Passive Solar Energy Book (1)

447
MICROFICHE -REFERENCE iL LIBRARY 4 project of Vol&te& in As,ia s\: 1 31 rO \ .@&* / by: Edward Mazria Published by: .. I ' Rodale Pfess, Inc. " 331East Hinor Street Emmaus, PA 18049 USA Y Pqper @bpies are $12.95. .4 '. .Availa.ble from: r. .-Qi x Rodale Press, Inc. ,,' ,- r .,' 33 East Minor Stgeet I,,~ --A -' ., 'F mmaus., PA' 180-49- USA I__' “ir?: Reprodu'ced by. permlksion of the, Rbdale Press. , i ,.$ r - .: _1 . e . ~~~~ti~~of~~thlsrniclrnf~~~dournen~ -in ay 2 '$, ,;;~ -1 'form is subject to the same restrictions as'khose. J ,pf ykie origin~ocbment. : 9 ,I . . .' t .

Transcript of Passive Solar Energy Book (1)

Page 1: Passive Solar Energy Book (1)

MICROFICHE -REFERENCE iL LIBRARY

4 project of Vol&te& in As,ia s\: 1 31 rO \ .@&* /

by: Edward Mazria

Published by: .. I '

Rodale Pfess, Inc. " 331East Hinor Street Emmaus, PA 18049 USA

Y

Pqper @bpies are $12.95. .4 '. .Availa.ble from: r. .-Qi x Rodale Press, Inc. ,,' ,- r .,' 33 East Minor Stgeet I,,~ --A -' .,

'F mmaus., PA' 180-49- USA I__' “ir?:

Reprodu'ced by. permlksion of the, Rbdale Press. , i ,.$ r - .:

_1 . e . ~~~~ti~~of~~thlsrniclrnf~~~dournen~ -in ay 2 '$, ,;;~ -1 'form is subject to the same restrictions as'khose. J ,pf ykie origin~ocbment. : 9 ,I . . .' t .

Page 2: Passive Solar Energy Book (1)
Page 3: Passive Solar Energy Book (1)

.- \ . - . . A D r

all of the4nforhation nece$saG. tq successfully.d.qign an’effective

~- -~~ -- - -.~ -~ ;: _. -::,7;I C , ; , +, I~

,I - .- .-;- .tt is’:

z, A

; -, d .

A prim&- i -.‘I in the fundamental concepts of s”olar energy, heat I , 1 ~.~-..- _~--~-

L&&fort. ~ _ \ --. ~. __-- - ~-...- .- .- -

. . . -;

- ~-- ~- --~_< _ -

,.p~evgjuzfb~ thesaulof passiYearch&nB. - .-_-. ------ -------i-L i

, .&mmake-it-wyrk;for-you. --.- ~1. v-

,.Fp _ ’ Fred Nelson, S&et .y; \.,

. . . .I The best book tie Ii&e seen on passive solar. b;il&ngs becau:e-it makes the O

.*- fundamental,.r&isons why su,ch buildings are highly desirable so crystal :

“,

t - clear. And, once you really understand the fundamentals Qf any suI+ct, the

‘; D c .

Drest iSeasy. , I

. ; , > ,,’ William 8. Edmondson, Ed?tor, Solar Energy Dige&-~--~?

I --- -----; 3

-’ .

fq%&+~ overcrowded,field. . ’ \ ~\,--~-- I -m--y *”

L : Lee Johnson, Editw, RAIN: Fo”~~?alpf A.ppropriateTechnology . : :

_ ,‘.. -.. .’ i ; ‘“,.j. ; ..i >’ 9; QG -, cgver:design and ii[ust&kjns’ by f&&&i Ball * ’ b!,.‘.., ;:;,-;y;1.-.. t.: . !‘,..” , * ,. ,:--y& ; . * L047@7-237,6 % . $. * , . J . I t I . . ‘b.’ ,., ,, ..-* 0 I -. .- \ -.\,Aff “*La -:a.- ,-

Page 4: Passive Solar Energy Book (1)

. \ ‘3’ ,

k. I s

7 L - . .;.“.g

.

: __--

,_-.

4

3 --

3

>

Y /’

;’ BY EDWARD MAZftlA F-7 -1 i .

Page 5: Passive Solar Energy Book (1)

.

..:- . . - . ”

i ’ Copyright @ 1979 by Edward Mazrja ,

All rights reserved. No part of this publication may be reproduced or transmitted in any form{ or by any -“’

*I means, electronic ‘or mechadical,‘.includrng photo- copy, recording, or any. information storage and retrieval system without the written permission of the publisher.

‘ S’ L

, f3ook Design hy 7 A lcpley * ”

-.\ . . The passive solar energy book. L

\

5 .’ Bjb;liography:. p.

‘_ Includes index, ,

I . \ 1. Solar energy~ 2.‘Solar heating. I. Title. ‘\ TJSiO.M32 1979b 696 78-21656 ’

ISBN,O-87857-260-0 (Hardcover)

$ I BN O-87857-237-6 (Paperback)

4, 8'10 9 1 hardcover L 12 14 16 18 20 19 17 15 13 11 paperbdck \ .-_

3

Printed in the United States of America on recycled paper, containing a high percentage of de-inked fiber.

F _. I . i* . ., 0 = :

’ .

:, . .(” ., .-..

Library of Congress Cat+l&ing’in Publication Data

3

Mazria; Edward.

. \

<. . . 4

. 65 ‘. .I..--

.

Page 6: Passive Solar Energy Book (1)

4 - I - 3; . . ‘, : ---L!h *,* P ~ _. .- .-. _. .i. .y , 1. ” * . . I .: . *. _I. 7 -: ‘I ’ I yzj , I. :: _ * *. ‘-S= - * .# -*II -. . i--‘ . -- P 1 _ ’ ,- , .

- P ’ P

A P .‘.; - -

0 +

‘_. >-

: ,‘I,- L ,” 3

9 1

. , - .

/ 1, -c ,_ - * . J. . “l ‘. , “; ye . I . .

L ‘i ,_-_ . - l . *’

: I . -

* : . .”

;,A.. -A . . . __,,_. _a :... Or 1~ -I.-. ‘)-- .--

. -- --_ _ 5.

: 1

; c * ,.. _..- ___.__ -_I--. .- __._.. -_-. -..- f

. . / :‘;j .’ ” l

s i , _ I . . \. .*zi . * I ^ \

. ,, . t’ 1

For JOSEPH and $RA ’ .’ ! . . ’ . I ,. a , * 0 . -6 0 0 . z

-. --v-f, i_ “2 . 0 a .~ . ~ . ~ --~- -. ~_

m c I’ :i / ‘\ \.

,,, .i.. : F .i ,‘e ‘: . . 0. ‘I_ L ‘, .” - 1 )

4 . .*- ;, . \ m t.

.h . [ ”

- & ,. ( 1 ‘.< * (

3 ** .;j? * ;,.;

.‘I, I 0 : 8 a. ’ . - 0

‘ - -

I- * -. . ,

Y

1

L -

: *.

Page 7: Passive Solar Energy Book (1)

,h ’

c c

-.

- L.. . - _

,t II .

.

IV;_ Using the Patterns _ -_ . !

Page 8: Passive Solar Energy Book (1)

, cp

The Passive Solar Energy Book l

i’ ‘. i

-. - 9 . $i- p.’

: - -.

Y

‘-

a

- .

.’ ,

,; -. * ” *ar

i’

,

r

_ _ -. -,--.-

-

(

,

, -- -

Direct Gain Systems

9. SOLAR WlNDg>WS c “, 10. CLERESTORIES AND SKYLIGHTS 11. MA&ONRY HEAT STORAGE

,- ---- \ _ 32- JNIERLOR. WATER -WALL- .-

Thermal Storage Wall Systems’

13. S[ZIbk THE WALL ’ e. c i4. WALL DETAILS

’ ., I Attach%d Greenhouse Systems \

15. SIZING THE GREENHOUSE 16. GREENi-lOuSE CONNECTIONp

L

\ .> \

“%I 1 8 i t 24 153

B

*

1 -I$‘4 - -i

\

‘_

152’,\ ’ 158

172 .,-

180

Robf Pond Systems 1

bj K ,enneth 1. Haggard and PO//Y Cooper

17. iZING THE ROOF POND’ I , 186 - 18. ROOF POND DETAILS 193

I. 1 Greenhouse . ; ,

19. SOUTH-FA~NG GREENHOUSE

20, GREENHOUSE DETAILS 200

’ .- 208 .

:, 21. ,dXMEitilNC SYSTEMS ‘22. CLOUDY DAY STORAGE 23. MOVABLE lNSU\+TION 24. REFLECTORS ?, 25. SHADING DEVl‘i3ES .,

26. INSULATION ON THE OUTSIDE 27. SUMMER COOLING

---219. ~- --‘- 2i5 230

249 ‘* 258 262

V. The Sun Charts--how the sun works, the cylindricdl 267 THE TOOLS ~ sun chart, sun charts, sun time, plqtting

the skyline . . .

The Solar Radia’fion Calculator--hourly radiatiov . 293 6 totals, daily radiation totals, splar I intensity masks

’ ‘The Shading’calculator-p/ot’tirfg the sha$ng mask 301 ; .d -I I ’ (I

\ . . .

Vjll ; y.

:\ .

-. ‘.

;) 6 .

‘V , I / ;

Page 9: Passive Solar Energy Book (1)

, .-:. ./ -‘. 1. 1 I

> .

, /

* / . - \ t

n 3

_” r?

Table of Contents . , w \ ” 0

--.-’ -- . . . .

1. Perfocwa+ce Calcblations ’ 2. Percentaie of Solar Radiation Absorb&i

4. ,//. ,/,;I =..>, )A&* ,’ ./-

by Various Sdrfacqs, .

)I, :y -2. 3. Averqhe Daily Sol/wRad~iak5~ ’ + -3.

r, ‘. i ““2 .,- _ &ASeI$ge Daily Te/nperattires (“Fj in North / :u _.~ i- ; --_-_-

1 ..- \ ’ Amqkica -‘-

j . d I ii - -~-- I Ij*

_ ,._ ,._ ..t .,.. “,. . I i

“, &jree-D.ays _,.,. :,. .,. .:.. _ .*r- . . ..-. -.- l- ’ -

7 - - -._ _ .~- _.. -__ -.-- .._ . _- .JY- A--_ . .‘~~-,. p-.--... - ----l- 6; -f&@r-&++%m’ ~1 - ’ __ _ _ _ _ - - - _--.,. __ -- ._ ~.._~ 1.. ___ :

=* I * 7 l ,

7. Pqcentage of Ehhanceknt of Solar. H&t

I

@in with Speclillarf$flectors .* . 8. -C nveision Table’s 9 -

., JOGRAPHY i /’ f

5

‘h.. , ” : A

r’

1.‘.

.

‘a, I ’ ; . ..I

I ; \,~,,

,A’

0”; y.” \ ”

_-- -- \

, . -. ,; :

y* ac

.

..-

309’

345' \ .

'\ 346 * ; 360 ; :-' =

/ I. 372

.,. T‘ . .I+ . . . -,-

- '.4m.e- - p-- A,;-.

4ili, i \\ t iv,.-

. +a, 408’ f’

* _.. ;A \ - ^ iu

I .

.

s

426 * ,/ . 0

Y

@. ‘.” .-

. .

Page 10: Passive Solar Energy Book (1)

.

Ackno@edgments - -‘- i 0 .I . . i v.7.. . . - Four years *igo, when .I kegan writing this book, information concerning

” passive solar heating was,virtually nonexistent. During this time many fri ds have worked with ‘me to generate portions of the information in ihe text. Their work and’assistance made the scope of this book possible. -I want to especially thank: ....,. J

I

I

;;,( ‘./ ” __

I ‘\ ‘

‘I I ,J’ Steve Baker who”‘worked”closely withme for t.wo years to genera!e. data *for the- formulation of the patterns and’ calculation p.rocedures. His ’

i;-- iii

- %tsight and kno-w.ledge of’the subject add a dinet$ion to, the book that .‘- I would otherwise be-absent. I am grateful not only for his contribution to

the book, but for his support,and friendship during iti. production.

)I ,.- _;

I j. A * .1 :* , i I’._ Robert Young who spent numerous hours assembling the .Appendix,

.\ .$~, i I z producing the technjcal drawi.ngs and photograiphing,many of the build-.

>!,’ 0 1 -ings.presented .in the book. . y. / Ir i 4

- . .

Raymond Har@;n.$ho gave generously of his time, at the conception

,. ’ ’ ’ of the-hook, to answer my seemingly endless questions about solar energy I -, . f c;:-.. .~~ 1.’ ., ~ an~d.he&transfer, . . _~ ~

.s b

. I

: \ - ., h j ‘dL _ r / $;, -- ,, x ‘.,, ,\ ’ .’ ,- I ,, ’ ‘. .L . i-- . ,;..

‘,,, i ~ / -, . ,, - ,;Q , I.* . . . ;,,‘.,1 ,_ i-+- :i ,. ’ :’ ! o / - h * i, 4 ~-. ‘, -. .1 2g :::;:,&~~” ,:, I\ ? ;’ ;-- ,!” , : , 1 , 2

Page 11: Passive Solar Energy Book (1)

r

Acknowledgments

h-Haggard and Polly Cooper (of their patterns onr’oof ponds. /.

. 4..

i oh Cettings’for his beautiful photographs. I. - P .

: &&“l’Stone~ fbr’her early and c . eagement. _

i&&a H&&n for be$&&qre wh%& t&going G&?isugh.. -- -* b . ’ .

P.F n&to MA?Rfi for p;oviding a supportive environment.

I _ h- 7. ‘_ > c

. . 4 1 * . Thei.conti.nuing support of, many -friend.q ,&heir confidence in me and patience

i inade.it all,possible: Joyce Brown, Bonnie Katz, Aaron Mazria;,Gary Goldberg, David Tawif, Jim Greenan, Larry Keller, Charlene Cerny,

KantFowitz, Barbara.Levy, J. Douglass and Sara Balcomb, Nichols, Rosalie Harris, Carol Bickleman, Boyd B&&it&m

Tim Zanes, Peter Calthorpe, Jim Van Duyn, Eric Hoff and Richard ~- ~~- CT

in the text .is modeled after “The Pattern Language” by Christopher Alexander, Center for Envi’ronmental Structure,

. ,’ . .

xi

;.. ‘.“. ,. J ‘.j ,- ::”

. . .: , > . . . - : . .

Page 12: Passive Solar Energy Book (1)

. Ii. known for his c$inmercial.d~~ign~,-j-jltmtrations ,. <__ ,’ r I . . 0 has been art dire&r 6f three’mhjor &ertising

~. / 1s~ pr,ints~ and paintings are shown i-n galler’ies ‘* \ c United. States. Since the illustrations for this bodk ’

L

: technical information clearly and precisely, as Ily appealing, the illustrdtor and author “have ’ gether throughout the four years of the boo,k’s

\, dqelopmen t. t ,

- ,$ ..

9 _ . i *

‘. I -

I

-‘ c

* ’ ,.

I (’

1 . . .

XII rl ..,lb \ . . d

: . . . -. - I , / _ 3, ( ._ ,

_I. . .-

,1.

Page 13: Passive Solar Energy Book (1)

;.. -7 ; ,.;; . .

, I, . .

-a v 1-

, I

, ..:) .*/ : *

building that is strongly related to* site, climate, local buildid) m,aterials ,and the>sun. It implies a,,specMI.relatio~ship to natural’psocesses that offers the potential for an inexhaustible’supply of vital energy. This attitude is obviousjy j not entirely new, since much vernacular architecture has always reflected a .

. strong relationship to daily and seasonal climatic and solar variations:In recent years, however, relying on the misconception of an infinite and inexpensive energy suf~ply, people have choseen t siderations. P

abandon these Ion&standing con-’ .f .; II / I ‘\

. I

Architecture in the twentieth century has been characterized by an emphasis on technology to the exclusion of other’values. In the built environGment this concern manifests‘itself in *the I materials we build with, such as plastics and synthetics. There is an existing -dependknce’ on mechanical control of the indoor enviro?ment rather than exploitaeion of climatic and other ,natural processes to satisfy our comfo~rt

-prisoners of complicated mechanical nts. In a ,sense,, we have become

since windows.must be inoper- able and sealed in order for work. A minor power. or equip- menf failure can ,make these buildings uninkabitable. Today, little.attention is paid to the unique ch’aracter and’variation of local climate and building materials. One can now see essentially the same type building from coast to coast.

1 4

4 . Today, there is a strong, new interest in passive solar heating and cooling systems becaus,e they simpjify rathe+r than complicate life: Passive systems are simple in concept at-ii. use,-.ha\Re few moving parts and require little or no maintenance. Also, these systems do not generate thermal pollution, since they

I

‘4

Page 14: Passive Solar Energy Book (1)

fl .*-a 1, *. ! ,.

t .A ? * I

-_, - ‘Z ! - r . 1 1.

-..---I -r- ~~- --~ I -‘a

h , - t > ‘5 . . -’ ,,

.The Passive Solar Energy t$Dok P i- t

I’ , *

CI

1;1 t

. dAm” -. P .

F

require ho external energy input and produce no p‘hysical by;products or waste. ; f :, .~

Si.nce solar,energy is c0nyenientty.distributed.b alI’pa$+ of the globe, expen- ‘sive transportation and, distribution netwolk$ of energy are also eliminated.

.d * # \

.A \ .I Jr. k-t ; r

Shce a buildi’ng’or some element of it is the passive system’; TheAappllcatipn 5

of passive solar energy must be included in every step of a buildings design. ,. _ , . +eWhereas conventional or a-ctive solar-he.ating’iystems can!be s6mewhat inde-

pendent d’f the conceptual organization of*:; buildi&, it is extremely difficult- to add a passiv,e system to a buildjng once. it hasiheen &signed.

: ’ ’

.

\ I

I ’

0 I To date;’ a&hitects,cbuilders and owner-buiklers have made l#tl,e use of the ^ inform’ation available conce.roing passive systems because “it :is ‘&o technical: cumbe’rsome and time-consu&ring.,in application. To be useful, information

, mus+t lead to the ne&essary degt;afe of accur$y at yach stage of a building’s I:

design. The de.gree of accuracy increases” as ‘the-design moves from the -A , . . . pschematic’stagd through detailed drawings’ancl models and finally to construe-

- ?:.‘@’ ’ : ,+ tio’n documents. ‘lh the earty’stages, it vnakes no sense to perform extensive 0 ! heat, loss and gain calculations,.since the building wfll change, amany times

before a design is complete. 1 I<

=? - < ?I >

_. n -3, !: The- basic purpose of this book is to make technical information acchssi ” e to I? a.lI people. The text is written in such a way as to facilitate this. TheLari‘ous elements that’ make up a passively heated building ‘are- expJained separately

-. and,ordkred in a sequence that makes them easy to apply to a building’s ’

_’ ‘Q -.. ’ design. The illustrations that accompany the text are intended to convey very. _i p

: .tPchnical information in a.simple and clear format. ‘ P /= 4 sdp

Tiis‘book deliberately does not use pr;ofessional architectural and, ehineeringd y > * graphic symbols to represent various. mateiials and concepts, but, instead,

illustrates them with a degree of r;e.aIism. The @hotographs shew, existing . en

,& ,applications ofboth entire systems as well LIS specific details., i .= ! -c ‘k . i .

: : _, .* f T$ allow, for change resulting&&new experiments and observation’, the book c

‘I e t. .- .is structured’in a way-that \permits ;he..&rder to in1prov.e and ad.d information -‘Bsm&’ I

.- , .i IS .; 1.. syster?i.“.is

earned about’ passive sys~&r~s.~ ~Since each element *of. a passive treated separately’ in the text, ‘the. Eetetrieval of specific Pieces .of.

,* (

,- ‘inform.ation is made easy. .b m * I ,I :” I

\ 5 ,e 8 \ L L .? :,, .-.-. I. ’ .-. ‘. c

all locations”betwer$n 28:” and 56” ,adapted to the same latitudes in ~ -

e I .

bJ the Sfuth,ern Hemisphere by simp.ly reversing the sea&s and reversing true

\ I “I-I.., ,. ., .~“IYwI,*, ,,:, ,,u ,aemuy<.,& ..... 0 ‘\; . ‘.

“T . u ‘j , /- j ‘_ 2 . - - -_ -. / 1 ,,.~ , ‘\’ f ‘, = I\. * \ e * r> ‘. .%.. 5’ .’

Page 15: Passive Solar Energy Book (1)

,_ .*, ‘j I

_--~ -

i,’ ._

: . I

/ \

Y ’

Tig. l-l: Geographical, regions ;dverecj in this’book. 5 1: a e

,,, ” ‘- “&, I ~ - ’ . *’ “’ \, ” ,

most of ;he information you will‘need ;\* .

.’ building. Its contents: are ordered~ in S ,-

applications to system design and I the fundamental c.oncepts of -1” ,’ It provides the foundation for * t

\ . k.

\ ; 3 ’ -- :- ..’ I’ I, ,.* < \.‘_ ($ ‘.

” \ ‘2; @F “‘I ,~ \ */,

_ ‘. r ‘L ;,.. .% :. f

Page 16: Passive Solar Energy Book (1)

- . . ____-_ -

. i L

. . ‘: m 0 r .

= 7, * .- 0 .) d

4. _ : l I . . . r x

.,:.: .~

. .

‘I ! I

r: _..

.. c &, The P&s&e; Sqlar Energy Book ; 3

Y. i I_ ‘3 . a_ A., L -,. -’ L il . , --L d - n T, _I. -... e.. und<6%a~$~+he-in~n given in the following chapters. ~Chapter’ 3 -;-- -.... _ -D - . ’

~ i j”. presents the various types of passive @ems. i%i&i~g&ec~ral, examples of, -a each. system are included; .along with. performance data,, to giv.e-~o~rarr----------~.

a Pndication of-their applicability to a wide range of climates, and xlocations. In ‘: . I . the chapter on design patterns; chapter 4, a method for designing a passiva- .

‘, ’ :, solar hearted building is provided: The intent’here is to lead you through, a ’ process that allows you 10 choose-and size a.system suited t9 yourlparticu,lar a 7-b I

-- --: -needs. Once a building and system has been designed, its performqnce can be * calculated and then adjusted, if. necessary. The graphic tools that follow in?

.s .., a .

3: chapter 5 concern the sun’s position and movement across the skydome, z- . solar intensity ‘for different orientations, obstructions to solar collection i .

I . j 4. “Y and. .the design of ,fixed -,ori movable sha’ding devices. And finally, ‘in bthe

‘,b.‘ ,, ;Appendices;~‘d$ta-necessary to accurately design and. calcutate a’ pa&e ’ a

$,;,“’ system is +zse.nted. geforeyoubegin reading this book, ‘however, keep in j -. ; .

.__ * “mind If’hat good dest’gn is the integratiliii~~f-many concerns of. which so’i’ar -*I

energy is b,u,t dhe. ’ ii*. .” . ’ 0 4-l.

,). ‘;-.,, . ‘.__ 1 ,’ .” *’ 1 ” . .._____ et . 8 ‘. ., :- ..__

‘iThe Form&t * t ): * , “y’

/ -*, \ ., : . . ~ ’ . . . . .’ * .

L * * w : ,jc ,’ .,

The ‘Pass&e Solar Energy Book covers a wide range of passive solar concepts : a6nd .information. In.order to understand the d&Is of a particular; passive ‘s’ys-

5 _-c a: tern, .it is ‘impoHant to first * the systems. To help you

‘derstand .the fundamental principles behind all

2”

~GZ fundam,Gifa~s, chapters 2 through &are , ,,

*a c,.;*- Y‘

ti b ’ &

:*,- I. -0 . a‘. <,,.r *

w-ritten in such a way. that the sentences in_ bold’type+summarjze, the text that ,, Y . b ,, ,,(.‘a ‘.. ~YIows. By themselves, these s ntences+&ten read in sequence, form a con-. ’ ,,

. (. i xl,! Ir’ ,:. 1 . . tjnuous text; To read the book, first read only thh_b’old type, consulting the text Yo clarify and embellish .particu.lar po.infsbfinformation. This’ will iake you only

; , A, y’G) s* \ , ‘.

; \ “’ , ‘a ; .:, . * :a’ti hour or so. On’ce you :have* read the book in this {way, you can ,go baik . 1,. ;’ * -s . ,z ,‘I. ‘, ‘* and read,‘the entire text to acquir+ a full understanding of the detai.ls.4 ‘- ‘” . \,, ‘: . * . .a -. . / 1 . ..- _

. _ .e ”

D

:

. 1

* .

-. .--_

-.. d- :s i . . (I, 0 .{ “- . D.C * _ ~

Page 17: Passive Solar Energy Book (1)

I -- ----- L . ;I1

I : ---;,-~--- _ ~_ -~ * i : ' . i I/ - ' f

rogen.

was ccmverted into -

sun loses only +

The thermonudlear fusions at the core of the sun release energy in’ the form high-frequency electromagnetic rhdiati.on. The theory which Furrently is

, - i ‘a “\ a i !;-?- ,r u, ‘-

- f ” . . . : s s_. t ,

d ” *‘. ’ . 4 . ,- : 1 . . . / ./ . * + I : I.’ L . .

, ’ _.,I ,,

I , ’ I ‘*. I., *, ‘L :

Page 18: Passive Solar Energy Book (1)

. .

__ .- _ _. - ‘1~

i. f~ *,

F I

The Passive Solar Energy Bbok

I

I

,’ 1’

7 -

. z, F&o 11-l‘: The sun.

