Pattersons The “third space” of crystallography. The “phase problem”

61
Pattersons The “third space” of crystallography

Transcript of Pattersons The “third space” of crystallography. The “phase problem”

Page 1: Pattersons The “third space” of crystallography. The “phase problem”

Pattersons

The “third space”

of crystallography

Page 2: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Page 3: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Phases Amplitudes

Page 4: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Phases Amplitudes

Page 5: Pattersons The “third space” of crystallography. The “phase problem”

The “spaces” of crystallography

• Direct/real space– Distances are in Å, Angles are in degrees

• Reciprocal space– Distances in 1/Å, Angles are different

• Patterson space– Distances are in Å , Angles are in degrees– Relative distances only, origin lost– “direction” is preserved

Page 6: Pattersons The “third space” of crystallography. The “phase problem”

dete

ctor

sam

ple

dete

ctor

x-ray beam

scattering

Page 7: Pattersons The “third space” of crystallography. The “phase problem”
Page 8: Pattersons The “third space” of crystallography. The “phase problem”
Page 9: Pattersons The “third space” of crystallography. The “phase problem”

How to make a Patterson map:

1. Set all phases to zero

2. Square all structure factors

3. Calculate Fourier transform

Page 10: Pattersons The “third space” of crystallography. The “phase problem”

One atom in unit cell

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Fraction across unit cell

Ele

ctro

n de

nsity

Page 11: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: one atom

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 12: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: one atom

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 13: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: one atom

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 14: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: two atoms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 15: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: three atoms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 16: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: three atoms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Better resolution!

Page 17: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: five atoms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 18: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: five atoms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 19: Pattersons The “third space” of crystallography. The “phase problem”

scattering from a structure

sample detector

Page 20: Pattersons The “third space” of crystallography. The “phase problem”

forward Fourier Transforminverse Fourier Transformno phase

Patterson map!

Page 21: Pattersons The “third space” of crystallography. The “phase problem”

Snapshot from single virus particle

TEM

2 keV LCLS 200 fs Mimi virus single-shot.200 nm

Reconstructed image

Resolution 20nm

Seibert, et al. (2011). Nature 470, 78-81.

Page 22: Pattersons The “third space” of crystallography. The “phase problem”

lysozyme: real and reciprocal

Page 23: Pattersons The “third space” of crystallography. The “phase problem”

forward Fourier Transform9 atoms

Page 24: Pattersons The “third space” of crystallography. The “phase problem”

forward Fourier Transform10 atoms

Page 25: Pattersons The “third space” of crystallography. The “phase problem”

Patterson map10 atoms

Page 26: Pattersons The “third space” of crystallography. The “phase problem”

Patterson map9 atoms

Page 27: Pattersons The “third space” of crystallography. The “phase problem”

Difference PattersonStill no phases!

Page 28: Pattersons The “third space” of crystallography. The “phase problem”

forward Fourier Transform9 atoms

Page 29: Pattersons The “third space” of crystallography. The “phase problem”

Harker Section of a Patterson

Page 30: Pattersons The “third space” of crystallography. The “phase problem”

X-ray data are 3D!

Page 31: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: five atoms + 3-fold symmetry

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Real Space

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 32: Pattersons The “third space” of crystallography. The “phase problem”

Patterson: five atoms + 3-fold symmetry

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Patterson

Fraction across unit cell

Ele

ctro

n de

nsity

Page 33: Pattersons The “third space” of crystallography. The “phase problem”

Major Phasing techniques

• Molecular Replacement

• Multiple Isomorphous Replacement

• Anomalous Diffraction

• Direct methods

Page 34: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Fraction across unit cell

Ele

ctro

n de

nsity

Page 35: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

Fraction across unit cell

Ele

ctro

n de

nsity

Page 36: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 37: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 38: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 39: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 40: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 41: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 42: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 43: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 44: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 45: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 46: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 47: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 48: Pattersons The “third space” of crystallography. The “phase problem”

2Fo-Fc maps

-0.10.00.10.20.30.40.50.60.70.80.91.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True density

Model

2Fo-Fc

Fraction across unit cell

Ele

ctro

n de

nsity

Page 49: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Phases Amplitudes

Fobs

Page 50: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Phases & Amplitudes Amplitudes

Fobs-Fcalc

Page 51: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Phases & Amplitudes Amplitudes

2Fobs-Fcalc

Page 52: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Phases Amplitudes

Page 53: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Phases & Amplitudes Amplitudes

2Fobs-Fcalc

Page 54: Pattersons The “third space” of crystallography. The “phase problem”

The “phase problem”

Phases & Amplitudes Amplitudes

2mFobs-Fcalc (A weighting)

Page 55: Pattersons The “third space” of crystallography. The “phase problem”

sam

ple

x-ray beam

anomalous scattering

dete

ctor

Page 56: Pattersons The “third space” of crystallography. The “phase problem”

sam

ple

dete

ctor

x-ray beam

anomalous scattering

Page 57: Pattersons The “third space” of crystallography. The “phase problem”

sam

ple

x-ray beam

anomalous scattering

dete

ctor

Page 58: Pattersons The “third space” of crystallography. The “phase problem”

sam

ple

dete

ctor

x-ray beam

anomalous scattering

Page 59: Pattersons The “third space” of crystallography. The “phase problem”

sam

ple

dete

ctor

x-ray beam

anomalous scattering

Page 60: Pattersons The “third space” of crystallography. The “phase problem”

Harker Section of a Patterson

Page 61: Pattersons The “third space” of crystallography. The “phase problem”

Summary

• Patterson = real-space representation of all information in diffraction pattern

• “small”, high-resolution structures solved with no phases!

• Difference Pattersons for finding heavy atom sites

• Native Patterson for symmetry