Personalized Radiotherapy Design for Glioblastoma ...

9
0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEE Transactions on Medical Imaging 1 Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans and Bayesian Inference Jana Lipkov´ a 1,2,12 , Panagiotis Angelikopoulos 3 , Stephen Wu 4 , Esther Alberts 2 , Benedikt Wiestler 2 , Christian Diehl 2 , Christine Preibisch 5 , Thomas Pyka 6 , Stephanie Combs 7 , Panagiotis Hadjidoukas 8,10 , Koen Van Leemput 9 , Petros Koumoutsakos 10 , John Lowengrub 11 , Bjoern Menze 1,12 Abstract—Glioblastoma is a highly invasive brain tumor, whose cells infiltrate surrounding normal brain tissue beyond the lesion outlines visible in the current medical scans. These infiltrative cells are treated mainly by radiotherapy. Existing radiotherapy plans for brain tumors derive from population studies and scarcely account for patient-specific conditions. Here we provide a Bayesian machine learning framework for the rational design of improved, personalized radiotherapy plans using mathematical modeling and patient multimodal medical scans. Our method, for the first time, integrates complementary information from high resolution MRI scans and highly specific FET-PET metabolic maps to infer tumor cell density in glioblastoma patients. The Bayesian framework quantifies imaging and modeling uncer- tainties and predicts patient-specific tumor cell density with credible intervals. The proposed methodology relies only on data acquired at a single time point and thus is applicable to standard clinical settings. An initial clinical population study shows that the radiotherapy plans generated from the inferred tumor cell infiltration maps spare more healthy tissue thereby reducing radiation toxicity while yielding comparable accuracy with standard radiotherapy protocols. Moreover, the inferred regions of high tumor cell densities coincide with the tumor radioresistant areas, providing guidance for personalized dose- escalation. The proposed integration of multimodal scans and mathematical modeling provides a robust, non-invasive tool to assist personalized radiotherapy design. Index Terms—Glioblastoma, radiotherapy planning, Bayesian inference, FET-PET, multimodal medical scans. 1 Dept. of Informatics, Technical University Munich (TUM) Germany 2 Dept. of Neuroradiolog, Klinikum Rechts der Isar, TUM, Germany 3 D.E. Shaw Research, L.L.C, USA 4 Institute of Statistical Mathematics, Tokyo, Japan 5 Dept. of Diagnostic and Interventional Neuroradiology & Neuroimaging Center & Clinic for Neurology, Klinikum Rechts der Isar, TUM, Germany 6 Dept. of Nuclear Medicine, Klinikum Rechts der Isar, TUM, Germany 7 Dept. of Radiation Oncology, Klinikum Rechts der Isar, TUM & Institute of Innovative Radiotherapy, Helmholtz Zentrum Munich & Deutsches Konsortium f¨ ur Translationale Krebsforschung, Germany 8 IBM Research - Zurich, Switzerland. (IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. Other product and service names might be trademarks of IBM or other companies.) 9 Harvard Medical School, Boston, USA & Dept. of Applied Mathematics and Computer Science, TU Denmark, Denmark. 10 Computational Science and Engineering Lab, ETH Z¨ urich, Switzerland 11 Dept. of Mathematics, Biomedical Engineering, Chemical Engineering and Materials Science & Center for Complex Biological Systems & Chao Family Comprehensive Cancer Center, UC, Irvine, USA 12 Institute for Advanced Study, TUM, Germany The supplementary materials are available at http://ieeexplore.ieee.org I. I NTRODUCTION G LIOBLASTOMA (GBM) is the most aggressive and most common type of primary brain tumor, with a me- dian survival of only 15 months despite intensive treatment [1]. The standard treatment consists of immediate tumor resection, followed by combined radio- and chemotherapy targeting the residual tumor. All treatment procedures are guided by mag- netic resonance imaging (MRI). In contrast to most tumors, GBM infiltrates surrounding tissue, instead of forming a tumor with a well-defined boundary. The central tumor, which is visible on medical scans, is commonly resected. However, the distribution of the infiltrating residual tumor cells in the nearby healthy-appearing tissue, which are likely to contribute to tumor recurrence, is not known. Current radiotherapy (RT) planning handles these uncertainties in a rather rudimentary fashion. Guided by population-level studies, standard-of-care RT plans uniformly irradiate the volume of the visible tumor extended by a uniform margin [1]–[3], which is referred as the clinical target volume (CTV). However, the extent of this margin varies by few centimeters even across the official RT guidelines [4]. Moreover, GBM infiltration is anisotropic and thus a uniform margin very likely does not provide an optimal dose distribution. In addition, GBM invasiveness is highly patient-specific, and thus not all patients benefit equally from the same margin, which impairs comparison and advancement of RT protocols. Despite treatment almost all GBMs recur [5]. Biopsies [6] and post-mortem studies [7] show that tumor cells can invade be- yond the CTV, which reduces RT efficiency, and is a possible cause of recurrence. At the same time radioresistance of tumor cells inside the CTV can also reduce RT efficiency. Radioresis- tance tends to occur in regions with complex microenviroment and hypoxia [8], both of which are commonly encountered in areas of high tumor cellularity. To address tumor radioresis- tance, several studies have suggested local dose-escalations [8]–[10]. In these approaches, a boosted dose is delivered into a single or multiple co-centered regions defined by adding uniform margins to the tumor outlines visible in MRI scans [11]. The Radiation Therapy Oncology Group (RTOG) phase- I-trial [10] showed an increase in median survival of 8 months with dose-escalation. However, no benefit in progression- Copyright (c) 2019 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected].

Transcript of Personalized Radiotherapy Design for Glioblastoma ...

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

1

Personalized Radiotherapy Design for Glioblastoma:Integrating Mathematical Tumor Models,Multimodal Scans and Bayesian Inference

Jana Lipkova1,2,12, Panagiotis Angelikopoulos3, Stephen Wu4, Esther Alberts2, Benedikt Wiestler2, ChristianDiehl2, Christine Preibisch5, Thomas Pyka6, Stephanie Combs7, Panagiotis Hadjidoukas8,10, Koen Van Leemput9,

Petros Koumoutsakos10, John Lowengrub11, Bjoern Menze1,12

Abstract—Glioblastoma is a highly invasive brain tumor, whosecells infiltrate surrounding normal brain tissue beyond the lesionoutlines visible in the current medical scans. These infiltrativecells are treated mainly by radiotherapy. Existing radiotherapyplans for brain tumors derive from population studies andscarcely account for patient-specific conditions. Here we providea Bayesian machine learning framework for the rational design ofimproved, personalized radiotherapy plans using mathematicalmodeling and patient multimodal medical scans. Our method, forthe first time, integrates complementary information from highresolution MRI scans and highly specific FET-PET metabolicmaps to infer tumor cell density in glioblastoma patients. TheBayesian framework quantifies imaging and modeling uncer-tainties and predicts patient-specific tumor cell density withcredible intervals. The proposed methodology relies only ondata acquired at a single time point and thus is applicable tostandard clinical settings. An initial clinical population studyshows that the radiotherapy plans generated from the inferredtumor cell infiltration maps spare more healthy tissue therebyreducing radiation toxicity while yielding comparable accuracywith standard radiotherapy protocols. Moreover, the inferredregions of high tumor cell densities coincide with the tumorradioresistant areas, providing guidance for personalized dose-escalation. The proposed integration of multimodal scans andmathematical modeling provides a robust, non-invasive tool toassist personalized radiotherapy design.

Index Terms—Glioblastoma, radiotherapy planning, Bayesianinference, FET-PET, multimodal medical scans.

1 Dept. of Informatics, Technical University Munich (TUM) Germany2 Dept. of Neuroradiolog, Klinikum Rechts der Isar, TUM, Germany3 D.E. Shaw Research, L.L.C, USA4 Institute of Statistical Mathematics, Tokyo, Japan5 Dept. of Diagnostic and Interventional Neuroradiology & Neuroimaging

Center & Clinic for Neurology, Klinikum Rechts der Isar, TUM, Germany6 Dept. of Nuclear Medicine, Klinikum Rechts der Isar, TUM, Germany7 Dept. of Radiation Oncology, Klinikum Rechts der Isar, TUM &

Institute of Innovative Radiotherapy, Helmholtz Zentrum Munich & DeutschesKonsortium fur Translationale Krebsforschung, Germany

8 IBM Research - Zurich, Switzerland. (IBM, the IBM logo, and ibm.comare trademarks or registered trademarks of International Business MachinesCorporation in the United States, other countries, or both. Other product andservice names might be trademarks of IBM or other companies.)

9 Harvard Medical School, Boston, USA & Dept. of Applied Mathematicsand Computer Science, TU Denmark, Denmark.

10 Computational Science and Engineering Lab, ETH Zurich, Switzerland11 Dept. of Mathematics, Biomedical Engineering, Chemical Engineering

and Materials Science & Center for Complex Biological Systems & ChaoFamily Comprehensive Cancer Center, UC, Irvine, USA

12 Institute for Advanced Study, TUM, GermanyThe supplementary materials are available at http://ieeexplore.ieee.org

I. INTRODUCTION

GLIOBLASTOMA (GBM) is the most aggressive andmost common type of primary brain tumor, with a me-

dian survival of only 15 months despite intensive treatment [1].The standard treatment consists of immediate tumor resection,followed by combined radio- and chemotherapy targeting theresidual tumor. All treatment procedures are guided by mag-netic resonance imaging (MRI). In contrast to most tumors,GBM infiltrates surrounding tissue, instead of forming a tumorwith a well-defined boundary. The central tumor, which isvisible on medical scans, is commonly resected. However,the distribution of the infiltrating residual tumor cells in thenearby healthy-appearing tissue, which are likely to contributeto tumor recurrence, is not known.Current radiotherapy (RT) planning handles these uncertaintiesin a rather rudimentary fashion. Guided by population-levelstudies, standard-of-care RT plans uniformly irradiate thevolume of the visible tumor extended by a uniform margin[1]–[3], which is referred as the clinical target volume (CTV).However, the extent of this margin varies by few centimeterseven across the official RT guidelines [4]. Moreover, GBMinfiltration is anisotropic and thus a uniform margin very likelydoes not provide an optimal dose distribution. In addition,GBM invasiveness is highly patient-specific, and thus not allpatients benefit equally from the same margin, which impairscomparison and advancement of RT protocols.Despite treatment almost all GBMs recur [5]. Biopsies [6] andpost-mortem studies [7] show that tumor cells can invade be-yond the CTV, which reduces RT efficiency, and is a possiblecause of recurrence. At the same time radioresistance of tumorcells inside the CTV can also reduce RT efficiency. Radioresis-tance tends to occur in regions with complex microenviromentand hypoxia [8], both of which are commonly encountered inareas of high tumor cellularity. To address tumor radioresis-tance, several studies have suggested local dose-escalations[8]–[10]. In these approaches, a boosted dose is delivered intoa single or multiple co-centered regions defined by addinguniform margins to the tumor outlines visible in MRI scans[11]. The Radiation Therapy Oncology Group (RTOG) phase-I-trial [10] showed an increase in median survival of 8 monthswith dose-escalation. However, no benefit in progression-

Copyright (c) 2019 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained fromthe IEEE by sending a request to [email protected].

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

2

free survival was observed, indicating a complex relationshipbetween true progression of the underlying disease and thetumor extent visible in MRI scans.Alternatively, positron emission tomography (PET) scans,which map tumor metabolic activities targeted by specifictracers, can be used to identify radioresistant regions. Apromising tracer used in GBM imaging is 18F-fluoro-ethyl-tyrosine (FET) [12], whose uptake values have been shownto be proportional to tumor cell density, although the con-stant of proportionality is unknown and patient-specific [13],[14]. A prospective phase-II-study [5] demonstrated that dose-escalation based on FET-PET enhancement delineates thetumor structure better than uniform margins, thus leading tolower radiation toxicity. Still, FET-PET based dose-escalationdid not increase progression-free survival. One possible expla-nation is that PET enhances mainly the tumor core, which isusually resected, while the PET uptake values in the remainingtumor periphery coincide with the baseline signal from thehealthy tissue. This, together with a rather low resolution ofPET scans, limits their ability to fully target radioresistanttumor residuals. This is also consistent with our results.Standard RT plans can be improved by incorporating in-formation from computational tumor models. These models,calibrated against patient medical scans, provide estimatesof tumor infiltration that extend the information availablein medical images and can guide personalized RT design.Despite extensive development of tumor growth models [15]–[20] and calibration strategies [21]–[28], their translation intoclinical practice remains very limited. We postulate that thereare (at least) three translational weakness: 1) Most modelcalibrations rely on data not commonly available in clinicalpractice. For example, in [22]–[28] medical scans with visibletumor progression from at least two time points are used forthe model calibration. However, for GBM patients only scansacquired at single preoperative time point are available. 2)Models are based on simplified assumptions motivated byin-vitro studies. For instance, it is frequently assumed thatthe tumor cell density is constant along the tumor bordersvisible on MRI scans (e.g., [21]–[27]). However, the tumorcell density varies significantly along the visible lesion bordersdue to anatomical restrictions and anisotropic tumor growth.3) Even if advanced calibration techniques as in [28] are used,it is not clear how robust the model predictions are and whatbenefits they offer over the standard treatment protocols.Here, we address these translational issues and provide clin-ically relevant patient-specific tumor predictions to improvepersonalized RT design. We present a Bayesian machinelearning framework to calibrate tumor growth models frommultimodal medical scans. We show that an integration of in-formation from complementary structural MRI and functionalFET-PET metabolic maps enables the robust inference of thetumor cell densities from scans acquired at single time point.To the best of our knowledge, this is the first study makingjoint use of FET-PET and MRI scans for the patient-specificcalibration of a tumor growth model. Our Bayesian approachinfers modeling and imaging parameters under uncertaintiesarising from measurement and modeling errors. We propagatethese uncertainties through the computational tumor model

to obtain robust estimates of the tumor cell density togetherwith credible intervals that can be used for personalized RTdesign. The patient-specific tumor estimates offer an advantagein determining margins of CTV as well as regions for dose-escalation. A clinical study is used to assess benefits of thepersonalized RT design over standard treatment protocols.In the remainder of the paper, Section II introduces theBayesian framework for model calibration, including the tu-mor growth and imaging models. The results are presented inSection III where the framework is applied to synthetic andclinical data, followed by a personalized RT study. Conclu-sions are presented in Section IV. Additional technical detailsare given in the Supplementary Materials (SM) available inhttp://ieeexplore.ieee.org.

II. BAYESIAN MODEL CALIBRATION

The Bayesian framework we develop combines a determin-istic model Mu for tumor growth with a stochastic imagingmodel MI relating model predictions with tumor observationsavailable from patient medical scans. Bayes theorem is usedto estimate the probability distribution of the unknown pa-rameters of both models, accounting for modeling and mea-surement uncertainties. Identified parametric uncertainties arepropagated to obtain robust patient-specific tumor predictions.An overview of the framework is given in Fig. 1.