3

ccebted states tt-rat electromagnetic’ radiation can be represented as either a combinak, of rapi y alternating ele’ctric and magnetic fields (or waves) or

r energy particles calle photons. This definitioh of radiation is difficult to

under-stand and visualize, But.~t& theory behind i-t ?Itcrws usto.dexribP and predict how radiation,will hct. Radiant energy is produced at the solar core at ”

temperatures estimated between 18,000,000” to 25,000,OOO” Fahrenheit UO,OOO,OOO” ,to 14,000,000” Cqlsius). The average temperature at the surface b o

Of the sun is only Io,ooo”F~(~,~~Q”C). ’ D ‘,

‘\ \ ‘3 ,

6 - . . * _\,

. ?_. ‘\ ‘.

+ * “‘y, .._

Page 19: Passive Solar Energy Book (1)

----Lezz:_Y ‘-‘- i. ” i I

. I ._ (I 4

.,. ”

P :

: ‘)

, Natural Processes .f *

I/ r?i

A/ , The energy traveling’through space is made up of radiation.in different wave:

.r .

” lengths. Electromagnetic radiation’ is classified according to its wavelength- jz.

‘,a \-

.,

I s,a * .-

1 -

: 3

. ,.* * “ _. __I -

\ .,-_ . 1 -- ---

‘.

;~ 1.1 ,..

._ ;* . I. ‘1 1. .- ._ I

,,’ ,’ ‘I . ,I i / 1 ** I’

P .

F- .- ~a _- -

I . -

5

i

the- more energetic the radiation, the shorter its wavelength. Radiation is , y 3. ‘3

emitteti from the surface of the sun in all ~avelengths.+fromlmg,wa~velength --+~ + T-- radio,.waves to very sport X rays,and gamma rays. I --.. ‘. . 1,

Although the sun radiates energy in many kavelengths, it radiates proportion- ally mdre energy in certaio wzilvelengths. ~.._._ _._~~-- - r c

At an average temperature of 10,OOO°F, the sun radiates most of. its ene& at ,, ,1-11 ..; ,.,, ,. ,,

very hrgh ~~eq~~~c~e~,,~sho~,w~v~engths), Visible .l.i.ght ma.kes up 46% of the _, total energy emitted from ?he sun, Visible,light, or the wavelength to whi&h ‘i.‘j & the human eye is sensitive, extends from 0.35 <to 0.75 microns (the’ unft used I_ to m-easure wavelength is the micron or micrometer which is equal to a ’ 1 ’ millionth 4)a meter ‘or . ~0~04 of an inch). It is m-ade up of allIthe familiar $,, I~- colors from the shorter wavebngth violet (&35microns) to blue, green:yellow,

‘orange,&td the longer wavelength red (0.75 m.icrons). Forty-nine percent of the, radiatibn’emittedfromthel’sun is in the infrared (below red) band.,Infrared - b r,adiation, ‘which tie experience as heat, is radiation at wavelengths longer than ,

the red end of the visible spectrum (greater3han 0.75 microns). The remaining portion of the sun’s radiati.on is emit b ,d in: the ultra-violet band at wavelengths sbrter)than the violet. end of the visi& spectrum,.(smaller than’ 0.35 microns). ’ All etectromagneti’c -radiation I,eavin$ the sun travels through space at a ’ uniform rate, in the form of diverging rays, traveling at the speed of light which is 786,280 miles a‘ second ‘1(3’oo,000 kilometers’a second).’ The earth a small. f

’ body compared to the,, sun, intercep’ts such -a-small p&t of the svn’s radiant output that thecsun’s ia@ are assumed to be a parallel beam. At a dGtanee of- . 93 million miles from the.sun, the earth ‘intercepts approximately 2 billionths of the sun’s:radiant output or the eqd$&nt of about’35,000, times the total energy used by all people. in one year. _. ? I I‘ ‘,i *

The Solar Constant, -v&ch defines the, amdunt of rpdiatkm or heat energy @

. reachipg theoutside of the earth’s atmosphere, is 429.2 Btu’s.per square fqot . pqr hour (1.94 calories. per square centjmeter per hour);= In other’words,“if we located a-square foot of material’ just butside the ,karth’s atmosphere and perpendicular to. the GZi’s r~yys, itwou,[d intercept 429.2, Btu”s of energy, each

hour. There aie slight variations in the? numerical value of the Solar Constant --L- bee--the earth’s orbit around the sun is almost perfectly circular,

within this orbit the sun is slightly off center. This difference is important to ,.>

scientists doing, detailed calculations out in /space, Ibut on the earth’s surface the variation isso*slight it has little.effect onthe solar heating of buildings. .

Page 20: Passive Solar Energy Book (1)

1

1 :

----...:. --

.:’

The Passive Solar Energy Book JC

, i * ,!

I I ,_ .,..

-. .’ l- .’ .

0 .g a0

‘5% /

I. - : ,‘k _ - : ; 1 s, b : i( : 0 * L’ ,a

., ’

vlsmLE ’ WEcTRiJY

*

g I b

:: . : - ,

& .

_.

h. ‘g g :: ‘1 ‘; “:. 1

e 1 : : ‘: : : . I. : , <.T : 1

: .,

L

._

.

\

r”

: *’

A

: .

: . . . .

: * -. .. he* .- : -. . .. : . : - .- . ? ,’ . s: ’

,..” .

B

* *

a

I .s 1 1,s L2

3 1 2.6

.

Y *WAVEl,ENGlH OMICRONS) , _ /’ ’ * c c Fig. Wl; Wavekngth cha;actqistics of solar radiatioi ire given for? ii - ‘- -

- . ,J the toij; of the atmdsphere (dottedl’and at the earih,;s surfrice. . 1 * ,’ . 4 4. : I

. , P I I ‘.. I/ I_ i -_ /’ .s ‘c:,

1 ‘Ra’diation ‘and tlk.‘Earth’s,, Akxphere ’ ‘J ? ‘; ,.-Gj < I .‘ b.

.,. .I. ‘Of all thq solar radiation intercepted .by t&.‘ear+ (including the’atm&&&re), as much- as,%% of it is refl;ected.!bick into space. The ~~lect,.kf ‘energy- \. .

: I 9 4 * 1 j I - i

. /

/ ,:” 2’ _ _ *t ‘3. :

I II *, ?. *

; I)

8 B .’

8” ‘1

-\. ‘.

I ’ I

+.:

; I ! . -

., .I .._,.-._ “. I ‘__

4. 3 ~.... ..___- .._.. i - _ _. - _ .___... ,, ‘.Y...~-. --- ,

-- ._... L. - ” , / :. 6

* : .

Page 21: Passive Solar Energy Book (1)

’ -, -1

1 i

’ D

t *’

c

r ,I.

“$

.*, -

-. . /<

1. i

!. . * ,? Natural Processes

.I’ r. I ’ Y’, L

-“from an object is,called the albecJo of the object. The GIbedo of th; earth taken as a whole is 35 10 40%. Most ,of this energy is’reflected back Cnto space fro; clotids and atmospheric dust, but some reflection bccurs at the surfa~ce of. the earth from surfaces such as water, snow and sand. ’ . _ \.,

. _ Part bf the remaining portion of ,sdar radiation, while passing thiough*the

‘.

earth’s atmosph f

re, is scattered in all directiooS as it inte‘racts~wit~--ai;.rnole- 1 cuks and dust -partijcles. As a result, some’ of this’ scattered or “diffused”

radiatiQn comes to eaith from all parts of .the skyd.pme.’ Scattered radiation a primarily in~the blue porfion of the visible spectrum, is re;ponsible for the blu2 c.olor of the clear sky>

k?.

‘_ : .

6

.‘&. ,&.

> 4

:i-

.

-

’ Fig. 11-2:. WIhat happens.to sol’ar radiation intercepted by the ’ * -. ‘earth’& atmosphere.

_ 0 . I&. ,

(‘m \ , ” \ - b 1 I . II -

; 9

. ’ . \ 1 ‘: _ :i do ’ p’. ..,

\, t 1 , ‘I. D ‘1. --- --’ n _,. “a 6.7. r” -- 8 , I iv _

Page 22: Passive Solar Energy Book (1)

--.- . -. /‘ \

6 ,_ I : -% I .

* ,” i _

:I

‘ ~ ,i

‘L. I * ,

il

,i * h 4

L - 5 The Passive Solar Energy Book . : . “. . . - . : ”

- .s * i

-\ . . ‘: While #&ds and dust,scatfei and reflect,Ytipproximately,a third of the incoming r . . energy, the .watet vapor, carbon diqxide and ozone in the atinosphere absorb

. ” an&her IO_to ?IS%. In the upper atamosphere, ozone removes.yi,rtuaIly all the * high7Cequency ultra-violet rad$ation reaching the earth’s surface. This is

.

‘. ,/a y _/’

eisential since ultra-violet radiatlori. can. cause skin burn and eye damage and , D “‘. ’ ‘0 .~

it can bq let’bal even in moderate d9ses. yater vapor and carbon dioxi”de in .th”e lower atmosphere .absorb portions of the radiation, primarily in th$

,_ ‘. ‘,infrared band. 2 . *- ‘I . I

r. Besides the composition of the atmosphere,- the most iTp&tant fa&or in , ’ determining the &ng+,, of solar rac&tion reaching the ea@‘s surface- is the

:a . . .l&ngth of atmosphere jhe-radiation must pass through. Durir)g, the day when ” the sun is directly dverhead., radiation travels through the least amount-pf

” . -. J C. . .I ‘,

.I _I 0 ”

: ‘gx’.-,<~ .,. ’

I - ,y h ‘d -‘k . .

I -‘. 8 . ’ ,’

“’ ” .

I)

. .

*. ’

._

\ .-

>

.

r

-* ,‘

a I, A

I .“I I

Fig. M-3: Aiir mass dktle~mines the intensity of direct. !unlight. ,,;, 4’ ’ i ! I I ,

‘, io .= . . : x : I \

._ / .., r ,_,, .,. .., ,.. . . . 1 . 1 c (r- _,’ - d

L Ai!; .:_.._.... ‘_ 1 ,i . :-I

‘1 ‘;

“‘, ‘L .____... -1_____,.__ . . . . ._. __ _, A- ._-...- - . ..-_ --. > -.---~ - L i ,. I I

Page 23: Passive Solar Energy Book (1)

x

i . . ’ ‘I _ * ‘_, :

* / ‘~‘4 . 0

a XI, . i _. il - . i .’ I r- \ 1

\ \. / 8. 4 &&al, Proces_ses -

R ,’ L

* l

c i*

tmosphere en route to the earth’s surface. ,As the sun’ moves Ftoser to the orizon ‘(sunset), the path of th,e- radiation through the atmo$here lengthens.. he more atmosphere or air mass that ra$ation must pass throughl;/the less its -

energy content will be due-to the in&eased, absorption,and scattering of the /radi&i.on. At sunset the,‘radiation content of the solar beam is sufficiently low /to enable us to glance d,irectly at t-he sun. As th.&“;!height above sea level I increases, the amount of atmosphere that solar radiation must pass through

/.decreases. Therefdre, the energy coptent of sblar radiation at high altitude locations will be somewhat higher. . _

*:

i’ : . ( Because of the eatih’s tilt and iotation, the, length!of atmosphere that solar - ’

radiation passes throkgh will vary with the time of day and month of the year. . ’ The path of the earth around the sun is a sl-ight ellipse, barely distinguishable I

once a day on an axis that” axis,is tilted’23Vz o (exactly !

around the sun. n

. . . _I. 1 i \ .,-.... 2; ‘. i- -, s!2T%wm :. -1.- -

i--.-- ’ __.. ^ ‘, i” FigJl-4: The earth’s tilt remains constant.

’ .I’ 1 :. *

. “Y i _’ ; * 4, Y .‘,, E. * * _ : . ..9 I ,

li . n ‘a /^ . : ; . 11 c _' t .s "* * . . I 1 . 0 : ',

\' ;f A' ,* i I , 4 ? ~. / .' ., 8, 'c 1 ~ : I

Page 24: Passive Solar Energy Book (1)

,’ 1 . y

‘\. \

5 ~ ,

\’

- . i

\ ;‘*.

e .---.,

0

5 ? 1

The Passive Solar _ , &

‘j ’ iJ .’

<. ’

toperpendicular to t

(1 HFrqisphere receiveq fewer hour: of, sunshine,

pr&ils in t& Southern Hemisphere. \ \ ,I 3

\ - /d <

Ii

.i’ 1 i .,.*_ j i

/’ ,

?, r

*/ : /

‘*

. a .

,

i -I ’ Fig. H-5: ” /;, :’ ;. ’ ,,i - - .,

i :.

the seasons. _: ~ * I. _

0 <.’ .._I L ..~. .-. ” \ __ ..

‘L \

1 . .

Page 25: Passive Solar Energy Book (1)

. -

-. /a--

* . 1 b Natural Processes -

‘* I . \

I

The angle the bun,% rays rqake witW a surface wili determiye how- much ehergy ’ ttiat surface receives. Since solar radiation comes to earth i,,n essentially parallel

I rays, a surface that is perpend(cular to those rays will intercept the greategt amount of energy.‘As the sun’s rays mosF,away from being perpendic’ular,

’ the energy intercepted by a surface wiU decrease. t 1.

y---- Perhqps the best way t.0 imagine this pi; tq think of- the parallel rays - :,

-==a%<-.> of the Sun as a handful ,of pencils held with thebr points touching a *a

_-- ‘c~--Y...- _. -__“!abIetop. 7hd dots made by the poin‘ts represent unifs of energy. ’ When the pencils are held perpendicular toqthe tabletop, the‘dots are ’ . ” p

2’ .’ 9 as compactly arrariged. as possible: enefgy density-: per -sqciare inch is

,;’ \ I 54, at a’maximum. As the” pencils are inclined towa&+ the”paralIel, the h 7 *’ . :. .

. I J. d

‘1.

dots beg;20 coyer largkr and !argQr areas: en&rgy density per+square in:*-. :‘ &easing.

-2% -3 , ..’

Barbara Francis’ + ,,2 7 ,

.

I . . Fig. H-6; Energy density is determined by the ahgle of .incidence,. ’ . I

G= -0 *Master’s.fhesis of Barbara Frarkis; Univetsity‘of New Me&o, 1976. 4 1 ” ’ ,.

0 . . 3

1 ’ -i

-.g, ‘=;* * ,i3: ~,, ,; .: . . . . .._ ., -. II

.I /.+--. ./ i 0 . Y --. . c _ . *” 0’ : 0 . . . ,’ ” ” / 1, 1 -/ . i.

Page 26: Passive Solar Energy Book (1)

. v.

: I * .i

% “ :

’ . e . /

-. P . .

‘1

The Passive Solar En;rgy *Book 6.

” _I’ , I i *_ ., ’ , 4‘ a

However, a surface can be facing as much’as 25” away.from perpendicula; to * -

the sun and still intercept over ‘90% of the direct radiation. The angle that the rays of the sun make with ‘a line perpendicular to a surface (also called the angle o‘f incidence) will determine the percentage of direct sunshine

I i

” z , . * intercepted by that surface. Table II-1 lists the percentage .of sunshine inter- ,_ .,

cepted- by .a surface for different incident dngles. ;., . ‘. . d

/ : Table II-1 Pircentage of Radiation Striking a

F !’ .‘,?‘i,” n

* / Surface at Given Incident Angles ’ ; . ; . t 7. c a .

; . Incident Angk . Solar Intercepted . ,@legfees) (perce_ntJ.

‘2 ?

. / / \ s . I

-.. e , ” c --. 1 \ i

5 (J. . 1oo.b ) 1 ’ ;r \ i. I - 1 ‘i, 5 99.6 . . , , I

i 10 98.5’ 1 -D ““\ 15 ‘. - 96.5 ,’

‘I’ .c, 20 94.0 =

25. ;, 90.6 ‘b 1

. ‘1 ,’ !,30+ . ” 86.6 “= .i” - Y 1 .7

35 81.9” : . * . L

9 @’ L 40 76.6 P

-0 ‘ . .45 ._ 70.7

. ” 50 $. 64.3 . I- <,+-- - I o 55 ., : 57.4 - \ -.. I . .

.: 60 “-‘- sg.0 _. 65 ‘. 1 42.3 - u &’ .

‘* ’ : h ‘. 70 34.2

* .’ ’ . *> -~ ~~~ ~,~

r.,:. / !75, 25.8 *-

/ .2;.”

‘. /’ 80 -17.4 -

j

/ ‘. 1, “II ‘0 85 * 8.7 / D

. . 90 L 0.0 ’ ., se ,a\..-- . 4

.r I. - I P / /I’ ., ,.:‘; . ANGLEa=+LEC?F~ - I,- :----- .I ,. ;*I &UaJG&b=%m- . I

. . 5 \ I \“, L .e. 1 .~. ;’ ? ‘a I.8 a_

.* 0 \ c . i , . - -. I ._

e 1 . .

; ., / . ..,*, 0

i *

‘.

:~, /i. ‘I ; . -

.:

,*/ .i.’ - % .

Page 27: Passive Solar Energy Book (1)

5

1

J’

. -

.e.

* i I :,:

_. , I

;- f 2 ( I

.i , .

c - Natural Processes , / I. ,3

r > ’ , ‘, 5 The totql amount d energy interce!pted by a s&-face &mists of not only direct radiation, but‘also diffuse and reflected &djation. The total amount of radiant energy intercepted b,y a surface is greater than that from the direct rays alone. Diffuse radiation, 0~ the energy scattered by ttie atmosphere and redirected to the earth’s surface, can be as-much as 50% of the total when the sun is, at a lo& altitude: and ltj0"/0 on a completely cloudy day, However, on ‘clear days

/diffuse radiation comprises. only a small fraction of the total. The intensity of radiation reaching a surface from a reflective material. depends upon the quality of that ‘material’s surfa% finish and the angle of inci.$&-rce between the solar beam and the ,reflector. The larger the angle of incidence, the more the radiation will be ref!ected-. S - : -.

,1. ,;

‘It js important f” realize that. the collection of solar radiation is deperident on the area of -the col,lecfing surfac.es. The energy content’ of solar radiation is

A fixed. by the output of the ,sun. To collect’s certainamount of energy from th’le sun, an area’ large/enough, to collect it is necessary.., This applies to all solar- heaiing systems from south-facing glass in a.reside%ce to collectors”that focus

_b _ the sun!s energy,. The area intercepting the sun’s rays’ will determine -the

. :.- Yp . .’ R * maximum amount of radiant energy that cat-r be collected. ..j + 0

n 1 \ , I . .<- .

‘i

-,, - Reflection, Trans~tiissi’bn and,. Absorption - ;. t p, -,,

, I’ : e f’. - 3. ‘. .* n i’ _’

-’ - . _1 a* c o ‘a. As solar radiption strikes the surface of a material, three things can happen. .I . ^ . ./” The radiation. can be reflected, transmitted and/or absorbed. _ c J

I” I . s 1 .

. . . ,I =. ‘[l)epending on the gurface,&&re of the matdrial, reflected radiation w-ill either C *

: I’ 1 be scattered (diffused) or reflected in a p‘tedictable~~‘~anne;:iRoughi~~xtured . . ’ .-_

surfaces will scatter radiatio,n,.while,surfaces such as aG’Sirrc%$ highly polished i ,aluminu.m wili reflect’ii’ght in p.red;ctdble parallel rays. For example: a masonry, . wall, because,ofthe irregularities of.‘its surface, vyill not reflect $adiafion ina I’

\ predictable ,manner. It will &attersr diffuse the radiation. in‘ all*direct-ions. In ‘-. . . . , >! ‘I ” - .’ -m- contrast, a very smo,$-r z$d’highI~$olished surface will produte a predictable’

>. -,,.. . - -- _~. reflection. (!n this manner, lig&@nd other radiant energy source3 can 64 * ‘1 controlled.)‘Yhe at-&e &which the:rays strike a .refle&ng surfacgW$ill *be equal ‘1

:: * : ,’ to’the angle of tt$. reXJc%d ra‘ys, q-5 to ;put it anothec way, ‘the angle ,of SC

: : 't i ., in;cidence wilLequal the. ;iijg’le of.reflect%n. 0 1

‘._ UI’ ” 2.. iL II . * 6’ ’ * L 2 .’ ‘.$ I I : -. -

’ .I h&t. v& ‘per&w as color is ‘the resultof~ v&X&-radiattin in ‘certain: wave- ,t

2 ‘. j lengths beitig refiected, f~om%~&rface;~ while, all the other tiavelengths. are * -

_ . 1- , .i* / ‘. ../I *.<‘l -’ I> i 1 ., r , -*- ,’ .. .” -. .- $3 ,.I . -*- “Y 7

‘I y’- ” ;sr . . 15 “. - + ,i : “.. *yj ‘1 2

i :* ,a. :+A : y: . - * :. . ,. . ..--..i.--. 1 '

'".,, ; .A,. ----\ -\ . a _ . *7. ._ ,, .*. I* ') ,,;, .. ,,. ; _, -, -. . : 'I *.. ; . . 3 .,

-\

Page 28: Passive Solar Energy Book (1)

Solar Energy Book

; . :. ; ‘. . . . , SPECULAR ,bREFLECTION

‘\ MFFljSE REFLECTKIM ..’ _.

.‘: : 1 *1/ ; , ‘i+G -3 1 .+ \ Fig. M-7: ‘e,Surface’fjnish de&nines the qual’ityof reflecti&-7

pi ‘/~ .a , _ . ‘.

‘>

. . i

_

-penetra~~&na~&~~w~~~ -either be *transmitted or . ;

: ” .. . _..

.+A , <*Lb! It ‘- * . . I 1 ._ : -,

‘L -, P

0’. & ;-.--___‘_ .*

.-.._ . > ;, : ‘* - s ‘, i ‘.

/, s 4:’ _” _ -1 * ,K*, 1 , . ~ . T . *. s. :;,

0 I’ a

Page 29: Passive Solar Energy Book (1)

:I r (I ,+a *- *L i :

1 I Natural Procisses _ _’ .$ I ” .

‘. ‘.n-

k mate‘rial that tra&&its most of the visible radiatidn that Strikes it is TRANS- PARENT. The direct passage of sunlight through. a material is’ best illustrated

r *‘I _ ‘:~ by.ordinasy window glass. Most of the solar. radiation passes through glass wjth’ ’ .i v&r-y little distortion.

i2. During a clear ,win.ter, day, for examtile, ‘a vertical single

.< pla)eglass window transmits about 85% of the solar ene&y-strikinh its surface, .

’ doutile glass about 75%. Other materials’can be equaily-t.ransmis;ive but will deflect or scatter the radiation that passes. through .it. We refer to, these materials a5 being TRANSLUCENT..’ ,

. ‘3

.

.;a,.> ,

r _ 0

> ,- .

‘. . Fig. 11-8: Color per&p&ion.

.I -I

Page 30: Passive Solar Energy Book (1)

. . f

- . The IPasSive Solar’ Energy Book

, I,. ;. .

. . . .

e;

;i *

,

( 14 0 1

0 tp c

i

.

3

, 5

c

1

TRANSLUCENT *;‘. ,

kg. 11-9: Transmission characteristics ofoilazing materials. P *

t _ I * B

, ~ I ..-

, -.

I

\ Some radiation is reflected and some is ahsorb. by the glass. Reflection losses are greatly dependent onl,tt+e angle--of incidence of the radiation striking the

Page 31: Passive Solar Energy Book (1)

_ . .&‘, . $1,. ,j’ Y

” -I i

_. )

I .+.

’ I, .>

1 ,w’ f ‘\# P

r .

.’ \ .’

‘% Nathcal Process,es \

‘I 1, 1

4

:q ‘has a lower transmissivity. This can be seen by observing the edge of a glass, ‘h - she,et; edges .which’*.appear greeri,have a high iron content. ,

4 \

: .

,

i

Y

,Phpto 11-2: - Qiffusing diiect sunlight. .

1 - -i _’ - <

.> ,

19

Page 32: Passive Solar Energy Book (1)

Solar Energy Book .‘. _. .,, I .i

a

-v .The Passive

I

’ .!

0 .

4 -I

I

kg.?&IO: ~Tr’;lnsrniss~on.c&lines sharply at.‘t.nctdencr angles 1“ . greater i^ha‘n SO”. .

L 1

“.$ .’ .

*.-..> .

.I ’

’ . li

.

,. :. I .- . . 0 .-2, : - . *

- - I ,.

3 0 *

i. - .; ‘; t‘ ’ + ‘./

, ;‘+ *- .-$a -

Solar rqdiation $bsorbed”by a .s&stdnce ii conver@ itSto iherr$ svqy’.cfr heat. Solar r8di;itibn ,absoybed by the molecules’at t,he surface ‘of a material will accelerate their movement. As the vibrational inovempnt of mdkules.

i in a mateliol iryreases, tha heat conteqt of !he rrfbte?Zi.iqi&$y~. %: .i ’ . i: . d. ,- : . . + . 0 I . L . - . -

As hei1 i+zik’dleda to i solid “rkatekat,*ik temperature will r&k Ther~fork,‘~tem’~ . ljera~re~is4\F$ meku’re of&e intensity bf heat, which is defi(;ed In tey oFt,he

. a ’ . i .,! . I

mgverqpnt crf’ molecules’.:. ihe, ,&ore’ rapid,this ,moyement,. the” hkghei the. - ~ ~temgg?ratu@ie.: .; ’ 9’ I * . -’ _ m’, .V’ . ,:’ L

.’ . . ?I ’ I ‘-

.’

_ -... .-“,f .r*’ 4 - .* _ P’ . b2 ./, * ,’ . . \ .i, * ‘._ . , - _ ,,-;--- ,-y”v- ;. :_- _ .:: I , --. ’ 4, , r b ,* 4. e ‘% . . - 3 .(’ 1 - . . a \

* ‘_ ’ i

‘B ‘. -- * Characteristics’ of Heat’ -‘. , Ia ‘.’ . . , . -- . .

