  a  diet.  Due   to  mutualistic   host-­‐   bacteria   relationship,  harvested  energy  can  be  stored  in  adipocytes  through  pathway,  that  involves  microbial  regulation   of   the   intestinal   epithelial   expression   of   fasting-­‐induced   adipocyte   protein  (Fiaf).   Bacterial   suppression   of   Fiaf   results   in   reduced   levels   of   circulating   inhibitor   of  lipoprotein   lipase   (LPL)   which   in   turn   increases   the   LPL   activity   in   adipocytes   and  

Page 21: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

enhance   storage   of   liver-­‐delivered   triglycerides   in   fat   tissue   (Ley,   R.   E.,   et   al.,   2005),  therefore  influencing  the  host  energy  balance.     Gut  bacteria  not  only  influence  food  processing,  they  are  also  influenced  by  the  dietary   intake.   It   has   been   shown,   the   high   fat   diet   promotes   changes   in   bacterial  ecology   within   the   gut,   mostly   by   changing   the   ratio   of   different   taxa.   Also   selective  modulation  of   the  structure  or  activity  of   intestinal  microbiome  by  using  prebiotics  or  probiotics   has   been   demonstrated   in   both   human   and   animal   research   to   confer  beneficial   effects.   Therefore,   gut   microbiota   can   be   considered   potential   target   of  therapeutic  drugs  or  nutritional  interventions  (Jia,  W.,  et  al.,  2008,  Zhao,  L.,  et  al.,  2010).     Plant   enrichment   of   diet   had   been   shown   to   have   beneficial   effect   in   case   of  obesity  and  diabetes,  and  plant  compounds,   isolated  from  the  dietary-­‐plants  had  been  shown   to  work   via  multiple   pathways.  On   top   of   that   findings,   gut   bacteria  may   also  contribute  to  the  health-­‐  promoting  effects  of  phytochemicals  by  digesting  them  or  by  structural  changes  in  the  ecology  of  gut,  promoted  by  the  certain  compound.  Schematic  interconnection   between   gut   microbiota,   diet,   inflammation   markers   and   body   fat   is  shown  on  Fig.7.      

   Fig.7.  From  Ravussin,  Y.,  et  al.,  2012;  modified.  Schematic  depicting  possible  interactions  between   diet   composition,   body   fat,   gut   microbiota,   circulating   adipokines,   mucin  production,  Fiaf  and  inflammatory  markers.           One   of   the   examples   of   combined   action   of   gut   bacteria   and   plant   derived  compound  is  berberine.  As  mentioned  before,  berberine  was  reported  to  reduce  serum  cholesterol,   triglycerides   and   LDL-­‐cholesterol   levels   in   high   fat   diet   fed   animals   and  

Body  fat

Gut  microbiota

Diet  composition Inflammation

Mucin  production

Adipokines Fiaf

Page 22: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

inhibit   differentiation   of   3T3-­‐L1   adipocytes.   Further   studies   suggest,   berberine   also  modulates   gut   microbiota   by   inhibiting   wide   range   of   intestinal   bacteria,   which  alleviates  systemic   inflammation  and  enriching  short  chain   fatty  acid   (SCFA)  producers  and   therefore   increasing  SCFA   levels   in   the   intestine,  which   in   turn  contributes   to   the  beneficial   effects   of   berberine   against   insulin   resistance   and   obesity   (Zhang,   X.   et   al.,  2012).     Also  resveratrol  was  shown  to   interfere  with  bacterial  ecology   in  mice  fed  with  high  fat  diet.  As  described  previously:  rodents  fed  with  resveratrol  supplementation   in  the  high  fat  diet  had  significantly  reduced  body  fat  depots,  what  was  confirmed  in  our  own   study,   too.   Gut   bacteria   seem   to   contribute   in   heath   promoting   effect   of  resveratrol,   by   converting   it   into   dihydroresveratrol,   3,4’-­‐dihydroxy-­‐trans-­‐stilbene   and  lunarin,  which  are  absorbed  from  the  gut  (Bode,  L.  M.,  et  al.,  2013).  From  our  study  we  can   conclude,   resveratrol   supplementation   shifts   the   physiology   of   high   fat   diet   fed  animals   towards  mice   on   standard   chow   diet   and   this   study   stays   in   agreement  with  Baur,  J.  A.,  et  al.,  research  (Baur  J.  A.,  et  al.,  2006).  A  the  same  time,  we  were  not  able  to  observe   any   significant   changes   in   bacterial   composition   in   the   gut   of  mice   provided  with   high   fat   diet   and   resveratrol,   which   may   indicate,   that   resveratrol   does   not  interfere  with  ecology  of  the  intestine  (PAPER  IV).        

2.  Discussion  of  the  papers     Maintaining   a   proper   balance   between   energy   intake   and   energy   expenditure  and  therefore  between  storage  of   lipids  and  their  mobilization   is  of  great   importance.  When   this  balance   is  disturbed  and  energy   intake  exceed  energy  expenditure,  obesity  and  related  with  obesity  disorders  are  occurring.  Change  of  diet  and  lifestyle  is  the  first  line   of   prevention   and   treatment   but   not   always   successful,   therefore   drugs   and   diet  supplements   must   be   introduced.   However,   there   is   still   no   ideal   anti-­‐obesity   drug  available  and  search  for  novel,  bioactive  compounds  is  continued.       Also,  for  obesity  related  disorders,  such  as  T2D,  no  perfect  drug  exists  and  much  research   is   concentrating   on   finding   new   compounds,   which   can   work   as   insulin  sensitizers  and  not  cause  the  patients  gaining  severe  weight.       Plant   extracts   seem   to   be   ideal   for   searching   for   novel   anti-­‐obesity   and   anti-­‐diabetic  compounds.  Plants  have  been  used  for  this  purposes  for  hundreds  of  years   in  folk  medicine,  therefore  there  is  a  strong  argument  that  plant  kingdom  may  hold  a  cure  for  these  two  disorders.  However,  careful  and  thorough  research  is  needed,  before  any  conclusions  can  be  draw.       The  work  presented  here  revolved  around  the  topic  of  plants  being  a  source  of  bioactive   compounds   exploiting   promising   features   for   activation   of   nuclear   receptor  PPARγ,  increasing  glucose  uptake  and  insulin  sensitivity,  promotion  of  adipogenesis  and  lipolysis   in   in  vitro   assays  and  changing  gut  bacterial   composition   in  mice.    First  paper  (PAPER   I)   presented   here   concentrated   on   PPARγ   activation   by   metabolites   of   sage,  native   to   the   Mediterranean   region   herb,   while   PAPER   V   concentrates   on   novel  

Page 23: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

compound  isolated  from  Echinacea  purpurea  and  it’s  insulin  sensitizing  effect  in  3T3-­‐L1  adipocytes.  Second  paper  (PAPER  II)  takes  the  advantage  of  the  whole  plant  extracts  and  concentrates  not  only  on  PPARγ  activation  but  also  modulation  of  glucose  uptake  and  lipid  accumulation  in  adipocytes,  myotubes  and  C.  elegans.       Isolated   plant   compounds,   can   be   used   in   their   naïve   form   or   can   be   further  modified  and  introduced  modifications  can  modulate  their  potency,  and  that  was  a  main  focus   of   third   paper   (PAPER   III).   Using   formononetin   (4'-­‐O-­‐methyldaidzein,   isoflavon  found   in   red   clover)   as   a   scaffold,   2-­‐(2-­‐bromophenyl)-­‐   formononetin   (2BRPHF)   and   2-­‐heptyl-­‐  formononetin  (C7F)  analogues  were  synthetized  and  tested  together  with  native  formononetin   in   3T3-­‐L1   cells.   Finally,   in   fourth   paper   (PAPER   IV)  we   investigate   plant  derived  compound  resveratrol  and  its  influence  on  mouse  physiology  and  ecology  of  gut  microbiota  in  mice.      

