pefcl.snut.ac.krpefcl.snut.ac.kr/upload/study03/d002b507427375a987533d207d908223.pdf< % ) 0" + "...

download pefcl.snut.ac.krpefcl.snut.ac.kr/upload/study03/d002b507427375a987533d207d908223.pdf< % ) 0" + " %,8% 6 + + " T H X ° nIÉ TÆ Ín 1 2 ÆgcH Æ û_Äü ÒÓÄ KbOÆ d 8% wO® Æ d`

If you can't read please download the document

Transcript of pefcl.snut.ac.krpefcl.snut.ac.kr/upload/study03/d002b507427375a987533d207d908223.pdf< % ) 0" + "...

  • 302 The Transactions of the Korean Institute of Power Electronics, Vol. 21, No. 4, August 2016

    http://dx.doi.org/10.6113/TKPE.2016.21.4.302

    ESS PCS

    1, 1, , 2, 3

    A PCS Control Strategy for Hybrid ESS

    with Function of Emergency Power Supply

    Sang-Jin Kim1, Min-Ho Kwon1, Se-Wan Choi, Seok-Min Paik2, and Mi-Sung Kim3

    Abstract

    This paper proposes a hybrid ESS that integrates an energy storage system (ESS) with an uninterruptible

    power supply (UPS). The hybrid ESS has a demand management and emergency power supply function while

    increasing the battery utilization of the UPS, which has just been used in a power failure. In addition to the

    critical load, the proposed system augments the capacity of emergency generation using an additional load,

    which has voltage and frequency-dependent characteristics to the grid side. The control algorithm of the

    AC-DC converter and bidirectional DC-DC converter is proposed for demand management and emergency

    power supply. Furthermore, seamless and autonomous transfer methods to alleviate the transient during mode

    transfer are proposed. To validate the proposed control scheme, experimental results from a 5 kW prototype

    are provided.

    Key words: Hybrid ESS, ESS(Energy Storage System), UPS(Uninterruptible Power Supply), Seamless transfer

    Paper number: TKPE-2016-21-4-4Print ISSN: 1229-2214 Online ISSN: 2288-6281

    Corresponding author: [email protected], Dept. ofElectrical & Information Eng., Seoul Nat'l Univ. ofScience and TechnologyTel: +82-2-970-6542 Fax: +82-2-972-28661 Dept. of Electrical & Information Eng., Seoul Nat'l Univ.of Science and Technology2 Dept. Technology Research Institute KUKJE Electric Mfg.co., Ltd.3 Dept. EMC Research Institute Energy Industry Team,Korea Testing & Research Institute.Manuscript received Mar. 21, 2016; revised Apr. 1, 2016;accepted Jun. 2, 2016 2015 Fig. 1. Grid disturbances and UPS classes[1].

    1.

    ESS(Energy storage system)

    . ESS

    ,

    . , UPS(Uninterruptible power

    supply)

    ,

    . 1 UPS

    [1]. Online UPS , ,

    1 10

    VFI(Voltage and frequency independent)

    . Offline UPS ,

    ,

    VFD(Voltage and

    frequency dependent) .

    Offline UPS VFD, Online UPS

  • ESS PCS 303

    Fig. 2. Configuration of the conventional ESS and UPS. Fig. 3. Configuration of the proposed hybrid ESS.

    Fig. 4. Circuit diagram of the proposed hybrid ESS.

    VFI . 2

    250kW ESS

    UPS, VFI .

    UPS

    . ESS

    ,

    .

    ESS UPS

    ESS . 3

    ESS

    . ESS UPS

    PCS

    .

    250kW VFI 250kW VFD

    . ESS

    , VFD

    .

    5kW .

    2. ESS

    4 ESS

    . ,

    250kW AC-DC DC-AC, 500kW

    DC-DC, , VFI, VFD,

    .

    [2] VFI

    ,

    .

    ESS

    AC-DC DC-AC

    3- [3]. 3-

    NPC , 5

    20kHz

    T-type [4][5]. DC-DC

    DC

    .

    2.1

    5 4

    . 5.(a)(c)

    (Demand management mode)

    , 5.(d) (Emergency power

    supply mode) .

    5.(a) AC-DC

    DC-DC

  • 304 The Transactions of the Korean Institute of Power Electronics, Vol. 21, No. 4, August 2016

    (a) (b)

    (c) (d)

    Fig. 5. Operation mode of the proposed hybrid ESS. (a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4.

    (a)

    (b)

    Fig. 6. Control targets of PCSs depending on operation

    mode. (a) Demand management mode.(Mode 1Mode 3)

    (b) Emergency power supply mode. (Mode 4).

    . VFD

    VFI AC-DC

    DC-AC .

    .

    5.(b)

    , VFI

    . DC-DC

    DC-AC VFI

    .

    5.(c) 5.(b)

    ,

    VFI

    .

    DC-DC AC-DC

    VFD DC-AC

    VFI . VFI, VFD,

    .