A. Tumor growth model

Many tumor growth models are based on the Fisher-Kolmogrov (FK) equation [23], which captures the main tumorbehaviour: proliferation and infiltration. We use FK equationto describe the tumor model Mu. The equation is solved in apatient-specific brain anatomy reconstructed from MRI scans,where each voxel corresponds to one simulation grid point. LetΩ ∈ R3 be the brain anatomy consisting of white and greymatter and ui(t) ∈ [0, 1] be normalized tumor cell densityat time t and voxel i at location (ix, iy, iz) ∈ Ω, wherei = 1, · · · , N is index across all voxels. The dynamics ofthe tumor cell density u ··= ui(t)Ni=1 is modeled as:

∂u

∂t= ∇ · (D∇u) + ρu (1− u) in Ω, (1)

∇u · ~n = 0 in ∂Ω. (2)

The term ρ [1/day] denotes proliferation rate. The tumorinfiltration into the surrounding tissues is modeled by thetensor D = Di IN

i=1 where I is a 3× 3 identity matrix and

Di =

pwiDw + pgiDg if i ∈ Ω

0 if i /∈ Ω.(3)

The terms pwi and pgi denote percentage of white andgrey matter at voxel i, while Dw and Dg stand for tu-mor infiltration in the corresponding matter. We assumeDw = 10Dg [mm2/day] [28]. The skull and ventricles arenot infiltrated by the tumor cells and act as a domain boundarywith an imposed no-flux boundary condition Eq. (2), where ~nis the outward unit normal to ∂Ω. The tumor is initializedat voxel (icx, icy, icz) and its growth is modeled from timet = 0 until detection time t = T [day]. The parameters

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

3

II) C

ompu

tatio

nal M

edic

ine

III) B

ayes

ian

Infe

renc

eIV

) Per

sona

lised

Rad

ioth

erap

y

Imag

ing

Mod

el M

I

Para

met

erD

escr

iptio

n

u cT1

Gd ,

u cFL

AIR

Thre

shol

d in

the

tum

our c

ell d

ensi

ty b

elow

whi

ch

tum

our i

nduc

ed c

hang

es a

re n

ote

visi

ble

on M

RI

scan

σ αU

ncer

tain

ty in

the

thre

shol

d u c

T1G

d ,u

cFLA

IR

bC

onst

ant r

elat

ing

PET

sign

al to

tum

or c

ell d

ensi

ty

σU

ncer

tain

ty in

the

PET

sign

al

Tum

or G

row

th M

odel

Mu

Para

met

erD

escr

iptio

nu

Tum

or c

ell d

ensi

tyD

Diff

usio

n te

nsor

ρ

Prol

ifera

tion

rate

T Ti

me

from

tum

or o

nset

till

dete

ctio

nic

x, ic

y, ic

zTu

mor

initi

al lo

catio

n

Patie

nt-s

peci

fic p

aram

eter

s:

B) C) DRAFT

totu

mor

cell

dens

ity(1

1).

Apr

ospe

ctiv

eph

ase

IIst

udy

(3)

dem

onst

rate

dth

atdo

sees

cala

tion

base

don

FET

-PE

Ten

-ha

ncem

entd

elin

eate

sthe

tum

orst

ruct

ure

bett

erth

anun

iform

mar

gins

,thu

sle

adin

gto

low

erra

diat

ion

toxi

city

.St

ill,i

tdi

dno

tin

crea

seth

epr

ogre

ssio

n-fre

esu

rviv

al.

One

poss

ible

expl

a-na

tion

isth

atFE

Tsc

ansh

owsa

base

line

signa

lalso

inno

rmal

tissu

e,w

hich

toge

ther

with

the

rath

erpo

orre

solu

tion

ofPE

Tlim

itsits

abili

tyto

dist

ingu

ishbe

twee

nhe

alth

yan

dno

rmal

tissu

ein

regi

ons

oflo

win

filtr

atio

nin

the

tum

orpe

riphe

ry.

The

stan

dard

RTpl

ansc

anbe

impr

oved

byin

corp

orat

ing

info

r-m

atio

nfro

mco

mpu

tatio

nalt

umor

mod

els(

12,1

3).M

ostb

rain

tum

orgr

owth

mod

els

are

base

don

the

Fish

er-K

olm

ogor

ov(F

K)

equa

tion

(14)

.T

hese

mod

els,

calib

rate

dag

ains

tpa

tient

med

ical

scan

s,pr

ovid

ees

timat

esof

tum

orin

filtr

atio

nth

atex

tend

the

info

rmat

ion

avai

labl

ein

med

ical

imag

esan

dca

ngu

ide

the

pers

onal

ized

RTde

signs

.D

espi

tegr

eat

adva

nces

inth

ede

sign

oftu

mor

grow

thm

odel

s(1

4–18

)cr

itica

lque

stio

nsre

mai

nsfo

rth

eap

plic

abili

tyof

thes

em

odel

s,su

chas

how

tolin

km

odel

feat

ures

(e.g

.tu

mor

cell

dens

ity)

tocl

inic

alim

age

obse

rvat

ions

.C

urre

ntap

proa

ches

forc

alib

ratin

ggl

iom

am

odel

sco

nsid

erva

rious

dete

rmin

istic

(13,

14,

19,

20)

and

prob

abili

stic

Bay

esia

n(2

1,22

)m

etho

dsfo

res

tabl

ishin

gth

islin

k.In

(13,

14,1

9–21

),au

thor

sas

sum

ea

fixed

tum

orce

llde

nsity

atth

etu

mor

bord

ersv

isibl

ein

T1G

dan

dFL

AIR

scan

san

dth

em

odel

para

met

ers

are

estim

ated

byfit

ting

the

volu

me

(19,

20)

orsh

ape

(13,

21)

ofth

evi

sible

lesio

n.H

owev

er,t

hetu

mor

cell

dens

ityva

ries

alon

gth

evi

sible

tum

orou

tline

sdu

eto

anat

omic

alre

stric

tions

and

inho

mog

eneo

usgr

owth

patt

ern.

AB

ayes

ian

appr

oach

acco

untin

gfo

rvar

ying

tum

orce

llde

nsity

was

prop

osed

in(2

2).

All

thes

eca

libra

tions

howe

ver

use

MR

Isc

ans

from

atle

ast

two

time

poin

ts,m

akin

gth

emun

suita

ble

for

real

clin

ical

sett

ing,

whe

reon

lysc

ans

acqu

ired

atsin

gle

preo

pera

tive

time

poin

tar

eav

aila

ble.

Inth

ispa

per

wepr

esen

ta

syst

emat

icB

ayes

ian

fram

ewor

kto

deve

lop

robu

sttu

mor

grow

thm

odel

sin

form

edfr

omcl

inic

alim

agin

gfe

atur

es.

Our

appr

oach

over

com

eslim

itatio

nssp

ecifi

cto

die

rent

imag

ing

mod

aliti

esan

din

turn

inte

grat

esth

eir

info

rmat

ion

toca

libra

teth

etu

mor

grow

thm

odel

sfo

rth

eRT

plan

ning

.W

eco

mbi

neco

mpl

emen

tary

info

rmat

ion

from

stru

c-tu

ralM

RIa

ndfu

nctio

nalF

ET-P

ETm

etab

olic

map

s,ac

quire

dat

asin

gle

time

poin

t,to

iden

tify

the

patie

nt-s

peci

fictu

mor

cell

dens

ity.

Our

Bay

esia

nap

proa

chin

fers

mod

elin

gan

dim

ag-

ing

para

met

ers

unde

run

cert

aint

ies

arisi

ngfro

mm

easu

rem

ent

and

mod

elin

ger

rors

.W

epr

opag

ate

thes

eun

cert

aint

ies

tom

odel

pred

ictio

nsto

obta

inro

bust

estim

ates

ofth

etu

mor

cell

dens

ityto

geth

erw

ithco

nfide

nce

inte

rval

sth

atca

nbe

used

for

pers

onal

ized

RTpl

anni

ng.

The

estim

ated

patie

nt-s

peci

fictu

mor

cell

dens

ityo

ers

anad

vant

age

inde

term

inin

gm

argi

nsof

the

CT

Vas

wel

las

regi

ons

for

dose

esca

latio

n.A

stud

yco

nduc

ted

ona

smal

lclin

ical

popu

latio

nis

used

toas

sess

the

bene

fits

ofth

epe

rson

aliz

edRT

plan

sov

erst

anda

rdpr

otoc

ols.

1.B

ayes

ian

mod

elpe

rson

aliz

atio

n

The

tum

orce

llde

nsity

u(◊ u|M

u)

isco

mpu

ted

bya

mod

elM

u

with

para

met

ers

◊ u.

The

para

met

ers

◊ uar

epa

tient

-spe

cific

and

apr

obab

ility

dist

ribut

ion

ofth

eir

plau

sible

valu

esis

in-

ferr

edfro

mtu

mor

obse

rvat

ions

(dat

a)D

· ·=y

kS k

=1

obta

ined

fromS

med

ical

scan

s.W

epos

tula

teth

atth

emod

elpr

edic

tions

uan

dea

chim

age

obse

rvat

ion

ykar

ere

late

dby

ast

ocha

stic

imag

ing

mod

elFk

with

para

met

ers

◊ Fk

asyk

=Fk! u! ◊ u

|Mu

" ,Á! ◊ F

k

"",

[1]

whe

reÁ

isa

pred

ictio

ner

rora

ccou

ntin

gfo

rmod

ellin

gan

dm

ea-

sure

men

tun

cert

aint

ies.

Para

met

ers

◊· ·=

◊u,◊F

1,···,◊F

S

ofth

em

odelM

· ·=M

u,M

F1,···,M

FS

are

assu

med

tobe

unkn

own.

A.

Par

amet

ers

estim

atio

nan

dun

cert

aint

ypr

opag

atio

n.A

prio

rpr

obab

ility

dist

ribut

ion

func

tion

(PD

F)P(

◊|M

)is

used

toin

corp

orat

ean

ypr

ior

info

rmat

ion

abou

t◊.

Bay

esia

nm

odel

calib

ratio

nup

date

sth

ispr

ior

info

rmat

ion

base

don

the

avai

labl

eda

taD

.T

heup

date

dpo

ster

ior

PDF

isco

mpu

ted

byth

eB

ayes

theo

rem

:P(

◊|D,M

)ÃP(D|◊,M

)·P(

◊|M

),[2

]

whe

reP(D|◊,M

)ist

helik

elih

ood

ofob

serv

ing

data

Dfro

mth

em

odelM

for

agi

ven

valu

eof

◊.

Inm

ost

case

san

anal

ytic

alex

pres

sion

forE

q.(2

)isn

otav

aila

ble

and

sam

plin

gal

gorit

hms

are

used

toob

tain

sam

ple

◊(l

) ,l

œ1,···,N

fro

mth

epo

ste-

rior

P(◊|D,M

).W

eus

eda

Tran

sitio

nalM

arko

vC

hain

Mon

teC

arlo

(TM

CM

C)

sam

plin

gal

gorit

hm(2

3),w

hich

itera

tivel

yco

nstr

ucts

ase

ries

ofin

term

edia

tePD

Fs:

P j(◊|D,M

)≥P(D|◊,M

)pj·P

(◊|M

),[3

]

whe

re0

=p0<p1<

···<

pm

=1

andj

=1,···,m

is

age

nera

tion

inde

x.T

hete

rmpj

cont

rols

the

conv

erge

nce

ofth

esa

mpl

ing

proc

edur

ean

dis

com

pute

dau

tom

atic

ally

byth

eT

MC

MC

algo

rithm

.T

MC

MC

cons

truc

tsa

larg

enu

mbe

rof

inde

pend

ent

chai

nsth

atex

plor

epa

ram

eter

spac

em

ore

eci

ently

than

trad

ition

alsa

mpl

ing

met

hods

(23)

and

allo

wpa

ralle

lexe

cutio

n.A

high

lypa

ralle

lim

plem

enta

tion

ofth

eT

MC

MC

algo

rithm

ispr

ovid

edby

the

4U

fram

ewor

k(2

4).

The

infe

rred

para

met

ricun

cert

aint

ies

are

prop

agat

edth

roug

hth

em

odelM

toob

tain

robu

stpo

ster

ior

pred

ictio

nsab

outu,

give

nby

the

PDF:

P(u|

D,M

)=⁄

P(u|

◊,M

)·P

(◊|D,M

)d◊,

[4]

orby

simpl

ified

mea

sure

ssuc

has

them

eanµu

=E

[u(◊

)]©m

1an

dva

rianc

e‡

2 u=E

[u2 (

◊)]

≠m

2 1©m

2≠m

2 1,de

rived

from

the

first

two

mom

entsm

k,k

=1,

2:

mk

=⁄

! u(◊|M

)" k·P

(◊|D,M

)d◊

¥1 N

N ÿ l=1

! u(◊(l

) |M)" k

,[5

]

whe

re

deno

tes

the

spac

eof

allu

ncer

tain

para

met

ers.

B.

Tum

orgr

owth

mod

el.T

umor

mod

els

ofva

rious

com

plex

ityca

nbe

pers

onal

ized

usin

gth

eB

ayes

ian

appr

oach

desc

ribed

abov

e.H

ere,

we

mod

elu(

◊ u|M

u)

with

the

FKm

odel

whi

chde

scrib

esan

isotr

opic

tum

orgr

owth

inth

ebr

ain

œ

R3

as:

ˆu ˆt

·(D

Òu)

+flu

(1≠

u),

in

[6]

Òu·n

=0,

inˆ

,

[7]

whe

reu

=u

i(t

)#

Vox

els

i=1

andui(t

[0,1

]is

ano

rmal

ized

tum

orce

llde

nsity

attim

et

and

voxe

li=

(ix,iy,iz)œ

.

The

term

fl[1/day]d

enot

estu

mor

prol

ifera

tion

rate

.T

hetu

mor

infil

trat

ion

into

the

surr

ound

ing

tissu

esis

mod

eled

byth

ete

nsor

D=

DiI

#Vox

els

i=1

whe

reI

isa

3◊

3id

entit

ym

atrix

and

Di=

IDg

ifi

œgray,

Dw

ifi

œwhite,

0ifi/œ

gray

fiwhite.

[8]

The

term

sDw

andDg

deno

tetu

mor

infil

trat

ion

inw

hite

and

gray

mat

ter

and

weas

sum

eDw

=10Dg[m

m2 /day](

12).

The

2|

ww

w.p

nas.

org/

cgi/

doi/

10.1

073/

pnas

.XX

XX

XX

XX

XX

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Lipk

ová

etal

.