PAPER  I  K.   B.   Christensen,   M.   Jorgensen,   D.   Kotowska,   R.   K.   Petersen,   K.   Kristiansen,   L.   P.  Christensen,   2010,   Activation   of   the   nuclear   receptor   PPARγ   by   metabolites   isolated  from  sage  (Salvia  officinalis  L.),  J.  Ethnophamacology,  132(1):127-­‐33       Nuclear  receptors  are  a  class  of  proteins  with  the  ability  to  bind  directly  to  DNA  and  regulate  expression  of  specific  genes,  when  specific  ligand  is  present  and  therefore,  they  constitute  potential  therapeutic  targets  for  many  disorders.     In  this  paper  we  focused  on  PPARγ  (peroxisome  proliferator-­‐  activated  receptor  gamma),   a   nuclear   receptor   belonging   to   the   superfamily   of   ligand-­‐   dependent  transcription   factors.   PPARγ   is   predominantly   present   in   adipose   tissue   and   has   been  shown   to   be   a   master   regulator   of   adipocyte   differentiation   as   well   as   glucose  homeostasis.  PPARγ,  when  activated  by  ligand,  binds  to  DNA  and  promotes  transcription  of  genes  involved  in  lipid  and  glucose  metabolism.  Ligands  for  PPARγ  include  fatty  acids  and   eicosanoids   and   despite   much   research,   PPARγ   endogenous   ligand(s)   is/are   still  unknown.   Therefore,   it   is   speculated   that   PPARγ   regulates   gene   expression   based   on  total  concentration  of  fatty  acids.       TZDs  are  synthetic  full  PPARγ  agonists,  binding  to  the  receptor  pocket  with  very  high   affinity.   Glitazones   were   introduced   as   potent   insulin-­‐   sensitizing   drugs   for   the  treatment  of  type  2  diabetes.  However,  TZDs  may  cause  unwanted  side  effects,  such  as:  weight   gain,   edema,   heart   enlargement   and   hepatotoxicity.   Therefore,   it   was  hypothesized,   that   PPARγ   ligand,   acting   as   partial   (instead   of   full)   agonist   might   not  cause  unwanted  side  effects  while  maintaining  insulin-­‐  sensitizing  activity.       In   this   paper   we   investigate   the   known   traditional   medicinal   plant:   Salvia  officinalis  L.  (Lamiaceae).  Sage  is  a  widely  used  culinary  and  medicinal  herb,  especially  in  the  Mediterranean   region.   Leaves   are   used   as   spices   and   preparations   of   sage   leaves  have   been   used   traditionally   as   a   remedy   towards   diabetes   in   Iran   and   Morocco.  However,   compounds   responsible   for   anti-­‐diabetic   features   of   sage   extracts   are   still  unknown,  despite  several  studies  reporting  that  aqueous  and  ethanol  extracts  of  Salvia  

Page 24: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

officinalis  are  decreasing  blood  glucose  in  laboratory  animals  (Alarcon-­‐  Aguilar,  F.  J.,  et  al.,  2002,  Eidi,  M.,  et  al.,  2005).  As  PPARγ  plays   significant   role   in   regulation  of   insulin  sensitivity,   phytochemicals   isolated   from   sage   extract   and   activating   PPARγ  might,   at  least  partially,  explain  the  glucose  lowering  effect  of  Salvia  officinalis.     In  contrast   to  previous  research,  we  prepared  dichloromethane  (DCM)  extracts  in   place   of   aqueous   or   ethanol   extracts.   Solvent   and   extraction   method   are   crucial  parameters   for   chemical   behavior   of   lipophilic   and   hydrophilic   compounds.   Choosing  DCM  as  extraction  solvent  over  ethanol  or  water  and  dissolving  isolated  compounds  in  DMSO   we   could   shift   our   spectra   of   compounds   towards   lipophilic   rather   than  hydrophilic   phytochemicals.   As   a   result   of   this   choice,   we   were   able   to   isolate   and  identify   compounds   different   from   those   reported   in   previous   studies   (for   example,  viridiflorol,   α-­‐linoleic   acid,   oleanolic   acid   and  manool).   Also,   20-­‐hydroxyferruginol  was  first   time   isolated   from   Salvia   officinalis   in   this   study   and   epirosmanol   ester   of   12-­‐O-­‐methyl   carnosic   acid   was   new.   However   whereas   none   of   these   new   compounds  activated  PPARγ,  we  found  two  known  metabolites  able  to  significantly  activate  PPARγ  in   transfected   cell   cultures:   α-­‐linoleic   acid   and   12-­‐O-­‐methyl   carnosic   acid,   which  may  suggest  that  the  anti-­‐diabetic  activity  of  sage  extract  may,  to  some  extend,  be  related  to  PPARγ  activation  pathway.        

PAPER  II  R.  B.  El-­‐Houri,  D.  Kotowska,  L.  C.  B.  Olsen,  S.  Bhattacharya,  L.  P.  Christensen,  K.  Grevsen,  N.   Oksbjerg,   N.   Færgeman,   K.   Kristiansen,   K.   B.   Christensen,   Screening   for   Bioactive  Metabolites   in   Plant   Extracts   Modulating   Glucose   Uptake   and   Fat   Accumulation,  manuscript       Adipose   tissue,   systemic   insulin   resistance   and   skeletal   muscle   are   closely  related.  Impaired  insulin  action  and  insulin  resistance  occur  first  in  adipose  tissue  before  the  systemic  glucose  intolerance  develops,  therefore  adipose  tissue  is  recognized  as  the  primary   site   of   the   type   two  diabetes   origin   (Hotamisligil,   G.   S.,   2000).  However,   also  skeletal   muscle   from   obese   patients   exhibits   insulin   resistance   in   vivo   and   insulin  resistance   effect   is   not   present   when  muscle   cells   obtained   from   obese   subjects   are  cultured  in  vitro.  Therefore,  it  was  hypothesized,  that  negative  crosstalk  between  excess  of  adipose  tissue  and  skeletal  muscle  results  in  first,  altered  insulin  signaling  and  later  in  insulin   resistance   in   skeletal  muscle.   The   communication   between   adipose   tissue   and  muscle  occurs   through  metabolic  mediators,   including   free   fatty  acids  and  adipokines,  such  as   TNFα,   IL-­‐6,   leptin,   TIMP-­‐1  and  adiponectin.   Thus,   insulin   resistance   in   skeletal  muscle   is   likely   to   result   from  a  combination  of   the  endocrine  effect  of  adipokines  on  muscle  cells  and  the  metabolic  effect  of  free  fatty  acids  on  both  tissues  (Sell,  H.,  et  al.,  2006).       In  the   light  of   this  research,   the  screening  for  novel   insulin  sensitizers  could  be  developed   based   on,   not   only   adipocyte   cells,   but   also  myocytes   and   therefore   gives  broader  idea  about  their  mechanisms  of  action.    

Page 25: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

  In   vitro   studies   are   very   useful   but   they   never   mimic   the   whole   organism  environment  and  therefore  the  results  obtained  from  cell  cultures  must  be  confirm  by  in  vivo  studies.  However,  screening  in  search  for  novel  insulin  sensitizers  requires  fast  and  efficient  way  of  testing  new  compounds  in  vivo.  Caenorhabditis  elegans  is  perfect  model  for  this  purpose:  it  is  a  multicellular  organism,  with  simple  but  well  organized  anatomy  and  large  (up  to  78%)  degree  of  homology  to  human  genes  and  cell  signaling  pathways.  Many   studies,   including   investigation   of   therapeutic   drugs   and   their   possible   side  effects,   development  of  neurons  and   lipid  accumulation  were  performed   in  worms  as  confirmation  of  cell  culture  studies  or  novel,  exploratory  research.       In   this   study  we   concentrated  on   sixteen  extracts   from   seven  plants   (spices  or  sources   of   food)   exhibiting   promising   results   in   treatment   of   obesity   and   insulin  insensitivity.   Plant   extracts   in   this   study   were   tested   in   three   different   setups:   in  adipocytes,  porcine  muscle  cells  and  C.  elegans.  This  combined  approach  led  us  to  two  DCM  extracts  (golden  root  and  thyme  DCM  extract),  which  weakly  activated  PPARγ  and  did  not   induce  adipocyte  differentiation   in  3T3-­‐L1  cells.  Thyme  significantly  stimulated  insulin  dependent  glucose  uptake   in  both  adipocyte   cells   and  myotubes,  while  golden  root   significantly   increased   glucose  uptake   in  myotubes  but  not   adipocytes.  However,  both  extracts  did  not  increase  fat  accumulation  in  C.  elegans.  Therefore  we  speculated,  that   golden   root   and   thyme   DCM   extracts   might   contain   bioactive   compounds,  exhibiting  anti-­‐obesity  and  insulin-­‐sensitizing  activity.  However,  more  detailed  study  will  be  needed  to  confirm  our  findings.      

