Ph.D. Presentation

36
Piezoelectric MEMS Accelerometer - PiMEMS Christian Gammeltoft Hindrichsen Supervisor: Professor, Erik V. Thomsen

description

My Ph.D. project was presented at the Technical University of Denmark the 16th of April 2010.

Transcript of Ph.D. Presentation

Page 1: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Piezoelectric MEMS Accelerometer - PiMEMS

Christian Gammeltoft Hindrichsen

Supervisor: Professor, Erik V. Thomsen

Page 2: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Piezoelectric Accelerometer

Motivation

Design

Fabrication

Characterization

Conclusion

Page 3: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Piezoelectric Accelerometer

What is piezoelectricity and how does an accelerometer work?

Page 4: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionPiezoelectric AccelerometerPiezoelectric Accelerometer

http://electronicdesign.com/

Piezoelectric effect

Page 5: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionPiezoelectric AccelerometerPiezoelectric Accelerometer

Cantilever

Bridge

MEMS springs:

Plate

Membrane

Fixed frame

Piezoelectric

SpringMass

acceleration

F = m·a

Accelerometer operating in bending mode

V

Page 6: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Motivation

Why use MEMS and what is state-of-the-art?

Page 7: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionMotivationMotivation

Applications

Bulk PZT Thick Film PZT Thin Film Nanotech1 mm 100 μm 10 μm 1 μm 100 nm

Page 8: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

1 10 100 1000Price [$]

Per

form

ance

MEMS Capacitive(surface micromachined)

Movement monitoringand event detection

Piezoelectric

Measurement and control

MEMS Capacitive(bulk micromachined)

MEMSPiezoelectric

Special applications:PiezoresistiveOpticalServo

MotivationMotivation

Accelerometer market

Page 9: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionMotivationMotivation

Smaller

Lower fabrication costs

Higher integration

Comparable performance

Page 10: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionMotivationMotivation

Beeby et al. (2000)

Kunz et al. (2001) Yu et al. (2003)

12 x 1216-7.6Beeby et al.

7 x 722-0.5Kunz et al.

4 x 40.190.4722Yu et al.

Chipsize[mm]

ChargeSensitivity[pC/g]

Voltagesensitivity[mV/g]

Resonancefrequency[kHz]

State-of-the-art

Page 11: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

The Toolbox The MEMS Accelerometer

Integrate PZT thick film and MEMS

Design process flow

Optimize cleanroom processes

Design, model, fabricate, characterizean accelerometer:

• Resonance frequency > 20 kHz

• Chip size in the mm-range

• Sensitivity as high as possible

Goal

MotivationMotivation

Page 12: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Design

What is special about this accelerometer?

Page 13: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionDesignDesign

Hindrichsen et al., Triaxial MEMS Accelerometer with PZT Thick Film, Journal of Electroceramics (2010)

Hindrichsen et al., Analytical Model of a PZT Thick Film Triaxial Accelerometer for Optimum Design, IEEE Sensors Journal (2009)

10 x 100.040.3612.5

Chipsize[mm]

ChargeSensitivity[pC/g]

Voltagesensitivity[mV/g]

Resonancefrequency[kHz]

Square Design

Page 14: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionDesignDesign

x

y

x

z

Dimensions:

Membrane radius: 1.8 mm

Seismic mass: 6 mg

Silicon membrane: 20 μm

PZT thickness: 9 – 27 μmMass

Membrane Membrane

PZT

Electrodes

Circular Design

x

Page 15: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Resonance frequency > 20 kHz

Chip size in the mm-range

Sensitivity as high as possible

Membrane < 10 μm: thin filmMembrane > 30 μm: thick film

DesignDesign

>1 mm

10 mm

Hindrichsen et al., Advantages of PZT Thick Film for MEMS Sensors , Sensors and Actuators A (in review)

Sensitivity-Resonance Balance

Page 16: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionDesignDesign

xy

z

FEM model

Proposal for Triaxial Design

x

y

Page 17: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Fabrication

How can we integrate PZT thick film and MEMS?

Page 18: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionFabricationFabrication

Oxidation

UV lithografy

Plasma etch

Metal evaporation

Screen printing

Lou-Møller et al., Screen-printed piezoceramic thick films for miniturised devices, Journal of Electroceramics (2007)

Page 19: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionFabricationFabrication

Silicon substrate

PZT thick filmBottom electrode

Silicon oxide

Top electrode

Process Flow

Fragile substrate

High temperature sintering

Diffusion barrier layer

Adhesion

Thin film electrodes

Wafer scale production

Reproducibility

Page 20: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionFabricationFabrication

Diffusion barrier layer (DBL)

DBL

PZT

Si

31-mode

33-mode

Page 21: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionFabricationFabrication

Stylus Profiler Atomic Force Microscopy

PZT

Silicon

Hindrichsen et al., Investigation of Top/Bottom Electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors , Ferroelectrics (2009)

Page 22: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionFabricationFabrication

Top electrode

Lift-off process

20 μm thick photo resist

No sonication

Page 23: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

58 accelerometers

4 mask fabrication process

Price estimation:

70 DKK per accelerometer

FabricationFabrication

Hindrichsen et al., Circular Piezoelectric Accelerometer for High Band Width Application, IEEE Sensor Conference (2009)

Page 24: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionFabricationFabrication

LTCC on front side

Pyrex wafer on backside

Packaging

Page 25: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Characterization

How is the accelerometer performing?

Page 26: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Capacitance [pF]

Couplings coefficient [%]

Resonance frequency [kHz]

Sensitivity [pC/g]

Quality factor

Range [g]

Impedance analyzer

Shaker setup

Accelerometer Specifications

PZT thickness: 9 μm – 27 μm

Dielectric, mechanical & piezoelectric properties

Page 27: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Impedance Sweep (dielectric, mechanical, piezoelectric)

Page 28: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Impedance Sweep (dielectric, mechanical, piezoelectric)

Page 29: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Coupling Coefficient (dielectric, mechanical, piezoelectric)

Page 30: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Shaker

Accelerometer

Wave Generator

Charge Amplifier

LabView

Shaker Setup

Page 31: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Frequency Sweep (mechanical)

Quality factor: 150 - 250

Page 32: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Resonance Frequency (mechanical)

Page 33: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Charge Sensitivity (mechanical, piezoelectric)

Page 34: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionCharacterizationCharacterization

Range and Linearity (dielectric, mechanical, piezoelectric)

Page 35: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusionConclusionConclusion

Screen printed PZT on membranes with thicknesses down to 10 μm

Designed process flow

Diffusion barrier layer & thin film top electrode

Detailed analytical and FEM model

Square and circular design for triaxial sensing presented

Accelerometers are fabricated with high yield

Performance:

1.60.940.5732.5Model1.60.460.2825.8Measured2

Capacitance[nF]

0.190.4722Yu et al.

ChargeSensitivity[pC/g]

Voltagesensitivity[mV/g]

Resonancefrequency[kHz]

Page 36: Ph.D. Presentation

MotivationMotivationPiezoelectric AccelerometerPiezoelectric Accelerometer DesignDesign FabricationFabrication CharacterizationCharacterization ConclusionConclusion

Thank you for your attention

Acknowledgement

Erik Thomsen, Thomas Pedersen, Christian Hansen, Jesper Olsen, Tobias, Jack Larsen, Johan Nagstrup, Ninia, Simon, Louise, Gustav, MEMS Applied Sensor Group, Rasmus Lou-Moller,

Karsten Hansen, Ferroperm, Ole Hansen, Lars Kofoed , Danchip people, Kristian Hvass, Anne, ...