Patie

nt-s

peci

fic p

redi

ctio

ns:

std

MA

PM

ean

P(D

|,M

)=

P y

T1G

d|,

M P

yF

LA

IR|,

M P

yF

ET|,

M

I) M

edic

al Im

ages

A)Sa

gitt

al

Coro

nal

FET-

PET

T1G

dFL

AIR

C)

B)

ObservationsModalities

u

=D

,,T

,ic x

,ic y

,ic z

CSFWhite matter Grey matter A)

Imag

ing

para

met

ers:

I=

uT

1G

dc

,uF

LA

IR

c,

↵,b

,

P(y

s|

,M)

=

N Y i=1

P(y

s i|

,ui)

=

N Y i=1

↵y

s ii

·(1↵

i)1

ys i.

Stru

ctur

al s

cans

: s=

T1G

d, F

LAIR

P(y

FE

T|,

M)

=

N Y i=1

P(y

FE

Ti

|,u

i)=

N Y i=1

N(u

i

by

FE

Ti

,2)

Met

abol

ic P

ET s

can:

E) F)D)

M=

Mu,M

I

=

u,

I

A)B)

Dose distribution Dose escalationC)

D)

Recu

rren

ceTr

eatm

ent p

lans

Pers

onal

ized

A)

Stan

dard

B)

T1GdFLAIR F)E)

Para

met

er e

stim

atio

n:

INFI

LTRA

TIO

NPR

OLI

FERA

TIO

N

DRAFT

totu

mor

cell

dens

ity(1

1).

Apr

ospe

ctiv

eph

ase

IIst

udy

(3)

dem

onst

rate

dth

atdo

sees

cala

tion

base

don

FET

-PE

Ten

-ha

ncem

entd

elin

eate

sthe

tum

orst

ruct

ure

bett

erth

anun

iform

mar

gins

,thu

sle

adin

gto

low

erra

diat

ion

toxi

city

.St

ill,i

tdi

dno

tin

crea

seth

epr

ogre

ssio

n-fre

esu

rviv

al.

One

poss

ible

expl

a-na

tion

isth

atFE

Tsc

ansh

owsa

base

line

signa

lalso

inno

rmal

tissu

e,w

hich

toge

ther

with

the

rath

erpo

orre

solu

tion

ofPE

Tlim

itsits

abili

tyto

dist

ingu

ishbe

twee

nhe

alth

yan

dno

rmal

tissu

ein

regi

ons

oflo

win

filtr

atio

nin

the

tum

orpe

riphe

ry.

The

stan

dard

RTpl

ansc

anbe

impr

oved

byin

corp

orat

ing

info

r-m

atio

nfro

mco

mpu

tatio

nalt

umor

mod

els(

12,1

3).M

ostb

rain

tum

orgr

owth

mod

els

are

base

don

the

Fish

er-K

olm

ogor

ov(F

K)

equa

tion

(14)

.T

hese

mod

els,

calib

rate

dag

ains

tpa

tient

med

ical

scan

s,pr

ovid

ees

timat

esof

tum

orin

filtr

atio

nth

atex

tend

the

info

rmat

ion

avai

labl

ein

med

ical

imag

esan

dca

ngu

ide

the

pers

onal

ized

RTde

signs

.D

espi

tegr

eat

adva

nces

inth

ede

sign

oftu

mor

grow

thm

odel

s(1

4–18

)cr

itica

lque

stio

nsre

mai

nsfo

rth

eap

plic

abili

tyof

thes

em

odel

s,su

chas

how

tolin

km

odel

feat

ures

(e.g

.tu

mor

cell

dens

ity)

tocl

inic

alim

age

obse

rvat

ions

.C

urre

ntap

proa

ches

forc

alib

ratin

ggl

iom

am

odel

sco

nsid

erva

rious

dete

rmin

istic

(13,

14,

19,

20)

and

prob

abili

stic

Bay

esia

n(2

1,22

)m

etho

dsfo

res

tabl

ishin

gth

islin

k.In

(13,

14,1

9–21

),au

thor

sas

sum

ea

fixed

tum

orce

llde

nsity

atth

etu

mor

bord

ersv

isibl

ein

T1G

dan

dFL

AIR

scan

san

dth

em

odel

para

met

ers

are

estim

ated

byfit

ting

the

volu

me

(19,

20)

orsh

ape

(13,

21)

ofth

evi

sible

lesio

n.H

owev

er,t

hetu

mor

cell

dens

ityva

ries

alon

gth

evi

sible

tum

orou

tline

sdu

eto

anat

omic

alre

stric

tions

and

inho

mog

eneo

usgr

owth

patt

ern.

AB

ayes

ian

appr

oach

acco

untin

gfo

rvar

ying

tum

orce

llde

nsity

was

prop

osed

in(2

2).

All

thes

eca

libra

tions

howe

ver

use

MR

Isc

ans

from

atle

ast

two

time

poin

ts,m

akin

gth

emun

suita

ble

for

real

clin

ical

sett

ing,

whe

reon

lysc

ans

acqu

ired

atsin

gle

preo

pera

tive

time

poin

tar

eav

aila

ble.

Inth

ispa

per

wepr

esen

ta

syst

emat

icB

ayes

ian

fram

ewor

kto

deve

lop

robu

sttu

mor

grow

thm

odel

sin

form

edfr

omcl

inic

alim

agin

gfe

atur

es.

Our

appr

oach

over

com

eslim

itatio

nssp

ecifi

cto

die

rent

imag

ing

mod

aliti

esan

din

turn

inte

grat

esth

eir

info

rmat

ion

toca

libra

teth

etu

mor

grow

thm

odel

sfo

rth

eRT

plan

ning

.W

eco

mbi

neco

mpl

emen

tary

info

rmat

ion

from

stru

c-tu

ralM

RIa

ndfu

nctio

nalF

ET-P

ETm

etab

olic

map

s,ac

quire

dat

asin

gle

time

poin

t,to

iden

tify

the

patie

nt-s

peci

fictu

mor

cell

dens

ity.

Our

Bay

esia

nap

proa

chin

fers

mod

elin

gan

dim

ag-

ing

para

met

ers

unde

run

cert

aint

ies

arisi

ngfro

mm

easu

rem

ent

and

mod

elin

ger

rors

.W

epr

opag

ate

thes

eun

cert

aint

ies

tom

odel

pred

ictio

nsto

obta

inro

bust

estim

ates

ofth

etu

mor

cell

dens

ityto

geth

erw

ithco

nfide

nce

inte

rval

sth

atca

nbe

used

for

pers

onal

ized

RTpl

anni

ng.

The

estim

ated

patie

nt-s

peci

fictu

mor

cell

dens

ityo

ers

anad

vant

age

inde

term

inin

gm

argi

nsof

the

CT

Vas

wel

las

regi

ons

for

dose

esca

latio

n.A

stud

yco

nduc

ted

ona

smal

lclin

ical

popu

latio

nis

used

toas

sess

the

bene

fits

ofth

epe

rson

aliz

edRT

plan

sov

erst

anda

rdpr

otoc

ols.

1.B

ayes

ian

mod

elpe

rson

aliz

atio

n

The

tum

orce

llde

nsity

u(◊ u|M

u)

isco

mpu

ted

bya

mod

elM

u

with

para

met

ers

◊ u.

The

para

met

ers

◊ uar

epa

tient

-spe

cific

and

apr

obab

ility

dist

ribut

ion

ofth

eir

plau

sible

valu

esis

in-

ferr

edfro

mtu

mor

obse

rvat

ions

(dat

a)D

· ·=y

kS k

=1

obta

ined

fromS

med

ical

scan

s.W

epos

tula

teth

atth

emod

elpr

edic

tions

uan

dea

chim

age

obse

rvat

ion

ykar

ere

late

dby

ast

ocha

stic

imag

ing

mod

elFk

with

para

met

ers

◊ Fk

asyk

=Fk! u! ◊ u

|Mu

" ,Á! ◊ F

k

"",

[1]

whe

reÁ

isa

pred

ictio

ner

rora

ccou

ntin

gfo

rmod

ellin

gan

dm

ea-

sure

men

tun

cert

aint

ies.

Para

met

ers

◊· ·=

◊u,◊F

1,···,◊F

S

ofth

em

odelM

· ·=M

u,M

F1,···,M

FS

are

assu

med

tobe

unkn

own.

A.

Par

amet

ers

estim

atio

nan

dun

cert

aint

ypr

opag

atio

n.A

prio

rpr

obab

ility

dist

ribut

ion

func

tion

(PD

F)P(

◊|M

)is

used

toin

corp

orat

ean

ypr

ior

info

rmat

ion

abou

t◊.

Bay

esia

nm

odel

calib

ratio

nup

date

sth

ispr

ior

info

rmat

ion

base

don

the

avai

labl

eda

taD

.T

heup

date

dpo

ster

ior

PDF

isco

mpu

ted

byth

eB

ayes

theo

rem

:P(

◊|D,M

)ÃP(D|◊,M

)·P(

◊|M

),[2

]

whe

reP(D|◊,M

)ist

helik

elih

ood

ofob

serv

ing

data

Dfro

mth

em

odelM

for

agi

ven

valu

eof

◊.

Inm

ost

case

san

anal

ytic

alex

pres

sion

forE

q.(2

)isn

otav

aila

ble

and

sam

plin

gal

gorit

hms

are

used

toob

tain

sam

ple

◊(l

) ,l

œ1,···,N

fro

mth

epo

ste-

rior

P(◊|D,M

).W

eus

eda

Tran

sitio

nalM

arko

vC

hain

Mon

teC

arlo

(TM

CM

C)

sam

plin

gal

gorit

hm(2

3),w

hich

itera

tivel

yco

nstr

ucts

ase

ries

ofin

term

edia

tePD

Fs:

P j(◊|D,M

)≥P(D|◊,M

)pj·P

(◊|M

),[3

]

whe

re0

=p0<p1<

···<

pm

=1

andj

=1,···,m

is

age

nera

tion

inde

x.T

hete

rmpj

cont

rols

the

conv

erge

nce

ofth

esa

mpl

ing

proc

edur

ean

dis

com

pute

dau

tom

atic

ally

byth

eT

MC

MC

algo

rithm

.T

MC

MC

cons

truc

tsa

larg

enu

mbe

rof

inde

pend

ent

chai

nsth

atex

plor

epa

ram

eter

spac

em

ore

eci

ently

than

trad

ition

alsa

mpl

ing

met

hods

(23)

and

allo

wpa

ralle

lexe

cutio

n.A

high

lypa

ralle

lim

plem

enta

tion

ofth

eT

MC

MC

algo

rithm

ispr

ovid

edby

the

4U

fram

ewor

k(2

4).

The

infe

rred

para

met

ricun

cert

aint

ies

are

prop

agat

edth

roug

hth

em

odelM

toob

tain

robu

stpo

ster

ior

pred

ictio

nsab

outu,

give

nby

the

PDF:

P(u|

D,M

)=⁄

P(u|

◊,M

)·P

(◊|D,M

)d◊,

[4]

orby

simpl

ified

mea

sure

ssuc

has

them

eanµu

=E

[u(◊

)]©m

1an

dva

rianc

e‡

2 u=E

[u2 (

◊)]

≠m

2 1©m

2≠m

2 1,de

rived

from

the

first

two

mom

entsm

k,k

=1,

2:

mk

=⁄

! u(◊|M

)" k·P

(◊|D,M

)d◊

¥1 N

N ÿ l=1

! u(◊(l

) |M)" k

,[5

]

whe

re

deno

tes

the

spac

eof

allu

ncer

tain

para

met

ers.

B.

Tum

orgr

owth

mod

el.T

umor

mod

els

ofva

rious

com

plex

ityca

nbe

pers

onal

ized

usin

gth

eB

ayes

ian

appr

oach

desc

ribed

abov

e.H

ere,

we

mod

elu(

◊ u|M

u)

with

the

FKm

odel

whi

chde

scrib

esan

isotr

opic

tum

orgr

owth

inth

ebr

ain

œ

R3

as:

ˆu ˆt

·(D

Òu)

+flu

(1≠

u),

in

[6]

Òu·n

=0,

inˆ

,

[7]

whe

reu

=u

i(t

)#

Vox

els

i=1

andui(t

[0,1

]is

ano

rmal

ized

tum

orce

llde

nsity

attim

et

and

voxe

li=

(ix,iy,iz)œ

.

The

term

fl[1/day]d

enot

estu

mor

prol

ifera

tion

rate

.T

hetu

mor

infil

trat

ion

into

the

surr

ound

ing

tissu

esis

mod

eled

byth

ete

nsor

D=

DiI

#Vox

els

i=1

whe

reI

isa

3◊

3id

entit

ym

atrix

and

Di=

IDg

ifi

œgray,

Dw

ifi

œwhite,

0ifi/œ

gray

fiwhite.

[8]

The

term

sDw

andDg

deno

tetu

mor

infil

trat

ion

inw

hite

and

gray

mat

ter

and

weas

sum

eDw

=10Dg[m

m2 /day](

12).

The

2|

ww

w.p

nas.

org/

cgi/

doi/

10.1

073/

pnas

.XX

XX

XX

XX

XX

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Lipk

ová

etal

.

Di=

(p

wiD

w+

pg

iD

gif

i2

0if

i/2

.

FLA

IRFE

T-PE

TT1

Gd

Observations

b

u

Ref

eren

ces

1.St

upp,

R.e

tal.

Hig

h-gr

ade

glio

ma:

Esm

ocl

inic

alpr

actic

egu

idel

ines

ford

iagn

osis

,tre

atm

enta

ndfo

llow

-up.

Anna

lsO

ncol

.(2

014)

.

2.B

urne

t,N

.G.,

Tho

mas

,S.J

.,B

urto

n,K

.E.&

Jeff

erie

s,S.

J.D

efini

ngth

etu

mou

ran

dta

rget

volu

mes

for

radi

othe

rapy

.C

ance

rIm

agin

g4,

153–

161

(200

4).

3.St

upp,

R.e

tal.

Rad

ioth

erap

ypl

usco

ncom

itant

and

adju

vant

tem

ozol

omid

efo

rglio

blas

tom

a.N

ewE

ngl.

J.M

edic

ine

352,

987–

996

(200

5).

4.Pa

ulss

on,A

.K.e

tal.

Lim

ited

mar

gins

usin

gm

oder

nra

diot

hera

pyte

chni

ques

does

noti

ncre

ase

mar

gina

lfai

lure

rate

ofgl

iobl

asto

ma.

Am

.jou

rnal

clin

ical

onco

logy

37,1

77(2

014)

.

5.R

ockw

ell,

S.,D

obru

cki,

I.T.

,Kim

,E.Y

.,M

arris

on,S

.T.&

Vu,

V.T.

Hyp

oxia

and

radi

atio

nth

erap

y:pa

sthi

stor

y,on

goin

gre

sear

ch,a

ndfu

ture

prom

ise.

Cur

r.m

olec

ular

med

icin

e9

(200

9).

2/2

x

Ref

eren

ces

1.St

upp,

R.e

tal.

Hig

h-gr

ade

glio

ma:

Esm

ocl

inic

alpr

actic

egu

idel

ines

ford

iagn

osis

,tre

atm

enta

ndfo

llow

-up.

Ann

als

Onc

ol.

(201

4).