PAPER  III  C.  Andersen*,  D.  Kotowska*,  C.  G.  Tortzen,  K.  Kristiansen,  J.  Nielsen,  R.  K.  Petersen,  2-­‐(2-­‐bromophenyl)-­‐formononetin   and   2-­‐heptyl-­‐formononetin   are   PPARγ   partial   agonists  and  reduce  lipid  accumulation  in  3T3-­‐L1  adipocytes,  manuscript  *Shared  first  author       Isoflavones   are   bioactive   compounds   occurring   naturally,   that   have   been  reported   to   have   beneficial   health   promoting   effects,   including   anti-­‐obesity   and   anti-­‐diabetic  effects.       Isoflavones  are  reported  to  be  PPARγ  agonists  (Shen,  P.,  et  al.,  2006,  Chacko,  B.  K.,  et  al.,  2007,  Mueller,  M.  M.,  et  al.,  2008)  and  several  of  them  was  shown  to  act  as  partial   agonists  and  compete  with   full   agonist   (if  present)   for   receptor  occupancy  and  therefore   produce   a   net   decrease   in   PPARγ   activation.   Moreover,   despite   partial  efficacy,   they   still   retain   anti-­‐diabetic   action.   Isoflavones   have   been   reported   to   also  have  other  potencies  like:  osteogenic  and  antioxidant  activity,  modulation  of  enzymes  in  steroid  biosynthesis  (Barnes,  S.,  2010),  and  modulation  of  lipid  metabolism.       Bioactive   phytochemicals,   like   isoflavones,   can   serve   as   starting   point   for  creation  of  new  drugs  or  diet  supplements.  Small  modifications   introduced  to,  derived  from  natural  source,  scaffold  can  alter  the  biological  effects  of  the  naïve  compound.  One  of   the   examples   is   an   acetylation   of   salicylic   acid   derived   from   willow   extracts.   This  

Page 26: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

modification  increased  pain-­‐killing  ability  of  the  native  compound  and  thus  a  new  drug  was  created  (today  commonly  known  as  aspirin)  (Mahdi,  J.  G.,  et  al.,  2006).       Apigenin  (4’,5,7-­‐trihydroxyflavone)   belongs   to   flavone   class   is   present   in  many  plants,   like   chamomile,   apples,   celery,   oregano,   basil   and   parsley.   Apigenin   has   been  reported  to  exhibit  anti-­‐inflammatory,  anti-­‐tumor  and  anti-­‐bacterial  activity  (Kim,  H.P.,  et   al.,   1998,   Basile,   A.,   et   al.,   1999).   However,   compared   to   already   existing   drugs,  apigenin   does   not   exhibit   strong   enough   activities.   Introduced   small   modifications  (aminomethyl   grups   substitutions   on   the   C-­‐8   position)   significantly   improved  antiproliferative,   antibacterial,   and   antioxidant   activities   compared   with   the   parent  apigenin  (Liu  R.,  et  al.,  2012).  

Fig.   8.   Chemical   structure   of   native   apigenin   (on   the   left)   and   formononetin   (on   the  right)       Apigenin   and   formononetin   share   similar   core   structure.   Moreover,   small  modifications   of   formononetin   scaffold   (made   by   substitutions   of   bromophenyl   and  heptyl   groups   at   the   2-­‐position),   similarly   to   apigenin,   significantly   improved   parent  compound   bioactive   abilities.   In   our   study,   2-­‐(2-­‐bromophenyl)-­‐formononetin   (2BrPhF)  and  2-­‐heptyl-­‐formononetin  (C7F)  decreased  lipid  accumulation  in  3T3-­‐L1  adipocytes  and  were  acting  as  PPARΥ  partial  agonists,  while  parent  formononetin  did  not  bind  to  PPARγ  and   increased   triglyceride   accumulation.   Analogue   of   formononetin   with   2-­‐heptyl  substitution  (C7F)  significantly  increased  glycerol  release  and  upregulated  lipolytic  genes  in   3T3-­‐L1   cells  while   2BrPhF   and   parent   formononetin   did   not   exploit   these   features,  therefore   suggesting   that   substitution   of   different   type   of   groups   can   have   different  impact  on  bioactive  features.      

PAPER  IV  D.  Kotowska*,  J.  Olesen*,  M.  Hansen,  W.  A.  Al-­‐Soud,  R.  S.  Bienso,  C.  M.  Kristensen,  N.  Brandt,  S.  A.  B.  Larsson,  L.  Hansen,  K.  Kristiansen,  H.  Pilegaard,  Resveratrol,  exercise  and  gut  microbiota,  manuscript  *Shared  first  author       Microbial   research   was   dependent   on   culture-­‐   based   methods   for   decades,  which,   however   useful,   were   limited   to   cultivable   microbes.   Recent   development   of  molecular   techniques   independent   of   culturing   provided   novel   insight   into   complex  

Page 27: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

microbial   ecology.   Especially   high-­‐   throughput   sequencing   technologies,   like  pyrosequencing   allowed   simultaneous   assessments   and   in-­‐depth   analysis   of  microbial  communities  and  emerging  biological  patterns  within  these  communities.     Gut   bacteria   and   their   hosts   co-­‐evolved   together   and   influence   each   other  throughout   the   life   of   the   host.   Human   intestine   is   sterile   at   birth   and   colonized  immediately  after,  first  with  bacteria  from  the  mother  and  later  with  bacteria  present  in  the  environment.  Early  colonization  is  very  quick  and  seems  to  be  chaotic  but  there  are  few  patterns  emerging  in  the  recent  research.  For  example:  children  born  by  caesarean  section  had  been  found  to  have  higher  risk  of  developing  obesity  compared  to  children  born  through  vaginal  canal  and  this  tendency  was  associated  with  early  colonization  of  gut  by  different  groups  of  bacteria  (Isolauri,  E.,  2012,  Backhed,  F.,  2011).  Throughout  the  life  of   the  host,   composition  and   complexity  of   gut  bacteria   increases  until   adulthood  and  can  be  modified  by  different  dietary  products.       Gut   bacteria   influence   their   host   in  many   different  ways.   They   have   profound  effects  on  host  gene  expression  in  the  enterohepatic  system,  including  genes  involved  in  immunity,  metabolism   and   inflammation.  Gut   bacteria,   thanks   to   their   unique   sets   of  enzymes,   can   also   digest   components   of   the   diet   such   as   plant   polysaccharides  otherwise   unavailable   for   the   host   organism.   Intestinal   microbiota   ecology   can   be  influenced   by   food   components   as   well,   for   example:   mice   fed   high   fat   diet   have  completely   changed   bacterial   composition   compared   to   chow   fed   animals.  Moreover,  this  change  is  reversible  by  modulations  of  the  diet.  (Turnbaugh,  P.  J.,  et  al.,  2008).     In  this  paper  we  focused  on  changes  in  gut  bacteria  ecology  in  mice  fed  HFD  with  addition  of   resveratrol   (polyphenolic   compound   found   in  wine,   pistachios,   grapes   and  berries)   and   trained-­‐   exercising.   Resveratrol   is   well-­‐studied   compound   and   its   anti-­‐obesity  properties  have  been  described  (Baur,  J.  A.,  et  al.,  2006).  Also,  the  contribution  of  bacteria   in  digestion  of   resveratrol  was   reported  by  Bode,   L.  M.   in  2013.  However,  little  is  known  about  the  impact  of  resveratrol  on  the  gut  microbiota  and  therefore  it  is  difficult  to  correlate  observed  physiological  shifts  of  mice  fed  HFD  with  supplementation  of   resveratrol   towards   physiology   of   lean   mice   fed   standard   chow   diet.   However,   in  agreement  with  Baur,  J.  A.  (Baur,  J.  A.,  et  al.,  2006),  we  did  not  observe  any  significant  changes   in   intestinal   microbiota   composition   and   therefore   we   speculated,   that  resveratrol  does  not  interfere  with  bacterial  ecology  of  the  intestine  in  mice.     Not  only  diet,  but  also  physical  activity   is  a  key  environmental  contributor   that  should  be   taken  under   consideration  when   trying   to  understand   the   link  between  gut  microbiota  and  obesity   (Kallus,  S.   J.,  et  al.,  2012).  Exercise   training  has  been  shown  to  promote  weight  loss  even  when  animals  were  fed  HFD  (Bradley,  R.  L.,  et  al.,  2007;  Yan,  L.,   et   al.,   2012).   However,   role   of   gut  microbiota   in   interconnecting   health   beneficial  effect  of  exercise  and  host  physiology  is  not  well  elucidated.       In  our  study,  mice  fed  HFD  and  trained-­‐  exercise  did  not  lose  weight  compared  to  sedentary,  HFD  fed  animals.  Therefore,  our  study  stays  in  contradiction  to  Bradley,  R.  L.  (Bradley,  R.  L.,  et  al.,  2007)  research.  However,  to  our  surprise,  there  was  a  visible  and  clear   shift   in   ecology   of   trained-­‐   exercised   animals’   gut   bacteria   and   this   shift   was  towards   bacteria   of   chow   fed   mice.   Therefore   we   concluded,   that   diet   and   physical  activity   determined   the   composition   of   murine   microbiome   independently   of   obese  