P . ‘,:‘*. -. 1 0 .’ ..!!..u I r

c . . 9 . ’ Y ’ & it is h&ted .by soiai radiation, a material seeks to achieve e&ilibri~um with 3 - .’ I . t “itsl&rr&mdings thrdwgh thrke basic heat W&r processes:-conductiqti, con-‘,,‘: l

0 * %&tin and radktiqn. ’ ,. I - .c .._ - ._

. L ,, 1. , ., I . _ i . .E- ’ . * ., a 1

a c

- .

Page 33: Passive Solar Energy Book (1)

9 ;:y.. x, .7

-, TC

-.- -- -- _- -~ ~~~~-- _~.. ~.- -7. -~-- 1

r ,‘.’ I .<,’ ., _ WC.

2 _’ .,-

._. j .I _.. . .c; -> * ~..T. ___. “i

!.” ‘, . L

P L -“r --” . * ‘i;:’ ‘ibatural Prqcesses I

‘: \A ,..- . c ‘, ,.

\..A ‘,_ First, as solar radiation is absorbed by a/material, the at&orbed ..\.‘... -...L ~ redistributd itself within the mateiial as ,it is’ passed or COru’p’uCTED between

P : ‘“’

I mdlecu,les. Conduct$n: @‘the process ,in &ich heat ene\gy is transferred

’ \ :.a , _ betweT molkcu~eswjthin a substance, orbktween two substances in physical _.__ 1 contact-,, by-dil_ectmolecular interaction. The &qmer molecules bump info and 1 \ I rjass some,of the+-vibrat&naI energy to adjacentrnolecules. The dilection of

heat flow is always frot?warm.to $‘ool.‘As the’molecules at the surface’ of a I material are heated by solar radiation, they $ass this energy to cooler adjacent++

. ’ ‘L- molecules dispersing the heat through the rr&$ial- so th&dt. takes on a more

--, -tt- wdh-e rate of h&t flow or the thermal co’&c@CtjVjt~ (k).of-a’ * ,_- ‘X -

, subst$nce is dep@ndent on the capability of its molecules’to sendh,and3receive - ’ .’ .,., . ‘

heat. Forexam$$q,-metal, dill feel colder,to the touch than wood c&the ,.same . low temperatur$ This is due to the fact that metal/has a higher con?lu&ivi~ i ‘._

hnd it will absorb heattnd pass it from its surface to its

.A than wood. The more heat conducted from the hand,

‘,. In general, because gases are poor conductors,’

“- :.--- ockets are usually poor conductors.‘,A goo,d example of this is ‘building

,- ‘, ‘$ ‘. - *

insulation.which cgnta’ins- thousandsqf tiny air poc.ket:s.

:. 8 k--__- . ’ ..

.:7. --L Second, H ‘hate!ial will Yransfer h,pat &&gy from its kface’to the moiecules ‘0 --- ._ : of Gmt$!_u_ig-?-.by CONVECTION. ‘f;onvection is -defined.: as 0) the “:’ ‘, . ‘. .

‘L- ‘transfer of heat betweer&urface. and a moving flui’d, ‘or (2) the transfer of

. ’ hea,! by: the movement of the molecules from onepo&t-in a fluid to “another. .-. . ..I.. __

\ .‘.a ! .

‘,.;l-n- canv~ctiop pro&seS, heat again always moves from warm%-c&LA&e - o : .,, ;... ., ,.I. ;cool*m’olecules’of a”?luid such.as wate-ror air come into physical contact with a I!,’ ”

,5’ l

yarm surface,,sdme of the’vrbrationaf energy at the surface &f the material is. : /

near -

Page 34: Passive Solar Energy Book (1)

The P$ssive Solar Energy Book .

i .l 5:.

. . \ )-’ ’

_!\

\j

n \ u

,I .r , . - Fig. M-11: A downdrd’it creates uncotifortable c6nditions. I ‘$ , --. 0 I ,’ ._.

0 I . .-L.. --- _ .^~ . Ic=y-.--- -- --, -- 8J .. ’ .&

- -.-. . I , i e

* ,~ if th? fluid .is pumped~,or blown across-a surface, the rate of topve&e heat . - tra&er will increase. AS a cool fluid comes in coittict with a warm surface,

- .’ ‘t.~~f~~~.-i~~~~~S~nce~ the rate of h __ ..- -------

\ ‘eat flow fron43e surface EZFiFfid.

t increkes as’ bhe temperaturb difference between t’@~ sub&nces increases, the ’ 4 ‘- faste<.:the! wcmed fluid moletiules are removed frc$i tt$.surface tnd replaced

.I -‘.‘- l by cooler molecules, .qke ofaster twill be ‘the rate qf heat traiisfkr.-For example, * . . . ‘.

; I *

22 *, 1 - .~ a - Y r * . . \ . .‘\.\. ,^, l ..I

,s f \: 1 i e% ,--.--- 0 >

i ‘.

,‘,, ,__ ‘\ ‘1, : t .\.“.*.‘ 7, _ ..- .

Page 35: Passive Solar Energy Book (1)

.~-- .I --. --. r I m

& l’

.

c -/ 0 .I .e.*

f

Y ’

\ ’

1 Ii Natural Processes

C, .‘,& .

6 \ > . ” .

‘. 1 ‘i when ai:i.is bagwn against the surface of a’hot spoonful of liquid, it cools faster. ’ r : . The air molecules that have been warmed at the suriace of the liquid are blown

away,j&d replaced by cooler ai”rimolecuIes which are,capa,ble of absorbing . + 2 more heat. This protess is.called FORCED CbNVECTlON. L:

P /

w

I’, 1

i/ Fig. 11-12: Cooling by faced convection. ! .

* ‘I

f,

cl ~1 Q \ 7.

, . 4% ’ And third, all materials RADIATE en

( stantly radiating therm;1 energy j-n.. II ,dlrec%ns bkcause of the continual 1

rgy all the tim:. All. m?terials are con-

vibrational mavement of~mole$& (r+easured as temperature) at their surface. i

‘ij c

ig contrast to s‘olar radiation, which corisists of shortwave radiation emitted c

.=

I’, P

at.very high temperatures, thermal radiation experienced as ,heat donsists of ’ ’ - longwave infrared radiation emitted at a much lower temperature. ,; ! ”

D ,I : ,

L 9

:

As the fice dies dowrrayd the flame an,d coal’s becorrie more@red and I give off less light an htly-less heat . . . after, awhile .the flame disappears, the coals ome dull red in a,ppearance, then a darker

I red, and finally they no more? Light is no longer emitted from the war,m coals, but h,eat contiriues to b& g.jven a&. Th6 warmth ‘,

I --- 1 of the. coals-;is felt for- hours as ‘radiated heat or infrared radi’ation, ‘Ijut jris not s’een as light. $6 -__- . .._ _ ‘, : I . * John Mather* ’ I, * - = 4 :

energy a material radiates debends on the temperature .L1 -.--; --

E I i ,- !I P

The output’ of thermal radiation from a surface not only varies Gth surface tekperature,.bAt also with the quality or EMkSlVTTY of the surface. In general,

z

.+ *John R. Pjather, Climatology: Funda6Jentais andzA&lications. i . ‘23 ’ ” 3 , >, 0 ,j !

‘.,: e i IT , -

:. > , ., ‘. I .,

Page 36: Passive Solar Energy Book (1)

,.:- . 1’ _l--i .-..-- .- .- _- ---, - -. ~- 7- < F-J=-- ““‘- I . . 4. ,..~ 1.. , ‘b -J ] ; jJ!-” ‘Lip .._“_ ” -” ! / ,* f L

-1 , ’ 1: ,c 1 .

.Q b / P I l

.” ,

,/J’

ft$“PasSiv~: Solar Cn&gy Book -L.. ._ - D . . ._~__ .._____- -...-----.- I~ .__ -.- ..-.. -- - .‘-.~-. -, ,__ n _ I P . 5 .*

-

.

‘.’ .,

4

.

.

--\

most materials are good emitters of “thermal radiation”, that is, they radiate. _ ’ . thermal energy easil). -‘ihe emitGnce.(E) pf a material is afi’indicator of that

. ‘material’s abilit~,~~ give off thermal.‘radiation. Mos,t building ,ma@rials,. fgr - ‘,I example, haye erm’issivities of 0.9 which means that they radiate? 90% of thei - thkrmal. energy theoretically possible at a givbn temperatclie:’ Norma’lly, highly ,.:

;, polished-surfaces, slach as shiny,metals, are’poor emitte‘rs of t ,‘mal;,r8diation. T b

* - This me&s they radiate very Iittl,e,heat at a given te&perature: \ I ,,o I . “_ P I \,, ; 3

- NoI all materials,-howekr~~ -bbsO’r& tbermai radiition; “some w~ill jreflect it ..

reflect thermal, radiation will the surjace rather th’ n on jts

i_s a good indic,$ion of the ability uo P ref ect solar :!

the ability to reflect the-rmal radiat!o,n. Mdst t

01 color, act as a “black bc@y,” * 4

bsorbihg p B - .I > L- n n 3 I

_I, 1.111 i

e *- \. t ,r ,I .i

1; ‘general, &&‘higl$ p&shed oi shiny Sirfaces, such as, altimqpuk foil,

* reflect large amoknts of .ahe thermal iadiatiqn t-hey intercept. The/ designers of .air@~n& tak6 advantage bf this principle bj/ provid,ihg the unqersides of

: airplarjes with, a polished metal finish: so tha,t ihermal -energy or heat ‘radiated _. ..! 1 _ Jrsrn ti hot.asph$t rqnway will be,refl@ted, this keeping the interjors of th: pldnestCcoqler w,hen phrked at a terminal. - ,, 3

. . . . I b.> / ” .

0 ., _,,... 4‘ .I

The’ amount bf thermal radiatibn/A shriace intercepts depends on th% angle the radi&ion mak& with that surfi&. This. is- the-same $priiicib e that. applies to ‘1 0 ; .

.I . polar r,adiation. Two surfaces that lare+ar&lel ts and facing each’ other will . _~

i .‘-- ... :c--..- ----exchZije. a maximum Gnouht of theC?iKGdradiation, while suriaces facing each --’ , . . t : \ 5, er.at an angle wil-I exchangc”lesG If both. bddies have the Same‘atjsorptivity,

” e result of this ener& excharige is a’net radiant heat trahsfer frpni the warm :,, .\I. body td the- cpql ,body.. .,-- --: *

,$“,S “’ . I O.

r 8. I;‘. ? , .- - -2 .__-~ -.

‘I

6

5 ---

I : \\ . , :y \‘,

* ‘A.\ \

soi‘ i

t’ _‘_a

’ .(. .Materials that transmit visible ~-~&i&err-do GX&c&sarily transmit c* -.

i s c thermal-radiation. .,-A- .-’ I--- i< 0 .h . D ..- . \ ‘<

.5 * Glass, which allows virtually all the visibl

pak’through, will absorb most of the I ¶ rddiation it. intercepts. This

collecting &lar ‘Gnergy,~.,.Qnce - -_-- ” -1 . !*In physics, aXTkKbo~&is an ideal material that

,; . _ = ‘- :24 . ~ ,., ” :.. --.-.._, __,_ : .-_,_ :.... .* ~_ 1;. .--. _. ,_. __ _. . . .- -I:l----& ..-. .._ .,__ .; _, _:

.

perfectly. @ ,; ’

:. I

Page 37: Passive Solar Energy Book (1)

- . . . . . --5

,

. ,/ ‘*

.>’

‘, ! r

i SC r

./ a

/

.

,

.i’ I . ” v

0’6. . Natural Processes * n ; k

e

absorbed by matejials in a space, thermal energy reradiated by these mat.erials will noI pass back ourt through the glass.’

i-

!

This process of trapping heat is c’ommonly known as the “greenhouse effect.” A good example of the resl‘llt of this etiect IS the heat that bbilds ilp in an ;lutomobile that has been sitting in the sun for a few hours. Other materials, s,uch as some plastic glazing materials that adniit a high percentage of solar radiation, will allow as much as 4O%*oi the thermal rhcliation they intercept to pass through. In this-aspect, these maderials are slj,$?tly tess desir‘able for

.-

:‘- ./ -’ usp in solar heatin,g.

3 L

: 7,

7 .s

/

:.\,

b

c . ;\\ .w

e 1

:: \ i‘ c

F’

‘4

. I

i.

,

Fig. 11-13: Greenhouse effect..

,(;“’ [. .- :.

, ,,‘F - ~- -.”

.; Heat Storage ‘* ” ’ - ’ n

,

All solar-heating systems .hre based on storing solar energy within. a tiiaterial for ‘a period of tinie. This is accomp1ishe.d by hea4ng a material which will store the tieat until it is need?d. Coojing systems; on the other hand, do exactly the opposite. A substance ,is coole.d, or heat is taken out, and kept

*This does nbt imply that radiation loss.es fro& ‘2 space a‘re eliminated. Although glass does iot tr_aq,Smit thermal: radiation, it absorbs this energy and then reradiates and conducts it to the

/ 7 [ outside, but at the tower temperature of the glass surfa&. ’ /’ I. ’ ‘..

I 25 L . “.

s

‘Z __ I’._-

.-T ,”

--

Page 38: Passive Solar Energy Book (1)

““:‘. .’ I. . . I

/ .

I.

i,! .,/ *

3; ;t , “‘Z)

i’ a

I

.I

t ,. -/ . .

,

I . I

’ . I’ ’ ’

I’. -_ Ij

I,. ‘. ., .-,. 3:s; j . i’ ,’ -..

, ?he Passiv: Soliir Enet@ B6ok

’ ,; .i’ p _ ,-

:, I - - : ) I / P

rn . ” .

,,. , . ./ r

_ ,&- * thatwayso it cai‘absorb he& at adater titie, Heating and cooling a space is

+entially..based OF the same cancept. Very simply, the i$ea is to keqp a 1

q ‘1.’ ” ( “te?‘%perature difference between the substance and the surrounding tempe’ra-

tu re. 0. . . . ‘. ‘9 a .

* ‘Eqr this reason, when solar heating a building, it is impoja building of a substance that can store enough sol& energy ( 2

to con+?!. the heat) ic the day-<; d p -

. t P ? , 1 time t+ ke.ep& building &arm during a Cold winter night. The capaci,ty of a .-’

.,/ matCat to 9tare thkrmal energy is &lled=its specific heat, which is defined as L c

l A’

i the amwn[ Of heaf (measured in Btu’S) &-te pound of a substance ca‘n hold 1 ’ 1 when its temperature‘ is% raised one degree Fahrenheit. In the construction

. .’ j” ’ &trades, however, the-quantity of a su,bstance’is t’requently given in cubic’ feet . : &-‘, a

* i’.’ ’ rather than potiiids. ‘The&fore, the volemetric heat:capa@ty of orie Cubic foot

, \- of,a substan& is simply its -specific heat multiplied by its density (number’of

/, peunds per cubic’foot). * I..

,\ I- .i I/< I :., -; *i

\ Table lb-2 lists boih the specific heat and heat ca’pacities of various substances. 0 :. .-, .: ,. I\ldtice” thy! alth.ough brick’and conctete‘ have’~+oughly half the Specific heat’ of

expanded ,polyurethane, their . . ,., they can store substtintially

sity is much greater, so per unit .volumg L . ? ’ _

’ .\ r i . ? a- \ l .

1 : -

‘?

,_ _ : _-

.:r. o

3 . . .,

.;. ,.

; _.

: ‘b ) ) \ Table II&$\ Specific Heat ‘a!! Heat Capacity of Vari’ous Substances, ’ ‘y’

# :- I > _ \, s : 0 . t ,: \, -::

Substance ,, Density Hbat Capacity .’

D t _, (lb&u ft) (Btuku ft-“F) ” . \ G , 1 0 --_ ,

,) . , ,

.“’ .’ ‘I I,

5 144. .: / &?

0 .

” ;>. -. 489 39

_- .’ 1 y-A”,.- . \ , -*,, ,I). .’ F”\ 8, ,- ‘.X,,

‘j:’ ‘,‘Ih _/ 4.: 2 I ‘i,+‘. .;

..i $g-;:.:.. a; ,_.

..Y/ ,-,. . ,) ‘) .’ ’ ..

- ;. i - ‘+ I’ ~ : D ’

,I’, ,( ,i -* : II .%. y. ,,/ - .n $‘i ?I I,‘, ,‘,,, ;i &j\;,:,.:;:; .;.,.:;z: ::..;..y:. :’ ,,, .: ,I’

f “. _, -‘: . .:.

.I.’ -‘n_ ._I 1 i *.

*:- I

P

‘---..

Page 39: Passive Solar Energy Book (1)

-. ,, “/ -5.. .f -. ,, “/ -5.. .f c.. C” ‘- .: c.. C” ‘- .: .’ .’ r. ‘-. r. ‘-. c--:,i _...l~. c--:,i _...l~.

I* ., ., I* ., ., ,, ,, ; / ; / ‘. ‘.

:_ :_

,I ),, ,I ),, :: ,, :: ,,

- -

‘,,‘<, : ‘,,‘<, : ,.I * ,.I * * -3 * -3

0 0 :/’ :/’ ,, ,, p p -3 -3 >_I, >_I,

: : .,. .,.

: : ‘\ . ‘\ .

. * . * .I .I * * , _, _, ,* * ,* *

hY hY

v v .* “J .* “J , ,

;.. ;.. . . - -. - -.

; ;

- I,, ) ,‘i’ - I,, ) ,‘i’

.’ .’ c , c , 0 0

:;/ :;/ “’ ., * “’ ., * f f

,‘i ,‘i _L ‘. _L ‘. I - I -

1 ~“1 .,,’ ‘, ~“1 .,,’ ‘, D D

. . Hqwever,. apa$froT havini “a high heat cgpacity, . to Hqwever,. apa$froT havini “a high heat cgpacity,.to be effective,_as a & t :

,,.2

. . ‘storage medium a $&stance must ,&o have a relatively t ‘storage medium a $&stance must ,&o have a relatively high .conduc&j~. (._ Y (._ Y “’ 1 “’ 1 ., :’ ., :’ ..” ..” WoGd and. brick.hav$&o;t the same heat storage capacity; WoGd and. brick.hav$&o;t the same heat storage capacity; however, wood”is’

‘/ t ‘/ t “. “. usua!l,y not used f&r heat storage. The reasorris simply that wood does not usua!l,y not used f&r heat storage. The reasorris simply that wood does not ‘. ‘.

f’ .a f’ .a conduct heat ,a$ well as brick and. is, therefore, ?ot capdhle of .transferring’ conduct heat ,a$ well as brick and. is, therefore, ?ot capdhle of .transferring’ sqfack to its’iGteri,or for storage. ” sqfack to its’iGteri,or for storage. ” / .

. . ,.* ,.*

i i I I 7,

;/

.

T’ l c D’

;,j,.- .

. . I

,. I ‘I

‘,l

q

2

. .

1. ,I ,, *a

y ,;,/ .’

,-f+- I ,~ . ’ , 1

i”. ;: %. ,,:. , . .

‘i , I’ .,s ;-

r . - /,, ;,. /

I .* , ,_

.-: ,’ /’

-1

11

i.,c v

/,

I. ” -.. .- ,

,, .

,, ,’ ;’ ” h I 2. .a

,_, ,k -I

.+

.-A,*.,

. i

.., ‘-! :, . .‘. 1:

i; . . . * ,c\l

- i-i’ .

,. I .< -* . \ 1 . ,:~., I ‘-’ ,. , , \ . 5 ._ I,‘o G 3. ;‘:;f / * \‘, 2” 1 . . _. ,’ -\ ‘.

i” ,,.’

‘. ’ a.- . r) R . ‘F , i "

r 40

' . . .

't

-. I

4. B. ‘. . . . .

AA ‘Y - :

. . - . I 0 . . ._

271 ’ -;

Page 40: Passive Solar Energy Book (1)

Passive SdzW Systems. i _ Approadjes to Solar hating _

/ _ ’ i / I. i.

,,/I . \ (:,, ‘, I; There ark basically two distinct approaches to the solar heating of buildings: ‘%

I L active and passive. a / .;p. . ,/ ‘! ~I .

* . . ‘In &neral,.active systems employ hardware and mechanical equipment to

-- n “collect atid transport heat. Flat plate or focusing cdliectors (usually mountedion 1 the roof of a buil,ding) and a separate heat storage unit (rock bin, w.aier,.tank or ,

_:(‘* co’mbination of the two) are often the majo‘r.elements ofpthe system. Water OT .“- . 1 air, pumped through the coHector, absorbs heat and transports it to the storage

unit. This heat is then supblied from the storage unit to the spaces in a bujlding ’ , ” ’ by a completely mechanical distribu’tion system. 1, F

,

Passive systems, on theother hand, collect and transport heat by nonmechan- ‘,

. * i&l means. The most,common definition of a ‘passive solar-heating and coolisng . system is that.it is a system in which the thermal energy flows in the system are 7

by natural means, such as radiation, conduction and natural convection.. In 17 . essence, the building structure orsome element of it is the system. There are . no separate collectors, storage units or mechanical elements. The most striking

‘difference between the systems is that the passive system operates on the r energy av%ilable in its immediate environment and the active system imports -e--- - -: energy, such ‘as electricity, to pow-t&-&s and pumps which make the’ .

2 system work: Q -, ‘. c G 1

F There are twb basjc elements in every passive solar-heating system,: south- “.; facing glass (or transparent plastic) for solar collection, and. therma! mass ‘for

_’ * I

. 3 .

d

I ’ & 42% ,; h i? ; ) ! ,* & .*I. A 0 / . “*., . . 1,. i .J ,-. c s,

Page 41: Passive Solar Energy Book (1)

Passive Solar Systems ?

heat ab&rptioq, storage and Odistributi?d. Popular belief ‘has it that iiassive

i, . ..-ovI.T-e... ” _ . ~ . _ -, _.

building. must iriC6’Lpora’te large quanlX& ‘?if?hYG? two elem”Gif~~.‘~‘-6r~~ studies ” -1 ’ ;how, hotiever, that while there must be some thermal mass and glazing in ’

n . ,?.-.,

_’

:

each space,‘when prope”ily designed they are not necessirily excessive. This will become evident Gh&Y you read the sizcing procedures given in chapter, 4, ‘.(pes,ign Patterns.” ’ _

a ’

I.

To establish a framework for understanding passive systems, three concepts ’ will be “defined: DIRECT CA\N, INDIRECT GAIN and ISOLATED GAIN. Each explaini th& relationship between the su?, heat storage and living space. Within each of these categoric? we are able to identify various systems, ’ ._ .

birect. Gain _ _ : ,

The firsi and simples’t approach to passive solar heatirig is th@ conc”ept bf Direct Gain. Simply defin.ed, the actual living space isdifectty Heated by sun- light. When the space is used as a solar collector, it must also cqntain a method for absorbing and.‘.storing enough daytime, he’at for cold *winter nights. In other words, with the direct gain approach *the space be&mes a live-bn’ solar dollector, heat storage and distribution system all in one. One important note, Direct Gain Systems are’always working. This means they collect and use every bit of energy that passes through the glazing-direct or diffuse.

@sj

Because of this, th& not’only wart well in sunpy climates, but also in Floudy climates with great ,amourjts of d&use solar &nergy, ti,here active .systems can hardly pqrform as effectively.

._-._ - -: --

In this approach, there is an expanse of south-facing glass and enough. thermal mass, strategically located in a space, for beat absorption and storage. South- facing glass (the,coIIec,,tor) is exposed to the m&in& amount of solar energy i! winter, and minimum amount in summer. For this reason; it is the Pdeal location for a’dmitting direct sunlight into-a ,pace: ‘Since a portion of this solar heat gain (sunlight) must be stored in the s$ace for, use at night (and pos$bly during periods of cloudy weather), .tRe floor and/or wal.ls must be. cpnstructed of materials capable @f storing heat. 1 -.

t’ ~ 7.

Today; the tw6 most.common materials used for heat storageTare masonry and ’ water. Masonry theimal storige materials cnclude concrete, currdrete block, brick, stone .,and adobe, either individually or in various combinations. Typicallyg~at least one-half to two-thirds of:the-total surface area in a space is construFt@d of thick-masonry. This imb!je$, that the interior be IargeLy cdn-

3 . “4 s--

” i ,’

0 29 u .,

Page 42: Passive Solar Energy Book (1)

1 i

2

df e,xposed mass the other hand, ~A,, ’ ’

door-and sp$ce tempe,t+t;res begin to .drop, this-heat’ is returned to the space. . u ” _ 0 (/ .i :

I' i., 0

$1, I i

'. : :*-

I a ‘,

i&rs%tl~~ one wall of a space. Thelwater wall- is located in’ ‘< . the Space in such a way that direct sunlight strjkes jt‘for most of the day. ‘~ M&terial$.commo$y used to construct- thg. wall are plastic,.or metal containers. R During the daytim:e, the mass is charged with heat so that at night when out- .

. D .

‘. 0 n

3 ,, a u :

1 *c ,$ 1 D Fig. Ii!-1 : direct gain.sy&riv. a , ~ ^ D :. n . . ’

.I 0. b -we\ 0 ‘, -- . . c- .1 ; . ‘30. .. D’*., f;J ~ ’ ‘-i\o ~

; I \ 1, ‘* ’ .- ’ ;

1’ . 8 F’ ‘. 1’ I :‘. E . . II - , ) 9 ,,, : ’ ‘. : -- ” , ’ ,_’ I/ - , : ’ .,

Page 43: Passive Solar Energy Book (1)

I*. .,’ t I

_. _ _ ..;....,....... -.___I ? / _~.. ~~~-~-_~ _~~ __

.