2.B

urne

t,N

.G.,

Tho

mas

,S.J

.,B

urto

n,K

.E.&

Jeff

erie

s,S.

J.D

efini

ngth

etu

mou

ran

dta

rget

volu

mes

for

radi

othe

rapy

.C

ance

rIm

agin

g4,

153–

161

(200

4).

3.St

upp,

R.e

tal.

Rad

ioth

erap

ypl

usco

ncom

itant

and

adju

vant

tem

ozol

omid

efo

rglio

blas

tom

a.N

ewE

ngl.

J.M

edic

ine

352,

987–

996

(200

5).

4.Pa

ulss

on,A

.K.e

tal.

Lim

ited

mar

gins

usin

gm

oder

nra

diot

hera

pyte

chni

ques

does

noti

ncre

ase

mar

gina

lfai

lure

rate

ofgl

iobl

asto

ma.

Am

.jou

rnal

clin

ical

onco

logy

37,1

77(2

014)

.

5.R

ockw

ell,

S.,D

obru

cki,

I.T.

,Kim

,E.Y

.,M

arri

son,

S.T.

&V

u,V.

T.H

ypox

iaan

dra

diat

ion

ther

apy:

past

hist

ory,

ongo

ing

rese

arch

,and

futu

repr

omis

e.C

urr.

mol

ecul

arm

edic

ine

9(2

009)

.

2/2

u

Ref

eren

ces

1.St

upp,

R.e

tal.

Hig

h-gr

ade

glio

ma:

Esm

ocl

inic

alpr

actic

egu

idel

ines

ford

iagn

osis

,tre

atm

enta

ndfo

llow

-up.

Ann

als

Onc

ol.

(201

4).

2.B

urne

t,N

.G.,

Tho

mas

,S.J

.,B

urto

n,K

.E.&

Jeff

erie

s,S.

J.D

efini

ngth

etu

mou

ran

dta

rget

volu

mes

for

radi

othe

rapy

.C

ance

rIm

agin

g4,

153–

161

(200

4).

3.St

upp,

R.e

tal.

Rad

ioth

erap

ypl

usco

ncom

itant

and

adju

vant

tem

ozol

omid

efo

rglio

blas

tom

a.N

ewE

ngl.

J.M

edic

ine

352,

987–

996

(200

5).

4.Pa

ulss

on,A

.K.e

tal.

Lim

ited

mar

gins

usin

gm

oder

nra

diot

hera

pyte

chni

ques

does

noti

ncre

ase

mar

gina

lfai

lure

rate

ofgl

iobl

asto

ma.

Am

.jou

rnal

clin

ical

onco

logy

37,1

77(2

014)

.

5.R

ockw

ell,

S.,D

obru

cki,

I.T.

,Kim

,E.Y

.,M

arri

son,

S.T.

&V

u,V.

T.H

ypox

iaan

dra

diat

ion

ther

apy:

past

hist

ory,

ongo

ing

rese

arch

,and

futu

repr

omis

e.C

urr.

mol

ecul

arm

edic

ine

9(2

009)

.

2/2

x

Ref

eren

ces

1.St

upp,

R.e

tal.

Hig

h-gr

ade

glio

ma:

Esm

ocl

inic

alpr

actic

egu

idel

ines

ford

iagn

osis

,tre

atm

enta

ndfo

llow

-up.

Anna

lsO

ncol

.(2

014)

.

2.B

urne

t,N

.G.,

Tho

mas

,S.J

.,B

urto

n,K

.E.&

Jeff

erie

s,S.

J.D

efini

ngth

etu

mou

ran

dta

rget

volu

mes

for

radi

othe

rapy

.C

ance

rIm

agin

g4,

153–

161

(200

4).

3.St

upp,

R.e

tal.

Rad

ioth

erap

ypl

usco

ncom

itant

and

adju

vant

tem

ozol

omid

efo

rglio

blas

tom

a.N

ewE

ngl.

J.M

edic

ine

352,

987–

996

(200

5).

4.Pa

ulss

on,A

.K.e

tal.

Lim

ited

mar

gins

usin

gm

oder

nra

diot

hera

pyte

chni

ques

does

noti

ncre

ase

mar

gina

lfai

lure

rate

ofgl

iobl

asto

ma.

Am

.jou

rnal

clin

ical

onco

logy

37,1

77(2

014)

.

5.R

ockw

ell,

S.,D

obru

cki,

I.T.

,Kim

,E.Y

.,M

arris

on,S

.T.&

Vu,

V.T.

Hyp

oxia

and

radi

atio

nth

erap

y:pa

sthi

stor

y,on

goin

gre

sear

ch,a

ndfu

ture

prom

ise.

Cur

r.m

olec

ular

med

icin

e9

(200

9).

2/2

JOU

RN

AL

OF

LAT E

XC

LASS

FILE

S,V

OL.

14,N

O.8

,AU

GU

ST20

153

AB

CD

T1G

dFL

AIR

FET

-PE

T

b

uT c

uF c

u

xx

xx

uu

u

uF c

Figu

re 1

; Fin

al p

lot

uT1G

dc

uFLA

IRc

Fig.

1.Sc

hem

atic

illus

tratin

gth

ere

latio

nbe

twee

nth

eim

age

obse

rvat

ions

D(to

p)an

dth

etu

mor

cell

dens

ityu

(bot

tom

).A

:A

ctua

lFL

AIR

scan

and

sche

mat

icof

the

tum

orce

llde

nsity

alon

gth

elin

ein

dica

ted

byth

ebl

ack

arro

w.

B,C

:B

inar

yse

gmen

tatio

nsof

the

visi

ble

tum

oran

dth

eir

rela

tion

toth

eun

know

nth

resh

old

valu

esu

T1G

dc

,uF

LAIR

c.D

:FE

T-PE

Tm

etab

olic

map

and

the

unkn

own

cons

tant

ofpr

opor

tiona

lity

b.

uT1

Gd

c

uF

LAIR

c B.

Mul

timod

alim

agin

gm

odel

We

extra

ctth

etu

mor

info

rmat

ion

from

T1G

dan

dFL

AIR

MR

Ian

dm

etab

olic

FET-

PET

map

s.Th

eM

RI

scan

spr

ovid

em

orph

olog

ical

info

rmat

ion

abou

tth

evi

sibl

etu

mor

inth

efo

rmof

bina

ryse

gmen

tatio

ns.T

heFE

Tsi

gnal

ispr

opor

tiona

lto

tum

orce

llde

nsity

with

anun

know

nco

nsta

ntof

prop

or-

tiona

lity

[11]

.A

rela

tion

betw

een

the

imag

eob

serv

atio

nsD

=y

T1G

d,y

FLA

IR,y

FE

T

and

tum

orce

llde

nsity

uis

sket

ched

inFi

g.1.

Sinc

eea

chof

the

scan

sca

ptur

ea

diff

eren

tphy

siol

ogic

alpr

oces

s,th

eob

serv

atio

nsar

eas

sum

edin

depe

nden

tan

dth

elik

elih

ood

can

beex

pres

sas

:

P(D

|,M

)=

P(y

T1G

d|,

M)P

(yF

LAIR|,

M)P

(yF

ET|,

M).

Ast

ocha

stic

imag

ing

mod

elF

kis

used

tode

fine

the

likel

ihoo

dfu

nctio

nfo

rea

chm

odal

ityyk

.Th

ebi

nary

segm

enta

tions

ys,s

2T

1Gd,

FLA

IR,

assi

gna

labe

ly

s i=

1to

each

voxe

lw

ithvi

sibl

etu

mor

and

ys i

=0

othe

rwis

e.Th

epr

obab

ility

ofob

serv

ing

ase

gmen

tatio

nys

with

asi

mul

ated

tum

orce

llde

nsity

uis

assu

med

asa

Ber

noul

lidi

strib

utio

n[2

2]:

P(ys

|,M

)=

Nd ys

Y i=1

P(y

s i|

,ui)

=

Nd ys

Y i=1

↵y

s ii

·(1

↵i)1

y

s i.

(4)

Her

e↵

iis

the

prob

abili

tyof

obse

rvin

gth

etu

mor

inth

eM

RI

scan

and

itis

assu

med

asa

doub

lelo

gist

icsi

gmoi

d:

↵i(u

i,u

s c)

=0.5

+0.5

·sig

n(u

i

us c)

1

e(u

i

us c)2

2 ↵

!,

(5)

whe

reu

s cde

note

san

unkn

own

cell

dens

ityth

resh

old

be-

low

whi

chtu

mor

indu

ced

chan

ges

are

not

visi

ble

inth

eM

RI

scan

,w

hile

the

term

2 ↵

repr

esen

tsun

certa

inty

inu

s c.

The

para

met

erN

d ys

deno

tes

the

set

ofvo

xels

used

for

the

likel

ihoo

dco

mpu

tatio

n.Th

eM

RI

scan

sw

ere

acqu

ired

atun

iform

1m

mre

solu

tion.

Toco

pew

ithpo

tent

ial

corr

elat

ions

betw

een

neig

hbou

ring

voxe

ls,

only

ever

yse

cond

voxe

lis

incl

uded

inN

d ys,

intro

duci

nga

corr

elat

ion

leng

thd

=2

mm

.Th

ebi

nary

segm

enta

tions

have

thre

eun

know

npa

ram

eter

s

FT1

Gd,

FF

LAIR

=u

T1G

dc

,uF

LAIR

c,

2 ↵.A

norm

aliz

edF

ET

sign

al

yFE

Tha

sco

ntin

uous

valu

esy

FE

Ti

2[0

,1]

whi

chca

nbe

rela

ted

with

the

tum

orde

nsity

ui

bya

Gau

ssia

ndi

strib

utio

n:

P(yF

ET|,

M)

=

Nd y

FE

TY i=

1

P(y

FE

Ti

|,u

i)=

Nd y

FE

TY i=

1

N(u

i

by

FE

Ti

,

2),

whe

reb

isan

unkn

own

cons

tant

ofpr

opor

tiona

lity

and

de

scrib

esth

eno

ise

inth

eFE

Tsc

an.

Toel

imin

ate

sign

alfr

oma

heal

thy

and

necr

otic

tissu

e,N

d yF

ET

cons

ists

ofth

evo

xels

incl

uded

inth

eT1

Gd

and

FLA

IRtu

mor

segm

enta

tions

,ex

clud

ing

the

tum

orne

crot

icco

re.

The

FET

scan

,ac

quire

dat

4.3

mm

reso

lutio

n,is

inte

rpol

ated

to1

mm

reso

lutio

n,le

adin

gto

aco

rrel

atio

nle

ngth

d=

4 .3

mm

.Th

eFE

Tsc

anin

trodu

ces

two

addi

tiona

lunk

now

npa

ram

eter

s F

FE

T=

b,

.Th

eun

know

npa

ram

eter

s

=

u,

FT1

Gd,

FF

LAIR,

FF

ET

are

assu

med

inde

pend

entw

ithun

iform

prio

rdi

strib

utio

nP

(|M

)gi

ven

inSu

pple

men

tary

Info

rmat

ion

(SI)

.The

tum

orce

llde

n-si

tyu( u

|Mu)

isco

mpu

ted

bya

mod

elM

uw

ithpa

ram

eter

s u

.Th

epa

ram

eter

s u

are

patie

nt-s

peci

fican

da

prob

abili

tydi

strib

utio

nof

thei

rpl

ausi

ble

valu

esis

infe

rred

from

tum

orob

serv

atio

ns(d

ata)

D· ·=

ykS k

=1

obta

ined

from

Sm

edic

alsc

ans.

We

post

ulat

eth

atth

em

odel

pred

ictio

nsu

and

each

imag

eob

serv

atio

nyk

are

rela

ted

bya

stoc

hast

icim

agin

gm

odel

Fk

with

para

met

ers F

kas

yk=

Fk u u

|Mu

," F

k

,

(6)

whe

re"

isa

pred

ictio

ner

ror

acco

untin

gfo

rm

od-

ellin

gan

dm

easu

rem

ent

unce

rtain

ties.

Para

met

ers

· ·=

u,

F1,·

··,

FSo

fthe

mod

elM

· ·=M

u,M

F1,·

··,M

FS

are

assu

med

tobe

unkn

own.

C.

Para

met

ers

estim

atio

nan

dun

cert

aint

ypr

opag

atio

n

Apr

ior

prob

abili

tydi

strib

utio

nfu

nctio

n(P

DF)

P(|M

)is

used

toin

corp

orat

ean

ypr

ior

info

rmat

ion

abou

t.

Bay

esia

nm

odel

calib

ratio

nup

date

sth

ispr

ior

info

rmat

ion

base

don

the

avai

labl

eda

taD

.The

upda

ted

post

erio

rPD

Fis

com

pute

dby

the

Bay

esth

eore

m:

P(|

D,M

)/

P(D

|,M

)·P

(|M

),(7

)

whe

reP(

D|,

M)

isth

elik

elih

ood

ofob

serv

ing

data

Dfr

omth

em

odel

Mfo

ra

give

nva

lue

of.

Inm

ost

case

san

anal

ytic

alex

pres

sion

for

Eq.(

7)is

nota

vaila

ble

and

sam

plin

gal

gorit

hms

are

used

toob

tain

sam

ple(

l),

l2

1,·

··,N

fr

omth

epo

ster

iorP

(|D

,M).

We

used

aTr

ansi

tiona

lMar

kov

Cha

inM

onte

Car

lo(T

MC

MC

)sam

plin

gal

gorit

hm[2

3],w

hich

itera

tivel

yco

nstru

cts

ase

ries

ofin

term

edia

tePD

Fs:

P j(

|D,M

)

P(D

|,M

)pj

·P(

|M),

(8)

whe

re0

=p 0

<p 1

<··

·<p m

=1

and

j=

1,·

··,m

is

age

nera

tion

inde

x.Th

ete

rmp j

cont

rols

the

conv

erge

nce

ofth

esa

mpl

ing

proc

edur

ean

dis

com

pute

dau

tom

atic

ally

byth

eTM

CM

Cal

gorit

hm.

TMC

MC

cons

truct

sa

larg

enu

mbe

rof

inde

pend

ent

chai

nsth

atex

plor

epa

ram

eter

spac

em

ore

effic

ient

lyth

antra

ditio

nal

sam

plin

gm

etho

ds[2

3]an

dal

low

para

llel

exec

utio

n.A

high

lypa

ralle

lim

plem

enta

tion

ofth

eTM

CM

Cal

gorit

hmis

prov

ided

byth

e

4Ufr

amew

ork

[24]

.Th

ein

ferr

edpa

ram

etric

unce

rtain

ties

are

prop

agat

edth

roug

h

u

Ref

eren

ces

1.St

upp,

R.e

tal.

Hig

h-gr

ade

glio

ma:

Esm

ocl

inic

alpr

actic

egu

idel

ines

ford

iagn

osis

,tre

atm

enta

ndfo

llow

-up.

Anna

lsO

ncol

.(2

014)

.

2.B

urne

t,N

.G.,

Tho

mas

,S.J

.,B

urto

n,K

.E.&

Jeff

erie

s,S.