Page 28: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

state  and  the  changes  may  be  observed  on  the  level  of  genus  and  class.  However,  exact  link   between   changes   in   bacterial   flora   and   exercise   training   cannot   be   established  based  on  the  present  findings  and  future  work  is  required  to  elucidate  this.        

PAPER  V    D.  Kotowska*,  R.  B.  El-­‐Houri*,  K.  B.  Christensen,  X.  Frette,  K.  Grevsen,  L.  P.  Christensen,  K.   Kristiansen,   Novel   PPARγ   partial   agonist   isolated   from   Echinacea   purpurea   exploits  insulin  sensitizing  effect  in  3T3-­‐L1  adipocytes,  manuscript  *Shared  first  autor       In  search  for  novel,  bioactive  phytochemicals,  extracts  of  plants  commonly  used  in  folk  medicine  are  examined.  However,  whereas  screening  for  major  phytochemicals  is  useful  and  fast,   the  major  phytochemicals  are  not  always  the  ones  responsible  for  the  beneficial  effects  of  extract.  Bioassay  guided  fractionations-­‐  based  screening  platforms  have   an   advantage   of   focusing   on   active   fractions   and   compounds,   which   are   not  necessarily   overrepresented   in   crude  extracts.  Moreover,   synergistic   effects   of   two  or  more   compounds   may   occur   and   will   be   missed   if   simple   screening   for   major  compounds  is  performed.         A   bioassay   guided   fractionation-­‐based   platform   was   developed   for   a   study,  researching   adipogenic   constituents   from   the   bark   of   Larix   laricina   du   Roi   and   in   the  study   researching   the   anti-­‐adipogenic   activities   of   two   extracts   isolated   from   Alnus  incana   and  Populus  balsamifera   barks   (Shang,  N.,   et   al.,   2012,  Martineau,   L.  C.,   et   al.,  2010).  Use   of   this   platform,  when   crude   extract,   its   fractions   and   purified   from   them  compounds   were   tested   alongside   in   different   assays,   led   to   discovery   of   new  cycloartane  triterpentoid  (23-­‐oxo-­‐3alpha-­‐hydroxycycloart-­‐24-­‐en-­‐26-­‐oid  acid)  among  the  other  9  compounds.  Interestingly,  23-­‐oxo-­‐3alpha-­‐hydroxycycloart-­‐24-­‐en-­‐26-­‐oid  acid  was  not   the   main   component   of   the   extract   and   still   seemed   to   be   responsible   for  adipogenic  activity  of  the  fraction  it  was  isolated  from  (Shang,  N.,  et  al.,  2012).       Bioassay  screening  platform,  which  served  as  a  base,  for  the  platform  used  in  our  study,  was  used  by  Christensen,  K.  B.,  et  al.,   (Christensen,  K.  B.,  et  al.,  2009)  to  screen  plant   extracts   for   their   anti-­‐diabetic   and   anti-­‐obesity   properties.   Among   others,  Echinacea   purpurea   DCM   extract   was   found   to   activate   PPARγ   and   increase   insulin  dependent   glucose   uptake   while   not   promoting   adipogenesis   in   Christensen’s   study,  which  stays  in  agreement  with  the  study  presented  in  this  paper.       Echinacea   extracts   from   three   different   species   of   this   plant   (E.   pallida,   E.  augustifolia  and  E.  purpurea)  are  used  commonly  for  treatment  and  prevention  of  upper  respiratory  track  infections  and  preparations  are  made  from  both  roots  and  aerial  parts.  Main   bioactive   metabolites   of   Echinacea   are   polysaccharides,   caffeic   acid   derivatives  and  alkamides  (Spelman,  K.,  et  al.,  2009,  Starvaggi  Cucuzza,  L.,  et  al.,  2008,  Christensen,  K.  B.,  et  al.,  2009,  Goey,  A.  K.  L.,  et  al.,  2012).  However,  little  is  known  about  Echinacea  and  Echinacea  derived  compounds   in  treatment  of  obesity  and  diabetes.   In  this  study,  using  bioassay  guided   fractionations,  we  decided   to   investigate  an  effect  of  Echinacea  

Page 29: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

purpurea  DCM   extract,   fractions   and   isolated   compound   on   adipocyte   differentiation  and   glucose   uptake   in   3T3-­‐L1   adipocytes   and   try   to   reveal   mechanism   of   action   of  purified  compound.  Our  approach  led  us  to  the  discovery  of  new  compound,  belonging  to  the  group  of  alkamides:  dodeca-­‐2E,4E,8Z,10E/Z  tetraenoic  acid-­‐2-­‐methylbutylamides  (Compound  X).  Compound  X  significantly  increased  basal  and  insulin  dependent  glucose  uptake   in   3T3-­‐L1   adipocytes   in   dose   dependent   manner   and   promoted   adipocyte  differentiation   in  maturing   adipocytes,   acting   as   partial   PPARγ   agonist.   Therefore,  we  speculated,  that  Compound  X  exploits  anti-­‐diabetic  and  insulin  sensitizing  effect  in  vitro  and  future  study  should  follow  into  testing  in  vivo  in  laboratory  animals.      

OTHER  PAPERS  E.  Sokol,  R.  Almeida,  H.  K.  Hannibal-­‐Bach,  D.  Kotowska,  J.  Vogt,  J.  Baumgart,,  R.  Nitsch,  O.  N.  Jensen,  J.  Knudsen,  C.  S.  Ejsing1,  Quantitative  profiling  of  lipid  species  by  normal-­‐phase  liquid  chromatography,  chip-­‐based  nanoelectrospray  ionization  and  hybrid  ion  trap-­‐orbitrap  mass  spectrometry,  manuscript  

                                               