, r

$9 ;,_/I__’ a :

: 6 ;/: /’ a . \

*<. Passive. Solar Systikis \

v* *<. Passive. Solar Systikis -jl

e ; . ,: ‘

.+ -1. II . .‘<

I’ Y

‘\, ” . . ‘~‘l~n’ho~ summer climates’with’cool nighttime t&nperatures,*the mass ‘can also B; . . ,’ f . act’ to keep a building @cool :during the day. First, because of its time-lag&a

‘?l* properties, massive walls keep heat from reaching..the interior of the building 0 ‘.’

_ , -.- until the evening when outdooretemeeratures are cooler. Second; outdoor air ‘

, . I

‘7 circulated, through tlie buildingTat night cools the interior mass so it absorbs c

heat and provides cool i.n,terior-surfaces du$ing the da.y. I *\ ’ . e ‘,!1 P 9% ,. 3 “PI

< 0 * e

1~: I

one-of the earlikst and largest contemporary examples of a Direct Gain System n is thI! St. Qorg.e’.sXounty Secondary School in Wallasey, England, near Liver- .*Ap~ol. The building, d.esigned by-architect Emslie ‘2 Morgan, was completed in

‘I . ;. P,,

1962. .Public reaction to the building at that time was that the architect flad somehow harnessed. a new physical principle. It was not until the late 1960s that extensive research and testing of the building was begun. @

\’ .- p ,.

< \ . ‘1, 0 1 - .

xX “j The -build$tg, constructed ‘of masonry, hasEla transparent qouth wall for 4 =

’ m@mum solar.gain in winter.’ Concrete, 7 to 10 inches in thi’ckness, forms the

/I = roof and floors, with the’,north walj and’ interior partitions u-?ade of %in.ch br;jck. Th;s masonryis the principal means of heat storage in the building.,..lt is

,I’ , “, exposed to the0 interior and insulapd frqm theV+terior with 5 inches of / 1, , expanded polystyrene:.QBy contrast, the eni~rk south wal! of the building is

,_ esserrtially transpayent. Tti sheets of gfass, the outside layer Clear ,ahd the insid,:e translucent, make. up the roughly 230-by-27-foot wall. The translucent

_ layer’refracts~d(rect sunlight diffusing it over the surface area of interior mass, somewbat..uniformly. ,‘r c> - 0 $y . i L..

..“; . m .

‘The ~masok$ krior stoie$. heit and acts to p&venk large fluctuations j,of itidoor temperatures over the day. Becorded classroom flu)ctuations are on

I* the average Gnly 7’“F throughout the year (cl&r-day ftuctuations are ;omewt+at ;; \, ’ higtier). Thticlearly illdstrates the effect masonry has in keeping indoor tem-

’ peratures rel$tively stable. 0 b c m % ;

,~ 81 . - c :

: ’ 1..... :..l;i,~.’ .: : The south wall ‘&nits enou& S .building’s heating needs during rgytosupply, roughly 5O?b hf he .i-- :

. \ ?.e ., * climate. Wallasey is located on, ‘the wes

r; kd all this i? a less-than-ideal . f England at 53”NL. Its outdoor o

- ‘r& temperatures are moderated by the f Stream, but the current also ’ * i’

)..“-i - := .’ , .brings,with it much fog and cloudy weather. te; at best thought to be . ‘ , . . ’ “/ ” , I

‘margina~l&suited;for solar energy application, .B

k\ -the sun with the remaining 50% supplled ‘by lig

utlding is heated’5d% by students. The conven-

‘i

b.. . ( \ . . \ tional heatjng system, originally installed, was Fever and su bsequentjy @ ‘, removed. . B .c

0 . ;,>. 8, ,_ I :

&’ ‘< -2. ,. ”

jai \ e a

.\ 0

y ! _. 9 ..’ . _L, _ 1. \_“‘.. - : *‘- x ‘31 . 1- t .: 0

Page 44: Passive Solar Energy Book (1)

” 0

D

. ?,

1

.n ‘. L) . . J < .J.-. 0 _..‘. -i . . t.: ,,,_,, ‘.’ . ;, ,_

. . .: ,, i’ 0 ‘.(

f - 1 -.

.a. / The! Passive Solar Energy Book ‘_ e

;

D _ * . 1” “--hL’E Table *!ll-1 principal Heai Sources a

t’* 1

Percentage of Heating Supplied c_I B----- _I_____,.._-~~j--v.- LE.--, -i ,-___

cGiIijjh esttmateT-‘- _~_._ -. -_

e

4$. . Sburce (196&69)

m ., I’

.! Soiir energy - 1 50 - ,’

Incandescent lights , 34 cl l.JOO‘i~n classroom ’

I 2,400 in art .rooin + S&dents: 15 tq‘35”students ” 16 ‘r< .

0 ! per c!ass L

SOURCE: ]osebh E. Perry, Jr., <‘The Wallasey Schbol,” Passive Solar Heating a.nd Coo[ing Con-

*, ference a‘nd Workshop Proqedings (Springfield, Va.: National Technical Inf rrnation c:

. ’ ’

Service, 1976). o s6 I ‘. ’ \!‘r u * I) “is mq‘ k il. a L

’ ‘9 ;

. I a ‘\ _ . r

fJ” bflck wall faded with pfartor,

- 5” tnrulation

t ” .!... ,,, ,‘1~

j !*l 0

[ I . 0 ---- ~.“_- - ..; -

2 .! _’ . i 1

63’; I -i ,Q . .

. . i ,-.‘.Q‘

Fig. 111-2: Sunlight ii’diff+ed over a large.i&ace area of mason&. 0 .’ ‘S ..’ I ; -+ 1”. _:,,, r

32 ,_ : y s -

‘.., j ” - ,I,,”

‘, :.’ _. .. <_ ) ; . 9 L --, -- -. -_ !_ ,‘P.,

,: ?’ .- ” ^ .w .- _’ .’ . ..e ,. ‘,’ .,, .- ‘8 ‘-.. “’ -. . . <

: . .._ :. ;..4 _, .

Page 45: Passive Solar Energy Book (1)

*

,

i

-passive Solar S&ems ._

Photo III-I: South and north face of St. George’s County Secondary School. .

I . -i ” =.

Page 46: Passive Solar Energy Book (1)

.._,,, .~ 1

10 J 9 1 e

i 0 .’ . -,

1 1 3- * )

.i.. a

,-. ___ --.- -- 5: ..i . 3

,‘.. _ -. ” , . 0 _d Y

.. )I i

.K\\e -

. , ..:

, .Aeassiv.e* Ej&gamk-~.--

. I 6

R

~ 1 -- ,. - ,’ c ’ -*

Another, very different applicafion of a direct gain concept-.is Maxamillian’s ’ ,

. restaurant, located in. Albuqyerque, New Mexico. The restaurant employs al ~._____.~~__-....._...._131i~~c~~Gain~~em-~o.suppI.ya-m~~por.t~ion of...i,ts-wioterheating-creeds-anda--’ .- _a.. . . --_ ..(“”

natural cooling system to me:t its surhmgr cboting loads. I 4 I 2 .*

0 “\. ” ,

* ^

I -1 I- 1. 1-L

.

.”

, ~- -*f a 3 6 9.12-3 6 9 P 3 6 9 Q 2 3 9 .Q h 6 9, Pi?-,6 0 Q , -- --+I. / I-, =

I

~___- .; htDOORN ~~qg&Jfp~&j#j&& 7, -._-.

i. .. ,. a NOVEMEjER 25; 26,27,.1977~ . e ’ ^-

.- ‘. D . , 6 (’

i’ r . sc .-~- Fig.,lll-3: paxam/llian’s restaurant (here and fddng page): j I : ; f

...I

.’ 34 “-, -~. .-. ., . - . _ ,., , .I . B

.- ., _” “; ., %.t/ . ._ . , i,‘. b I,), ‘: .

, : ’ :_ ,O

Page 47: Passive Solar Energy Book (1)

.., ,... ,. . . .

, . .

I”-.

‘c

( ( ,, d $ ,,

8,; 1

: , ‘4

i.

-... .b

. . .,-

li^- ../ _. m-. -. ~. . . .

I

- ( *uMrirC& .- . ~?

I -- I SUN : c : . , . . , . 1 I 1 . .

/

.- -i

! .;

I 4. *,*,-;

B I rL

.i ‘4

SUMMER ANC&i%i OPERATION’ ’ c (I . . ~ , . / -.

Passive Solar Systems 6 i r L 1

3 \

,

~NSLUCE~ OWING) g!@g Q”

. i-._- .

* to evenly and effectively absorb and store the incidem

energy during the daytime B i *

. “_. -. “-,

d. auxiliary heating

, at night when the -

:

being warmer than a conventi in .a radiant .heated space, is “felt” as i I

nally heated space at that same temperature. To ’ avofd the possibility of,overheating in winteP, the.clerestories were slightly- undersized to allow%r’the heat gains frpm lights, pe,ople and appliances.

; r - <’ Y ,, ?. ., . ------:--.. I .~ . --~ - -- . .._ -.- _.__ .\ . _, __ _ : r i _. .~. ,_ _ -c lr - . ‘=, ,. -7 3r

: o ‘d b’ - + (_. P. ., . . ‘. , e = ~’ ‘. / ~

Page 48: Passive Solar Energy Book (1)

s ::

/

‘3 ( I’

./ i- ? =

- j. I d

. ? I.

* 8 . .= : .I

-. *

” The Passive S*olar Energy, Book

? L c +L . .4 -.

c * 2~. .-3

.4 ,. _I__~_

.’

.,....,.,.,.,.

t

’ : I -> *Photo 111-2: Interior.of Maxamillian’s restaurant (here a;dI’facing page).

., 3,fj .; . , _

;\ @

b i \Y/ -!li _‘ ?

,

Page 49: Passive Solar Energy Book (1)

_” ,I “-14 1 . . \\\’ , ~

‘j, \

“; A * ‘, .> xy

” I, _ *

k I’ ‘.

$2 c. \ Passive Solar, Sy’Stems

.

-_

.’

-

‘T ’ ’

‘,/

‘, j>

_..._ . . . .

.p---- . - ‘*

.t

In-so-&m&, cboli& is accomplished by ,ket$ing the sun out and by ventilating

5 ’ a the space gt night. Most often, nighttime temperatures in Albuquerque drop

into the IOW 60’s: By opening both,windows on t&e main level and the vents e po*sitioned high in the clerestories, 2 convection &irent is ind’ucek; cool air is

drawn in’through the low openings and warmed air rises out thcough the hrgh

‘. vents. The masqnry in the-space, cooled throughqtit the evening, by this

. 1 1 , 1 c * 1 ’ . I ” * ’ “, .* a ’ I t. i a : _ 1 i 3 4 - 1 37’ ’ , ,Y’ .*- , .\ i , * 1,’ I .

/ i ..P \ 0 ’

\’ e ’ . 0 f. ‘ I. . ),” ,

Page 50: Passive Solar Energy Book (1)

.I :, I

.._. _. ,i .---: I

.' p

'I) 1‘

_ D ,

: a *

’ The Passivd Solar Energy Book , . ,

,: ,\ ’ .I r , m * .?’ ..‘. I -

* / : natural flow of +jr, absorbs h,,&t and provides cool: interior surfaces throughout

,&----z.- ---..-e,*’ ,

the ci - .-” ,,. _--- *

I . ay,> -A&o, when ou@Zir temperatuces;ana..j.~~ti~~-~re most rrifFiiSe , shading devices p$rtiit~only’indirect tight to filter into the,restaurant.

h‘ r

~ ,-,,- :. ,*._- C~A**.l.-*-. Duringjbe++$-+f of 1976-77 the restatiraqt qp&!ed .‘%-..+a,~.%., ,w. ..B*.A.A.l.l. ..,...,....a.-.*...L comfortably ‘with the ___._. s?ln (and people) as itsonly heating source.

-.-.-Io.a.I “‘.>..f” .,.a_. . . . . ~., :. i- ,. *- .oI I ’ .

D ’ * L 2 ..r +d yet anotgei example; ‘the S‘chiff residence in western. Wyoming, demon;

stcates $h&t~ iassive solar -.heating can work effectively in very cold norttiern * 4 l . climdt&T$e residence design.ed by Marc Schiff and Robert Janik ~8s corn-

-. ~- pl&?d$%PZ. t’t is sjmilzir to the pievious example i.n:(hat it has a south-facin’g, $awtoDth ti[\erestory that admits direct sunlight’into the. building. However,

; :\, .-. . ‘1 ” ^ _ I c

9.

.,. ; ‘, ‘. i ‘,

I i.. * 1. ,

, -10 “r ,I .-? ~

0 . i i,,>

Ii.1 1 I1 I I1 I I I I I I I I I.1 1-I I I . 12 k 6’ 0 $2 - 3 2 2 ; 12 3

i.nl:

I

r..p 12t3 ’ AM. ‘-,

0, ? 12 3 0 9 12’a.a 0 1

b’ .-

I

A.M. PY

I

AM.’ .I P.M. u ‘/

,’ I -

G,T NOV.9 0’1 ,I’ ,” yovALj * ’ .’ , . NOV.40” .I

.: , ,‘, I’.. .- _I

a, ,.. : ~ s i. . . .,, ., :. .

,PERF&@ANiE ihi NY);EM,BiR ft9p . . . ’ ,.;;,

Page 51: Passive Solar Energy Book (1)

f ,

’ / .I

’ % F 0 1 /

‘2 . ,p y,-.+

, . . I. -.,e c -7 ,. -

a

b / I

Ip 0, Pikive Solar Systems

L l

R

3‘. * . r ’

’ ‘. ‘1’ SECTIPN Q: y.* K I :,’ :;:,>’

’ . ..:; _ ” t ’ “;,a ;a.. ~. I . :.,,’ .; .._ lmnlalun’~O * b’ , ,. I i 1 8,’ 6; .‘,,. (7 ,;‘, .:’ L*c?7, . . ,F’ L i’

r-

‘1, ’ ._ ,’

PlqN

Fig. 1114:

* .I *

$zhiff residbde (here and facing pa@. Y / I b

,

I. 6

0 ’

;: s- :

i ‘39

\ , /

. . .‘. . _ I

Y ‘..

0 ‘, -

>‘. i;. !iL ‘eo;’

,< -, _, I .., ‘I ,* r’,. 1

Page 52: Passive Solar Energy Book (1)

The Passive Solar kn, :gy Book ii I- c - _

P I

I ’ i

,

^, : mas.s for heat storage 1s con~~~~nccl 11;1 COII( rcatcl hlc)( L. \\A\ tIIlr~(l \t,t(t> ( one rtlt(x and flnishecl \Gith pipster, and <I 5latcl floor th;lt I \ \(I1 111 <I nlortdr I)(~(1 o\(‘r ,I 6-inch concrete. slab. E>scntl,lllX,, thls Dlrryt (I,lln SL ~ivn1 IU~C rIon\ in th(> ~rll(’ way as the ~allssey School ~&fit1 ,\~~.~~~n~~ll~;in’~ rvqtCjurClnt ,”

Figure III-4 illustrates that even during periods of 0 F weather t,he buildipg maintained temperatures which were 56 F above outdoor tcmpeA$ures. It I\

I

inmesting to note’ that there 15 no hta,lttn$ \\stcam 1r7 Ilit\ ~.cs~d~~fic~~ oltjclr thdn c

two wood-burning stoves, one in thca II\~I~s ‘I)~cc’ ’ dncl oni’ ~fi tlitl ni,l>tvr t)(>(l- 2’ room. The owner >tates that “ahe house feels \‘cr)’ comtnrtablc clokvn to ahou~

-,,,62”F a?? temperature and tolerable to about 5.5 F due t”c~ the fact that the \v*aIJq and floor are from 3’ to IO F \\,irmer In the evcnlng tl>Jn--the,alr ttamper>ture _.

? _’ i .~ . ’ , i

0

I , I

> ” :

+k!x+~_.,:-.- r , + ,, .,

1. \ :,

i/. : 1 *.

. “”

,? , .$d

\ . ‘,

1 ‘.) >-

) ., i b ,I

Page 53: Passive Solar Energy Book (1)

0

t ^

. .

Y’

P

I ”

$

/ , I

,

a

.:’

‘i. 1

/

\ / ;,-

.’ :: I*’

9

i

i

‘a :

A 1 o.‘a

L ,’ ./

I C 1

f

, I

*

.’ I

.”

L Passive Solar Systems . . .

L’

4.”

_1 -’

Photo M-3: The Schiff residenccsouth-facing Clerestories admit 0

* direct sunlight; YJerior (facingpage) and interior (here). 1 1: .

.m 3. I

s 41 c ,. c

4) . . * > . --

‘Ln

0

---i-J-- .,..4+

’ 1 1

i ,

” 1

Page 54: Passive Solar Energy Book (1)

-i 1 \ Y .A b , ~:ms , ,. ‘: -. , <~ ._

I -_

b

*. . I

The ,Passive\$dlar Energy Bdok

Many applications of interior water walls employ a combination of materials. For example, the Karen,Terry house in Santa Fe, New Mexicq, is a Direct Gain System with both inter:& masonry and wat.er walls. The house, eloggated dong the north-south axis, follows the contour of the south-sloping terrain. Tl-ie interior, separated into three IevCls by ietalnlng ~~11s containing ivatrr, IS constructed mainly of brick, adoh: and concrctc block. Th consist of Twenty-eight 55-gallon drums filled with water and ‘p

retdlnlng wall5 ~rl’,lnti(-orroslvc 1

additive, and covered with mud plaster. Sunlight enters the space’ through ,t south-facing clerestories tilted at a 45 @ angle from horizontal. These Aere-

stories are plated in such a way that sunlight, at mldday rn lvlnter, strikes the water walls for maximum heat absorption .

* 0

1.. ‘,’ ‘L’ . I

L

” 1 i ” ,~, , * 6-r.

(_ .L .,.,. _ ,.; . I‘ 1 -

P -

i

I _. I_ . .

> -

.a Phato Ill-& The Karen Terry house-terraced to the south for *,

maximuni winter solar gain. 5

Page 55: Passive Solar Energy Book (1)

, (

!’ 1 r ‘I \

8 ‘, L,

\>

I ndir& Gain\ ., : _ \ ’ ;,,”

3 --- i, f 9 0

i *

i i” -5- Another approach to .pa’$ve solar, heating. is the cb&Bpt of Indirect Gain, ’ h - b

--+-St . ,where sunlight- first strike a thermal mass whic.h is located between the sun ’ c 9 ’ 3 I ,pnd the space. The t absorbed by the mass is conv’efled to thermal I, ) ( % <-

------>I ---- -w-- .’ , ,

4 a I

Lr. 0 1

P “L

_ !

~_...__ _..- ~.- _.i .._. -. i_. “.__“~. A---.

Passive ‘Sblar Systems .-

Fig. $5: Section, Karkn Terry house, Santa Fc, New MCXICO i: *

,

In the winier of I’b75-76, the auxiliary heating supply for this hwse consisted, of one-half &ord o(,wood, burned ih a small adobe iireplace. Wi-tt/lout applying insulating “‘shutters $ver thP dazing ,at night, the house t$aintai’~ed tempera- b tures in.YqZnz +&&high 60s for most-of+& wirliel. w+aest recdided t&mpel;iIure in the hbuse that winter, was 53”F.early onq morn’ing. - ‘ I I

between tFie two systems 4s the location of

,.“1 being heated. ‘I, \ I.

i -I, \ i *1, . _I ‘,

~ I .) , ii

< _ :; I ., \

Y @ * a

43 _ I-

) - \I~“’

^ a I I

Page 56: Passive Solar Energy Book (1)

4 ‘ ‘P : >

‘? ’ ” ‘I

.i. .

:

a) - -. ‘0 .-

..

i .B

\ i). i \

I ,. ‘6

- ~ e - D

.’ .

‘lh’i ‘Pass@ Solar En&$y B&k

‘Y ‘?

n i I.‘< I,: ~’ us. - * I _)

.d’ .Y 4 , :

----.. j- --.

e*x The reg&em&ts -fir 2.: Thermal Storage ~lT~~S-$tGK% ‘&&&kg glass %Feas! (or: tranq@ent plastic>- for-maximum wint{r solar gain and a thermal

, 1 + mass, lodated 4 inches ,or ho& directly behind (then glass; which s’erves for, heat storage’anh. distribrition. -

_ z -2:: .I’.’ _ 0

‘. 90 I I s.

““There +‘g^wide range of appropriate thertial stordge walC~aterials; however; ’ ’ ._ *

, I,. mo& fall into atwo categories: 7 .-?

,iither maspnry oi water. Masonrq materials . ,?.,- . . i, ifi.c!!‘ude’corqerete, concre!ti block U(solid o,rfllled), brrck, s,tone and ‘adobe.’ . ’

Coptai~er.s++..(or “wat(r idclucje 1 metal, Ijlasjic and’ cbncrge with a -waterprbol ‘b lining. ’ ’ -. -, “s, ,A

4- ” ‘.I : b‘

. ‘1 Masotiry 1 ,c.. / ‘

I ” .’ . . b 1 .:- -tl . ” (. , A m?so$y ..wa

_I I

6. ; ,: ferring &i&he sunlight O,J-I its oute,r face and Ihen &aqti 9

ndktion. The outsidebsuriace ot;. the’ a . ^ .

wall is usually pajn,t or’rhc bc5& ~~ossibl~al,T-;or~~~~~n Or .‘_. , . .’ of sunlight. Heh t. cb

L- s then distril3.utcd 10, ll?r sphcr

, .by radiation, and to n,‘-fTom~the inner fact. . * I I

.a. ’ .a. ’ ? ? I I ! !

111,. 111,. .’ By adding yeants +o the wa$ i-h.; .’ By adding yeants +o the wa$ i-h.; di,stribution’o di,stribution’o _‘> _‘> : r : r :;.,:, :;.,:, (thermoe.ircula-tion) from the extirio;\fqce-of the (thermoe.ircula-tion) from the extirio;\fqce-of the 4. ‘, 4. ‘, ‘0 ‘0 ..: ., ..: ., dicring the daitime;rnd.qarly eve+ng’Solar radidtion dicring the daitime;rnd.qarly eve+ng’Solar radidtion ‘1‘ ‘1‘ .‘.i . .‘.i . . .

“.. “.. . . I I . p _I’ . p _I’ . . $.,:’ $.,:’ b b hi.’ , hi.’ , ! ! x x )1 )1 * *

3 .I ” jl

I Q&Y--, ____ PG’ ‘s _ “’ _’ , :’ . ,. j MIGHT -;s 1 ;’ .-

L._’ : \ 1,. Fig. W-6: lndi$ gate+ tiasonry themal stoi&e wall. ? *. .-‘I b ,. / 1 . - ,:.. . . . ..& I”

; ‘.*, . ‘_ . . .‘,“*, i. .D*f .* - s .0-s . . : *

,~ . . ,.1

.,44, a 1 u * I :?i ‘*

“ID 0

* n * l *’ ; 1, ~~~;,;; . I

,_.~ I

4 “0)

‘.

-.

.I .> -

.,, . .

,. _ , b -“. : ’ 7 :.’ #* ” . .L

;-. 8

,T, : !;,,’ 6 ,. F& , \- 8.

” ” _

u 2.. * .

. ,’ __-_ .\;,,.: rT <“ ,./ . ! D*‘.,. ’ _ l t - ._. -1 . ;‘.

Page 57: Passive Solar Energy Book (1)

1. , _. .-

QI .1

r A

., . L_

I ” :

: ~._ “- Passive Solar Systems

0 TV

.r c”yy~“.~, ‘w”..,“il ,.,,..‘“.,.,+

>v*eitjng Its surface to temperatures as high as 150”F.C

0,. : , ’ This ‘beat is <transferred to the ai; in the space b&t\vecn the wall and glass. - A (. L, ’

Thr.ou&h openings or vet?tS loc;tted;at the top of the tvall, warm $ir rising in tlT&.%? aii.$pac&‘&nters the room while s’im&aneo;sIy drawing cool room air through

B

. .

I

.

I- r

I

\

*

. .

,

;i

.

,, >

3

-I

0

2

i- .

1

,a

\ t

A well-known itxample of this systUeQm is the Trambe house Od.eillo, France.

The hous&, built in 1967, was designed by Fe’iix Trornbc an$*a.rch’iiect, ]a.cqucs Michel. Phe double-glazed thermal watl i.s..cor?‘structed of codcrete, apprdxi- mately 2 feet thick, and painTed black to absorb the--sunlight that pas&es thro;gh the glass. The hou”se is heated primacily by radiation and canveitibb fromfhe inside face of the wall. on

“5 3 . .

.Re,sulis from stbdies shoi that appt’oximately 70% of this building’s yearly heating, needs are supblied by solar energy. .Rcscarch’“un(lcr.taken since 1974 indicates [hat ,Ibs~t 36% of ‘the energy ir;lciiclcnt on the glass I\ *piiccliw in heating the building int winter. In this spn&, thci systtlfii’s ctiiiclc~nq I\ co&~-

parable to a good active solar heating sys\cm.

WELL-ItiQULATEb ROOF I

,

,

” ‘. . . ‘. .

, .” .’

. - .

: t. iI’ JLr

l:. 0 :.

, . .’ . L a

. I # .D 1

c_ Fig.^ll117: Section, Trombe house, Oieillo, France. I

I s 2

* 7 ~ : i> 45 ‘C 8 _‘, I

‘j’ , -_

r the low vents in thYwall. In this%ayjcjclitional heat Can be supplied- to a @cc <during periods of sunny weathm.