J.D

efini

ngth

etu

mou

ran

dta

rget

volu

mes

for

radi

othe

rapy

.C

ance

rIm

agin

g4,

153–

161

(200

4).

3.St

upp,

R.e

tal.

Rad

ioth

erap

ypl

usco

ncom

itant

and

adju

vant

tem

ozol

omid

efo

rglio

blas

tom

a.N

ewE

ngl.

J.M

edic

ine

352,

987–

996

(200

5).

4.Pa

ulss

on,A

.K.e

tal.

Lim

ited

mar

gins

usin

gm

oder

nra

diot

hera

pyte

chni

ques

does

noti

ncre

ase

mar

gina

lfai

lure

rate

ofgl

iobl

asto

ma.

Am

.jou

rnal

clin

ical

onco

logy

37,1

77(2

014)

.

5.R

ockw

ell,

S.,D

obru

cki,

I.T.

,Kim

,E.Y

.,M

arris

on,S

.T.&

Vu,

V.T.

Hyp

oxia

and

radi

atio

nth

erap

y:pa

sthi

stor

y,on

goin

gre

sear

ch,a

ndfu

ture

prom

ise.

Cur

r.m

olec

ular

med

icin

e9

(200

9).

2/2

x

Ref

eren

ces

1.St

upp,

R.e

tal.

Hig

h-gr

ade

glio

ma:

Esm

ocl

inic

alpr

actic

egu

idel

ines

ford

iagn

osis

,tre

atm

enta

ndfo

llow

-up.

Ann

als

Onc

ol.

(201

4).

2.B

urne

t,N

.G.,

Tho

mas

,S.J

.,B

urto

n,K

.E.&

Jeff

erie

s,S.

J.D

efini

ngth

etu

mou

ran

dta

rget

volu

mes

for

radi

othe

rapy

.C

ance

rIm

agin

g4,

153–

161

(200

4).

3.St

upp,

R.e

tal.

Rad

ioth

erap

ypl

usco

ncom

itant

and

adju

vant

tem

ozol

omid

efo

rglio

blas

tom

a.N

ewE

ngl.

J.M

edic

ine

352,

987–

996

(200

5).

4.Pa

ulss

on,A

.K.e

tal.

Lim

ited

mar

gins

usin

gm

oder

nra

diot

hera

pyte

chni

ques

does

noti

ncre

ase

mar

gina

lfai

lure

rate

ofgl

iobl

asto

ma.

Am

.jou

rnal

clin

ical

onco

logy

37,1

77(2

014)

.

5.R

ockw

ell,

S.,D

obru

cki,

I.T.

,Kim

,E.Y

.,M

arri

son,

S.T.

&V

u,V.

T.H

ypox

iaan

dra

diat

ion

ther

apy:

past

hist

ory,

ongo

ing

rese

arch

,and

futu

repr

omis

e.C

urr.

mol

ecul

arm

edic

ine

9(2

009)

.

2/2

JOU

RN

AL

OF

LAT E

XC

LA

SSFI

LE

S,V

OL

.14,

NO

.8,A

UG

UST

2015

3

AB

CD

T1G

dFL

AIR

FET

-PE

T

b

uT c

uF c

u

xx

xx

uu

u

uF c

Figu

re 1

; Fin

al p

lot

uT1G

dc

uFLA

IRc

Fig.

1.Sc

hem

atic

illus

trat

ing

the

rela

tion

betw

een

the

imag

eob

serv

atio

nsD

(top

)an

dth

etu

mor

cell

dens

ityu

(bot

tom

).A

:A

ctua

lFL

AIR

scan

and

sche

mat

icof

the

tum

orce

llde

nsity

alon

gth

elin

ein

dica

ted

byth

ebl

ack

arro

w.

B,C

:B

inar

yse

gmen

tatio

nsof

the

visi

ble

tum

oran

dth

eir

rela

tion

toth

eun

know

nth

resh

old

valu

esu

T1G

dc

,uF

LAIR

c.D

:FE

T-PE

Tm

etab

olic

map

and

the

unkn

own

cons

tant

ofpr

opor

tiona

lity

b.

uT1

Gd

c

uF

LAIR

c B.

Mul

timod

alim

agin

gm

odel

We

extr

act

the

tum

orin

form

atio

nfr

omT

1Gd

and

FLA

IRM

RI

and

met

abol

icFE

T-PE

Tm

aps.

The

MR

Isc

ans

prov

ide

mor

phol

ogic

alin

form

atio

nab

out

the

visi

ble

tum

orin

the

form

ofbi

nary

segm

enta

tions

.The

FET

sign

alis

prop

ortio

nal

totu

mor

cell

dens

ityw

ithan

unkn

own

cons

tant

ofpr

opor

-tio

nalit

y[1

1].

Are

latio

nbe

twee

nth

eim

age

obse

rvat

ions

D=

yT1

Gd,y

FLA

IR,y

FE

T

and

tum

orce

llde

nsity

uis

sket

ched

inFi

g.1.

Sinc

eea

chof

the

scan

sca

ptur

ea

diff

eren

tphy

siol

ogic

alpr

oces

s,th

eob

serv

atio

nsar

eas

sum

edin

depe

nden

tan

dth

elik

elih

ood

can

beex

pres

sas

:

P(D

|,M

)=

P(y

T1G

d|,

M)P

(yF

LAIR|,

M)P

(yF

ET|,

M).

Ast

ocha

stic

imag

ing

mod

elF

kis

used

tode

fine

the

likel

ihoo

dfu

nctio

nfo

rea

chm

odal

ityyk

.Th

ebi

nary

segm

enta

tions

ys,s

2T

1Gd,

FLA

IR,

assi

gna

labe

ly

s i=

1to

each

voxe

lw

ithvi

sibl

etu

mor

and

ys i

=0

othe

rwis

e.T

hepr

obab

ility

ofob

serv

ing

ase

gmen

tatio

nys

with

asi

mul

ated

tum

orce

llde

nsity

uis

assu

med

asa

Ber

noul

lidi

stri

butio

n[2

2]:

P(ys

|,M

)=

Nd ys

Y i=1

P(y

s i|

,ui)

=

Nd ys

Y i=1

↵y

s ii

·(1

↵i)1

y

s i.

(4)

Her

e↵

iis

the

prob

abili

tyof

obse

rvin

gth

etu

mor

inth

eM

RI

scan

and

itis

assu

med

asa

doub

lelo

gist

icsi

gmoi

d:

↵i(u

i,u

s c)

=0.5

+0.5

·sig

n(u

i

us c)

1

e(u

i

us c)2

2 ↵

!,

(5)

whe

reu

s cde

note

san

unkn

own

cell

dens

ityth

resh

old

be-

low

whi

chtu

mor

indu

ced

chan

ges

are

not

visi

ble

inth

eM

RI

scan

,w

hile

the

term

2 ↵

repr

esen

tsun

cert

aint

yin

us c.

The

para

met

erN

d ys

deno

tes

the

set

ofvo

xels

used

for

the

likel

ihoo

dco

mpu

tatio

n.T

heM

RI

scan

sw

ere

acqu

ired

atun

ifor

m1

mm

reso

lutio

n.To

cope

with

pote

ntia

lco

rrel

atio

nsbe

twee

nne

ighb

ouri

ngvo

xels

,on

lyev

ery

seco

ndvo

xel

isin

clud

edin

Nd ys,

intr

oduc

ing

aco

rrel

atio

nle

ngth

d=

2m

m.

The

bina

ryse

gmen

tatio

nsha

veth

ree

unkn

own

para

met

ers

F

T1G

d,

FF

LAIR

=u

T1G

dc

,uF

LAIR

c,

2 ↵.A

norm

aliz

edF

ET

sign

al

yFE

Tha

sco

ntin

uous

valu

esy

FE

Ti

2[0

,1]

whi

chca

nbe

rela

ted

with

the

tum

orde

nsity

ui

bya

Gau

ssia

ndi

stri

butio

n:

P(yF

ET|,

M)

=

Nd y

FE

TY i=

1

P(y

FE

Ti

|,u

i)=

Nd y

FE

TY i=

1

N(u

i

by

FE

Ti

,

2),

whe

reb

isan

unkn

own

cons

tant

ofpr

opor

tiona

lity

and

de

scri

bes

the

nois

ein

the

FET

scan

.To

elim

inat

esi

gnal

from

ahe

alth

yan

dne

crot

ictis

sue,

Nd y

FE

Tco

nsis

tsof

the

voxe

lsin

clud

edin

the

T1G

dan

dFL

AIR

tum

orse

gmen

tatio

ns,

excl

udin

gth

etu

mor

necr

otic

core

.T

heFE

Tsc

an,

acqu

ired

at4.

3m

mre

solu

tion,

isin

terp

olat

edto

1m

mre

solu

tion,

lead

ing

toa

corr

elat

ion

leng

thd

=4 .

3m

m.

The

FET

scan

intr

oduc

estw

oad

ditio

nalu

nkno

wn

para

met

ers F

FE

T=

b,

.T

heun

know

npa

ram

eter

s

=

u,

FT1

Gd,

FF

LAIR,

FF

ET

are

assu

med

inde

pend

entw

ithun

ifor

mpr

ior

dist

ribu

tion

P(

|M)

give

nin

Supp

lem

enta

ryIn

form

atio

n(S

I).T

hetu

mor

cell

den-

sity

u( u

|Mu)

isco

mpu

ted

bya

mod

elM

uw

ithpa

ram

eter

s u

.T

hepa

ram

eter

s u

are

patie

nt-s

peci

fican

da

prob

abili

tydi

stri

butio

nof

thei

rpl

ausi

ble

valu

esis

infe

rred

from

tum

orob

serv

atio

ns(d

ata)

D· ·=

ykS k

=1

obta

ined

from

Sm

edic

alsc

ans.

We

post

ulat

eth

atth

em

odel

pred

ictio

nsu

and

each

imag

eob

serv

atio

nyk

are

rela

ted

bya

stoc

hast

icim

agin

gm

odel

Fk

with

para

met

ers F

kas

yk=

Fk u u

|Mu

," F

k

,

(6)

whe

re"

isa

pred

ictio

ner

ror

acco

untin

gfo

rm

od-

ellin

gan

dm

easu

rem

ent

unce

rtai

ntie

s.Pa

ram

eter

s

· ·=

u,

F1,·

··,

FSo

fthe

mod

elM

· ·=M

u,M

F1,·

··,M

FS

are

assu

med

tobe

unkn

own.

C.

Para

met

ers

estim

atio

nan

dun

cert

aint

ypr

opag

atio

n

Apr

ior

prob

abili

tydi

stri

butio

nfu

nctio

n(P

DF)

P(|M

)is

used

toin

corp

orat

ean

ypr

ior

info

rmat

ion

abou

t.

Bay

esia

nm

odel

calib

ratio

nup

date

sth

ispr

ior

info

rmat

ion

base

don

the

avai

labl

eda

taD

.The

upda

ted

post

erio

rPD

Fis

com

pute

dby

the

Bay

esth

eore

m:

P(|D

,M

)/

P(D

|,M

)·P

(|M

),(7

)

whe

reP(

D|,

M)

isth

elik

elih

ood

ofob

serv

ing

data

Dfr

omth

em

odel

Mfo

ra

give

nva

lue

of.

Inm

ost

case

san

anal

ytic

alex

pres

sion

for

Eq.

(7)

isno

tava

ilabl

ean

dsa

mpl

ing

algo

rith

ms

are

used

toob

tain

sam

ple(

l),

l2

1,·

··,N

fr

omth

epo

ster

ior

P(|D

,M).

We

used

aTr

ansi

tiona

lMar

kov

Cha

inM

onte

Car

lo(T

MC

MC

)sam

plin

gal

gori

thm

[23]

,whi

chite

rativ

ely

cons

truc

tsa

seri

esof

inte

rmed

iate

PDFs

:

P j(

|D,M

)

P(D

|,M

)pj

·P(

|M),

(8)

whe

re0

=p 0

<p 1

<··

·<p m

=1

and

j=

1,·

··,m

is

age

nera

tion

inde

x.T

hete

rmp j

cont

rols

the

conv

erge

nce

ofth

esa

mpl

ing

proc

edur

ean

dis

com

pute

dau

tom

atic

ally

byth

eT

MC

MC

algo

rith

m.

TM

CM

Cco

nstr

ucts

ala

rge

num

ber

ofin

depe

nden

tch

ains

that

expl

ore

para

met

ersp

ace

mor

eef

ficie

ntly

than

trad

ition

alsa

mpl

ing

met

hods

[23]

and

allo

wpa

ralle

lex

ecut

ion.

Ahi

ghly

para

llel

impl

emen

tatio

nof

the

TM

CM

Cal

gori

thm

ispr

ovid

edby

the

4Ufr

amew

ork

[24]

.T

hein

ferr

edpa

ram

etri

cun

cert

aint

ies

are

prop

agat

edth

roug

h

POST

ERIO

RLI

KELI

HO

OD

PRIO

R

DRAFTto

tum

orce

llde

nsity

(11)

.A

pros

pect

ive

phas

eII

stud

y(3

)de

mon

stra

ted

that

dose

esca

latio

nba

sed

onFE

T-P

ET

en-

hanc

emen

tdel

inea

test

hetu

mor

stru

ctur

ebe

tter

than

unifo

rmm

argi

ns,t

hus

lead

ing

tolo

wer

radi

atio

nto

xici

ty.

Still

,it

did

not

incr

ease

the

prog

ress

ion-

free

surv

ival

.O

nepo

ssib

leex

pla-

natio

nis

that

FET

scan

show

saba

selin

esig

nala

lsoin

norm

altis

sue,

whi

chto

geth

erw

ithth

era

ther

poor

reso

lutio

nof

PET

limits

itsab

ility

todi

stin

guish

betw

een

heal

thy

and

norm

altis

sue

inre

gion

sof

low

infil

trat

ion

inth

etu

mor

perip

hery

.T

hest

anda

rdRT

plan

scan

beim

prov

edby

inco

rpor

atin

gin

for-

mat

ion

from

com

puta

tiona

ltum

orm

odel

s(12

,13)

.Mos

tbra

intu

mor

grow

thm

odel

sar

eba

sed

onth

eFi

sher

-Kol

mog

orov

(FK

)eq

uatio

n(1

4).

The

sem

odel

s,ca

libra

ted

agai

nst

patie

ntm

edic

alsc

ans,

prov

ide

estim

ates

oftu

mor

infil

trat

ion

that

exte

ndth

ein

form

atio

nav

aila

ble

inm

edic

alim

ages

and

can

guid

eth

epe

rson

aliz

edRT

desig

ns.

Des

pite

grea

tad

vanc

esin

the

desig

nof

tum

orgr

owth

mod

els

(14–

18)

criti

calq

uest

ions

rem

ains

for

the

appl

icab

ility

ofth

ese

mod

els,

such

asho

wto

link

mod

elfe

atur

es(e

.g.

tum

orce

llde

nsity

)to

clin

ical

imag

eob

serv

atio

ns.