Page 30: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

2.1  Concluding  remarks     The   treatment  of  obesity  and  related  disorders  usually  begins  with  dietary  and  behavioral   modification   with   the   aim   of   reducing   caloric   intake   and   increase   energy  expenditure.  However,   in  the   light  of  research  presented   in  this  thesis,  diet   (especially  Mediterranean   type,   rich   in   fruits   and   vegetables)   can   not   only   be   used   as   a   way   to  reduce  energy   intake,  but  also  as  a   source  of  health  promoting   compounds.  Bioactive  compounds   from   dietary   products   may   influence   adipocytes   through   several  mechanisms,   including:   suppression   of   adipocyte   differentiation   and   proliferation   or  induction   of   apoptosis   in   mature   adipocytes,   inhibition/induction   of   fat  absorption/release   of   triglycerides   or   induction/suppression   of   glucose   uptake   and  therefore  facilitate  weight  loss  or  gain.       However  well  the  idea  of  therapeutic  food  sounds,  it  is  not  easy  to  achieve.  Food  derived   compounds   are   first   digested   by   host   organism,   before   being   processed   by  bacteria   living   in   the   guts.  Microbiota,  with   their   unique   sets   of   enzymes,   are   able   to  cleavage  the  chemical  bonds,  animals  cannot  cut  and  make  available  for  host  organism  complex   phytochemicals,   which   otherwise   cannot   be   absorbed   to   bloodstream.  Bacterial  actions  also  introduce  changes  to  plant  derived  compounds  structures,  which  can  increase  health-­‐  promoting  features  of  compounds  if  only  by  making  them  available  for  the  host.     Dietary  intake  and  bacteria  are  interacting  with  each  other:  bacteria  are  able  to  modify  delivered   compounds  and   compounds  are  able   to   influence  microbial   ecology,  mostly  by  promoting  growth  of   selected   taxa  over   the  others  and   therefore  modulate  the  quality  (and  amounts)  of  energy  intake.     The  net  of  processes  and  interplay  between  phytochemicals,  bacteria  and  host  is  very  complex  and  still  not  fully  understood.  According  to  today’s  knowledge  it   is  clear,  that  compounds  mechanism  of  action  and  their  fate  within  the  body  are  as  important  as  identification   of   novel   phytochemicals.   The   work   presented   in   this   thesis   focuses   on  initial   steps  of  compound   identification  and  elucidate  probable  molecular  mechanisms  underlying  the  beneficial  effects  of  investigated  plants  and  therefore  tries  to  give  a  new  meaning  to  common  adage:  “You  are  what  you  eat”.  

                         

Page 31: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Literature  Ahn,   J.,   Cho,   I.,   Kim,   S.,   Kwon,   D.,   Ha,   T.,   2008,   Dietary   resveratrol   alters   lipid  metabolism-­‐  related  gene  expression  of  mice  on  atherogenic  diet,  J.  Hepatol.,  49,  1019-­‐1028    Alarcon-­‐Aguilar,   F.   J.,   Roman-­‐Ramos,   R.,   Flores-­‐Saenz,   J.   L.,   Aguirre-­‐Garcia,   F.,   2002,  Investigation  of  the  hypoglycaemic  effects  of  extracts  of  four  Mexican  medicinal  plants  in  normal  and  alloxan-­‐diabetic  mice,  Phytotherapy  Research,  16,  383-­‐386    Atten,  M.   J.,   Godoy-­‐Romero,   E.,   Attar,   B.  M.,  Milson,   T.,   Zopel,  M.,   Holian,   O.,   2005,  Resveratrol   regulates   cellular   PKC   alpha   and   delta   to   inhibit   growth   and   induce  apoptosis  in  gastric  cancer  cells,  Invest.  New  Drugs,  23,  111-­‐119    Backhed,  F.,  2011,  Programming  of  host  metabolism  by  gut  microbiota,  Ann.  Nutr.  Metab.,  58,  Suppl  2:44-­‐52    Backhed  F.,  Ding,  H.,  Wang  T.,  Hooper  L.  V.,  Koh,  G.  Y.,  Nagy,  A.,  Semenkovich,  C.  F.,  Gordon,  J.  I.,  2004,  The  gut  microbiota  as  an  environmental  factor  that  regulates  fat  storage,  Proc.  Natl.  Acad.  Sci.  USA,  101(44):15718-­‐23    Baile,  C.  A.,  Yang,  J.-­‐Y.,  Rayalam,  S.,  Hartzell,  D.  L.,  Lai,  C.-­‐Y.,  Andersen,  C.,  Della-­‐Fera,  M.  A.,  2011,  Effect  of  resveratrol  on  fat  mobilization,  Ann.  N.  Y.  Acad.  Sci.,  1215,  40-­‐47    Baretic,  M.,  2012,  Targets  for  medical  therapy  in  obesity,  Dig  Dis.,  30,  168-­‐72    Barnes,   S.,   2010,   The   biochemistry,   chemistry   and   physiology   of   the   isoflavones   in  soybeans  and  their  food  products,  Lymphat.  Res.  Biol.,  8,  89-­‐98    Basile,  A.,  Giordano,  S.,  Lopez-­‐Saez,  J.  A.,  Cobianchi,  R.  C.,  1999,  Antibacterial  activity  of  pure  flavonoids  isolated  from  mosses,  Phytochemistry,  52,  1479-­‐82    Baur,  J.  A.,  Pearson,  K.  J.,  Price,  N.  L.,  Jamieson,  H.  A.,  Lerin,  C.,  Kalra,  A.,  Probhu,  V.  V.,  Allard,  J.  S.,  Lopez-­‐Lluch,  G.,  Lewis,  K.,  Pistell,  P.  J.,  Poosala,  S.,  Becker,  K.  G.,  Boss,  O.,    Gwinn,  D.,  Wang,  M.,  Ramaswamy,  S.,  Fishbein,  K.  W.,  Spencer,  R.  G.,  Lakatta,  E.  G.,  Couteur,  D.,  Shaw,  R.  J.,  Navas,  P.,  Puigserver,  P.,  Ingram,  D.  K.,  de  Cabo,  R.,  Sinclair,  D.  A.,  2006,  Resveratrol  improves  health  and  survival  of  mice  on  high-­‐calorie  diet,  Nature,  444,  16    Bode,  L.  M.,  Bunzel,  D.,  Huch,  M.,  Cho,  G.  S.,  Ruhland,  D.,  Bunzel,  M.,  Bub,  A.,  Franz,  C.  M.,  Kulling,  S.  E.,  2013,  In  vivo  and  in  vitro  metabolism  of  trans-­‐resveratrol  by  human  gut  microbiota,  Am.  J.  Clin.  Nutr.,  97(2):295-­‐309    

Page 32: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Bradley,  R.  L.,  Jeon,  J.  Y.,  Liu,  F.-­‐F.,  Maratos-­‐Flier,  E.,  2007,  Voluntary  exercise  improves  insulin  sensitivity  and  adipose  tissue  inflammation  in  diet-­‐induced  obese  mice,  Am.  J.  Physiol.  Endocrinol.  Metab.,  295,  E586-­‐E594      Brandt,  K.,  Christensen,  L.  P.,  Hansen-­‐Moller,  J.,  Hansen,  S.  L.,  Haraldsdottir,  J.,  Jespersen,  L.,  2004,  Health  promoting  compounds  in  vegetables  and  fruits:  a  systematic  approach  for  identifying  plant  components  with  impact  on  human  health,  Trends  Food  Sci.  Technol.,  15(7-­‐8):384-­‐93    Brusq,  J.  M.,  Ancellin,  N.,  Grondin,  P.,  Guillard,  R.,  Martin,  S.,  Saintillan,  Y.,  Issandou,  M.,  2006,  Inhibition  of  lipid  synthesis  through  activation  of  AMP  kinase:  an  additional  mechanism  for  hypolipidemic  effects  of  berberine,  J.  Lipid  Res.,  47,  1281-­‐1288    Cariou,   B.,   Charbonnel,   B.,   Staels,   B.,   2012,   Thiazolidinediones   and   PPARgamma  agonists:  time  for  reassessment,  Trends  in  Endocrinology  and  Metabolism,  vol.  23  no.5    Chacko,  B.  K.,  Chandler,  R.  T.,  D’Alessandro,  T.  L.,  Mundhekar,  A.,  Khoo,  N.  K.,  Botting,  N.,  Barnes,  S.,  Patel,  R.  P.,  2007,  Anti-­‐inflammatory  effects  of  isoflavones  are  dependent  on  flow  and  human  endothelial  cell  PPARγ,  J.  Nutr.,  137(2):351-­‐6    Charrad,  K.,  Sebai,  H.,  Elkahoui,  S.,  Hassine  F.  B.,  Limam,  F.,  Aouani  E.,  2011,  Grape  seed  extract   alleviates   high-­‐   fat   diet-­‐   induced   obesity   and   heart   disfunction   by   preventing  cardiac  siderosis,  Cardiovasc.  Toxicol.,  11:28-­‐39    Choi,  S.-­‐S.,  Cha,  B.-­‐Y.,  Iida,  K.,  Lee,  Y.-­‐S.,  Yonezawa,  T.,  Teruya,  T.,  Nagai,  K.,  Woo,  J.-­‐T.,  2011,  Artepillin  C,  as  a  PPARγ  ligand,  enhaces  adipocyte  differentiation  and  glucose  uptake  in  3T3-­‐L1  cells,  Biochemical  Pharmacology,  81,  925-­‐933    Christensen,  K.  B.,  Minet,  A.,  Svenstrup,  H.,  Grevsen,  K,  Zhang,  H.,  Schrader,  E.,  Rimbach,  G.,  Wein,  S.,  Wolffram,  S.,  Kristiansen,  K.,  Christensen  L.  P.,  2009,  Identification  of  plant  extracts  with  potential  antidiabetic  properties:  effect  on  human  peroxisome  proliferator-­‐  activated  receptor  (PPAR),  adipocyte  differentiation  and  insulin-­‐  stimulated  glucose  uptake,  Phytother.  Res.,  23(9),  1316-­‐25    Christensen,  K.  B.,  Petersen,  R.  K.,  Petersen,  S.,  Kristiansen,  K.,  Christensen,  L.  P.,  2009,  Activation  of  PPARγ  by  metabolites  from  the  flowers  of  purple  coneflower  (Echinacea  purpurea),  J.  Nat.  Prod.,  72,  933-­‐937    Egan,  C.  D.,  2002,  Addressing  use  of  herbal  medicine  in  the  primary  care  setting,  J.  Am.  Acad.  Nurse  Pract.,  14(4):166-­‐71    Eidi,  M.,   Eidi,   A.,   Zamanzadeh,  H.,   2005,   Effect   of  Salvia   officinalis   L.   leaves   on   serum  glucose   and   insulin   in   healthy   and   sterptozotocin-­‐induced   diabetic   rats,   J.  Ethnopharmacol.  100,  310-­‐313  