. c ’ . . I , , \ ’

” ‘.,

Page 58: Passive Solar Energy Book (1)

\ e ,

I 1

I

Passive Solar Energy Book

,

*

* : .: J

(J .:

a\ ,’ *

Photo 111-S: The first‘Tromb@ house (above); attached housing units w$h 0 e 1 thermal storage walls, Odqillo, France (below).

a

/f 46 : - I

h , .

#\

Page 59: Passive Solar Energy Book (1)

r . ,

.

.

1 I ‘3

4

I w

‘DLI(o7Ec’ AUXU.lMYPURMACEPORSltORTDURA~ +lWEPLACE

10 L1 1

i i IPsYAllgAM , 73 I 7fi.wimme ,- /-\. I

I’....” \ L- ._A -,-A ,/ . . ‘\ I “. , .

~:.-‘-..- ‘----.-_. ,’ :’

,,‘- .‘.....

---./vr .z . ‘.** -. ..’ : : -I

--A-.--/ :+ :..* ! l l ..’

‘*:. -x-7 ,/:.. 1. i’ ~.,... ‘..: 33 .; . 0.d *

a.. .

. ..a ‘.....“..

. ...:

f

2. . .

* d . .

. . . . . . . ..__... 2 .-a..

: . . . . - . . . . . -...

- . . .._. _ . . . . . . f...

--....*

: r-

DowurTAlR3AlnTeMPenAllJne ..:

0

.$’

--I I, 6’ I I

1

i

0

I -161 II I I I I1 I I I I

1 I

4 1 4 1 I 1

12 2 3 P 12 a B:B 12 a , 12 t 12 1 A”1 ’ 11

I/ I*y. PM. ‘. AN. pm. AN. PAL

DEC. 27 ’ DEC. 28 DE& 99 I

INDOOR AND OUTDOOR TEMPERATURES- I ’ -\_ .? I.

‘< Princeton, New Jersey.

/ P \

,y,

------My -___ i- 4 \ i

SECTION, SOLAR ii~lii~h~q SY~TM 47 _ c D . 0 0

Page 60: Passive Solar Energy Book (1)

j $/ 1

,: \ i’tiolo III 0: ?i i

,- .’ _” ‘,

.I ;_'( /'I' ;

‘,’ L!

&L - B .,I

3 : , . ,> &* . ? : :

Page 61: Passive Solar Energy Book (1)

0 :!? -. d

‘ 2

D

” f ,$. 4 ?

t P .G

I Passive Solar Systems ’

‘L Y’ 1 b a

9 \

Page 62: Passive Solar Energy Book (1)

I 3”

0 .

. ? F*

.! e

-1,

,-

‘B . 5 n .+ “..

i 6 . . - 1 ,.

‘_ _.

1, ‘,

The Passive Solar En,eFw Book ~” o ) o o . ’ 4 .

.‘\, % a .a

,(,“’ r \ I j_ I_ locatjon cjears the ihadows from trees in winter and alsd.provides for a large s

i r .single south-facing o&door space,

r 8 / T i 1;. -’ 0 . 1 ; .-. L *.-L The solar collection system con&s of a IS-inch concrete wall, paidted black, -

---- I e i --~~t~--t~&h~gt~ oJ d ou e-s rength’ windoiv glass placed in front‘of the wall. ,,I t .,

’ : - ‘..

Heating is ‘mainly accomplished by radiation and convection from theOinside :.. ,,,...... . ..,a; face of the wall. H,owever, vents located at the top ‘and bottokn of the wkll

‘.

1 on each floor p&-n-tit daytime heating by the natural convection of warmed I

.= air from-the front face. , a

b ‘A E P AC&ding to data gathered i; th&Ginter of 197s7$ ihis passive jystem

: 3 -%edu&dspac@ he&g costs by 76%. Most often,‘tegnperature fluctuations in.

I . .

J * the house during-this period were small, o.n ‘the 6;de.r. of 2” to.6”F. Down- ’ stairy the seasonal high and low teinperatuves were 68” and 58”F, with the

_..: i avkdage about’63”F, atid upstArs.72” and 62”F, with an-estimated average of ” - * ** ; _’ 6;I”q. The up.stairs experienced”*slightly higher temperatures die to the

A- migqatidh of warmed air through the open stairwell cotinecting the levels; :.L 1 . T-,’

- . 4 ; SeGqtiaJ mogifications, such as the, addition of operable datipers to pr,event

~

Q reve se ther’mocirc.ulation at-night and a door at the top of ttie open stairwell

f

o -‘.i

. .

to r duce .heat migration tb the second #loor, wkie- madedbetween 1976 and . J9P . This ‘improved t!e system’s.pe’rforl;nance so that the solar contribution

o . d .

,:. . %$wai.greater that year, feducing heatingcosts by 84%. I

L

4 Water Tk~mal~ Stoiage Wall ,9

- .e .’ : ’ ’ ‘, ~ . , , .‘: (“,1 ,.,.., I.>y....... .I.. I I... ll.” . ...,. .‘., ,.. . . . . . . ~<.~ ,........ j. . .“. . .-- - _ \’ ,I o. * - , ” Essentjally masonry.and water thernGl St&rage wills collect ;tnd distiibutq’ heat 0 ’

. . to’.a space in the-same way only a ,w&r .tiall transfers this heat’ through the’ .w&by convection rather t ‘an by cgqluction. The exte’rior face of,a’wdter a

, I

ur;ual!y painted,b!a_kl.~r .a &&&&Jor-for maxiniu.m s&G absMption. ’ = .- ---.-- -. As thk wall absorbs sunlight;its stirfaqk temperature rises; however, ednvec-

, tioq..curren~..-wi-thi~~~~- r,~ti=T&yz’” ~’ -~ jC t -$

. ’ tribu’titig the collected he& throughout the entire volume of water (see pdttern

-- ‘. 12 iti :jhe next chaptei fpi a .comple& description of this process). Thi”s heat .is ibert supplied to the sbace mainly by ;adiation (and some convecti&) from ‘the interior faqe okthe’tiall. ‘I, . -~ ’ ’ .’ 4

L- iL----f$~. -- i , ,- ‘s

I . : * ’ : r The clas$c~ ex&ple ;oof‘ the Water, Wall. System is the St&z Baer residence i’ti

* ;ColYrales,“$Je\?i Mexiio;-T)eXhouse *‘s a series of ten so.nnected. doies which. i 1 enclose 2,000 jquare fe’et,.,&, floor area. The domes actually employ a co’m- . j

.,’ ‘. ‘I ._.-.-.

Page 63: Passive Solar Energy Book (1)

.w/ .-....,., _ s

., .- - .~.

B I

3. ’ -

*Passive+ Solar Systems I’

. , .I,

=@a

*

L

c

MY’ -’ NIGHT \a ; , e c Fi*i III-91 ‘.Indir;ct gainJqwater tberinal storage wall.

* . I I *I . .

/’ ” ~_ * -L ; < ‘j 1 q . ,: )_‘, ,

33 I* u - biiatidn, of passive beating systebs-dirgect gain Bnd ft,hermdl‘ $t&ge ~+tlls. f’

* ,ii

Some of the south-facing walls are vertical and contain water-filled 5%gallon , metal drums, stacked horizontally in a metal support frame.--The. walls ’

440 square feet in area, are single-glazed and fitted with eiteri f al S These panels: a,re hinged t.o the wall at th$ bottom SO .“that b their “open &&ition, they fu’?($pn.a!, reflectors, incre.asing ‘i

through tde sguth wall. ‘Atgnight, hoisted into a-vertical wall, they insulate l&e wa’ll*~o keep the heat cdlec&d by.

:.

space. control ove;‘the heat output of&e system’has been : +lL,q

, Ccriains ar*e drawn over the: inside face of “the wall when L ~ i1

_, ” )I’

- ..?-d___

.I _ .:, f I

This system kee& temperatuies inside the b&lding ,. I

betwe’& 63” and 7OPF throughoht most of the winter. The water wall, tog her w$h‘- in@hor adob;!

concr$c floor, moderates. th’e daily fl tuatiomYLof temperaturs uilding.VFluctuations tire small,,on the

P

rder of S<i. As a result. of its large thermal capacity, the building respon slowly to.outdoor weather’. -’ 1

----ext,remes.. For this res0.n ,.,-. durikg p.eri& of clo dy weather_~h~~.~.v~rag~ indoor I l . ,Q

-+

Page 64: Passive Solar Energy Book (1)

B .=

. . ‘\ ;

ci

L . * y- f

.’ ., , .

,~ ‘. .’ L,

,.,’ _ :.I

0 ”

I,‘. ,I

. . I .+‘,,,~I& ‘Passive Sojar Energy Book ’

,, ,

.x. . L -1.2

. _’

,

d

.I

temperature.will,drop only I$to 3°F each day. Auxiliary heating, provided by

I - three wood-burning stoves, consumes “a total &of approximately one cord of -’ wood each year. ’

, . . % , ’ I. ”

AQach-4 Q&&ouse It’ : ’ I 3 .z (

<,‘I , \ .‘( .’ : ; ,I f ’

D t

- ,

An attachGd.greenhotise is esskntially a combination @f Direct and Indirect + ’ -Cain Systems. In this cas&a gre,enhouse (or sun-rpom) is*constructed. onto the j

south side of a building \Ni’th a m’ass wall separafing the greenhouse from the building. Since it is directly heated by sunlight, the greenhouse functions as as y Direct Cain’System. However; the s,oace adjacent to the greenhouse receives f: I zr . . - 11s neatJrom the mass wall, ’ ‘

‘L * $@$ally; sun’light is,absorbed by the back wall in the gr&nhouse, convertvd ”

’ L :

” t& heat, and a pQtiion of this’heat is t’hen t&nsferred\into the building. in this sense, the attach@ greenhouse is simply .kn expanded’ Thermal Storage4 Wall

L b “;:

-F 1% i System, only instead of the gl,ass’ face being a Sew inches in front of the wall

‘- !i “’

- -I it*.j,s a few feet, or wide enough to grow plant;.’ By constructing.vents or ‘smal’; ’ I

\ .’ ,--

windows in the wall, warm.daytime%greenhouSe air can--also ,be.circulited to _ ~..~-- adjacent spade’&T-Tv -..- I--‘+ , - - - -~- -- ,- i, .I: : <’ P

Page 65: Passive Solar Energy Book (1)

_ Passive Solar System: a*

.‘P t +;

1.

Pho

,- i ’

Ito 111-7: .Steve Baer house; exterior (facing page; ‘and interior (here).

h

, to ’ 0 ;%‘l J * - ,’ I

.To be effective as’s heating source for ihe building, ,the cotimori wall is ,- . -. I 1 usually constructed of ‘either masonry or water. ,A wall constructed of light- ’ j ~ weight materials .has very little m.ass, and heat storage capa-city. Therefore, at

night;as outdoor temperatures drop, the wall is not a heat source for the building or th’egreenhouse. i .,

‘,d I ’ i I/ :\,

,: .t’ ’

There are many possible, variations that allow-for design flexibility in attached

s greenhouse application. For example, active systems such as fans can be used fo in~ure+t?t a greater percentage $ heat is extracted from the greenhouse to

‘ c, heat adjofning spaces&(see fig. IV-16$1X; In this case, warm air ducted from the, greenhouse is stored in a rock bed usually located under the floor of the spaces being heated. ‘Heat is then delivered’ to the space passively by radiation and cohvection~froz,m the,floor’s surface.

._ I(

I

, I

I, ”

7”. ;> 53

_’ f

Page 66: Passive Solar Energy Book (1)

-.- L ‘..

. ,I .f J ” *”

r

a ‘,

, d / , .

,’ .- :+*

,: c ,

, I

The Passiye Sol,ar Energy Book e __. *

, _ 7

. .J

,. x? q 1 83 DAY -’ I, ,w 5 .- ; ~ : i , j j, t 1 “,i ‘n, ‘. \ ‘> Fig.‘W-10: Indirect gain-attkhed greenhouse.

n3 I i \ L

.a . 8’ I - ” 54 e _s

% \ ‘_ ,. 3. . ^ . ,

- ,I , : Ii

i

Page 67: Passive Solar Energy Book (1)

.--_-

I

Passive Solar Systems

1 7” . r *

d Photo Ill-8:, Attached greenhdqse to the south, ‘I 1 t

P

-, -, c In a Roof Pond System, the’thermal masj: is locaied on the r&of of the build- ing. In this case water ponds, enslpsed i; thin plastic bags, are supported by a ’ roof (usually a metal deck) that,also serves as the ceiling of the room below. The system is equally suited to both heating tn winter and cooling in sum’mer.

I

* 0 - i ,, /. I’ si

\ j \ .J 43 55

Page 68: Passive Solar Energy Book (1)

‘F - “. -. ., ., : .I. ., ,.i, * * e I, , p _ ,

zz+:*--. ~-‘- -7 ’ YE .-- ,,n_-m qml

1 ‘, ; _: , , 3: -( “’ ;i’, I” .. ’ .” -

‘-* -.a , ?’ ~ _-

y d I 0 ’ L-2

I 1’ ‘16: . .

Sola; Energy Book l . .

-. -,

I

,* .,. I >- I

f- I \L ,’ ’ I.

I

In w&&r, the po~~qls are exposed’to &nlight during the day and then-covered with insulating”paiiels at night.:-!$eqt collected by the ponds is’mostly radiited t

I from-the ceiling directly tojhe’ppace below. The con;ection of h’eat from thP _ .ceili.ng to iir i&he sp%ce pla’isa relatively mi& role. ”

. ’ : -.’ 0

Ir&umme~t~e pa?el;posiiions are reversed, icovering the ponds d.uiing the da)’ ’ !G protect them from the sun and heat ind removing thev at night to allow Ahe ponds. to bee-cooled by n;lturdl~ con+vection and by radiation to the ~901. night sky. After being cooled at night, the ponds ar% then read9 to absorb heat

.

c ’

;:

ftorn the space belbw the following day. * .b

,based on Hay’s desigri, was built. The. residence, pesigned by architects John Edmisten hnd Kenneth-Haggard, is located in ah area that has both heatihg a&d coolin$ requirements. ‘P . . 6

i ;. 0 A ’ ,.

‘1 , ;

.‘. ._ ,’

. - . ‘, c + ’ . .

: ’ .: e

Page 69: Passive Solar Energy Book (1)

d

, 1 i _~ _ * : c.:; >,

:.$ .: /’ (I 1 I Pqssive Sdar Systems *

P . .”

4*- .,I _ 1. . ” a e .

* j i t 9

. ,

P

_.

T I i ; / / ! i I I ;j j!

i-

,

NffiH-i. .,’ 1, I ‘I

.

. . . ,;-,o ’ y -

-_ 1, .; 4. Fig. 111-11:~ hdirect’gain--kqot pond. k :. \ “.., 1’ ~ ’ ”

,.,... &r.“l-rrc-.l n 1 > 8 7 .e , 22. --

. I ’ Sh . . .

Page 70: Passive Solar Energy Book (1)

,.& ,B’ .\ n,~,,-L, I, 1 *\. ” 1. *

The Passi,ve Solar Eneigy’. liJmk ~ I. q , ’ ’

/‘“.I a, : ^’ I ’ ‘q \” 1 oL

‘& ,.

I\;* f,&,L :-- I^ ,I _*-&,~+T--‘T-*-.--“-‘. I,

t *

\ I I.1 ,,I I., It, I,,

1’ 2.

1

L . 10 11 12 a; 4 9 6 7 1 0 10 11 )12 yoowI(

‘> ‘I, ‘... HOUR OF d&f .. -v r i

.I .i x. - :a ._

: ,b. _ I \

b. ‘.. ; 11 I1 II! I1 I !

;r,,. I. ,, ’ 1 1 i. - .+ F

0 . ’ & j *-

, -

Page 71: Passive Solar Energy Book (1)

P&ive Solqr Systems

. . Photo 111-9: Atasqadero residence-first residential p;otot;pe ,‘( ipcorporating a roof pond Lystem.. .

*

a I v. (

A third app!oach to passive solar heating is the c&cept of Isolated Gain. 1 ~ In principle, solar c4lection and thermal storage are isolated from the living .

spaces. This relationship a,llows the system to ftiction independefitly of the . , !“y building, with h&at drawn from,the system, only when needed. b<J *

.:/,. ,

* a : r

The most common a&$cation of ihis cb$cept is >the natural cpnveciive loop,., ,.>

T L

0 Th,e major cbmponeIi!s o? this system include a flat plaie colkctor and &eat

Page 72: Passive Solar Energy Book (1)

+ ., 7

\

\

-k

--

cr.-.. e Lb

‘i 1 . i m:

r i 24: \ *

;’ ,-. ,’ \ :.

I :.

‘.

The Passive Solar Energy ‘Bodk \

5 .

i

i stor&$ tank. Ttio ty&es of h6at iransder and storage mediums are used: w!at&,r 3 .and air with rock storag-e.& the water or Air in a colle’ctor is heated by Isun- 1)’ ’

s tight, it rises and enters tile ;op of the storage tank, while simultanedusly. ”

I c pul,ling cdoleF’water or air from-the bottom~.of the t,ank into the coll&ktor. -This natural convection current’continues as long as the sun is shining. ‘... i _’ ?‘”

.,. \ I

,‘. . ’ . - . R ” l&rhaps,the simp,lest,use of the convective loop is the thermosiphbnivg\ h8t

1 water heater. Alth6ugh there a* many variatsns of this system.“.moit/ are ! , - 1 chtiiacterjzed by a flat plate colleqtorconnected to a well-ins:ula.ted water tank 1

by’ irqulation-wrapped pi,ping. The tank is dways located above~the’ colleFtor . ’ i to i&uce a convective. flow of fluid, 1 1

’ \ i 1,

.-

,’

0 s ~,

.- I e .

II

‘\

. ’

.

1 c

~~ 1. -Z’

HEAT j ‘; . .

: *i S$fRAGE I

F;

Fig. 1~11-13: Convective loop. &J<. . D :

\ I . / - __- ----- --_‘m- -_c -3 ‘\ __--_. ..~ 0 .

4 i 1 I . i ’ i

\

rl

D

P

.-.

‘* I I ‘I I -.

ul Davis The earliest example using.arp Air loop Rock Storage System is the P

/y

,;;-J house in Co.rral&, New Mexico. Air lieated in a 320&quare-j?oot’coite

” tor rises -

10% the tpp of a-rock bin located directly beneath the front porch of t i! ‘e house. 0’

As warrin air-comes ip contact with’the*rocks, it cools and faHs to the qotto’ti of I -- v .’ . ..s

\, ..-z ,... -- I . - ,.__-- - ‘1 , I / ; *

\, . . . . ..z . . . . . ..__ 64 ..-Iac”* I _ _ . . . _-_. 1 - .. . i I .Ii-

-_, _-.._-,l_ _... - .

ICI’ i 9 : F, . i ; _j I : . ,

’ ” _ “, I I . D i I

Page 73: Passive Solar Energy Book (1)

,

?

> n

. -.. . Y-e

/ 4 -. , c I

4 Passive Solar Systems

4 c : * I ‘”

.- . . . - ._...__.____._ -.-- 7-T * D : ; .t ‘, B

-+-----

I :

-- -J-L-

,

c -2 ‘. ,,< ( . ‘J u

cn

Photo Ill-lo: Paul Davis house-to actommbdate the natural heat . .^ _-- --. c ~- disrrib~tio~-s~~~~~ve~~--

, cdtfectors and rock storage bin. a P)’ ”

Page 74: Passive Solar Energy Book (1)

1. .: .+ s 1 / ‘ . 1 ; I

~~.~ :: -. L

e * - .

m ’ 4 ”

_ _ >. . r ‘. it;, ; : ‘3

I”_.. ,_ ,.. . -%...+“h” .-

, The Passive Sola; Energy Book - . a 0 0

1 \ d 0

e La * . .

2. the bin where it ig returned to the collector by a duct. At night, warm air is n t supplied convectively t? the ho&e from the top of the bin while cooler air

1 isO being drawn, from the house to the bottom of the bin. : . \ !’ a ^ ‘1 -=

-m.$p . . ’ , ‘u Th&conve’qAive loop is-,q&ntialJy a Flat PIAte Collect& Sytiftm. The methods ’

used to d&ign and ‘size these ‘systems are similar to [email protected] formve ’ P-&stet&-Ihe cerwetie-loop .will not be discussed further since’ it is outside

- the scope of ,this book. / -1 \ .- --,’

” l . p . 1

i

0 ‘% ; ), - i ‘iz., .

8 , , . V”T,T 1 I ‘! ,: .>a

. SMH~y claims havd be& mz&de for ihe $dvantages of pa$sive solar heating -systems. These claims’ cprr be separate’d. into three categories:

f econ’bmic, “.

“..._ architectiiral,and covfart/health. It is Prnportant to realize that the extent to e’

:

which an.y of these claims is Galized depends on the-extent*0 which the actual * .‘dksign is successful in ach-ieving i,ts_goals.

1 1.

- - -,: ----A : r-- r ,‘$ I . Y *’

a * . Of great integst to’&&e iAvolv4ir-i pasGves)istems is th4. possibi’lity that the ( .’ .sys’tem not only affords large savings .of energy fdr heating, blrt that it ‘also can . -. ’ ,.. _---- be inclu$ed at little or no addi&nal cost in the original design and’ constnr-‘--- . ,,

_-- 7 ,- e-2,’ -tiog sf ‘a b~ilc&jj. Sihce- the pirice of ‘m aterials.varies greatly fro‘m &ace to pIa& i:t is not ‘possible to generhTize about\ this claiin. In iome situatibns, such ‘.

1 ” ” \ h

as a masonry building, it is p&Ale -& incl&Wa Direct .Gain Syste& at nb _ extra c&t. In qthqs:?aG$ wh~~maso~

fi. . . . , the.ektra cost may be considerable. The s/ghifiicant econotiic advantages of-i, ,-I A . _\

’ system&an only be:evaluated in.terms of +I partijcular installation. , 1. : 1..

J .t ., j .

.or gril?s’to@eal with. -o-ra&a-tot-s’, connectors ;

! 1 $ - 0

* i&j D

\

Page 75: Passive Solar Energy Book (1)

r

8 . .-

-..

. @

2

4

w

__.__--.

r

Y

‘.

*_*

-

,3

Phdto 111-11: Bus’shelte;--simplicity of design operation and

f 4 maintenance; north and south v ihv s. . P ‘

e .-___~ __

. . ‘i 1

,% “S >’ ,i s I

1

I \. .) ‘63 ,

. _ . i?

,/’ - - - ,.,

_* ‘i S’( ;-.-.I .’ . . *

,

Page 76: Passive Solar Energy Book (1)

,:.-. __-_ %--The questkm of comfort‘depen~&prima& cm-the miintenance of a$ermal 2. I ri ll..-’

0--‘m- -‘environment i~9’,wliich .&e ,bodv lose beat at a:kte equal to its production i :--. ._.._, :, . without the need twsweat on ,$ ’ _--I__- ._--. t*’

ne h&l (w fhi\;‘er bn the other. The a&rage 9 a . ..“..UPU .-RI-._,. ~..-,-.~U~~~~lt at rest must cpntihpally &ork to maintgih’ circulatjdit,respiraCtin and Y-

~.&W&..ftinctiong. .Th& energy needed to’carry ot+#hese functidns’ is ‘I ‘7 x- . ag$pximately 80 Btu’s per hour: Sncethe h&&n body is-$sse?tially a heat

_. engit$e with a thermal efficiepcy of about 20%, it Vmust dissipate 460 ~~tti’s~~@r~ ., ..m --.-:- hou: of-waste heat to%s sur.roundings. I .~ _I , ,

d . 1,

j’, “. f ’ Th.e body. dissipates this heat by .three ‘mechanisms: evaporation, convection - 1 and ra@i6tion. For sta$&rd conditions, an adult at rest with light clothing in ,,

. 74”J %ir teyperature and 50% relative’ humidity .has Anrevaporation of 1 7 pers’pir’ation fro’in the skin of approximately 25% of the tpt;?l body heat ,loss or,

100 Btu/hr. The loss of heat by convkction to the surrounding air constitutes ‘b-

I. . anot-her 25% oral00 Btu/hi, The remai’ning 50% or 200 Btu/hr is by radiation I .‘P I ” . t’o surrounding objects (walls, floor ah.d furniture). G 4 0 .’ ,.

I a . * r s 1

1 :. Frodthesd figures it ,is possible tystalqlish a relatlo$ship between, the average temperature of all ttie surrounding$urfaces or mean radiant t’emperatute (mit)

I, ..I .’ . $.. _ : al. ptj#cfy&qZ~~~*:~-~t ’ 15 &QJfqq(+&+& a ,c$p/o~ I.~- ’ ,

:: . &-eater effect or;l. body heat loss than a one degree change in air temperature. ’ .I. ,; ..I‘ ‘s Ot’, for thk .sa&7e f4.eling of cowfort (?O”F), for each ‘I “F increas.e in’ mrt the e. “.. * 4 . i

a> space iir temperature can ge Table Ill-2 giv”e_s t& yaltes of mrt (

‘, *. ’ ‘and the corresponding air.tem ‘” Notice t.hat a mrt o’f 15°F

to produce a feeling of 70°F. 8’~~ m ‘{, (’ ‘I 1 I’ 63°F will producq the spme “l”---r--m---;---“” .,I,.

fe&ling,of comfort as’s 70°F mrt atid 70°F air temperature, ?. __y-- ,’ _ . 1 .I

e .‘! 1. * 0: *\.

i-.

t I..” +../’ / J t i

’ !‘. + .,, .J r-J - .

I f ‘:+ .‘b- q i. .I.-- 0 ‘0 i - - b 1,‘s. \

‘b.