Cur

rent

appr

oach

esfo

rcal

ibra

ting

glio

ma

mod

els

cons

ider

vario

usde

term

inist

ic(1

3,14

,19

,20

)an

dpr

obab

ilist

icB

ayes

ian

(21,

22)

met

hods

for

esta

blish

ing

this

link.

In(1

3,14

,19–

21),

auth

ors

assu

me

afix

edtu

mor

cell

dens

ityat

the

tum

orbo

rder

svisi

ble

inT

1Gd

and

FLA

IRsc

ans

and

the

mod

elpa

ram

eter

sar

ees

timat

edby

fittin

gth

evo

lum

e(1

9,20

)or

shap

e(1

3,21

)of

the

visib

lele

sion.

How

ever

,the

tum

orce

llde

nsity

varie

sal

ong

the

visib

letu

mor

outli

nes

due

toan

atom

ical

rest

rictio

nsan

din

hom

ogen

eous

grow

thpa

tter

n.A

Bay

esia

nap

proa

chac

coun

ting

forv

aryi

ngtu

mor

cell

dens

itywa

spr

opos

edin

(22)

.A

llth

ese

calib

ratio

nsho

weve

rus

eM

RI

scan

sfr

omat

leas

ttw

otim

epo

ints

,mak

ing

them

unsu

itabl

efo

rre

alcl

inic

alse

ttin

g,w

here

only

scan

sac

quire

dat

singl

epr

eope

rativ

etim

epo

int

are

avai

labl

e.In

this

pape

rwe

pres

ent

asy

stem

atic

Bay

esia

nfr

amew

ork

tode

velo

pro

bust

tum

orgr

owth

mod

els

info

rmed

from

clin

ical

imag

ing

feat

ures

.O

urap

proa

chov

erco

mes

limita

tions

spec

ific

todi

ere

ntim

agin

gm

odal

ities

and

intu

rnin

tegr

ates

thei

rin

form

atio

nto

calib

rate

the

tum

orgr

owth

mod

els

for

the

RTpl

anni

ng.

We

com

bine

com

plem

enta

ryin

form

atio

nfro

mst

ruc-

tura

lMR

Iand

func

tiona

lFET

-PET

met

abol

icm

aps,

acqu

ired

ata

singl

etim

epo

int,

toid

entif

yth

epa

tient

-spe

cific

tum

orce

llde

nsity

.O

urB

ayes

ian

appr

oach

infe

rsm

odel

ing

and

imag

-in

gpa

ram

eter

sun

der

unce

rtai

ntie

sar

ising

from

mea

sure

men

tan

dm

odel

ing

erro

rs.

We

prop

agat

eth

ese

unce

rtai

ntie

sto

mod

elpr

edic

tions

toob

tain

robu

stes

timat

esof

the

tum

orce

llde

nsity

toge

ther

with

confi

denc

ein

terv

als

that

can

beus

edfo

rpe

rson

aliz

edRT

plan

ning

.T

hees

timat

edpa

tient

-spe

cific

tum

orce

llde

nsity

oer

san

adva

ntag

ein

dete

rmin

ing

mar

gins

ofth

eC

TV

asw

ella

sre

gion

sfo

rdo

sees

cala

tion.

Ast

udy

cond

ucte

don

asm

allc

linic

alpo

pula

tion

isus

edto

asse

ssth

ebe

nefit

sof

the

pers

onal

ized

RTpl

ans

over

stan

dard

prot

ocol

s.

1.B

ayes

ian

mod

elpe

rson

aliz

atio

n

The

tum

orce

llde

nsity

u(◊ u|M

u)

isco

mpu

ted

bya

mod

elM

u

with

para

met

ers

◊ u.

The

para

met

ers

◊ uar

epa

tient

-spe

cific

and

apr

obab

ility

dist

ribut

ion

ofth

eir

plau

sible

valu

esis

in-

ferr

edfro

mtu

mor

obse

rvat

ions

(dat

a)D

· ·=y

kS k

=1

obta

ined

fromS

med

ical

scan

s.W

epos

tula

teth

atth

emod

elpr

edic

tions

uan

dea

chim

age

obse

rvat

ion

ykar

ere

late

dby

ast

ocha

stic

imag

ing

mod

elFk

with

para

met

ers

◊ Fk

asyk

=Fk! u! ◊ u

|Mu

" ,Á! ◊ F

k

"",

[1]

whe

reÁ

isa

pred

ictio

ner

rora

ccou

ntin

gfo

rmod

ellin

gan

dm

ea-

sure

men

tun

cert

aint

ies.

Para

met

ers

◊· ·=

◊u,◊F

1,···,◊F

S

ofth

em

odelM

· ·=M

u,M

F1,···,M

FS

are

assu

med

tobe

unkn

own.

A.

Par

amet

ers

estim

atio

nan

dun

cert

aint

ypr

opag

atio

n.A

prio

rpr

obab

ility

dist

ribut

ion

func

tion

(PD

F)P(

◊|M

)is

used

toin

corp

orat

ean

ypr

ior

info

rmat

ion

abou

t◊.

Bay

esia

nm

odel

calib

ratio

nup

date

sth

ispr

ior

info

rmat

ion

base

don

the

avai

labl

eda

taD

.T

heup

date

dpo

ster

ior

PDF

isco

mpu

ted

byth

eB

ayes

theo

rem

:P(

◊|D,M

)ÃP(D|◊,M

)·P(

◊|M

),[2

]

whe

reP(D|◊,M

)ist

helik

elih

ood

ofob

serv

ing

data

Dfro

mth

em

odelM

for

agi

ven

valu

eof

◊.

Inm

ost

case

san

anal

ytic

alex

pres

sion

forE

q.(2

)isn

otav

aila

ble

and

sam

plin

gal

gorit

hms

are

used

toob

tain

sam

ple

◊(l

) ,l

œ1,···,N

fro

mth

epo

ste-

rior

P(◊|D,M

).W

eus

eda

Tran

sitio

nalM

arko

vC

hain

Mon

teC

arlo

(TM

CM

C)

sam

plin

gal

gorit

hm(2

3),w

hich

itera

tivel

yco

nstr

ucts

ase

ries

ofin

term

edia

tePD

Fs:

P j(◊|D,M

)≥P(D|◊,M

)pj·P

(◊|M

),[3

]

whe

re0

=p0<p1<

···<

pm

=1

andj

=1,···,m

is

age

nera

tion

inde

x.T

hete

rmpj

cont

rols

the

conv

erge

nce

ofth

esa

mpl

ing

proc

edur

ean

dis

com

pute

dau

tom

atic

ally

byth

eT

MC

MC

algo

rithm

.T

MC

MC

cons

truc

tsa

larg

enu

mbe

rof

inde

pend

ent

chai

nsth

atex

plor

epa

ram

eter

spac

em

ore

eci

ently

than

trad

ition

alsa

mpl

ing

met

hods

(23)

and

allo

wpa

ralle

lexe

cutio

n.A

high

lypa

ralle

lim

plem

enta

tion

ofth

eT

MC

MC

algo

rithm

ispr

ovid

edby

the

4U

fram

ewor

k(2

4).

The

infe

rred

para

met

ricun

cert

aint

ies

are

prop

agat

edth

roug

hth

em

odelM

toob

tain

robu

stpo

ster

ior

pred

ictio

nsab

outu,

give

nby

the

PDF:

P(u|

D,M

)=⁄

P(u|

◊,M

)·P

(◊|D,M

)d◊,

[4]

orby

simpl

ified

mea

sure

ssuc

has

them

eanµu

=E

[u(◊

)]©m

1an

dva

rianc

e‡

2 u=E

[u2 (

◊)]

≠m

2 1©m

2≠m

2 1,de

rived

from

the

first

two

mom

entsm

k,k

=1,

2:

mk

=⁄

! u(◊|M

)" k·P

(◊|D,M

)d◊

¥1 N

N ÿ l=1

! u(◊(l

) |M)" k

,[5

]

whe

re

deno

tes

the

spac

eof

allu

ncer

tain

para

met

ers.

B.

Tum

orgr

owth

mod

el.T

umor

mod

els

ofva

rious

com

plex

ityca

nbe

pers

onal

ized

usin

gth

eB

ayes

ian

appr

oach

desc

ribed

abov

e.H

ere,

we

mod

elu(

◊ u|M

u)

with

the

FKm

odel

whi

chde

scrib

esan

isotr

opic

tum

orgr

owth

inth

ebr

ain

œ

R3

as:

ˆu ˆt

·(D

Òu)

+flu

(1≠

u),

in

[6]

Òu·n

=0,

inˆ

,

[7]

whe

reu

=u

i(t

)#

Vox

els

i=1

andui(t

[0,1

]is

ano

rmal

ized

tum

orce

llde

nsity

attim

et

and

voxe

li=

(ix,iy,iz)œ

.

The

term

fl[1/day]d

enot

estu

mor

prol

ifera

tion

rate

.T

hetu

mor

infil

trat

ion

into

the

surr

ound

ing

tissu

esis

mod

eled

byth

ete

nsor

D=

DiI

#Vox

els

i=1

whe

reI

isa

3◊

3id

entit

ym

atrix

and

Di=

IDg

ifi

œgray,

Dw

ifi

œwhite,

0ifi/œ

gray

fiwhite.

[8]

The

term

sDw

andDg

deno

tetu

mor

infil

trat

ion

inw

hite

and

gray

mat

ter

and

weas

sum

eDw

=10Dg[m

m2 /day](

12).

The

2|

ww

w.p

nas.

org/

cgi/

doi/

10.1

073/

pnas

.XX

XX

XX

XX

XX

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Lipk

ová

etal

.

Fig.

1.O

verv

iew

ofth

ein

fere

nce

fram

ewor

k.I)

Med

ical

imag

essh

owpr

eope

rativ

epa

tient

scan

s:(I

.A)

3Dre

cons

truc

tion

ofT

1Gd

imag

esan

d(I

.B)

slic

esac

ross

all

mod

aliti

es.

Tum

orob

serv

atio

ns(e

.g.,

segm

enta

tions

)ex

trac

ted

from

each

mod

ality

are

illus

trat

edin

(I.C

).II

)C

ompu

tatio

nal

med

icin

ein

clud

esa

tum

orgr

owth

mod

elMu

(II.B

),w

hich

sim

ulat

estu

mor

evol

utio

nin

the

patie

ntan

atom

y(I

I.A),

and

imag

ing

mod

elMI

(II.E

)w

hich

rela

tes

the

imag

eob

serv

atio

nsw

ithth

em

odel

edtu

mor

cell

dens

ityu.

Subp

lot

(II.D

)sh

ows

asc

hem

atic

repr

esen

tatio

nof

the

actu

altu

mor

cell

dens

ityal

ong

the

dash

edlin

esh

own

in(I

.C)

and

itsre

latio

nto

each

tum

orob

serv

atio

nav

aila

ble

from

the

med

ical

scan

s.T

heun

know

n,pa

tient

-spe

cific

para

met

ers

for

each

mod

elar

elis

ted

inTa

bles

(II.C

,F).

III)

Bay

esia

nin

fere

nce

isus

edto

iden

tify

the

prob

abili

tydi

stri

butio

nsof

the

unkn

own

para

met

ers,

acco

untin

gfo

rth

em

odel

ing

and

mea

sure

men

tun

cert

aint

ies.

Para

met

ric

unce

rtai

ntie

sar

eth

enpr

opag

ated

toob

tain

robu

stpr

edic

tions

abou

tpa

tient

-spe

cific

tum

orce

llde

nsiti

es.

The

mos

tpr

obab

letu

mor

cell

dens

ity,

give

nby

the

max

imum

apo

ster

ior

(MA

P)es

timat

e,is

show

nin

(III

.A,B

),w

hile

the

mea

nan

dst

anda

rdde

viat

ion

(std

)ar

esh

own

in(I

II.B

).IV

)Pe

rson

aliz

edR

adio

ther

apy

uses

the

patie

nt-s

peci

ficpr

edic

tions

toim

prov

edo

se-d

istr

ibut

ion

and

esca

latio

nde

sign

.Aco

mpa

riso

nof

ast

anda

rdan

dpe

rson

aliz

eddo

sedi

stri

butio

nsis

show

nin

(IV.

A-C

).T

here

gion

sof

estim

ated

high

tum

orce

llde

nsiti

esar

em

arke

dby

the

oran

geis

ocon

tour

in(I

V.D

,F).

Obs

erve

dtu

mor

recu

rren

ces

inT

1Gd

and

FLA

IR,m

arke

dby

the

pink

and

yello

wcu

rves

in(I

V.E

,F),

are

used

toco

mpa

reth

etr

eatm

ent

plan

s.T

hepe

rson

aliz

edpl

ansp

ares

mor

ehe

alth

ytis

sue,

whi

leac

hiev

ing

tum

orco

vera

ges

com

para

ble

toth

est

anda

rdpr

otoc

olan

dgu

ides

the

desi

gnof

pers

onal

ized

dose

esca

latio

npl

ans.

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

4

θu = Dw, ρ, T, icx, icy, icz are considered unknown andpatient-specific. The model is implemented in a 3D extensionof the multi-resolution adapted grid solver [29] with a typicalsimulation time of 1-3 minutes using 2 cores. An overview ofthe model Mu and its parameters is shown in Fig. 1 (II. A-C).

B. Multimodal imaging model

We consider routinely acquired T1 gadolinium enhanced(T1Gd) and fluid attenuation inversion recovery (FLAIR)MRI scans in combination with FET-PET maps. A stochasticimaging model MI is designed to relate model predictionsof the tumor cell density u and the tumor observationsD = yT1Gd, yFLAIR, yFET available from the medical scans.Here, y denotes a vector of tumor observations obtained from acertain image modality, yi is an entry in y and i enumerates allvoxels in the given image. A voxel i corresponds to the samelocation (ix, iy, iz) in each scan and the simulation domain Ω.See Fig. 1 for an overview of all the imaging modalities (I.B),corresponding tumor observations (I.C) and their relation totumor cell density u (II.D).The MRI scans provide morphological information aboutthe visible tumor in the form of binary segmentations. Thesegmentation ys, s ∈ T1Gd, FLAIR assigns a label ysi = 1to each voxel with visible tumor and ysi = 0 otherwise. Theprobability of observing a segmentation ys with a simulated tu-mor cell density u is modeled by a Bernoulli distribution [28]:

P(ys|θ,M) =

N∏

i=1

P(ysi |θ, ui) =

N∏

i=1

αysii · (1− αi)1−ysi . (4)

Here αi is the probability of observing the tumor in the MRIscan and it is assumed to be a double logistic sigmoid:

αi(ui, usc) = 0.5 + 0.5 · sign(ui − usc)

(1− e−

(ui−usc)2

σ2α

), (5)

where usc denotes an unknown cell density threshold belowwhich tumor cells are not visible in the MRI scan, whilethe term σ2

α represents uncertainty in usc. The parametersθIT1Gd , θIFLAIR = uT1Gd

c , uFLAIRc , σ2

α are assumed unknown andpatient-specific.The FET-PET signal is proportional to tumor cell density withan unknown constant of proportionality [13], [14]. Let yFET bethe normalized FET-PET signal after subtracting the patient-specific baseline signal from healthy tissue i.e., yFET

i ∈ [0, 1]and b the corresponding constant of proportionality. We as-sume that yFET

i can be related with the modeled tumor celldensity ui as

yFETi =

1

bui + ε, (6)

where ε is prediction error accounting for modeling andmeasurement uncertainties. Because of the noisy nature of thePET scan, the error term is assumed to be a normal distributionε ∼ N (0, σ2). The probability of observing the PET signalyFET with the simulated tumor cell density u is then modeled as

P(yFET |θ,M) =

N∏

i=1

P(yFETi |θ, ui) =

N∏

i=1

N(yFETi −

1

bui, σ

2

). (7)

The PET scan, acquired at 4mm resolution, is registered tothe MRI scans with 1mm resolution. To justify the product in

Eq. (7) only voxels separated by distance 4mm are used. Theparameters θIFET = b, σ are unknown and patient-specific.An overview of the imaging model MI and its parameters isshown Fig. 1 (II. D-F).