    5.(d)

    .

    DC-DC VFD,

    VFI . SOC VFI

    VFD ,

    AC-DC VFD

    . DC-DC

    DC-AC VFI .

    2.2

    6 ESS

    .

    6.(a)

    , 6.(b)

    .

    6.(a) (Mode 1

    Mode 3) VFD

    3

    AC-DC . AC-DC

    DC DC

    . DC-DC

    (CC-CV)

    DC-AC DC VFI

    3

    .

    .

    6.(b)

    (Mode 4) AC-DC

    VFD .

    DC-DC DC

    DC-AC

  • ESS PCS 305

    Fig. 7. Control block diagram of the proposed DC-DC

    converter for autonomous and seamless mode change.

    VFI

    .

    2.3

    ESS DC

    AC-DC VFD

    .

    (clearing

    time)

    DC-DC DC

    . DC

    .

    ESS AC-DC DC-DC

    .

    2.3.1 DC-DC

    7 DC-DC

    [6][7]

    .

    .

    ,

    (Anti-windup)[8] .

    3 DC DC

    .

    (1)

    (2)

    AC-DC DC

    5% ,

    .

    DC AC-DC

    .

    (3)

    PI1 ( ) PI3

    ( ) .

    SOC ( )

    PI2 ( )

    .

    .

    (4)

    .

    (5)

    . SOC

    PI2

    .

    .

    (6)

    PI3

    ( ) .

    (7)

    PI3 .

    (8)

    .

    (4)

    .

    (9)

  • 306 The Transactions of the Korean Institute of Power Electronics, Vol. 21, No. 4, August 2016

    Fig. 8. Control block diagram of the proposed AC-DC converter for seamless mode change.

    PI1 .

    (10)

    DC

    .

    AC-DC

    DC DC

    .

    2.3.2 AC-DC

    8 ESS 3

    [9][10] AC-DC

    [11]-[13] .

    DC

    ,

    .

    LCL AC-DC

    DC

    .

    ( ) ( ) ( )

    .

    (11)

    (12)

    (13)

    ,

    . (13)

    dq .

    (14)

    () ,

    ( ) 0

    . (14)

    () (

    )

    .

    (15)

    (15) 8

    DC

    .

    () (

    )

    .

    (16)

    (17)

    . (16) (17)

    .

    .

    (18)

    (19)

    AC-DC

    VFD

    .

  • ESS PCS 307

    (a) (b) (c)

    Fig. 9. Simulation waveforms of the operation modes. (a) Mode 1, (b) Mode 2, (c) Mode 3.

    . DC

    VFD

    , VFD

    .

    3.

    220V, DC

    450V, 280V 9.(a)

    (c) 5.(a) 5.(c)

    . 9.(a)

    Mode 1

    . 10A ( )

    VFI( ) VFD( ) 2.5kW

    . 9.(b)

    DC-DC

    Mode 2 . 10A

    VFI 5kW DC-DC

    2.5kW . VFD

    2.5kW . 9.(c)

    35A

    Mode 3 . VFI,

    VFD 5kW, 2.5kW

    . 10 5.(d)

    .

    10.(a) Mode 1 Mode 4

    , DC-DC

    AC-DC DC-DC

    .

    VFI () ( )

    .

    ( ) 0 ,

    DC ( )

    . clearing time AC-DC

    ,

    DC-DC DC

    DC 430V . DC-DC

    VFD VFI

    VFD ( )

    . 10.(b) Mode 3

    Mode 4 , DC-DC

    AC-DC DC-DC

    . 10.(a)

    AC-DC VFD

    DC-DC DC 470V

    .

    4.

    11 ESS 5kW

  • 308 The Transactions of the Korean Institute of Power Electronics, Vol. 21, No. 4, August 2016

    (a) (b)

    Fig. 10. Simulation waveforms of the mode change. (a) Mode transition from Mode 1 to Mode 4. (b) Mode transition

    from Mode 3 to Mode 4.

    Fig. 11. Prototype of the proposed hybrid ESS.

    Symbol Value Unit

    P 5 kW

    Vg 220 Vac

    Vb 210310 Vdc

    Vdc,P+Vdc,N 430470 Vdc

    Lg 560 H

    Lf 540 H

    Cf 16 F

    Li 540 H

    Ci 16 F

    L1 , L2 1.17 mH

    Co 165 F

    TABLE

    SPECIFICATION OF THE PROTOTYPE

    .

    DSP TMS320F28377D CPLD 3-

    AC-DC 3- DC-AC,

    DC-DC . 3 PCS

    28 PWM CPLD

    .

    ESS 1 .

    1216 5

    . 12 Mode 1

    DC-DC AC-DC

    DC-DC .

    , ,

    ,

    . 13 DC-DC Mode 2

  • ESS PCS 309

    (a)

    (b)

    Fig. 12. Experimental waveforms of the AC-DC

    converter and the DC-DC converter during charging the

    battery. (a) AC-DC converter. (b) DC-DC converter.