Mean Radiant and Air Temperatures *“,/. ,. -_(mL ~ 7’. (., ‘_

p Feeling of.7O”F ‘.! > \ .>. ,I .-

: ..’ “,, $y> .

e, . I IW I I I. I I I I

!. ,- ---

*

i * ‘.

” ‘.F ’ ‘i .“:

., -__--~ t--

_. ;

..’ . 9

Q

-

I

I

.-

-

(‘..

Page 77: Passive Solar Energy Book (1)

I e

i, )

(

h ..I

f‘- ”

9 , -a

4

Tassive SOfdr. Systems 3

a

This makes it difficu-lt to state con~lus~vety, In terms of hard facts, rhat t~ertaln interior conditions are more comfortJb.Ie than others.

2

Within their omfort range, most people kill dccept the statemint that the lower the ai temperature in a space, the greater the sensation of comfort and P health. Many people feet coo-ter a~i is ntore invlgo:atIfig, iresher and less- stuiiy, - and tha.t [heir ability to work (and think incrcClsc$ 1r1 a spaccl whercx they ‘Ire warm but,t”ne’air temperature is tower than 71)“F!

- rl

As has been previously noted, the iriside air temperature for comfort in a passively heated ‘space is usually somewhat lower, and frequently substantially lower, than in a space heated by, conventional (convective) means.

B .

Another relatively intangible advantage of passive solar heating is the main: taining of a warmer floor. In cold ctimCItcs, convcclior~-l\/J:,o healing systems

e, can lead lo unusually large itoor-to-ceiling temt)cralure p,r;l$icnls, with IOLV : floor temperature5 causirig thermal disConi(ort. In d pa5I;ivcty tbc~L\tNl <pqcc, however, the. surface tgmperalurc of the> floor I’; usunIty found 10 be higher ‘.’

_ _ . . .._ ._ than....a ,similar floor in a space with a convccrive hcaLlng sys~cru,.regardlrigs .<“/ - of whether the systen,\ is ;1 direct gain, thcr.niJt storage ~vatt o’r ~.ooi pond.

-i 1 By contrast, the, maior problem associated~ with passive systems is one of * ’

1 control. Since each system has a large heat storage capacity Lvhich is an integral part of the building’s structure., its ability to respond quickly to changes is

’ greatly impeded. Also, storing heat -requi.res a’ change in the temperature of a 0 matGriat, and sinke >torage n-iateriats are an Integral part 0i the living space,

the space wilt atsd fluctuate in Lcmperature. ExcessivP gpacc Icmperaturc flvcluations can lead 1~; unsati‘siaclory comiort concti\lons II’,J~C! system js not

L properly dIesigned. . I

Fortunately, however, there? are relatively simple solutions to these problems. s For residential applications, temperature control i;cludes operable .wihdows,

shading devices and a back-up heating system. In large-&ale applications, fhe , .solution to control lies in cmhoosing a back-up system that can respond effec- tively tb the users’ comfort requirements. There&ill always be, fluctuations of i

I indoor temperature but these ,,can be minimized by pro-petty >izing and to’cating fhermal mass in a spice.

-. --

-- ; 4 il. 2,

I’ 1 . - \

‘1 . .._. b. : * . . 1’ .

1 :

P , I I , f .

. . . ** ( l’i * 65 -

q. a; I ’ Di 1 I . . D _, 5 1 ,a :

,I ,A*”

Page 78: Passive Solar Energy Book (1)

.-

‘k c

. .

I

,1 i

J ,-

” .

All adts of.building,,tio matter how large or small, are based on ruks ,of themb. -Architects, contractors, mechanical engineers wld.-owner-builders design and .build ,bui’ldin’gs based on the rules of thumb they have dev&opGd through

’ ’ years of their own or-other people’s experiences. For example, a rulerof thumb a ’ to determine 6e depth of 2-in& root joists .is given as half the span of the ioists(feet) in inches; in other wor&. to span a 20-foot space one ,would need roughly 2-by-lO-?nch joists. Calculations are used to verify and modify these rules of thumb after the building has been designed.

I_ 1. .‘I We call these rules of thumb “pattelns,“’ Each pattern tells us how to perform and combine specific’.a’cts of building. We perceive these patterns in our mind. * They are the accumulation of our experiehces about the design and construc- tionof b’uildings. The qua!:ity of a building, whether it w.ocks well or not, will depend largely upon the+atterns we use to create it. ’ ~,

I 9

I ’

-

To be useful in a design process, rules of thumb must be specific, yet not overly. restrictive. For examplhif you are required to know the heat loss of .a . ” space hefore applying a rule\of thumb. to size south-facing glass areas, then ,the * - 0 rule of thtimlj’ is too specifiP9nd of little use since a building ,has not yet been

* defined. If, on &e.other hand, therule of thumb recommends an approximate size of glass needed for each square foot of building floor a\r%a, then the glass

-/ o . *~ I I -----carr-be-~ncorp~~?ted.,~nto the-buildingls de&n. After cornpletIng a preli-binary : \I ‘) 2

‘\\ * design, spaceJeat (asses can be calculated and. the glazing areas adjusted

‘- ! “~“I,

accordingly. ,;‘; i 4

Page 79: Passive Solar Energy Book (1)

,. r----- . 0

> ’ * T:.- Design Patterns . . t \” , -------- i, ‘. .a Tp’ ,~I i” ., --.. .

F i e\ . : This ch&ur co$ains twenty-seven patterns for the application of passive solar

‘4 .. energy systems to building, desjgn. ,The patterns are ordered in a rough, r’ *’

r;;;.. “, Pm ‘! ‘. ,_ r

9 ‘. $

. ‘+L” . .

,i’ .

;

.Jl

,? ;, i..* ;,

_.

I *

,*

,.’

,,a

. sequence, from large-scale concerns -BUILDING LOCATION(l), BUILD.I~G :. *.’ b . SHAPE AN~~~T)RIENTATlO~N(2)-to smaller ones-MOVABLE INSULATION .

(23), REFLECTORS (24):fro.m applications with the most influence on a build- ‘-\ - .-: .:L-,w_ m --‘ing’s design to”on.es which de&with specific details of the heating system. .

e-- -‘- When-us.ed in this sequence, the patterns form?‘a step-,by-step process for the .‘_I ’ -~-design of a passive solar heated bui1din.g. Each pa@etn contains a rule of ’

.> r ,* thumb,, based :on-all the available information at this. time-for that particular

’ --d&t ofthe b,u.ih%‘ng’s des,ign. ._ ” ., : c, . P . * . Each ‘pa’ttern is connected -to other pattems which relate. to it. Eve’ry.“pattern “. ’ , -is~.i.ndependent,iyet it needs other patterns to help make it more complete. I

Larg&scale p$&erns set the context for th”e ones that follow, and each succeed-

I i.ng’ pattern lielps;refine the one that came befo’re it. For example, a .window * I * will be more. effective as a solar. energy collector if the pattern, MOVABLE .

: .I, 1’ r _‘* F I,NSULATIONf23), which r’ecommenbs using’ insulating shutters over windows,

at nigh$‘is used wit,h the pattern, SOLAR WINDOWS(9)I’ ‘0

r iat’ (Is #Lb - \z’ 3 . * N

: . ‘, ” p .: * h

’ ,* Each pat)tern has the same format. First, most \ i . Y or .a vi&$ ./epIesentation of the pattern.) Second,

, d -i ,

para&aph which relates the pattern to the larger I f& _ \.

Yr for it. Then there is a statement of the problem. -After the problem statement ‘is t.he recommendation+he solution to the problem+-w~hIch gives a specific !

.s> . j c : rule of thumb which can be applied ‘to the bui,lding’s design. Also included in . , “2

.-._.. . ( most recommendations is. a diagram describing the rule of thumb. Then, the ~ 1 ‘&.. p$te.rn Js >cross-referenced, to .the smaller. patterns that relate to it and help

“’ a, I m$kd it more. cornpIe& And”finally; there. is theb information, which contain% p all the avail;abfe .data about the pattern and evidence for its validity.

, CL.

0 i ‘I’$ . * I. - ..

.

+ Together tbe‘ p$tf(erns for& a coherent .pieture k?f .a step-by=step ‘process for . ’ is written in such

*

read the information in each tpattern when a more ’ .j_ ‘. >

._I ” / \

The patterns can also,be used to. analyze or critique etisting buildings or pro- ” iI 1. ; .’ * .\; “,. posed desigrrs:“It is poss’i~ble#o~look at a building spattem by pattern and.see .*;a : *. f

‘. P : d I A 0 ~ \

.I.. 1 1; L .I ‘I, -1 ’ )I., , ” *.

, ‘: \ D ,/...- ;;. ,, i ., I’,: \.” ,:

I , . ‘a ~2’. ”

\ ’ ..--+ ,_.. _ l-.-_--.,__ __,, 1‘. .,_

I’. : + ____ -“‘ --_-. _ s

; r $ 7:

. :. \ \! .’ ‘, i) -,’ r>4, I.-, 1’

Ti i .’ ( ,, 1 r., ! \ ,t ,-\ ,,

* ,; I ‘1 I .I&,. ‘-. -- ‘, .-‘. _’

Page 80: Passive Solar Energy Book (1)

;

‘_ ”

_

1 . .

\ 4

. 0 8.S f

/’ B *

. _

Heading-descrjption of ,the content of the pattern

I / a’

Photograph-kctual implemen- tation of the pattern; _- ..-- 0

-

Related ‘Larger Scale Patterns---’ patterns &hich ,help set the context for this pattern 7 *. Piobleni Statement--dm$i bes I

e of the problem 1’ ,

The Recdmmendatiow--3. rule $f thumb that gives the phys- ical relatidnships necessary’ ih‘ solve the Ff’roblem .

/---- . .‘I I. , ,’

. -. Illustration-a visual repres,:n- tation of the rule of thumb

. ’ u. 0

Rekafed Snfaller Scale PAtterns-- -patterns which ‘embellish this-pattern, help implement it

<and fill..in the dethijs i . . I /

. The Info~rnakiony~rovides all the available ipforqation about the- pattern, evidence for its validity and the range of diffkrl ent. ways the pattern can be applied to a building - .

68 ”

.> . * i

9. Solar Windows

\ ‘. 9. S&r. Wihdow +

Fig. IV-I: Structure of a pattern. *

Page 81: Passive Solar Energy Book (1)

: ..

ap,ply to Bach project.’ For example, ‘the -% Lb.:,* j

i (7), giv/ei cri<eriB. JO help you .ielect the most : D ur project. After maki.ng th.is choice, patterns

5 s Bre not relevant. Also, a pattern may n& r this casg, it is ..important: to und.erstaTd ‘tb _.

I. ? spirit of.thG.pattern and modify i\ so that it:makes sense for you. : ,_,. _, ,.;- \

/-

‘_,

3

i . ,

_ d,, /,

1’. .: -.s. .

.,^

,

c.1

Page 82: Passive Solar Energy Book (1)

\ ,_

\-

I I CJ ’ .

0

?@\ . . ,

i .,

(. ”

: -” t 0

* a

The Passive Solar Eypy Bobk * d s,

@ ’ I

I 0 ,-’ ,, I __ ‘. Aftached CrGnh&$e Sy&ms _ .C’ ,A

” . / ./--I / :

. /”

15. SI’ZI.NG .TW GREENHOUSE d . . . \

1 .‘> /

i 16. GREENHOUSE CONNECTION’

^ ,--.i P ‘.?. . .;-

*. *. Roof Pond Systems’ c

I p 1 3 - .i 17. SIZINC(THE ROOF POND. ;

: ,

8’ \ _

c 18. ROOF POND ~~EJAILS . i I. = , , w 0 : - -- _ . .. ,: Greenhouse !,

m

,.: .I . . *

! lg., SOUTH&NC Gf(qENHOUSIE 20. CREENHOkjSE ‘DETAILS LI \

: , ‘$5 21. COMBIN,N&?YSTEMS i 4

a i- 22. CLPUDY DAY“$TOR+GE / * i

f, , ‘i., . .- . J ‘%.

And thi&l are the patterns” with &ec,ifi~ instructions to make the building more 0 efficient as a passive system:_ _ !.

0’ B 1’

I. 23. MOVABLE lN$.ULATION’ 5; y* 14. REFLECTORS I 9, . 0. I(. L ‘.. 25. SHADING DEVJCES 5

a”, . 26. INSULATlbN ON THE OLTSIDE.. t 37. SUMMER+CO~~JNG -I’ I

. . * 8’

-i - ./

Remember that these pa’tietis are e&lving and ,will change over time. Each ’ 6attern represents a current’ recommendation of how to solve a particular

a.

>’ defined, new patterns will be

may evolve over time as ~

, - 1

5

I. ,

*

. .

.

D

-: i i This n)e@, that the patterns should not be taken too literally. Since>resear&, _ y -- -----

‘a I into passive<systems is relatively new need I tof qu,estion and’ refine

b,; the patterns oyer a period of time. ‘There may be some instances where *YOU

ha,ve,.informat,ion $hich is ,more Baccurate or- relevant to YQIJ.’ particular situ-. ,0 - * o _ 0 ‘I, ;. :

:!, -$ ’ :;’ ( = . . , ’

Page 83: Passive Solar Energy Book (1)

r ., 1. i I

’ I‘ .I 1 , -:_

0 / ! * ‘Design @terns ’ P

. . __,

.

ation. You can.see:,then that the patterns are meant to 6”e flexibJe. They are ’ ” .

that if you want to add new inforkktion to a pattern, can do so $tho.ut losing the essence of it. : 3

must realize $at the Cxtent to which an t or ail of the practice de,+n+ in. large ~‘measure pn the extent to

hich- tile d+grter succeeds. in ulderst&ding an$ applying the patterns. * ’ 1 n: P

? _. .- /_I_. ,-_,-.- ..__ -- - --- - 1. --_-_ CT? . s ’

I iI - I ,‘. I/

i h

I I ‘i

t c * ‘, d < c- 4

0 ) ..- i 1 *- i j

,s-- _ ‘.

f3,/-, 0

. r .: 1 _ *

. , . . .1 ; ,”

1

\ /’

. I ..-. ..-.- ----A.-.

“.-~‘-.’ I Qi _) - 1’; I

,’

- F_;f_l/

L

I

2. :

6 ’ 0

o

/

---_ -.,-.,

I \ B

_ _.i. -.

,

Pp

---

t .

*

c i ‘6

Page 84: Passive Solar Energy Book (1)

,J . I

/ + :

s

n ,> * i I

. .’

6‘ .* ’ 4.’

,/

._

3 ’ L /I’ ~

IT“ 9/’ ,

‘,

.

_ ’ : *

.~ I i i.1 ‘.

‘.i

_ i

. - P*

,: .> :

’ .

. .”

1 (A -

.

, .

“’

Page 85: Passive Solar Energy Book (1)

i

/ ;- 3 I

, c

,

\

\ ’

\ /I

_ .

r ‘G, I!

The apo,unt of:arc taken.In placrng Cl t)ur’ltllng on J SI~C \vi;h respccl 10 open space and sun is perhaps the 5inglv na0s.t Important (ICilSIon you \v~ll n7;1kta almtlt ,Jhc building.

D .

r

‘/ Buildings blockedv froE exposure to the+ low winter sun bettveen the hours of

1 c) ! . . . I ; . i

'I

-

:9:00 a.m. and 3:OO p.m: cannot make dir’ect use of the sun3 energy for heating. -’

During Lhc wipler months, appirosrnist~~l~ ~10°~, oi :hc sun’s cnclrgy output occurs hctwrcn ‘tliv Ilnurs oi 9.00 G.ni. 31~~1 3:W 1, m. <trn Iinic (WC chap 5 I’or dn ~~splC~nal~on 0i sun Iini~~, for w,~n~~~l~~, ttl Ncb\v York C‘I~Y t-10 NL) on ~‘sclunrc I:ooL oi 5oulh-~dc1ng t;llr-i,lc(.l 011 ;I clc’dr cldy 111 1h~1 1m~nll7 0i UN (~rilh[lr, l,G’lO UIu’t; out of d dally iol;ll 0i 7,724 Ktu”; 10~ 03% 0i Ihcl 101dl) ,II-(’ Iril(>r-i ceptccl bet~vvcen the hour-s 0i ‘3:OO a.m. anal 3:OO pm, Lir~l\vt~~!n Ih(: h0ur5 0i 9::30 c1.m. ;Intl 2:30 p.m. ‘1,272 13tll’s (or ;-I”$~ 0i thy t0tdli JI-;I It2tcrccptd Any surrounding eletmvnts, such 25 I-,LIIIcII~I~~ 01’ lall tiec~, that block 1hv sun during 1hese limes Lvill severely limit they use oi solar en.ergy ds a heating l source. ,, ’

‘i

/

Thie Recommenchtion ’ ’

To.take ad.vantage of the s’un in tlimates where heating is needed during Ihe winter, find the areas on the site that receive the most sun during the hours of makitium solar radiation&):00 a.m. to x:00 p.m. (sun time). Placing .the building in the northern po&tion of Jhis sunny area will (1) insure that-the, out- door areas and gqrdens placed to the south. wil,l have adequate wir$!er sun and (2) help minimize the:possibility of shading the building in* ,the future by off-site developments.., d

fr il

, -,_ f . 0’

f ,r ” d

73 , I .

Page 86: Passive Solar Energy Book (1)

I ‘1

1: :

- ,-The Passive Solar, .Energy Book )

F .’ I i ” .,‘&*I .>* L

c I ‘. !

: e- , _ ” . s ,. _’ 1 ;. ‘-. _

-. I _--.-. . I’ .,,:,

m g.

-G - Fig. IV-la r a s D .

T ; A 0 a

1 -. . ,I.. - , . 6’ c . .,

0 T” --,‘-. Whkn.deciding OYJ the exact location for the *building within a sunny area give the building a rough shape--BUILDING SI--!APE AND ORIENTAfl(SN(2j~

_’

.-.-__ --

and place the etitrance of the building so that .it,receives the greatest protec- ’ ’ ,,;ion f(om the cold winter winds-PROTECTED ENTRANCE(5). . A*%, ’ ’

( ‘\ . \ 7 :;!; ’ ;_ !. * 5%

The Infqr$ati,&,b, ’ a . c- 1 ‘” .I :. .L -2 ’ . * , -- :\ 7 1 ‘1 - 9. To take advantage of-the winte,r sun,.first the sunny places on t{leGsite n&d to

” / ,, be Located. To do this, explore.the site and determine which.places have an

*. “. I open vie.vv to the sou;th ith

sw,n chart (chap., 5) is minimum blockage of-the low winter ‘sun. The

useful in visualizing site ob,,structions that,block . j \ d”irect tin from reachi

.’ * sun chart for your latitude. y ,point on -th<‘site. Remkmber -to use the correct ,,’

I D II . . . ,.

4 If the skyline to the south is low with no obstructions such as tall trees build- ings or abruptly rising h-ills, then the following p?‘ocedure>is unnecessat$ as all points on the site-will receive sun during the winter. If there are obstructions

. ”

then the skyline should be accurately plotted on the ;un chart to determinethe Y -’ n B __, .( _’ extent of solar blockage.. (See “Plotting the Skyline” in chapi’5.) ‘J x 0; .”

\ 1

’ ;4, ~

* \\. , <.

- ; *+%..&-.

, a \\ ~’ ., * ,i.‘. * ;” ,__ ‘,

‘v ‘I o

Page 87: Passive Solar Energy Book (1)

I

/,’ , <,

i -$g. IV-lb:. ~,Using’t,he sun chart @,visualize s&r obstruct&g.

.* = 0 Lb. , I c,

“%

. 7) , :’ rban site;‘s’urioutidY& by’ large gbstructions; it-may not be feasible

to plot the skyline since the skyline cha&& drastically when seen from .differ:’ .c

F‘ ent points on the site only a few fegt,awa$rom each other. ‘In this-situation a ‘- .;’ I

r.’ simple :threeYdimensional mod#of the and its surroundings shoyI’d be

!&I 1 built. This mo,del, when used in conju n with a sundial, wil.1 hellj qy6u

’ *.,* : I L

determine the best building locations with exposure to the winter sun.

‘;. ., IL * t 0 I ,< I ._ I..

_’ When deciding ok the exact l”ocgtibn oftthe ‘building, yo,u musp also choose . . the: place forrtheoutdoor spaces next to the building. Christopher Alexandqr, in < ( D

,.. , !, ‘:y+?-* ( y . .,- ’ fil t ,, .--.. I $gQ, ,- ; 1” ,, . __’ y*&,

‘. . :..+; 0 I ‘_

,; ‘,* ‘- . .d . “/ , ( ~ 1

j ’ I / _‘ _. 75,!

i /_ ’ 1 i , . , “,, ! ’ )I ‘q . I! ,i ,“‘9 Il. x i: :..: ; 0: ., .- .I. i’ , I’ .

Page 88: Passive Solar Energy Book (1)

_ _____-.-A-.--- ---p---i- ---c---..--- - r -2 ----- -~-

h I

0 ‘-7

‘Y. I F

\

- Th>. Passive Solar Energy B,ook,

0 7,

’ c. .

‘a

Page 89: Passive Solar Energy Book (1)

\ ‘:“-i

. ‘. ._-_ c _ .- = _.__ .‘..--. :

----: --.-.-. ~-.*-+A-

,.‘k “,..; .I . 1

*t. ’ I . -3 ‘..

L <. vJ

6.. ,f * 9. _

L . ’ c>

’ .-.

r-7 ..

;. . . ’ + <; e : I

‘, - i

3 . j..

‘.I ..” 1. ButMing location

, - _ 1 J ,$ . “‘\- F

.s 1 * UQ j. .-Q ”

’ -p , A survey’of a residential block in -Berkeley,(?alifornia, confirms this i

‘. : problem dramatically. Along Webster Street-an east-west street-38 .

s’ t. - of 20 persons interviewed ‘saiOd Lhey used only th: sunny parts of

.. ._ . *

--I . their [email protected]. Half ,of tljese people living on the north side of the

6 street&-these people did not use their batkyirds at all,* but would ;

*. ‘. - +c,- 17’ sit in. the fro,ht yard, beside the sidewalk, to. be in the south sun.

L

I h ‘r ..W, Note <that, this pattern was developed in the San Francisco Bay Area.

. .

D Of coupe, its signifi’cahce varies ‘as jatitude and&climate change. In B I”.~..: I Eugene, ,Oregon, for example, with a rather rainy climate, at about .

‘! 44”,datitude, th,e pattern is even more essential: the south faces of 3 the buildings are the most valuable outdoor-spaces on synny days. i a ~

1. 5 .f “a 4 L

It is evibknt’that. the south faces of buildings’are not only imljortant for the \ *

*’ ~ collecti,on of sqlg radiation, but-are, a”lso the most &luablS outdoor spqaces ”

h \ ynY

\

days. * 5 e. I

L * v: ’ .

Page 90: Passive Solar Energy Book (1)

.n.---..-..-. .

‘*

-. 3 ! -

0

-0

.,

.’ . ’

.

L

.a

_* :

1 ,.4’

. ‘ ?

. t a

: o ‘.

:I

I

/ ’

d

1 .*

- (I _ 1 \ o

-.

\ t. a

‘, -

: 8

*i

B -

5

v. :

_. ,”

:, *

.,

4

i?

9 Photq IV-2q., Ii.

Page 91: Passive Solar Energy Book (1)

i .I P , .- : “Y e !: I ,

0 E’ 0 : ” t m -, c . . . ‘*’ .I ‘* , ‘_.

‘&,I ’ ;;

* at

:%+ .- t : 1

a . :+ F 2. Btiilding Gape a& Orientation’ “_ *I (I ? . f-- c;i s w ‘8 i _ 0 0 x . * .< 3.

-With an id’ea for the location of the building okthe &--BUILDING LbCA- c, ’ .?lON(l), it is necessary to define khe.rough shape”of the building, with con-

1 sideration for admitting sunlight i& the building, before laying 0u.t interior : ? spaces. DI, .y

.-- , . . 1

I 3 0 ’ t+t. .“* : 9 ,’ *.

. . ’ , ‘5 , . I _ a-, ,1,” 1 B pn 1 I i

: 5 ,4 e ’ ., I . c I Buildings, shiped.yithout, regaid for the sun’s irt$a& requjre large amount+, of

is energy $o:heat and-cool; Approximately 20% of th,

e energy, consumed i’n the. .’

United .States is used for thd space heatjng and coo Sng of .buildings. of worldwide dwind.ling energy resources, maq buildings today.

* . shaped without regard for the sun’s impact on, and %potentia! contribution to\ space heating and cooling. ‘7:

7 -1.. 1 1’. ,’ , ‘I t’ ‘\;\ “G I, ;

I ,’ en’ ,t* 4 ‘, - :. 0 ’ ..-9 .$ ”

The Rikq&6endatibn ;Y ‘. B 7 I. I,’ e. ‘, _,, ‘, -. I /\ ,,

1 / ,

‘fJ”f B’ .,.r’

I’ .* 0 .d ‘.I

, . Fli. 0

” 0

When .de&d/ng pn the rough &ape of$bujleJing’, it is’ne&ssaq to think about .- ‘;z _

Page 92: Passive Solar Energy Book (1)

: -_~ ,.., -:;j, ---=-: - .z *

*. ’ ;

i. 1 ”

‘, 1 i .I’ ’ /‘”

k;

2’ I I The Pa&e 1

. ..----.--77--_ ,e -. . . . .~ .I,,,. .a?mm II’

* I

b ,e.- ‘

L’ . 0 0 b , *

,3 ” 33:

,.,c “

f _ *r ” e -7

Solar Energy Book 3 8

._ ~ e d ’ 8 t

i ,’ ;.- ; ,j , ‘.