C. Parameters estimation and uncertainty propagation

The parameters θ = θu, θI of the model M = Mu,MIwhere I = IT1Gd, IFLAIR, IPET, are assumed unknown and aprobability distribution function (PDF) is used to quantify theirplausible values. A prior PDF P(θ|M) is used to incorporateany prior information about θ. Bayesian model calibrationupdates this prior information based on the available data D.The updated posterior PDF is computed by the Bayes theorem:

P(θ| D, M) ∝ P(D| θ,M) · P(θ|M), (8)

where P(D|θ,M) is the likelihood of observing data D fromthe model M for a given value of θ. Since each of the medicalscans captures a different physiological process, the tumorobservations are assumed independent and the likelihood func-tion can be expressed as:

P(D|θ,M) = P (yT1Gd|θ,M) · P (yFLAIR|θ,M) · P (yFET |θ,M) .

The prior PDF is assumed uniform with details specified inthe SM. Since an analytical expression for Eq. (8) is notavailable, sampling algorithms are used to obtain samplesθ(l), l ∈ 1, · · · , S from the posterior P(θ|D,M). We useTransitional Markov Chain Monte Carlo (TMCMC) algorithm[30] which iteratively constructs series of intermediate PDFs:

Pj(θ|D,M) ∼ P(D|θ,M)pj · P(θ|M), (9)

where 0 = p0 < p1 < · · · < pm = 1 and j = 1, · · · ,m isa generation index. The term pj controls the convergence ofthe sampling procedure and is computed automatically by theTMCMC algorithm. TMCMC method constructs a large num-ber of independent chains that explore parameter space moreefficiently than traditional sampling methods [30] and allowparallel execution. We use a highly parallel implementation ofthe TMCMC algorithm provided by the Π4U framework [31].The inferred parametric uncertainties are propagated throughthe model M to obtain robust predictions about u given by:

P(u| D, M) =

Θ

P(u| θ,M) · P(θ|D, M) dθ, (10)

or by simplified measures such as the mean µu = E[u(θ)] ≡m1 and variance σ2

u = E[u2(θ)] − m21 ≡ m2 − m2

1 derivedfrom the first two moments mk, k = 1, 2:

mk =

Θ

(u(θ|M)

)k · P(θ|D,M) dθ ≈ 1

S

S∑

l=1

(u(θ(l)|M)

)k,

where Θ is the space of all unknown parameters. The mostprobable tumor cell density estimate, is given by the maximuma posteriori (MAP) defined as uMAP = argmaxθ P(u| D, M).

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

5

MAP Mean stdGT

Synthetic 01

MAP Mean std

MR

IM

RI+PET

INPU

T

Observations

A)

B)

C) D) E)

F) G) H)— T1Gd — FLAIR

Fig. 2. Synthetic test case. Orange box: A 2D slice of the synthetic groundtruth (GT) tumor cell density (A) and corresponding image observations (B):the normalized FET-PET signal with additive noise (red-blue color scale)and the outlines of the T1Gd (yellow) and FLAIR (pink) binary tumorsegmentations. Blue box: Results of the Bayesian calibration with multimodaldata. The results are in close agreement with GT data. Green box: Calibrationresults using only the MRI data, which do not provide enough information torecover the tumor cell density profile correctly.

III. RESULTS

The Bayesian framework described in the previous section isfirst applied to synthetic data to test sensitivity of the inferenceand to show the role of multimodal image information on themodel calibration. Afterwards, clinical data are used to inferpatient-specific tumor cell densities and to design personalizedRT plans. Tumor recurrence patterns are used to compare theproposed and standard RT plans. The software and data usedin this paper are publicly available1.

A. Sensitivity study

The model Mu is used to generate a 3D synthetic tumorin a brain anatomy obtained from [32] using the parametersreported in Table I. A 2D slice of the simulated ’ground-truth’(GT) tumor cell density is shown in Fig. 2 (A). The syntheticT1Gd and FLAIR tumor segmentations are constructed bythresholding the GT tumor cell density at uT1Gd

c = 0.7 anduFLAIRc = 0.25. The FET-PET signal is designed by taking the

GT tumor cell density within the T1Gd and FLAIR segmen-tations, adding Gaussian noise with zero mean and standarddeviation (std) σ, and normalizing the result. The value of σis chosen as average std of the FET signal from the healthybrain tissue. The generated synthetic image observations areshown in Fig. 2 (B).A sensitivity study for the number of samples is performed,indicating that 6000 samples is adequate for the model. Themanifold of the inferred probability distribution is presentedin Fig. 3 and the calibrated parameters are given in Table I.As seen from the probability distribution manifold, tumorobservations from a single time point do not contain enoughinformation to infer time dependent parameters (Dw, ρ, T )exactly, since different combinations of these parameters can

1https://github.com/JanaLipkova/GliomaSolver

Synthetic Small All

data

Dw Tρ σ

T

σ

ρ

Dw

ρ

T

Fig. 3. The results of the Bayesian calibration for the synthetic case. Abovethe diagonal: Projection of the TMCMC samples of the posterior distributionP(θ|D,M) in 2D space of the indicated parameters. The colors indicatelikelihood values of the samples. The number in each plot shows the Pearsoncorrelation coefficient between the parameter pairs. The colored triangles markthe four selected parameters used in Fig. 4. Diagonal: Marginal distributionsobtained with Gaussian kernel estimates. Boxplot whiskers demarcate the 95%percentiles. Below the diagonal: Projected densities in 2D parameter spaceconstructed by 2D Gaussian kernel estimates. The black dots mark the valuesused to generate the synthetic data.

(0.095, 0.022, 364)(0.16, 0.036, 218)(0.32, 0.069, 111) (0.049, 0.01, 761)

Fig. 4. Insensitivity of the tumor cell density to the speed of the growth.Shown are slices of the tumor cell densities computed with different combi-nations of parameters (Dw, ρ, T ) as listed at the bottom of each plot. Thesecorrespond to the colored triangles in Fig. 3. Despite significant variationin the parameter values, all combinations lead to very similarly-appearingtumors. In the absence of temporal information, the time dependent parametersare not identifiable, since the model calibration cannot distinguish betweencompensating effects among the parameters that affect the dynamics. Asshown here, tumors with similar Dw/ρ and Tρ values appear very similar toone another (here Dw/ρ ≈ 4.5, Tρ ≈ 7.7). Hence, the Bayesian calibrationidentifies the probability distribution of all the plausible values.

generate the same tumor cell density as shown in Fig. 4.The lack of identifiability of (Dw, ρ, T ) poses a challengefor calibration approaches searching only for a single valueof θ. Instead, Bayesian calibration provides fairer estimate;the inferred probability distribution shows a strong correla-tion between the parameters (Dw, ρ, T ), while the high stdvalues imply low confidence in these parameters. On theother hand, parameters that affect the tumor spatial pattern,e.g. (icx, icy, icz), are identified with high accuracy, whichis reflected by their low std. The image related parameters

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

6

TABLE IRESULTS OF THE BAYESIAN CALIBRATION FOR THE SYNTHETIC CASE GENERATED WITH THE GROUND TRUTH (GT) VALUES. REPORTED IS MAXIMUM A

POSTERIORI (MAP), MEAN AND STANDARD DEVIATION (STD). THE UNITS ARE Dw ∼ mm2/day; ρ ∼ 1/day; T ∼ day; AND icx , icy , icz ∼ mm.

Dw ρ T icx icy icz σ b uT1Gdc uFLAIR

c σ2α

GT 0.1300 0.0250 302.00 80.64 171.52 128.00 0.0230 0.8800 0.7000 0.2500 -MAP 0.1226 0.0296 271.13 80.61 171.55 127.92 0.0280 0.9884 0.8440 0.4874 0.0502mean 0.1543 0.0361 253.85 80.64 171.47 127.80 0.0294 0.9775 0.8325 0.4841 0.0505std 0.0530 0.0125 107.59 0.1280 0.1024 0.2048 0.0022 0.0139 0.0132 0.0076 0.0004

(uT1Gdc , uFLAIR

c , b, σ) are slightly overestimated due to the as-sumed correlation length and the effect of the complex brainanatomy. The role of the anatomy is discussed further in theSM.The inferred parametric uncertainties are propagated to obtainrobust posterior predictions about the tumor cell density shownin Fig. 2 (C-E). Despite the large parametric uncertainties,the MAP and mean tumor cell density estimates are almostindistinguishable from the GT tumor. The low std valuesimply that, using our Bayesian formulation, the informationcontained in multimodal data is sufficient to infer tumor celldensity from single time point scans.For comparison, if the model calibration is performed onlywith the MRI data, i.e. D = yT1Gd, yFLAIR, the estimatedtumor cell densities shown in Fig. 2 (F-G) deviate from theGT tumor mainly in the central part of the lesion, whichis also consistent with the regions of high std shown inFig. 2 (H). Nonetheless, the outlines of the predicted tumorare similar to those of the GT tumor. This is because thetumor morphology is mainly constrained by the MRI data,since the FET-PET signal coincides with the baseline signalof the healthy tissue in the regions of lower tumor infiltration.On the other hand, the FET-PET signal constrains the tumorcell density profile in the regions of high tumor infiltration.This highlights the importance of integrating structural andfunctional image information for the model calibration whendealing with single time point data.

B. Patient study

A retrospective clinical study is conducted on 8 patientsdiagnosed with GBM. Scans of the patients P1-P8 are shownFig. 5 and the details about acquisition protocols and imageprocessing are reported in the SM. All patients received thestandard treatment, surgery followed by combined radio- andchemotherapy [2]. There was no visible tumor after the treat-ment and patients were regularly monitored for recurrence.The preoperative scans shown in Fig. 5 (A-D) are used for theBayesian inference. The calibrated parameters are reported inTable 1 in the SM and the posterior, patient-specific predictionsfor the tumor cell densities are shown in Fig. 5 (E-G).These patient-specific predictions provide estimates about thepossible tumor cell migration pathways in the surrounding ofthe visible tumor, constrained by the patient anatomy and theavailable tumor observations. The predicted tumor infiltrationpathways can be validated by the patterns of the first detectedtumor recurrence shown in Fig. 5 (H), where the outlines of thepredicted infiltrations (blue) and recurrence tumors (pink) are

depicted. For patients P5,P7,P8 the model accurately predictstumor infiltration also inside the healthy-appearing collateralhemisphere, whereas for cases P1-P4 the tumor predictions arecorrectly restricted only to one hemisphere. Moreover, despitea similar appearance of the preoperative tumors in patientsP1 and P2, the model correctly predicts more infiltrativebehaviour for the patient P1, which is consistent with therecurrence pattern. The high confidence in the predictions isreflected by low std shown in Fig. 5 (F).

C. Personalized radiotherapy design

The patient-specific tumor cell density predictions canbe used to design margins of the CTV and to identifyhigh cellularity regions that could mark areas of increasedradioresistance. The personalized RT plan can be based eitheron the most probable scenario given by MAP estimate or theworst case scenario given as a sum of the mean and std of thetumor cell density. Since in the present study, the mean andMAP estimates are very similar, and the std values are small,the MAP estimates are used. An overview of the proposedpersonalized RT design is shown in Fig. 1 (IV), while thedetails are described in the following subsections. The tumorsrecurrence patterns are used to assess the benefits of theproposed RT plan over the standard treatment protocol. Forevaluation purposes, all recurrence scans are registered to thepreoperative anatomy. To prevent registration errors arisingfrom mapping the anatomy with the resection cavity to thepreoperative brain, rigid registration is used. This provides asufficient mapping for most cases, however it cannot capturethe post-treatment tissue displacement around the ventriclesin patients P7-P8, making the mapping less accurate inthese regions. The design of methods that provide robustregistration between pre- and post-operative brain anatomiesis still an open problem.

1) Dose distribution: An ideal CTV covers all the residualtumor, including infiltrating tumor cells that are invisible onthe pretreatment imaging scans, while sparing healthy tissue.We use the tumor recurrence pattern to evaluate the efficiency(ηCTV ) of the CTV, defined here as the relative volume of therecurrence tumor (V REC) contained within the CTV:

ηCTV =|V REC ∩ CTV |

V REC× 100%. (11)

Figure 5 (H) shows the FLAIR scans with the first detectedtumor recurrence outlined by the pink lines. The margin ofthe administered CTV RTOG, designed by the standard RTOGprotocol with a 2 cm margin around the visible tumor, is

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

7

Preo

pera

tive

Infe

renc

eR

ecur

renc

eT1

Gd

FLAI

RSe

gm.

FET-PE

TMAP

std

3DT1

Gd

FLAI

RT1

Gd+

RT

P1 P2

60 63 69 72 Gy 60 63 69 72 Gy 60 63 69 72 Gy 60 63 69 72 Gy 60 63 69 72 Gy 60 63 69 72 Gy 60 63 69 72 Gy 60 63 69 72 Gy

P4 P5 P8P3 P6A)

B)

C)

D)

E)

F)

G)

H)

J)

P7FLAIR

tumour

MAP dose escalation

T1G

d tumour

CO

LOR

MAP:

CT

VR

TO

GC

TV

MAP

I)

FET dose escalation

Fig. 5. Results of the Bayesian calibration for patients P1-P8. Orange box: Preoperative scans showing (A) T1Gd; (B) FLAIR; (C) Tumor segmentations:T1Gd (yellow) and FLAIR (pink); (D) FET-PET. Blue box: (E) MAP and (F) std of the inferred tumor cell densities shown in the preoperative FLAIR scans.The CTV RTOG margin is shown as the green curves. (G) The 3D reconstructions show outlines of the MAP tumor (blue) together with tumor extent visibleon the FET-PET scans (orange) in the preoperative anatomy (white). Green box: Scans of the first detected tumor recurrence. (H) FLAIR tumor recurrence(pink), CTV RTOG(green), and CTV MAP(blue) margins. (I) T1Gd tumor recurrence (yellow) and the dose-escalation outlines proposed by FET enhancement(magenta) and MAP estimates (orange). (J) Multilevel dose-escalation designed by MAP estimates.