Page 33: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Ejaz,  A.,  Wu,  D.,  Kwan,  P.,  Meydani,  M.,  2003,  Curcumin  inhibits  adipogenesis  in  3T3-­‐L1  adipocytes  and  angiogenesis  and  obesity  in  C57/BL  mice,  J.  Nutr.,  139,  919-­‐925    Fang,  X.-­‐K.,  Gao,  J.,  Zhu,  D.-­‐N.,  2007,  Kaempferol  and  quercetin  isolated  from  Euonymus  alatus  improve  glucose  uptake  of  3T3-­‐L1  cells  without  adipogenesis  activity,  Life  Sciences,  82,  615-­‐622    Fernyhough,  M.  E.,  Helterline,  D.  I.,  Vierck,  J.  L.,  Hausman,  G.  J.,  Hill,  R.  A.,  Dodson,  M.  V.,  2005,  Dedifferentiation  of  mature  adipocytes  to  form  adipofibroblasts:  more  than  possibility,  Adipocytes,  1:17-­‐24    Floyd,   Z.   E.,   Wang,   Z.   Q.,   Kilroy,   G.,   Cefalu,   W.   T.,   2008,   Modulation   of   peroxisome  proliferator-­‐activated  receptor  gamma  stability  and  transcriptional  activity  in  adipocytes  by  resveratrol,  Metabolism,  57,  S32-­‐38    Goey,  A.  K.  L.,  Rosing,  H.,  Meijerman,  I.,  Sparidans,  R.  W.,  Schellens,  J.  H.  M.,  Beijnen,  J.  H.,  2012,  The  bioanalysis  of  the  major  Echinacea  purpurea  constituents  dodeca-­‐2E,4E,8Z,10E/Z-­‐tetraenoic  acid  isobutylamides  in  human  plasma  using  LC-­‐MS/MS,  Journal  of  Chromatography  B,  902,  151-­‐156    Green,  H.,  Kehinde,  O.,  1974,  Sublines  of  mouse  3T3  lines  that  accumulate  lipid,  Cell,  1,  113-­‐116    Green,  H.,  Kehinde,  O.,  1976,  Spontaneous  Heritable  changes  leading  to  increased  adipose  conversion  in  3T3  cells,  Cell,  7,  105-­‐113    Greenfield,   J.   R.,   2004,   Thiazolidinediones   –  mechanisms   of   action,   Experimental   and  clinical  pharmacology,  vol.  27  no.  3    Gurnell,  M.  Savage,  D.  B.  Chatterjee,  V.  K.  O’Rahilly,  S.,  2003,  The  metabolic  syndrome:  peroxisome   proliferator-­‐activated   receptor   gamma   and   its   therapeutic  modulation.,   J.  Clin.  Endocrinol.  Metab.,  88:2412-­‐21    Hansen,  S.  L.,  Purup,  S.,  Christensen,  L.  P.,  2003,  Bioactivity  of  falcarinol  and  the  influence  of  processing  and  storage  on  its  content  in  carrots  (Daucus  carota  L.),  J.  Sci.  Food  Agric.,  83(10):1010-­‐7    Hotamisligil,  G.  S.,  2000,  Molecular  mechanisms  of  insulin  resistance  and  the  role  of  the  adipocyte,  Int.  J.  Obes.  Relat.  Metab.  Disord.,  4:S23-­‐7    Hsu,  J.  M.,  Ding,  S.  T.,  2003,  Effect  of  polyunsaturated  fatty  acids  on  the  expression  of  transcription  factor  adipocyte  determination  and  differentiation-­‐dependent  factor  1  and  

Page 34: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

of  lipogenic  and  fatty  acid  oxidation  enzymes  in  porcine  differentiating  adipocytes,  Br.  J.  Nutr.,  90(3),  507-­‐513    Huang,  C.,  Zhang,  Y.,  Gong,  Z.,  Sheng,  X.,  Li,  Z.,  Zhang,  W.,  Qin,  Y.,  2006,  Berberine  inhibits  3T3-­‐L1  adipocyte  differentiation  through  the  PPARγ  pathway,  Biochemical  and  Biophysical  Research  Communications,  348,  571-­‐578    Hung,  L.  M.,  Chen,  J.  K.,  Huang,  S.  S.,  Lee,  R.  S.,  Su,  M.  J.,  2000,  Cardioprotective  effect  of  resveratrol,  a  natural  antioxidant  derived  from  grapes,  Cardiovasc.  Res.,  47,  549-­‐555    Hursel,   R.,   Westerterp-­‐Plantenga,   M.   S.,   2010,   Thermogenic   ingredients   and   body  weight  regulation,  Int.  J.  Obes.  (London),  34:659-­‐69    Ikeda,  I.,  Tsuda,  K.,  Suzuki,  Y.,  Kobayashi,  M.,  Unno,  T.,  Tomoyori,  H,  Goto,  H.,  Kawata,  Y.,  Imaizumi,  K.,  Nozawa,  A.,  Kakuda,  T.,  2005,  Tea  catechins  with  galloyl  moiety  suppress  postpriandal  hypertriacylglycerolemia  by  delaying   lymphatic   transport  of  dietary   fat   in  rats,  J.  Nutr.  135,  155-­‐159    Isolauri,  E.,  Development  of  healthy  gut  microbiota  early  in  life,  2012,  J.  Paediatr.  Child  Health,  48,  1-­‐6   James,  W.   P.,   Caterson   I.   D.,   Couthino,  W.,   Finer,   N.,   Van  Gaal,   L.   F.,  Maggioni,   A.   P.,  Torp-­‐Pedersen,  C.,  Sharma,  A.  M.,  Shepherd,  G.  M.,  Rode,  R.  A.,  Renz,  C.  L.,  2010,  Effect  of  sibutramine  on  cardiovascular  outcomes  in  overweight  and  obese  subjects,  The  New  England  journal  of  medicine,  363,  905-­‐17    Jeong,   Y.   S.,   Hong,   J.   H.,   Cho,   K.   H.,   Jung,   H.   K.,   2012,   Grape   skin   extract   reduces  adipogenesis-­‐  and  lipogenesis-­‐  related  gene  expression  in  3T3-­‐L1  adipocytes  through  the  peroxisome   proliferator-­‐   activated   receptor   gamma   signaling   pathway,   Nutrition  Research,  32,  514-­‐521      Jia,  W.  Li,  H.,  Zhao,  L.,  Nicholson,  J.  K.,  2008,  Gut  microbiota:  a  potential  new  territory  for  drug  targeting,  Nat.  Rev.  Drug  Discov.,  7:123-­‐129    Kahn,  B.  B.,  McGraw,  T.,  2010,  Rosiglitazone,  PPARgamma  and  Type  2  Diabetes,  N.  Engl.  J.  Med.,  363;27    Kallus,  S.  J.,  Brandt,  L.  J.,  2012,  The  intestinal  microbiota  and  obesity,  J.  Clin.  Gastroenerol.,  46,  1    Karnieli,  E.,  Armoni,  M.,  2008,  Transcriptional  regulation  of  the  insulin-­‐responsive  glucose  transporter  GLUT4  gene:  from  physiology  to  pathology,  Am.  J.  Physiol.  Endocrinol.  Metab.,  295,  E38-­‐E45  