    (a)

    (b)

    Fig. 13. Experimental waveforms of the AC-DC

    converter and the DC-DC converter during discharging

    the battery. (a) AC-DC converter. (b) DC-DC converter.

    Fig. 14. Experimental waveforms of the DC-AC inverter.(a)

    (b) (c)

    Fig. 15. Experimental waveforms of the battery current

    direction change. (a) the waveform of the current

    direction change from charging to discharging. (b)

    charging mode, (c) discharging mode.

    AC-DC DC-DC

    . 14 DC-AC 3

    . 15.(a)

    DC-DC

    . 15.(b)

    15.(c)

    . 16.(a)

    DC-DC

    .

    AC-DC 450V DC

    DC-DC 430V

    . 16.(b)

    16.(a)

    .

  • 310 The Transactions of the Korean Institute of Power Electronics, Vol. 21, No. 4, August 2016

    (a) (b)

    Fig. 16. Experimental waveforms of the mode change. (a) Mode transition from Mode 1 to Mode 4. (b) Mode transition

    from Mode 3 to Mode 4.

    DC DC-DC 470V

    . DC

    AC-DC

    VFD

    . 16 AC-DC

    DC-DC

    .

    4.

    ESS UPS

    ESS .

    UPS

    .

    ESS ,

    .

    VFI VFD

    . PSIM

    5kW

    .

    2014

    (KETEP)

    .(No. 20142010102600)

    References

    [1] A new International UPS Classification by IEC 62040-3,

    IEC 62040-3, 2011.

    [2] J. Ji, Test on characteristics of delta conversion UPS

    system, Journal of the Korea Academia-Industrial

    Cooperation Society, Vol. 6, No. 6, pp. 491496, Dec.

    2005.

    [3] S. Shin, J. Ahn, and B. Lee, Maximum efficiency

    operation of three-level T-type inverter for low-voltage

    and low-power home appliances, Journal of the

    Electrical Engineering & Technology, Vol. 10, No. 2,

    pp. 586594, Mar. 2015.

    [4] H. Shin, J. Park, and J. Choi, Loss analysis by

    switching state of 3 level NPC and T-type inverter,

    Electrical Machinery & Energy Conversion Systems

    Society Annual Spring Conference, pp. 293296, Apr.

    2014.

    [5] M. Schweizer and J. Kolar, High efficiency drive

    system with 3-level T-type inverter, in Proc. 14th

    EPE Conf. Appl., pp. 110, Aug./Sep. 2011.

    [6] M. Kwon, J. Park, and S. Choi, A seamless transfer

    method of bidirectional DC-DC converter for ESS in

    DC micro-grids, The Transactions of the Korean

    Institute of Power Electronics, Vol. 19, No. 2, pp. 194

    200, Apr 2014.

    [7] S. Choi, J. Park, and M. Kwon, System for controlling

    bidirectional converter, Korean Patent 10-1417669, July

    2. 2014.

    [8] C. Bohn and D. P. Atherton, An analysis package

    comparing PID anti-windup strategies, IEEE Control

    Syst. Mag., Vol. 15, No. 2, pp. 34-40, Apr. 1995.

    [9] M. Ryan and D. Lorenz, A synchronous-frame

    controller for a single-phase sine wave inverter, Conf.

    Rec. IEEE-APEC Ann. Meeting, pp. 813-819, 1997.

    [10] C. Zou, B. Liu, S. Duan, and R. Li, Stationary frame

  • ESS PCS 311

    equivalent model of proportional-integral controller in

    dq synchronous frame, IEEE Trans. Power Electron.,

    Vol. 29, No. 9, pp. 44614465, Sep. 2014.

    [11] H. Kim, T. Yu, and S. Choi, Indirect current control

    algorithm for utility interactive inverters in distributed

    generation systems, IEEE Trans. Power Electron.,

    Vol. 23, No. 3, pp. 13421347, May 2008.

    [12] J. Kwon, S. Yoon, and S. Choi, Indirect current

    control for seamless transfer of three-phase utility

    interactive inverters, IEEE Trans. Power Electron.,

    Vol. 27, No. 2, pp. 773781, Feb. 2012.

    [13] S. Choi and S. Yoon, Utility interactive inverter of

    three phase-indirect current control type and control

    method, Korean Patent 10-1178393, Aug. 24. 2012.

    ()

    1988 8 27. 2014

    . 2014

    .

    ()

    1985 8 17. 2012

    . 2014

    (). 2014

    .

    ()

    1963 3 3. 1985

    . 1992 Texas A&M Univ.

    (). 1995 (

    ). 19851990

    . 19961997

    . 1997 .

    .

    ()

    1959 9 30. 19781982

    . 1986

    (). 2016

    (). 19842001

    . 20012006 .

    2006 .

    ()

    1965 7 16. 1994

    (). 19901994

    . 19942010

    . 2013

    .

    ESS PCS Abstract1. 2. ESS3. 4. References