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

8

Figure 4; Final plot

P1 P2 P3 P4 P5 P6 P7 P8pID

0

500

1000C

TV [c

m3 ]

RT 2cmRT MAP

P1 P2 P3 P4 P5 P6 P7 P8pID

0

50

100

0 RT [c

m3 ]

A)

VCTV

[cm

3 ]

B)

P1 P2 P3 P4 P5 P6 P7 P8pID

0

500C

TV [c

m3 ]

RT 2cmRT MAP

P1 P2 P3 P4 P5 P6 P7 P8pID

0

50

100

0 RT [c

m3 ]

ηC

TV [%

]

patients

Irradiated volume

Radiation efficiency

patients

Fig. 6. A comparison of the RT plan based on the RTOG protocol (green)and MAP estimates (blue). (A) The overall irradiated volume V CTV and (B)the corresponding efficiency ηCTV . The CTV MAP uses a smaller irradiationvolume while having a comparable efficiency as the CTV RTOG.

marked by the green lines in (E,F,H). The personalized CTV,referred as CTV MAP, is constructed by thresholding the MAPtumor cell density at u = 0.1% for all patients. (This valuewas chosen so that the efficiency of the CTV MAP is comparableto that of the CTV RTOG ). The outlines of the proposedCTV MAP are shown as the blue isocontours in Fig. 5 (H-I).A visual comparison of the CTVs shown in Fig. 5 (H) andFig. 1 (IV), and a quantitative comparison presented in Fig. 6,show that the proposed personalized plans spare more healthytissue, hence reducing radiation toxicity, while maintainingthe efficiency of the standard RTOG protocol. Both plansshow reduced efficiency for patients P7-P8, mainly around theventricles, which may be caused by misalignment between thepreoperative and recurrence anatomies.These preliminary results imply that the regions predicted as atumor-free by the model, remain tumor-free and thus the modelpredictions have potential to guide personalized CTV design.The standard or hospital-specific protocols can be updated bythe model predictions to spare brain tissue not infiltrated bythe tumor. This can lead to significant savings in the healthytissue, especially in the cases of large lesions or lesions closeto hemispheres separation and other anatomical constraints.

2) Dose-escalation: No dose-escalation plan for GBM pa-tients has been yet approved by phase-III-clinical trials. Here,we present a theoretical comparison of two escalation planstargeting high tumor cellularity regions identified by: 1) FET-PET enhancement as proposed in [5] and 2) MAP estimates.We evaluate the efficiency of an escalation plan by its capabil-ity of targeting T1Gd-enhanced tumor recurrence regions. Inthese regions, the recurrent tumor has high cellularity, despitehaving received the full radiation dose, suggesting tumor ra-dioresistance. Figure 5 (I) shows the T1Gd scans with the firstdetected tumor recurrence. The margins of the T1Gd-enhancedtumor recurrence are marked by the yellow lines, while theoutlines of the dose-escalation plans designed by the FET-PETenhancements are shown in magenta. The FET enhancementsdo not fully cover the T1Gd recurrent tumor in patients P4-P7, providing a possible explanation for why improvements

in progression-free survival have not been observed in [5]. Incomparison, the MAP estimates, calibrated by the FET-PETsignal, extend the information about the tumor cell densityin the periphery of the visible lesion. Figure 5 shows twopossible dose-escalation plans based on the inferred MAPtumor cell density: (I) a single-level dose-escalation basedon the thresholded MAP solution with threshold u = 30%marked by the orange lines and (J) a cascaded four-levelescalation plan constructed by thresholding the MAP tumorcell density at u = [0.1, 25, 50, 75]%. The optimal designof a personalized dose-escalation plan would require moreextensive studies. However, these preliminary results show thatthe inferred high cellularity regions coincide with the areasof tumor recurrence better than those suggested by the FET-PET enhancement alone. The Bayesian inference frameworkdeveloped here thus provide a promising tool for a rationaldose-escalation design.

IV. CONCLUSION

We have demonstrated that patient-specific, data-drivenmodeling can extend the capabilities of personalized RTdesign for infiltrative brain lesions. We combined patientstructural and metabolic scans from a single time point witha computational tumor growth model through a Bayesianinference framework and predicted the tumor distributionbeyond the outlines visible in medical scans. The patient-specific tumor estimates can be used to design personalized RTplans, targeting shortcomings of standard RT protocols. Thesoftware and data used in this work are publicly released2

to facilitate translation to clinical practice and to encouragefuture improvements. In the future, the Bayesian frameworkdeveloped here could also be extended to predict individualpatient responses to RT by incorporating data obtained duringthe course of treatment as done in [33], in which non-spatial tumor models were used. In this way, the treatmentcan be further improved by adaptively refining the RT plansbased on the predicted patient responses. Moreover, the basicFK tumor growth model could be replaced by a Fokker-Planck diffusion model [16], which would not increase thenumber of unknown parameters or affect the computationalcomplexity significantly, but might provide a better descriptionof biological diffusion. Future work could also incorporatemore advanced models, such as [34], that account for cancerstem cells, their progeny and nonlinear coupling between thetumor and the neovascular network. However, it remains tobe seen whether scans acquired at a single time point wouldprovide enough information to calibrate the advanced modelssufficiently. If not, then simpler, well-calibrated models mayprove to be more informative. Finally, in future studies, thecomputational framework developed here will be tested ona larger patient cohort and prospective clinical trials will beperformed. In summary, the results presented here provide aproof-of-concept that multimodal Bayesian model calibrationholds a great promise to assist the development of personalizedRT protocols.

2https://github.com/JanaLipkova/GliomaSolver

0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2902044, IEEETransactions on Medical Imaging

9

ACKNOWLEDGMENT

JL acknowledges partial funding from the National Sci-ence Foundation-Division of Mathematical Sciences (NSF-DMS) through grant DMS-1714973 and the Center for Mul-tiscale Cell Fate Research at UC Irvine, which is supportedby NSF-DMS (DMS-1763272) and the Simons Foundation(594598, QN). JL additionally acknowledges partial fundingfrom the National Institutes of Health (NIH) through grant1U54CA217378-01A1 for a National Center in Cancer Sys-tems Biology at the University of California, Irvine, andNIH grant P30CA062203 for the Chao Comprehensive CancerCenter at the University of California, Irvine.JL acknowledges the partial funding from the Bavaria Califor-nia Technology Center (BaCaTec) through grant 6090142.

REFERENCES

[1] R. Stupp, M. Brada, M. Van Den Bent, J.-C. Tonn, and G. Penther-oudakis, “High-grade glioma: ESMO Clinical Practice Guidelines fordiagnosis, treatment and follow-up,” Annals of oncology, 2014.

[2] R. Stupp, W. P. Mason, M. J. Van Den Bent, M. Weller, B. Fisher,M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahnet al., “Radiotherapy plus concomitant and adjuvant temozolomide forglioblastoma,” New England Journal of Medicine, 2005.

[3] N. G. Burnet, S. J. Thomas, K. E. Burton, and S. J. Jefferies, “Definingthe tumour and target volumes for radiotherapy,” Cancer Imaging, 2004.

[4] A. K. Paulsson, K. P. McMullen, A. M. Peiffer, W. H. Hinson, W. T.Kearns, A. J. Johnson, G. J. Lesser et al., “Limited margins usingmodern radiotherapy techniques does not increase marginal failure rateof glioblastoma,” American journal of clinical oncology, 2014.

[5] M. Piroth, M. Pinkawa, R. Holy, J. Klotz, S. Schaar, G. Stoffels et al.,“Integrated boost IMRT with FET-PET-adapted local dose escalation inglioblastomas,” Strahlentherapie und Onkologie, 2012.

[6] L. Souhami, W. Seiferheld, D. Brachman, E. B. Podgorsak, M. Werner-Wasik, R. Lustig et al., “Randomized comparison of stereotactic ra-diosurgery followed by conventional radiotherapy with carmustine toconventional radiotherapy with carmustine for patients with glioblastomamultiforme: report of radiation therapy oncology group 93-05 protocol,”International Journal of Radiation Oncology* Biology* Physics, 2004.

[7] E. C. Halperin, G. Bentel, E. R. Heinz, and P. C. Burger, “Radiationtherapy treatment planning in supratentorial glioblastoma multiforme:an analysis based on post mortem topographic anatomy with CTcorrelations,” International Journal of Radiation Oncology* Biology*Physics, 1989.

[8] S. Rockwell, I. T. Dobrucki, E. Y. Kim, S. T. Marrison, and V. T.Vu, “Hypoxia and radiation therapy: past history, ongoing research, andfuture promise,” Current molecular medicine, vol. 9, no. 4, 2009.

[9] S. E. Combs, I. Burkholder, L. Edler, S. Rieken, D. Habermehl, O. Jakelet al., “Randomised phase I/II study to evaluate carbonion radiotherapyversus fractionated stereotactic radiotherapy in patients with recurrentor progressive gliomas: The CINDERELLA trial,” BMC cancer, 2010.

[10] C. Tsien, J. Moughan, J. M. Michalski, M. Gilbert et al., “Phase Ithree-dimensional conformal radiation dose escalation study in newlydiagnosed glioblastoma: Radiation Therapy Oncology Group Trial 98-03,” International Journal of Radiation Oncology* Biology* Physics,2009.

[11] M. Hingorani, W. P. Colley, S. Dixit, and A. M. Beavis, “Hypofrac-tionated radiotherapy for glioblastoma: strategy for poor-risk patients orhope for the future?” The British Journal of Radiology, Sep 2012.

[12] S. Rieken, D. Habermehl, F. L. Giesel, C. Hoffmann et al., “Analysis ofFET-PET imaging for target volume definition in patients with gliomastreated with conformal radiotherapy,” Radiotherapy and Oncology, 2013.

[13] F. Stockhammer, M. Plotkin, H. Amthauer, F. K. H. van Landeghemet al., “Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular andcell density in non-contrast-enhancing gliomas,” J Neurooncol, 2008.

[14] M. Hutterer, M. Nowosielski, D. Putzer, N. L. Jansen, M. Seiz,M. Schocke, M. McCoy, G. Gobel, C. la Fougere, I. J. Virgolini et al.,“[18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma,” Neuro-oncology, vol. 15,no. 3, pp. 341–351, 2013.

[15] J. Alfonso, K. Talkenberger, M. Siefert, B. Klink et al., “The biologyand mathematical modelling of glioma invasion: A review,” J. R. Soc.Interface, 2017.

[16] A. Swan, T. Hillen, J. C. Bowman, and A. D. Murtha, “A patient-specific anisotropic diffusion model for brain tumour spread,” Bulletinof mathematical biology, 2018.

[17] A. Hodgkinson, M. A. Chaplain, P. Domschke, and D. Trucu, “Compu-tational approaches and analysis for a spatio-structural-temporal invasivecarcinoma model,” Bulletin of mathematical biology, 2018.

[18] V. Cristini and J. Lowengrub, Multiscale modeling of cancer. Cam-bridge University Press, 2010.

[19] A. Mohamed and C. Davatzikos, “Finite element modeling of braintumor mass-effect from 3D medical images,” in International Confer-ence on Medical Image Computing and Computer-Assisted Intervention.Springer, 2005, pp. 400–408.

[20] Hogea C, et al., “A robust framework for soft tissue simulations withapplication to modeling brain tumor mass effect in 3D MR images,”PHYSICS IN MEDICINE AND BIOLOGY, 2007.

[21] J. Unkelbach, B. Menze, E. Konukoglu, F. Dittmann et al., “Radio-therapy planning for glioblastoma based on a tumor growth model:improving target volume delineation,” Physics in medicine and biology,2014.

[22] E. Konukoglu, O. Clatz, H. Delingette, and N. Ayache, “Personalizationof reaction-diffusion tumor growth models in MR images: applicationto brain gliomas characterization and radiotherapy planning,” 2010.

[23] K. R. S. Hana L.P. Harpold, Ellsworth C. Alvord, “The evolutionof mathematical modeling of glioma proliferation and invasion,” JNeuropathol Exp Neurol, 2007.

[24] P. R. Jackson, J. Juliano, A. Hawkins-Daarud, R. C. Rockne, K. R.Swanson et al., “Patient-specific mathematical neuro-oncology: usinga simple proliferation and invasion tumor model to inform clinicalpractice,” Bulletin of mathematical biology, 2015.

[25] R. C. Rockne, A. D. Trister, J. Jacobs, A. J. Hawkins-Daarud et al.,“A patient-specific computational model of hypoxia-modulated radiationresistance in glioblastoma using 18 F-FMISO-PET,” Journal of theRoyal Society Interface, 2015.

[26] M. Le, H. Delingette, J. Kalpathy-Cramer, E. R. Gerstner et al.,“Bayesian personalization of brain tumor growth model,” in Interna-tional Conference on Medical Image Computing and Computer-AssistedIntervention. Springer, 2015.

[27] A. Hawkins-Daarud, S. K. Johnston, and K. R. Swanson, “QuantifyingUncertainty and Robustness in a Biomathematical Model Based Patient-Specific Response Metric for Glioblastoma,” bioRxiv, 2018.

[28] B. Menze, K. Van Leemput, A. Honkela, E. Konukoglu, M.-A. Weberet al., “A generative approach for image-based modeling of tumorgrowth,” in Information Processing in Medical Imaging. Springer, 2011.

[29] D. Rossinelli, B. Hejazialhosseini, W. van Rees, M. Gazzola et al.,“MRAG-I2D: Multi-resolution adapted grids for remeshed vortex meth-ods on multicore architectures,” Journal of Computational Physics,2015.

[30] J. Ching and Y.-C. Chen, “Transitional markov chain monte carlomethod for bayesian model updating, model class selection, and modelaveraging,” Journal of engineering mechanics, 2007.

[31] P. E. Hadjidoukas, P. Angelikopoulos, C. Papadimitriou, andP. Koumoutsakos, “π4u: A high performance computing frameworkfor bayesian uncertainty quantification of complex models,” Journal ofComputational Physics, 2015.

[32] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike et al.,“Brainweb: Online interface to a 3D MRI simulated brain database,”in NeuroImage. Citeseer, 1997.

[33] I. Tariq, T. Chen, N. F. Kirkby, and R. Jena, “Modelling and bayesianadaptive prediction of individual patients’ tumour volume change duringradiotherapy,” Physics in Medicine & Biology, vol. 61, no. 5, p. 2145,2016.

[34] H. Yan, M. Romero-Lopez, L. I. Benitez, K. Di et al., “3D mathemat-ical modeling of glioblastoma suggests that transdifferentiated vascularendothelial cells mediate resistance to current standard-of-care therapy,”Cancer research, 2017.