Page 35: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

 Killeen,  D.  P.,  Sansom,  C.  E.,  Lill,  R.  E.,  Eason,  J.  R.,  Gordon,  K.  C.,  Perry,  N.  B.,  2013,  Quantitative  Raman  spectroscopy  for  the  analysis  of  carrot  bioactives,  J.  Agric.  Food  Chem.,  11/03/2013    Kim  H.  P.,  Mani,  I.,  Iversen,  L.,  Ziboh,  V.  A.,  1998,  Effects  of  naturally-­‐occurring  flavonoids  and  bioflavonoids  on  epidermal  cyclooxygenase  and  lipoxygenase  from  guinea-­‐pigs,  Prosteg.  Leukotr.  Ess.,  58,  17-­‐24    Ko,  B.  S.,  Choi,  S.  B.,  Park,  S.  K.,  Jang,  J.  S.,  Kim,  Y.  E.,  Park,  S.,  2005,  Insulin  sensitizing  and  insulinotropic  action  of  berberine  form  Cortidis  rhizoma,  Biol.  Pharm.  Bull.,  28,  1431-­‐1437    Kong,  W.,  Wei,  J.,  Abidi,  P.,  Lin,  M.,  Inaba,  S.,  Li,  C.,  Wang,  Y.,  Wang,  Z.,  Si,  S.,  Pan,  H.,  Wang,  S.,  Wu,  J.,  Wang,  Y.,  Li,  Z.,  Liu,  J.,  Jiang,  J.  D.,  2004,  Berberine  is  novel  cholesterol  lowering  drug  working  through  a  unique  mechanism  distinct  from  statins,  Nat.  Med.,  10,  1344-­‐1351    Kwon,  K.  B.,  Kim,  E.  K.,  Lim,  J.  G.,  Shin,  B.  C.,  Han,  S.  C.,  Song,  B.  K.,  Kim,  K.  S.,  Seo,  E.  A.,  Ryu,  D.  G.,  2005,  Protective  effect  of  Cortidis  rhizoma  on  S-­‐nitroso-­‐N-­‐acetylpenicillamine  (SNAP)-­‐induced  apoptosis  and  necrosis  in  pancreatic  RINm5F  cells,  Life  Sci.,  76,  917-­‐929    Lagouge,   M.,   Argmann,   C.,   Gerhart-­‐Hines,   Z.,   Meziane,   H.,   Lerin,   C.,   Daussin,   F.,  Messadeq,   N.,   Milne,   J.,   Lambert,   P.,   Elliott,   P.,   Geny,   B.,   Laakso,   M.,   Puigserver,   P.,  Auwerx,   J.,   2006,   Resveratrol   improves   mitochondrial   function   and   protects   against  metabolic  disease  by  activating  SIRT1  and  PGC-­‐1alpa,  Cell,  127,  1109-­‐1122    Lehrke,  M.  Lazar  M.  A.,  2005,  The  many  faces  of  PPARγ,  Cell  123  993-­‐  999    Ley,  R.  E.,  Backhed,  F.,  Turnbaugh,  P.,  Lozupone,  C.  A.,  Knight,  R.  D.,  Gordon,  J.  I.,  2005,  Obesity  alters  gut  microbial  ecology,  PNAS,  102,  31,  11070-­‐75    Lin,  J.  K.,  Lin-­‐Shiau,  S.  Y.,  2006,  Mechanisms  of  hypolipidemic  and  anti-­‐obesity  effects  of  tea  and  green  tea  polyphenols,  Mol.  Nutr.  Food  Res.,  50,  211-­‐217    Lin,  J.,  Della-­‐Fera,  M.  A.,  Baile,  C.  A.,  2005,  Green  tea  polyphenol  epigallocatechin  gallate  inhibits  adipogenesis  and   induces  apoptosis   in  3T3-­‐L1  adipocytes,  Obes.  Res.,  13,  982-­‐990    Liu,  R.,  Zhao,  B.,  Wang,  D.-­‐E.,  Yao,  T.,  Pang,  L.,  Tu,  Q.,  Ahmed,  S.  M.,  Liu,  J.-­‐J.,  Wang,  J.,  2012,   Nitrogen-­‐containing   apigenin   analogs:   preparation   and   biological   activity,  Molecules,  17,  14748-­‐64    

Page 36: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Macarulla,  M.  T.,  Alberdi,  G.,  Gomez,  S.,  Tueroz,  I.,  Bald,  C.,  Rodriguez,  V.  M.,  Martinez,  J.  A.,  Portillo,  M.  P.,  2009,  Effects  of  different  doses  of  resveratrol  on  body  fat  and  serum  parameters  in  rats  fed  a  hypercaloric  diet,  J.  Physiol.  Biochem.,  65,  369-­‐376    Mahdi,  J.  G.,  Mahdi,  A.  J.,  Bowen,  I.  D.,  2006,  The  historical  analysis  of  aspirin  discovery,  its   relation   to   the   willow   tree   and   antiproliferative   and   anticancer   potential,   Cell  proliferation,  39,  147-­‐55    Martineau,  L.  C.,  Muhammad,  A.,  Saleem,  A.,  Herve,  J.,  Harris,  C.  S.,  Arnason,  J.  T.,  Haddad,  P.S.,  2010,  Anti-­‐adipogenic  activities  of  Alnus  incana  and  Populus  balamifera  bark  extracts,  part  II:  bioassay-­‐guided  identification  of  actives  salicortin  and  oregonin,  Planta  Medica,  76,  1519-­‐1524    Metzeger,  B.  T.,  Barnes,  D.  M.,  2009,  Polyacetylene  diversity  and  bioactivity  in  orange  market  and  locally  grown  colored  carrots  (Daucus  carota  L.),  J.  Agric.  Food  Chem.,  57(23):11134-­‐9    Mudaliar,   S.   Henry   R.   R.,   2001,   New   oral   therapies   for   type   2   diabetes   mellitus:   The  glitazones  or  insulin  sensitizers.,  Annu.  Rev.  Med.,  52:239-­‐57    Mueller,   M.   M.,   Jungbauer,   A.   M.,   2008,   Red   clover   extract:   a   putative   source   for  simultaneous   treatment   of   menopausal   disorders   and   the   metabolis   syndrome,  Menopause,  15,  1120-­‐1131    Murase,  T.,  Misawa,  K.,  Haramizu,  S.,  Hase,  T.,  2009,  Catechin-­‐induced  activation  of  the  LKB1/AMP-­‐activated  protein  kinase  pathway,  Biochem.  Pharmacol.,  78,  78-­‐84    Park,  U.-­‐H.,  Jeong,  H.-­‐  S.,  Park,  T.,  Yoon,  S.  K.,  Kim,  E.-­‐  J.,  Jeong,  J.-­‐  C.,  Um,  S.-­‐  J.,  2012,  Piperine,  a  component  of  black  pepper,  inhibits  adipogenesis  by  antagonizing  PPARγ  activity  in  3T3-­‐L1  cells,  J.  Agric.  Food  Chem.,  60,  3853-­‐3860    Poulos,  S.  P.,  Dodson,  M.  V.,  Hausman,  G.  J.,  2010,  Cell  line  models  for  differentiation:  preadipocytes  and  adipocytes,  Exp.  Biol  and  Medic.,  235:1185-­‐1193    Qin,   B.,   Anderson,   R.   A.,   2011,   An   extract   of   chokeberry   attenuates   weight   gain   and  modulates   insulin,   adipogenic   and   inflammatory   signaling   pathways   in   epididymal  adipose  tissue  of  rats  fed  with  fructose-­‐rich  diet,  British  Journal  of  Nutrition,  page  1-­‐7    Rappange,  D.  R.,  Brouwer,  W.  B.  F.,  Hoogenveen,  R.  T.,  van  Baal,  P.  H.  M.,  2009,  Health  care   cost   and  obesity  prevention:  drug   costs   and  other   sector-­‐   specific   consequences,  Pharmacoeconomics,  27(12):1031-­‐44    