,’ i,- :

. .

ti. '., , si; I

, :,. . . XJ ., 5 The &$imum sliipe of. a ,bui’lding is one which’loses anminimum amount of

:X&i heat jn’the winter and gains a,minimum ahount of heat;in tk.summer.. Victdr,~~,,.“~“~“’ ,, I,*““’

I ;, i ., . . \ .,_ ( es. : Glgyay, i’n his book Design ,wwitti C/in-rite, has investigated the ;ffect of thermal

-. I- ,,: :. impact; (sun and air ‘temp’erature) on building shaphs for different climates in .

~

\ ,,the United ,States. ;From these investfga’tions he drew,,; the’ following con- 1 J’ ‘. ,’ elusions: :: 4

I :\ 1 ‘<. ‘. d

I

.’ 3 B

‘,’ . ‘!I~~ fhe squ;ii e house is not,the opt/mum form in any location. ‘. *.P, a, / .: . y*+.- .~ _ -

2. A.11 sha.pes elongated on the north-sou&r*a$s.work both ,in wjntei er@ 1 b

,: U’ I ‘! <? ” i -

, .I . z- ‘/ 0. ..:I’ \. 80, ” b’.’

F I\ *i G 1-1 A \b!.

’ 9 “;/, .i-‘3i’i, i *’ -, I: ‘.. i_,*. ..+J. - ii h ; (

i’

. .. ‘,

Page 93: Passive Solar Energy Book (1)

( : , _I’ 0 “:-

P - 4

2. Bujidiw Shape and Orientation ,/I . -/’ i, ‘, .J

I- , \ $“&” ‘3 * WINTER h >’

.,I’ ,, F ., ~ 4 .f %,..,i , \ ‘J’ ,I , ‘44’.NL - ? \‘~. <”

’ f ,, ,.

d’

/ 1 7 ~ 111-6Y ._ j ‘1 i -. L 9: 1 ^? _ 81 i _I k c I \,’

Fig/.ly+2b: .Sol~r radiatihn imp&‘& different latitudes. , i ‘.-+ I -_ % - ,

’ “., . .

*‘. i .~. : j

\ :( . \, fi’ * a .I i - ; * 0

t o %a;\ 8-p. ’ $q B&& 1\ .” 8

\ I, . 2 ‘, =, . pd- ‘1. ,, .‘j : Ji. ?a*

A ., -, : ‘. i P . -py

_ , . . ,’

*. \, : 1. ,*f.. ‘X\. ,: .; ..,. .,,~;y(. i B * I/, ,. I pi.. 2 ’ 1 h -’ $ I- . _a \

-. -. n: _‘ .< r’ .:. : i .i. .- . * ia ,’ , ,B .’ 4#. “.’ r6 :.; , i !

Page 94: Passive Solar Energy Book (1)

i d 0

, 1. ic

The Passive Solar Energy Book . -_ ;

*

. . .

summer with less efficiency * \han the square one. c

I G ” 3. The ‘optim’rrm shape t&s In even/ CXF tatt:rlimates 4-f in a f&m ; ;

elongated somewherq along the east-west direction.

By looking at the rtidiation impacts on the sid,es of a bui,lding, at different . latitudes, both in wibter and summer, Olgi/ay:s conclu’sions become rradily

apparegt.

.- . ”

A ,,building elongated along the e&t-west axis’exposes the longer south side of ’ the building to r&xi’mum heat gain durin’g the winter months, while exposing

th@ sh, d rter east And vwest si$s to .maximum *heat gain in the summer, when the sdn is’ not wanted. tn. all northern latitudes (32” to 56”), the squth side

-. of theibuilding receives nearly 3 times a5 much solar r;adiatlon in the_ winter *

I Y

7

.I Phofo IV-26 ’ Housing units at&&d along the east-\&t axis. Y ~ .

. ^

*Author’s italics. 3 tAuthor’s addition.

A * : -,” c.

. . -(

Page 95: Passive Solar Energy Book (1)

2. uilding Shape and Orientatioy

roof and east and w&‘t sides ot the bulId;ng 130th In jurnmer and IvIn\c’r th,cJ . north side of th’e building reqelv.cJs, vc;r\j IIEtti~ ~acl~altc~r~. BCJSI~(T t)cJing, an

-efficient shqw, the largtl southern CXTI~F,U~P i5,1tltlal tor th(~.coIIc,(.-1”1(,n r)i sol,11 L r;ldlntion. Major collec’tlng C~r~~Ca~ f~lfi~nq 01 ihi. ’ t~i~il~lin~ c)r~~ntc~l to lhtk

.‘+jJ ’ south iv111 Intercept the nla\lmum anlount ot so/,jr ra(jl,lt[on C~~;l~l;~l-~t~~ (luring” ttie wntcr months.

ii , ,~ . -, 1 -. _../,” -

At all latitudes, althougtl bulId1ngs t~l~ngat~~ ,~long the ~astx\lest <IY.IL dr$ thcx / most efficient, the amount oi clongatlon dcpc>ndc upon thtl cj~rn,itt> ic,rrl’e i icneral principles ;a,; be <tated tor dltterclnt c \iin,~te~, In c 0~11 ~ik\Ifin(~a/3oIiL /’

0 and hotwiry (Phoc~ntx) r.lImat~t~s ‘1 compact builti~ng I~,rnl, c>upc,s~‘ng ,I ni1n~r9uni Q ‘6 8. .

J

r.;.p .,,.,,,,..lt perxetration. , 11’

Page 96: Passive Solar Energy Book (1)

u -J

b 0

.:

,.>f#,‘a

’ w 0 0

. Th.e PpssivC Solar Epergy Bpok 1 ” _) f

;3 v 0’ i.; p” . ---I ,

of sujce area to a‘ harsh environ‘ment is desirable. In temperate (New York’ /City) climates there is more freedom of’building shape withbtit sev

$excessive heat gain or loss). In hot-humid climates (Miami;), buildi be freely elorigated i,n.the’eist-west direction. In”,this climate because of ib- tense sumser solar radiatioq on the east and n/est;si?{es; bulldings shaped ‘along .,,

the north-sou!h axis pay a severe penalty in eJnergy consumptron (for cooling). - ’ ,

In all climates, atLachedu‘ni’ts’&Bch as roiv houses) with Cast and \Gest common walls qre most’ efficient since only the end units are ei$osed on the east or west face. ’ :.

-4 I F- Y j\\

Assuming that a bvilding elongated ayong th,e easf-Lyest axls Is’:c.ompatibie lvith oiher site and design considerations, lo give the bullding a rough form tve need

I “,to determine the width of th.c> building. When the .prlmdry jou;ce ot’ $tinlight entering a~ sr”,ace is through south-facing \&indows, ll1cn ihra Ck![,l~l, oi spaces

along the souIh wall 0i thq building should no1 ~scc/ed El/i times the: height a

of the windows frorn the floor. ThiS assures that sunlight will pcknctrate the en tire spacer. a

0 P

Also, this rule of thinib prqvides fog. the a‘dequatc daylIghting of interior sppces. According to.siu,dies don’e by the Illuminating Engineering- Society, the

’ epth

4

of ‘a space for idequate natiral i.llumination should be limited to he range of 2 to 2% times the windo.w height (‘from t,he floor to the top of the fi i

indow). For an average window heig’ht of 7 feet, this means a ma%imu& -

-pace depth of 13 to 18:feet. For Thr+rmal Storagk wail and Attached seen- 0 hous&Systems, room depth is limitid t& 15 to 20 feet. This is

rJ

d

-ma,xi

tie

urn distance for effective heating irom n radiant wall. % I

1 - t ‘If fhe major spaces of the bhilding’are, placed along the’syuth wall (fo;‘suX _ ! \. * _ L i light requirements) and the buffer spaces placid along the north wall, then th,$ ~

maximunl dept;h df the building will be roughly 25 to’-30 feet. Spa&es which -

1, ’ need to be deeper orI do not want large south-facing. lvindows with direct sue

,y shining directly through the space can let the sun ‘in ihrotigh south-faci$ clerestory window!! or skylights. :Admitting<.the hajor;portion of sunlight into

’ .a space through- the roof h.as the a.dvantage of allawir?g flexibility ic distributing $ght ahd heat,to different parts of a space-CLERESTORIES AND SKYLIGHTS

c (10). This allows for the maximum flexibility in locating thermal mass within a

. s+te--MASQNRY HEAT*STORAG~~l1), INTERIOR WATFR WAL,L(l2). ifK

Page 97: Passive Solar Energy Book (1)

,-

B _ __ _ _ _,._ .,-----_ -k------y--

%

., _ n

.,

3 -. ,I) \ ., v . .

@ . . \

1 I r ,I

Y- 1 2 _ -

.J , 1 4

. .r .

.....*- .‘.. . d

/ 7 i . . e .,

\

Page 98: Passive Solar Energy Book (1)

.

-.

= _* _ - _ r

*r “’ --.___ P ,

T-T.... -_ ii’

1 . ;-n‘, .

&.

y,y .’ ,

->

0 ----..

: ‘.:

” ’ e

n ‘. - * r

1. ?-- m’

----___ ~

_‘> *

: 8 “’ &ek;hbugh a building is l&ted in the norlhern portion of a sunny site- BU’tLDING LOCAT-EON(l)--the adjoining outdoor spaces to the north- need ‘.

. sunlight to yak6 them alive. When giving the bu-ilding a iough shape, <J’S

0 ,sUltDlNG SWAPE AND ORIE’NTATION(2)-it is ,nccess$ry to consider the- 4 building’s iinpact on th’e outdoor spaces to4he nbrth. $ ‘9

: ” .-. _’ ii I . A’ .

9. .,, n \ a

: 4. ?b ,, .*

j _ L 1’ * 1, F

‘1;; I .’ The nd’ih $id& ‘6f a biilding is the coldest; da‘rkest and usually the least us& side because it .r&eives no .direCt sunlight.,a’ll winter. From September XI to

_._ .._A I- -<March .X11(6 -months) the north wall of ‘a btiiI,d!r?e and its”adjoinilg outdoor

:/ spaces are in contihual shzcfe. During-;thes8 m&t$ the sun is low ‘in the . .

T- -~--~ southern. sky, rising along the horizon in the southeast and setting in the.,s,oZuth- --~- . -.. - 8. h * west. Any ice, snow or water .on Ihe north <ide of th& building will retiain . 1 _--. -~ _- .-: -th&e for-long-p&iods-oftime,making area unusabk. W&&e, p-revailing-: ,/ winter wihds.from the north an,d/qr west,in the United-States, the north iid6 -

..-. of a%dilding~is even leFb-desirabi’? as an outd.oor place. . .-: A i ’ .8.

“4 .‘. - .J I

f ,~ j -. ‘J ’ i 0, ,.., ’ .~ .’ ..: Y . . ‘,

(’ \ ..-=-- * > . I 1 I >. ~. “,- ~&hikcom’$wndation I ‘\ ._ ~-- I ..~.~~. , - ~...~ \’ ,j- ,, : .,. .““’ ’ -- .

y, IO, *,Shape thCbuilding so.,that its north si& sloies tow&$ the ground. When : 2.. ‘* , D ,pqSsible btii!d’ iyto the side of - . \.\

. r\ _a “., I the ‘poflh %!ce of a byilding’

.j - _ ds the’lieight of ttie norfh wali’is reduced,‘$he -- .~

1’ .\ ;: ‘>in winter is sh,btiened. Use‘.a light-colbted

-- y’ 5- ._ nqith’of the’ building to reflect sunlight into _.__ -. _ --. sp&& “, , . , r. . ,. _. Q’ ‘, .: ‘.-

“;~. :- .-. c L .d -’ . . * I.>

/’ -, D I r. 86 .; + ’ ;,a ,@--. , , ’ .y .-A- i .,-. ‘r 1,. a.

-: y . .:’ _ . - -“’ / ran. --- .\ ” :’ ,. 1 -- _ . .

Page 99: Passive Solar Energy Book (1)

3, , , :?:.‘.I.-

.

’ _ 3. ,,r ’ j *,, .--

*’ -4.r ..’ - -1 I

. .- : r .

I s .:-. - , - ” . il

-:-q,. I ,’ .

!.L .

. a

pg$..~ ‘- . :. .. j 5 ? J..

., .

\ .

-$ , ‘: ‘_ ._I ” 8,

,i’f’ ., -. .

. - ,. ._I ;, I _ 3. North Side ‘-‘_ ; .,:.:: +., ,, d ‘z-F. ‘-i ,._: ,’ ‘I -. , >’ .’ : -

e ..;-j&7;-

;.; _ -r - ,, L . .

5, - Fig. IV-3a 0 I-:! 7 G r> ‘.

,_ __-. _. -. *\\.““, . ‘S .~ r . . . . l * ;,,q l a . . . .

9 ,\- Y a Locate spaces in the building that have small- lighting and heating requirc-

_ments to the north. These spaces act as a buffer between the living spaces andf the cold north face of fhe building-LOCATION OF. lNDOOR.SPACES(4). ’ I

. .

. The\ Infdrmation ,

^I., I. _.< k 1,

4 - . .

;’ ’ ,Spac.es in continual shade for most of the winter are wasted-because pkple 1.’ do not use them. . . . . I

i _

3

i ,:’

0 L ,,_ ,i:,, There are ways, though, to mal;‘e these places alive and useful. For example, u

sjting albuilding into a south-facing slope or berming earth .against the north wall &.duces or, eli.minates the shadow cast by the building. Besides providing - sunlight‘to the north side, covering a north wall ‘with’Te.arth reduces heat loss ,

” ‘ ,. * .

d i> a7 _ I

\

). .* I : \

’ 1 .% : : . I _. -.

Page 100: Passive Solar Energy Book (1)

United States.

walkway. To p,rotect these outdoor area% In winter, plant a dense row of evergreen trees and shrubs or tocaMp solid chstruction (kyat1lLt.o blc& the-~-_ - --_ prevailing winter winds.

P

88 ~I+

- ~,

Page 101: Passive Solar Energy Book (1)

, 1.

Phatff I~$.i: Nprth shadow. .: i I: i;

/. >n.. . .1 1 n

;, .’ ,i .;i

t ‘ D

‘ .I

II

,i r

-

I. . * .

L

3

r .G ./ - .?=A

. ._

~ Fig. IV-3c: tierming ‘or Slopi’ri& the nQrth rod*Feduces the. shadow to 6he north. ‘3 , d I 5 ..- -

.J 0 . . . . l .:@&.. J ‘: . ., +. , * u t ” u P ’

’ . r 89 . ; m

Page 102: Passive Solar Energy Book (1)

I

_~ - -.-&I--.--.-

.

. .

?.,,I, .

1 A-.- ~.~ .- ,:

#“. , & spacekkX%s r&directly u’tilize ‘sunlight for -heating during the winter ,,months will use proportkally more’conventiomil energy than one that does.

‘” Apprbximateljj 58% of’the energy consumed by theeaverage Amer’ican hous&‘. ,h&i each year’ is’ for*space heating. The mqre djre% sunlight used to heat a ’

‘XI, space;the less cpnventiona’l e.nergy is required .for space heating. This also _ I\ i z

‘. .applies tP act&e sola’r-heating systems.‘i‘f thk design of a space does hot directly- ’ . . ’ ‘\ take a‘dvan,tage of th.e winter sun to supply.some of its heating requirkments, , D

.~ \ ‘~ \ . an active solarkheating system will be proporti,pnally .that much larger and t-nor-e - ; .~_~;~xp.~ns~~--- ~~ ,--- __ ~~~ - 2 - --- ~-- 0

-- --- -. ----i \ ,.~ ,( y - _ -_’ - -, ..* *’ ’ ‘* L < . . -., , ‘I 3’ _

~ %i- ~,. . ‘> m. ” . ‘. 4 I

I n , 1. .,..\.*, : I’ \ ;“-.. .;- I _ /’ .: ‘, . a- ( I 0 t m ‘;, The ,Reconimendation _ ! I .- c ~___ . \. -

. . - Interior spaces can be supplied with mu,ch of their heakng and lighting reqwire-’ . placing them.,$ong the south face of the building, thus capturing the-.-( I_ .- --- . during different‘?hnes of the&day.- Place: rooms to the southeast,

\ .. . .

south,an.d sorit%west;acco’i’dingto their requikments fo+r sunlight. Those spaces P

having minimal heating and:li,ghting requirements such as corridors, closets, . i ‘. I4 , . . laundry‘rod’ms and garages, when placed along the-north *face ,of the building,

-,T- ,: @ll-se~e as, a .buff er between. the heated spaces and *the colder north’face. .:

L :. . . . . :,... .’ ~, 2~ ~. :” ‘5 “. ;

i 2, 0 ‘. , ‘J -’ . #I.., : ” ‘1 .gg ‘” : b ‘_ -- ; ,; II, ‘. ~, . ,

-t- -“---i--.L-_L-._ ~~ . ‘\ -. i 5 * 6 D ,, .‘; . . I, _ ‘. ‘,L.‘. “. ‘. - ‘ . L, _’ * ‘x ,

Page 103: Passive Solar Energy Book (1)

,

4. . I I : 1

4. Lwation of Jndoor Spaces - 1 _ .* ;

i .-. z-l., F- 0 J i ,

L t’. .\ 65

I 1 ,.I

I

3 - * . e

-s I . ,.. -. 0

Pig. IV-4a’; 1 - k F

: 6’ ,’ . .*’ I ._ - .- ” ‘? .

.’ , . - ’ I I D *j i.10’ +/ I- . , ’ ’ - mLocate%openings. to admit sunlight and provide for ventiLation---‘WINDOW

“~. Is ~C-O~:A.TION(~)-;whiie~t the same time,-choosing the-most appropriate heating, ,I .v, . system #or each. sRace-CHOOSING TL-IE SYSTEM(7). If a <greenhouse is -.

integrated into the building-SIZING THE GR~EENH,O~E(l~);--pia~.e~it along 3 ..s

~--the-south f,&e‘of tti& buii,ding’for m,aximum,exposure to the6tiinter sun. , ~_~ -- ‘, 1 & - *

-J. , c\ e

I‘ / t

9 .p I A

? ; - *. I

. :

- During-the winter, the microclimatic conditions’aiong the ‘sid’es of a b&ding (outs&@wai~is) are’the key to the location of indoor st&%s. The north side of ’ ‘. i ,’

_ 7 a buiiding remains the- coolest du;ing.the winter because” it receives no direct .- - $:: ’ sunlight. The east ana westsides of a building re,keive eq’uai amounts of diretim,;--

; ‘_, p *.. - sunlight for half-a-day since the sun’s path .across;thesky :$ symmetrical along 0 ~ - a i

a “- ’ . *I ’ ,I * ’ (I

-1 &’ _. ei. < m r ‘. * I ‘. , L

--_~.I...yL- _ L. i .m _ ‘. , -.. _ .__~ - . . ~~ *~ .J, .~~_~ ,: -jr. 0 I_ _~- _ ? \ ,$: P :. : :,. ;: s (, . ;

Page 104: Passive Solar Energy Book (1)

_ D I ,’

L

. I) * .

* .:- .’

‘“/ -; -~ -L a. - St * I . . *.. 1.. .,

‘:.

.*

.Y

;rsp \ ,, . . . ..I. I . . . . . . \ r ~ -

_ \ 1 1%: 1 ‘* ; ,, . _

.

I’ :; -, :,< ; : . ,,

*; / i ‘r C’

! . % ;‘/, : _ 1 T..! .

Page 105: Passive Solar Energy Book (1)

-- ^----I-.

~ 5. Protected Entrak

a

.

‘:

Photo IV,Sa q il, - . . _ ;-s - \ r-“-. . \ .

a - t <

\ \ ‘. _

Page 106: Passive Solar Energy Book (1)

0 \

,5.. +rot&ed *E&&e .i - ~. ,,,, 1 4 . -w 0

0 , - \ ,- 8 L 1 ‘\

_\ \ I . a .

--< * ’ ^ \

- -\.The location and d&sign b’flthe entiance must be d&eloped while simul- -L

r ‘j

\

. _ ,l’ f:aneously locating indoor spaces-LOCATION-9F INDOOR SPACES(4). This bagtern describes the thermal criteria f%.locating. the entrance and,prqvides ,

informaiiofl fq;r its design. ” 6 * 0 _ 7 * r- \ ( \, + \ .a-, ; . -’ ..,. l @: 3F’_,~@..., .a ’ *

- ’ . 1\ ,.= ~/ ; .’ - C. . .

‘” In winter, a great quantity‘of Fold. outdoor air enter& a building @rough cracks around the entraiice do&r and frame aswell as each time the door is.opened. All edges aroun& erit.rances leak ;rjr. Through thes’e cracks warm indoor air is exchangizd with cold oytdoor air:Wh,en an entrance door is’opened, a large

u quantity of outdoor air enters the adjbisi g spase., Iii, a’srndl( resideice this infiltration of cold, air coupled wjth ,th Br conductibn loss ‘through th.e door can-account for as much as 1.0% Qf tJ-& buiidiqg’s total heat loss.* ,For small

. commercial buildings, such as ships and offices, &e heat loss through entrance doors till be higher due.to increased traffic into agd’pt of the building.

& ., .’ w a. 1’ T < , ‘. :’ ‘, The Recomryndation ; ~ ’ I \ I

i Make the main-&trance to the building,:a small enclosed spa:: Yvizstibule, ._

I’ ’ t$yer) .that%p o d i vi & a dduble entry or qir lock between the buildin i and . ” ,x?vteritir?-This will Iprevent a ‘large quantity df warmed (or cooled) air 5kl m

‘- leaving,the building each. time a door, is opened, since tinly the air within the \ enclosed space .can escape. The infi‘w-of cold air that normally.occurs around [email protected] wiH- be vi-fijially ei&indted because the entry creates a

-, still-air space between th&‘interior and exterior doors. Orlent the entraqce 2. _ ”

awaylfron) the prevailiri’g winter winds .or provide a windbreak.jo reduce ihe wind’s velocity against the entrance. Make fise of the: ectry space for the ,

’ storage of unheated items, as-a place to remove *inter &thing olrfor activities . . that.require little space heating.

s

. j_ , , -w

*Heat IOSS is calculated for acstandard 1’/2-inch solid wood door wiihbut weather stripping. or a -storm door.

\ ,‘I :- .

,

1 .’ 94 : . . 1 a

r r . c

3 ,_- .

- . c . * -

P -_

, 1 .

L

i ‘f

4

Y ,

Page 107: Passive Solar Energy Book (1)

- .,’ ?‘, .-

,/” , , I C’

,

r

-

0 0

.

. b . c

5. Protected’ Entrance

‘. ,, 2

P .

> - “il ’ :v . . , 8 I

I Fig. IV-5a T .,

, . . l **...z@* . . . . . . .,. \“ .

c -j-’ b _ __ A...... F-J $?-- -. Yy---- ’ t i :..> , , I :- F :1 ‘.- : ~“.,,,,.. ‘.\J i :Y‘, I 3%. ..:,. j‘ h

‘t ,, .,.I

‘,

‘\ If the entry is large and supports other activities, provide a ‘way to passively \ heat the $ace in winter-ChOOSING THE SYSTEM(7). ’

/ _. ).’ ’ ,

‘\ ,L . ;. *_

>a *’ I ‘\ n 95

Page 108: Passive Solar Energy Book (1)

/--

,

. . 9

I *

. ..@*‘. The Passive Solar Energy Book P

L

Photo IV-5b: A transition space for shoppeis.

Page 109: Passive Solar Energy Book (1)

. . - 3

c -+ _. .

b ,.

.

‘, .‘m . 5. Protected Entranie i

1 1 - - 0% *v . - Y ‘ ,. *. ‘, ; “$‘ i - .: - -b / * - . ,*.a .’ ’

P *- c ,I Yf -. ,

:: The’ livfbrmatipn. * . G ’ d .

0’ . . 0 “’ . -. . G .‘C . “’ ’ : . i 0 % . , .. - B I * i.9 D . 1 ” A ’ . . 23’ I. J . s LI ,;:I\. . . I -* -as x b , ,;,’ Pr&&ng an air locJc’~or double entry will decrease-*the heat loss due to bot6’ ,.

a Ia 6

c, infiltration and c’ondu-ction. AbdouMe entry,has two doors, o’ne that opens b : \ ?the exterior and”.one’ to the_fnterior +tt&kurtding trapping= stitt:a+space ” ’ - _ ~~--~-- \ 5

_ betwen them. Since the4nterior entrance to the;builbing faces a still-air space, . _ . -

‘., > T ‘+ \ * .inf’iltr~tion is’ min$nired. Also, when “the exterior door jsaopene s 0

\ 5 ,‘- I . _ s.mall quantity* of unheated air.jn” the =entiz)l ,$ d changed -w?t??%’ -I,. “. * ,%.,*- ). . ‘*“ai,, thus:the spaces near &@ance doors are protected from b ,,. . 9. , ? -* and drafty each, time a peiisoh‘ ent& the.-b&Ming. D~&ig’the .

double ,errtry works in reverse, Jkeeping cooled indoor air from $eing replaced ‘. ; ‘, o- . by hot outdoor air. A double entry or entry space, when properly designed; .

” .> can serve other functions b&ides the reduction of heat loss..‘!t,-can also be a ’ \ frequently us& items, and a protecteti~pl&’ to’wait ‘for trans- , ~%-.. d : 1 _I

.:, hen’arriv.ing and leaving a buiiding, peopl+ need a transition spat:

, a nymber~ofiactivities, ,such as removing and storing outer ’ _ ’ ._ w garments. , , I * ,

.,, . . . . . . . ’ . : ,.

9’ Protecting the building’sentranc&om winter winds and sealjng’edg& around : ‘.