Page 37: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Ravussin,  Y.,  Koren,  O.,  Spor,  A.,  LeDuc,  C.,  Gutman,  R.,  Stombaugh,  J.,  Knight,  R.,  Ley,  R.  E.,  Leibel,  R.  L.,  2012,  Responses  of  gut  microbiota  to  diet  composition  and  weight  loss  in  lean  and  obese  mice,  Obesity,  20,  738-­‐47   Rosen,  E.  D.,  Walkey,  C.  J.,  Puigserver,  P.,  Spiegelman,  B.  M.,  2000,  Transcriptional  regulation  of  adipogenesis,  Genes  Dev.,  14,  1293-­‐1307    Sell,  H.,  Dietze-­‐Schroeder,  D.,  Eckel,  J.,  2006,  The  adipocyte-­‐myocyte  axis  in  insulin  resistance,  TRENDS  in  Endocrinol.  and  Metabol.,  17,  10,  416-­‐22    Shang,  J.,  Chen,  L.  L.,  Xiao,  F.  X.,  Sun,  H.,  Ding,  H.  C.,  Xiao,  H.,  2008,  Resveratrol  improves  non-­‐alcoholic   fatty   liver   disease   by   activating   AMP-­‐activated   protein   kinase,   Acta  Pharmacol.  Sin.,  29,  698-­‐706    Shang,  N.,  Guerrero-­‐Analco,  J.  A.,  Musallam,  L.,  Saleem,  A.,  Muhammad,  A.,  Walshe-­‐Roussel,  B.,  Cuerrier,  A.,  Arnason,  J.  T.,  Haddad,  P.S.,  2012,  Adipogenic  constituents  form  the  bark  of  Larix  larcina  du  Roi  (K.  Koch;  Pinaceae),  an  important  medicinal  plant  used  traditionally  by  the  Cree  of  Eeyou  Istchee  (Quebec,  Canada)  for  the  treatment  of  type  2  diabetes  symptoms,  J.  of  Ethnopharmacology,  141,  1051-­‐1057    Shen,  P.  Liu,  M.  H.,  Ng,  T.  Y.,  Chan,  Y.  H.,  Yong,  E.  L.,  2006,  Differential  effect  of  isoflavones,  from  Astragalus  Membranaceus  and  Pueraria  Thomsonii,  on  the  activation  of  PPARα,  PPARγ,  and  adipocyte  differentiation  in  vitro,  J.  Nutr.,  136,  899-­‐905    Siersbaek,   R.,   Nielsen,   R.,   Mandrup   S.,   2010,   PPARγ   in   adipocyte   differentiation   and  metabolism  –  Novel  insights  from  genome-­‐  wide  studies;  FEBS  Letters  584  (2010)  3242-­‐3249    Spelman,  K.,  Iiams-­‐Hauser,  K.,  Cech,  N.  B.,  Taylor,  E.  W.,  Smirnoff,  N.,  Wenner,  C.  A.,  2009,  Role  of  PPARγ  in  IL-­‐2  inhibition  in  T  cells  by  Echinacea-­‐derived  undeca-­‐2E-­‐ene-­‐8,  10-­‐diynoic  acid  isobutylamide,  International  Immunopharmacology,  9,  1260-­‐1264    Starvaggi  Cucuzza,  L.,  Motta,  M.,  Accornero,  P.,  Baratta,  M.,  2008,  Effect  of  Echinacea  augustifolia  extract  on  cell  viability  and  differentiation  in  mammary  epithelial  cells,  Phytomedicine,  15,  555-­‐562    Tang,  W.,   Zeve,   D.,   Jo,   A-­‐   Y.,   Graff,   J.   M.,   2011,   Thiazolidinediones   Regulate   Adipose  Lineage  Dynamics,  Cell  Metabolism  14,  116-­‐122    Taniguchi,  C.  M.,  Emanuelli,  B.,  Kahn,  C.  R.,  2006,  Critical  nodes  in  signaling  pathways:  insights  into  insulin  action,  Nat.  Rev.  Mol.  Cell  Biol.  7:85-­‐96    

Page 38: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Turnbaugh,  P.  J.,  Backhed,  F.,  Fulton,  L.,  Gordon,  J.  I.,  2008,  Diet  induced  obesity  is  linked  to  marked  but  reversible  alternations  in  the  mouse  distal  gut  microbiome,  Cell  Host  Microbe.,  17,  3(4):213-­‐23    Turnbaugh,  P.  J.,  Ley,  R.  E.,  Mahowald,  M.  A.,  Magrini,  V.,  Mardis,  E.  R.,  Gordon,  J.  I,  2006,  An  obesity-­‐associated  gut  microbiome  with  increased  capacity  for  energy  harvest,  Nature,  444(7122):1027-­‐31    van  der  Spuy,  W.   J.,  Pretorius,  E.,  2009,   Is   the  use  of   resveratrol   in   the   treatment  and  prevention  of  obesity  premature?,  Nutr.  Res.  Rev.,  22,  111-­‐117    Wu,  Z.,  Xie,  Y,  Bucher,  N.  L.,  Farmer,  S.  R.,  1995,  Conditional  ectopic  expression  of  C/EBP  beta  in  NIH-­‐3T3  cells  induces  PPAR  gamma  and  stimulates  adipogenesis,  Genes  Dev.,  9,  2350-­‐2363    Yan,  L.,  DeMars,  L.  C.,  Johnson,  L.A.  K.,  2012,  Long-­‐term  voluntary  running  improves  diet-­‐induced  adiposity  in  young  adult  mice,  Nutr.  Research,  32,  458-­‐65    Yeh,  G.  Y.,  Eisenberg,  D.  M.,  Kaptchnuk,  T.  J.,  Phillips,  R.  S.,  2003,  Systematic  review  of  herbs  and  dietary  supplements  for  glycemic  control   in  diabetes,  Diabetes  Care  vol.  26,  no.  4,  1277-­‐1294    Zang,   M.,   Maitland-­‐Toolan,   K.   A.,   Zuccollo,   A.,   Hou,   X.,   Jiang,   B.,   Wierzbicki,   M.,  Verbeuren,   T.   J.,   Cohen,   R.   A.,   2006,   Polyphenols   stimulates   AMP-­‐activated   protein  kinase,   lower   lipids,   and   inhibit   accelerated   atherosclerosis   in   diabetic   LDL   receptor-­‐deficient  mice,  2006,  Diabetes,  55,  2180-­‐2191    Zhang,  X.,  Zhao,  Y.,  Zhang,  M.,  Pang,  X.,  Xu,  J.,  Kang,  C.,  Li,  M.,  Zhang,  C.,  Zhang,  Z.,  Zhang,  Y.,  Li,  X.,  Ning,  G.,  Zhao,  L.,  2012,  Structural  changes  of  gut  microbiota  during  berberine-­‐mediated  prevention  of  obesity  and  insulin  resistance  in  high  fat  diet-­‐fed  rats,  PLoS  ONE,  7,  8,  e42529    Zhao,  L.,  Shen,  J.,  2010,  Whole-­‐body  system  approaches  for  gut  microbiota-­‐targeted,  preventive  healthcare,  J.  Biotechnol.,  149:183-­‐190    Zoechling   A.,   Liebner,   F.,   Jungbauer,   A.,   2011,   Red   wine:   a   source   of   potent   for  peroxisome  proliferator-­‐  activated  receptor  gamma,  Food  Funct,  2(1):28-­‐38                

Page 39: PhD thesis Dorota Kotowska Department of Biology ... Kotowska.pdf · FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN ! PhD thesis Dorota Kotowska Department of Biology Copenhagen University

Annex