. l .

i. .I., * I the door frame as tightly as possible will minimize heat trgnsfer. The rate of :. r __I” .1 infiltration of cold air through an entrance increases as the velocity of the _

Hemisphere the prevail- west:‘(check with the US.

of the prevailing winter winds). of a building will be protected

on the n-orth ot west. side of v 1. (dense eve;ggreen planting or solid am ‘,, ‘,’ ,* I ‘% fence), recessing the entrance into the buildjng dr’the addition of wing ,walls . .\ , *

: ,.- wil-I reducethe wind’s velocity and impact. .’ _

. . . b u . 1 . 4 a

: ,.” :i ;, ’ 3 /, * L:. ,. Weather stripping, when prope& applied, $reveri&.air Ieakagi’ by making a , ..’

r (. weathertight seal- between ‘the e)lt&or door and: door frame. Caulking- should ,be applied around the door frame and the wall to prevent air teakage through,,

‘\ ’ ~,

,’ 1 these joints. By providing an effective seal around the edges of the door and; frame, infiltration a.t the. ent,ry can be reduced by as much as 50°/(i. 1 . ~. .~ ,-

. -I),. 6 6 _ * . . -- * c ; ,- I . . .’ ‘.. (;

,. F!,, -* - 97 . Y i :\.,, _; ” i . I ,,-:L * _I ‘. . ,@,a t< -n “4 ,. I_,,,, . d =. ,‘I I_ . .+- ‘, p i . ,,,, ;,. ,, @ ., . jg:‘s,:;, 1 s - .‘: -“. / :,: ,‘,’ -: ,’ . * .( ,* .‘( :: / :*:>a,. ,a_,‘, .*yl.,,!L ,/.. I, -- 1 P-

Page 110: Passive Solar Energy Book (1)

:

& I

0 i,

,

.

. .

\ 7

<

The Passive Solar Energy Book 9 < - .

. . ., B 6

‘ ’ Y

1’ 98 1

* - / ‘c

Page 111: Passive Solar Energy Book (1)

I

y ” (’ :” ,, ~ “”

‘a

3h.. VPP 2’

*

5 ‘. -

_’ n . ;..” - m.

L. 5. Prdtected Entrahce . D .

t

-- 3

-

.’ _.

‘n .

: ’

s .

*.

_I * PhotolV-fk: Piotected entries (here and fdcingbge).

I \ . II - 1 .*

PO 3 “;’ *: r’ * \‘

-4 /,, ., ,.Q;$j c . .’ ‘. l -..~@.& . -\ .\ .I.. .,,:.<.1 J, _ ,I _’ I \ ‘“;. 1. . 0: 0 5 c ” - \, , % ^ \ x\ . ’ I ” ( A a .gg ‘,

,.

J

1

I .

*

J

- *

-44 I

/r

n

\ ‘\ \ , , ‘. 1~ &,. * ‘,.? ,I

Page 112: Passive Solar Energy Book (1)

Photo $6a / ,: ‘,: \t :, ca - >., _I, ii _ / I j ’

’ . i - P

Page 113: Passive Solar Energy Book (1)

2: _ n . . ,’ ,* .

. > .

.’

. . c-

‘4 ’ h p , -6. Vi&&k Loc;?tion - :’ c , . ,. -. I I

. ; - r, 1. * k > I e 1 * ‘i,‘ Y ,. . : i _, / f I~ *r +. J With the sun shining directly’ onto the.bui1din.g ,during the winterb months- - ,_

’ ‘,.BlJlLDINC LOCATle>N(l)-and the major occupied spaces located to the 5: # ‘south to admit direct.,$unlight-LOCATIDN OF INDOOR SPACES(4)-this +F= :I t-i,, * ‘/ .pattern and how to locate wTndow op.enings. -. - - .c.. ‘,, _.- - - e- _ -~-

-*.* -I*> _> c _

. .‘I, . 5 c c j;-- ,: s-r. _- . r

” b . . ( 0.‘)

G I I . . . . l ,@: ?&”

,- .Q, ..A. , J,,..-- l l ., *

II-. ’ p. * i 1. .

P 1 .

One of the.largest, single factors affecting”buitding energy consumption 4s the i L location,and size of<windows. Windows placed without consideration for the

- pount of sunlight, they admit will usually be an energy drain on the bui,lding. ,’ The heat lost through a window in tiinter is very large when compared to the ’

heat lost through~a well-insulated wall. for’example, a square foot of standard wood frame wall Gth 3% inches of insulation will lose approximately 2 Btu’s 9 ”

. each hour when the\ temperature outsi’de is 30°F and is 68°F inside. A square 1’ foot+ ‘of single pane glass, with the same o$side temperature: will lose . . .

approximately 43 Btu’s each hour or over 20 times as much heat as the wall. , The heat lost through the wlndow is basically the same regardless of which

. I direction i’t faces,‘lt is. important, then, tmlace windows so that-their heat .

.’ ,. ,. gain (from ,sunlight) is greater than their heat loss during the winter, During : ‘, I the summer, windows need to be shaded from directl.sunlight so’that heat

: - ‘ \,, gains are keptto’a minimum. ; +_ .:

\\;- e -w , 8 . <I’ D s ?, ‘1 * ‘L I” I * M

The Recommendation 1 , cu -. -: ’ ,’ . . -. * . .

.-- _ < i ‘., % , -

locate major window obnings to ‘the southeast, south and southw.est accord- . . ing to the internal requirements of each spage; On the east, west and especially ‘-, ’

the north side’of the building, keep., window areas smail and use double glass. _ When possible, recess wind,ows to reduce heat loss. .

_- ;. :

e “; .a .1 -,, ._- d ‘n

; - .

‘.. ’ 101 ,--;( e_: . ’ j .’

.: _-... ‘4 . . ,... .‘. .+;a

-. I * . ,

*. ca c ., li, !.: ., ‘_ -I u .: o \.

I’ ,I- I

(, 9 ; =C . , - *

,-t- - ,,,I ,- %)‘_,

:’ f ._. .. 7, -“. D .j .__e .

Page 114: Passive Solar Energy Book (1)

The Fbssive Solar. Energy Boqk

small glass area

y--- - ---

moderate dlass area ” glass arka

,, I & ii-iajor glass ‘area

- I * 4. Fig. IV4a ,

n

I

\.* ‘\ -\ . . . . . ..$g * . . . . .

Q I I.. ti :: j;

r 1 Djrect sunli’ght can alsd be admitted into a space through south-facing

’ I CLERESTORI’ES AND SKYLIGHTS(10). ,Pratect the- major ghss areas from the, $?.. “cold winter winds atid use MOVABLE INSULATJON(23) over large gl,ass ;~r~;ls ‘-‘%.+ at nig$t to prevent the “beat gai ed during the da3 from escapigg $..night.

g, .

“\ Locate trees and vegetation and ap ,ly SHAD!NG DEVICE-SIX) tb-Gjndows to keep out the summer sun’: l&&~rm p\n ‘Ed wbith windows will be operable tb provide adequateviz8n?‘%tio~ for ‘,SUM&i COOLiNG(27). p

’ ,

i ? \ \

The’lnfqrmatigri .’ * ’ . . ._ .-

p F ‘.,‘*F e

< The best forientation f&.“the majdr glass areas &‘?a building is one which ,, receives the .maximum amountzof solar radiation (heat. gain) in the .wint&r and

. the minimum .amount in the summer. According to BUlLDING SHAPE;*AND 1 .

4 ORIENTATION(2), the south side of a building receives nearly 3 times imore, + 0 A;, +solar radiation in &inter-thar) any other side. -During th? summer the situation -

\ : ’ is reversed and the south side receives’much less radiatibn in comparisbn to ,I . \ ?

i “k ’ h “I J’

io2

_. - A

Page 115: Passive Solar Energy Book (1)

;,/’ ” 0.

?

,w * /

_i r

.( 4.. . .-

<,:, I P

, ’ , 3

\ 5 /

a” ], .

/’ I .

-\ 6. Window Location, o ’ 2 -. :‘.i 3’ I, . . J d \ I . , . e * ‘i ‘:., -a; - .I the roof and east and west sides.of .the building. There aretwo reasons for this.

r. -, ’ First, there are more hours .of sunsh’in’e. striking the s0ut.h face of a’.buildfng in ’ ’ . ,’ winter‘than in summer; even though summe< days are I,onger and have more *

,‘I hours of d.aylight, (refer to fig. I’VA2b). And second, since the sun is lower in ,’ . - :. the skydurJng the @nter, the sun’s ,rays striking the south face of the building

#?? -’

Pz

, are c ser to perpend+icular!than in the summer when the sun is higher in the . . ., -42 ~- /’ sky. Because of this,.a,square foot of, vertica! south-facing surface will receive .* ~

^ a greater amount’ pfesolar yadiati0.n during the same hour-in winter than in -r:, .*’ _ . . rl . . . he-stm’saps striking the .su-rface-of a wind?w .are-closer-t& . .-

perpen&cular in wjnter, the percentagi2”~-6f solar radiation- transmitted through . , the \;vindbw,js greater than in summer. These seasonal characteristics of south glai!lng insure a degree of automatic controj for solar collection.

c . ~, . - L

2600

c

:c Fig. IV-k

-A - : Comparison Gf winhOw orientations.. _ 0 7- . *

Note: #iis gradh represents clear-day solar:radiqtion values, on the .

1 surfaces indicated; for 40”NL. i --

‘ * 0 a: .’ _. 0 I 8

I *. 103 ,’ , ~

i .’ -. ~ __ ;;7-.-z:-:--.-- j ; _ _ - ._ .__ , . \ _- .._. _ _. .,... - _.. . .~- - j i --- .-. .--. ’ ~_--_- _ _ ,*-

/ -. -- - ---- . . . . : I ’ ., .A

Page 116: Passive Solar Energy Book (1)

I. ‘L

‘Y, . ‘.c..

The optimum window orientation for solar ga$ is due so,,r$th. However, varia- _ _ -

i I tions to the east or we,st of south, up to 30”; will reduce performanke only slightly.. Larger variations, stantially.

though, will reduce window performance sub- I -8

* .~ . In most climatgs, the heat gained from sunlight during the winter through south-facing glass will exceed the heat loss. For example, on an average

.e January day in Albuquerque,, New Mexico (35”NL), a square foot of south- “> , . . 1 I uw (single grass) recel\ies1,883 Btu’s, of which about 85% or 1,622

Btu’s are,,transmitted through the glass. The heat lost through the same square foot of window for that day is 749 Btu’s. When the heat loss is subtracted from the heat gain, there is a net gain of 873 ‘Btu’s for the day. For the entire month of January the net gain will be (873 Btu’sX 31 days) 27,063 Btu’s/sq ft. By cal- culating the heat gained’for &ch month of the heating season (months when

‘hea-tjng is needed), the.total net gain for each square foot of south-facing _

glass is l92,328 Btu’s. This is the equivalent of 102 cubic feet of propane, 246 cubic feet of natural gas, 24 pounds of.coal or 1.9 gallons of he.ating oil. Figure ’ IV-23c gra,phs, by city, the heat gain or loss during the heating season ,for a square foot of south-facing window (both single and double glass). ’ I

1

‘,

‘0

The Passive Solar Energy Book

. Openings !hould be carefully placed according to the light and heating requirements of each space. For example, a sleeping are may req,uire some

*southeast or east openings to admit earl) morning’s’unli’ght and heat into the ’ ’ . space. It is important to note that east- and west-facin’g single or double pane windows either come out even or lose heat during the winter in most climates. Since there is no direct sunlight in winter on \the north side of a building, north-facing windows are a continuous heat drain, ’

w _- The solar radiation calculator in chapter 5 is a quick graphic ‘metho& for . determining the amount of hourly or daily radiation, intercepted by a surface facing in different directions. Of course the location and size of windows will be ‘influenced by other considerations as well; such as views, privacy and natural lighting. ? d . .

n

d L _-___ --- ._.. __..“_.. ---

,I .I

. . -~_~~--_----~-..---..___.--.-~ c- --- --

Page 117: Passive Solar Energy Book (1)

I Photo, LV-7a

Page 118: Passive Solar Energy Book (1)

r

- 7. Choosing the System. * -, .

\

6.

‘< (1 ’ . ,- ,..‘.

*d‘ ‘.

L .

.’

Y

. ” . ,

\- #

I

+.

, .

5 : .

. .

After indoor siaces are roughly arranged-LOCATIONS OF INDOQR SPACES (4)Lthe heating system for each space must be, determined before proceeding Fh,e;r w&h ?hFd%ign of the b-u7ldingl Since a passive system is an integral ; ‘part of the building, it must be.includ,ed at the beginning of the design process. I

* . 1st ,,

. . ..‘..il.~“;a...~~.’ ‘Q ,\.z

h

0

Which is the best passive system to use? The question of whi’ch sy$em to use is one .of the most loaded .questions ihat can be asked abdut passive solar heating. Whenever the question arise;; it generates a heited’discussjon hnd muchudisagreement. To prove a point, people will defend their.systern to the last Btu:Which is the best system to use? When properly analyzed, cacti space or building will require,,a particular system best suited to its thermal .nceds. 5

,: . . .- w. “{:,. . .

The Recommendation I , L

, .I. Each system. has specific design limitations -aFd ‘oppor+tnitieS. Choose a par- titular system that satisfies most of thP design requirements you generate for each spqce. ‘Kernember @at different systeps can bq used for different spaces, or sy$temF can be cornbiped to heat-one space. Consult the rest of this pattern for an ,assessment of kacti system., ,c ‘: J

L ,

s: \;. !.. .? .

0 ,\ ,’ .

D ._ ,: . . . . *,* ;‘ig l l ,... + , ,,..* ‘,, , : 0’ _ .

. f@ n

c -- ^,. _

OF ..~ Recommended sizing procedures for each system are given in SOLAR W+lNDOWS(?), SIZLNG THE WALL(13), SIZING THE GREENHOUSE(15) and

:. ..L ‘* Si,ZI&THE ROOF POND(17). When desirable, a combination of systems can ’ ’

_‘” b be used to heat 7 space-COMBINING SYSTEMS(21). ;* T n”

Page 119: Passive Solar Energy Book (1)

‘. : ._

7. Goosing the System I ‘,

1 . \ , . . _-

* -

, I. . . j _I

I I

-?:- ih&formatfgn c :- . ,_ *- +I :i.

_ l

?.

- , ,, , _ .

* < -

L .I With”a, rotigh plan foF’&ch space;select the m’ost appropriate system(s) for B , ,’

P . . yo;r building:To help make the best, possible choice, each system is assessed -

atco’rding to the follo)uing desi-gn ‘iconsic)eJations: $uil$nB form, g!azing, 1

~_--.. constru*ct/on materials,, thermal contr4; efficiency abd the system’s feasi- ma bility as a retrofjt to an existing building.:AjI *the systems assessed WIII perfprm’ ‘,

+. ._ > t well i-n a wide variety of -climate-s, althougR,slight modificatior& should be ~

.-

,mad,e to optimize efficiency. i , . .

* I I ‘, /- ‘ . . \‘- I

.. . ,, i Direct Gain

: . -I a, -. 0 i

Design Element ’ Assessment . . , 7.

. ,I “. * ’ , :

,\ w. ‘f’ .

‘. . ,: Buildjvg Form -s’ The’building is uslally~elongLrte~ in tt& cast-welt dir&-

I ‘- ( ..”

tion, .with spaces needing.heit (o~~tecl along the sbutf? ‘wall. fidwever, a different building shape is possible’.if

IS I Spaces aFe. siackeh, or’ staggered, or. diqect .sunlight is tGri I and sky- ;

STACKED Fig. IV-7a

Page 120: Passive Solar Energy Book (1)

I

yy ;’ ; ‘;’ ” .i,. .I: ,,.,,, -, /. ‘2 ;

.-. .-.

I,

,>, :‘f.,(, i .

* ~

,. ‘,’ .:, ‘; ,

‘. I 0 : I :. 1 ,. ?‘P.

. s . . . .a , c .Thq Passive Solar Energy Book I . - . . . ,I:+

h -y, -~- ~-. ~~ 3 ,: “’

.- c ,1. 6 .-,, r-~ _ D “ j’ l -,

_. ? . ’ : . .‘.” 3 .-’ - 1 ,I t c < “I’ .- ’ * - Yj. ‘F. Glazing

F : .T.he. major glass a&s~~of each ‘space .mus’t.‘be oriented. ’ . .to’-?he south for maximum solar heat gain in winter: l ,, , .

’ : j:.. ‘, _ * .I Naturalb,. these windovs..can serve other...functions as I. ; in -

‘\ ‘._ ., 0

! ..‘, ‘4

well, such as openings for light and views. It is essential, : ; .I;- : ). t . ‘$ .’ ” <\?,I ? . *

. ’ though, that the windows be carefully designed to elimi- L ,p...; ‘. . : . , *:, 3 nate the problem <of .glare often associated with Direct

I’ %. ’ ‘k.L.--- ~- fL- .. 3-- ~ A.. CainSystems. ‘As we’ shall -see-a Direct Cain System p: -- ‘. .,

‘r , . .A ,utilizes the least amount of souih-facing glass to -h’eat .a\ ’ I ’

‘,!. _ . . space. . _ i / . .,

.’ I f ... : d

I - ‘1 ; .:. ” I 9, 1 ‘, Construction .‘, , , -

Each space must have ‘thermal mass for the’ storage, f * :. . ‘\ Materi,als and p solar heat. Tfii 7 .-

+. . ‘mplies a heavy .building with interio ‘, . Added Mass / _ How- ..’

walls an$&oors constructed of masonry materials. <’ ever, the masonry can be as thin as 4 inches. If an interior wajer,wall is used ‘for ‘heat.storage, then lightweight con- ‘*

v. *- ‘s ..

!. c . struciion Xv~o’bd frame) cart be used. w . .

l *

!, r c ; ” ;

, ’ I c

\ ‘, ’ . Thermal Control s:’

i .,- I .y Direct’ Gain Systems are characterized by daiiy indoor *

\. temperature fluctuations, which may range from IO” to

* . 3O”F., depending -upon the location and ,size of solar

-. :a,, .cA windows>hermab mass and the c&o.r.~of interjo-r sur- ;T. ’ “’ ‘fa&%?The- heating sy&em cannot be turned on or ,off’

’ -*.. c\ ” ‘), i _~ -\ 3’ ,, ,$nce there is little control. of natural heat flows ‘in the

a .” ,a L ./ space: To .prevem overheating, shading devices.are used 0

L’- I.__ ‘-to reduce, soi& gain, o,r excess heat is vented by opening ~’ .

. ” kinbo&s.o’r activating an exhaust-fan. Ho’wever, when a : o

: , . conventional forced-air heating system is added ‘to a

,! ; a spdce, uniform interior temperatures can be maintained. .

. . ;* j,

I ,Efficiency *+ .When properly designed, a Direct Gain System is roughly - ‘. 9. ,- 30 to 75O/d efficient in winter. This means that most’of the I’ , 1 jt- . ,(’ ’ ‘. sunlight transmitted through the g/‘&s is used for space

\’ - . heating. ~ , 1 I/ ,, .’ i “ ‘, -. _. . ., .-; : -~.. .r*Effi~iency is defined as the pe.rcerttage of ihe solar energy incident on the face of the collector :.

-. tgkingt thqtisusedffpr space heating. When the glazing area normally used in i sljace doubles

R as the, collector ,area, then -the- system’s effkiency -will-be high, approximately 75%. However, ., -.

,’ ,-. ’ if ihe.collector area, is additional to the amount of glaijng~$at would nonnaity be uvd in a .‘.

‘.’ . space, $ren the system’s efficiency will be lower, on the order:of 30 to#bO%. , - , * . . ; ,<.

,’ . .*

+ ., c;;‘,

e

Page 121: Passive Solar Energy Book (1)

.’ *

. . *

RetroEtting *

, I . 1. -.

, .-. . . i : . .

\ - - 0 % 7. Conclusion

. 1 ‘i. ChFosing. the Sj&A. t -J

< ” * , .

Retrofitting an existing building with a DirecfCain,System * , . . _ is very d’iffrc.ubi since..the building is the system. Only

when aespace is constrticted with masonry :@a\ls and .. . . ‘1 .fYodrs exposed on the. mt+ior, and has ,a clear s,outher;n

exposure, is it possible to add solar windows and modify. ’ !

,. ‘Lx 8 interior surface finishes to,solir he&t the space. ’ : , r’ r. a

- l6 ;:., . * %

This system demands a skillful and totdl integration of all. ’ .

r the architectural elements v4thi.n each spac&-windows, ! walls, floor, roof and interior surface ,finishes. In get-$@; “‘,! the-way in’ which the interior mass is heated by\solar. - , radiation will determine.‘.‘the efficiency a@ leyel of -* thermal, comfort ‘provided by .the system. Since there’aye

.5: -’

no heating .units, ducts or registers, the system is’com+. -. plete!y invisib!e. A direct ,gain building can .usua!ly <be: ; :- built for the same cost as a conventiofial masonry build-

’ ing. In comparison, adding thermal mass .to a wood frame ----.__ . _. _.L’ .-a-- / . -- . building will raise construction costs. j I c .- __-- -. - ,% -, ;<, n *. I

o.e(I ’ .y- c*,‘,‘.. * yp I

- -* .:

.A _ j, ,I ’ * ‘I i ~Tlier’inal ‘St&age ‘Wall &‘+ . . , es . , 4 !I c ’ , ._ I > a-.

i * Design Eleieet Akessment ‘. ’ v . ” : , x?, ~~.

.<‘., _ . .I ‘, ._ ‘. . . -

I ’ ‘Bu~1d~r-r~ Form,. ’ ~

.The depth of a space is I,imited to’<piroxlmate;y 15 to 20’ . ‘_ , feet since this., is, considered the ,maximum’distance- for)

effective radiant heating -from a so~iar’.walI.:iThe require- ’ ;’ ,,;. ;

. . ” 1 . ment. of a southern exposure *dictates a .jinear arrange- *

; ( I’

* ‘.. 0 ’ . , i

‘” +’ 1 r ,> .* s 4 _. . . ,.’

* 3’ *.... r >’

‘0 3 ‘- . ,?$ . - .,.‘_ 1

- . \ a ! - \ ^I -

Fig.-lW76: Staggering spaces. .,i, r

’ -_ ,; \

1. ,. ,.. -9 Lh. .

:’ _ . . 7 -1 .; . .,, . ‘4 h ‘109 I _- ,.

i --. ‘_ ’ .“, . . ‘-1 , D ,‘. . ‘..& , - --c _... tew.. .ll . . ,_ _, ._~ ,- / -. ,’ . ’ : r ,, .-’ 3

Page 122: Passive Solar Energy Book (1)

.; ,.; ,- .I I. , -

d ., -, I :.a ‘,’ ‘t Q

.) ‘+ . - ‘. *. - ,’

- ----

‘_ ’ : .I,- * , -,_ 1 ’ -% * .~.

:a .’ I . * u 7. I ’ ” n

b ! -. I ) The Passive Solar Energy Book . , %A

. I . . ’ J ,- _ . $ ‘,. Y ., - ‘, I , “I c ’ ment of st$ees along the south wali of the building 1 9

unless modified by stacking and/or staggering spaces. ,

c However, staggering spaces- along the ‘length’of the south , P

: .~ ,i I wall results*insom& sol.ar bldckage,during part of the day. ,, ’ c I d

i.. ‘. 0 t iI So > m-. ”

‘.’ - . Glazing ’ + The predominant -architectural expression. of the building

. . is south-facing glass. The ,glass functions as a collecting surface only, and admits ‘no natural light in’to a’ spa’ce.

_ !JHowver, windows can be inclu&d in’the wall to admit

‘. natural:light, direct heat and also permit a view. 4 ! - 1 . . / I . .D 1” (1 \

‘, ,. ’ ,q ” !,,, f

. Construction Either water ‘or masonry,can be used for a thermal m’$ss. ,. * ,. " Mgterials and wall.’ Double glazing in’ front .of the wall is necessav.

’ 1% , Added Mass unless insulating shutters .are applied over the glazing Tat’ ,,... .I, night. Since the thermal mass is-cqncentrated along one ‘j;‘. 2, ., # .‘. .yc I, ., . ..‘.. /. wall, there .is no limit to the cho.irce of coF&ru.ction, ma- ‘I ‘_, . ~. .- “. B i a* . R

‘te’rials and interior finishes in the remainder qf the @ace.’ D f

. :*: . . : ” .: .” .\

..,,y. . .o. -y ‘, ,- -’ I

0. Thermal Control ‘,,*

Indoor temperature.‘fluctuations- are controlled *by wald 1, thickness. The heat output of a masbnry wall can be,

:‘. I . ‘,. ‘Td

regulated ,~ by the addition of thermocirculation vetits :‘) P \@ c ,. ,‘” * /b’

with opera,.ble dampers or by movable insulating panels “7 & <.’ or drapes placed over the insid@ face:of‘the wall. . P i

. . . +,-..- -~“- - e

,,1 -. , . --I -~ --_~_ ~_ .Effi.cmf~(~y~.mm -7 :--, --

.r * ~, ( ;.P;;

The ove& &f.icIency- of this~ sys&m ‘is compatable to II _I (’ ‘i e ,i .I .: ?- .,., most act,ive.S’olar s+tems; approximately N-to 45yi.;. F-or” I.

. -a the- same area OP wall and heat storage capacity, a water .; ’ .-i

I wall will ‘be slightly more efficient than a masonry‘wajl., .: -” 5 I

9

c

I .

* .’

.

. -

_.

-& r,i

.6

‘\

.s. . j’ I

* ,

II.. ,j :

,‘. ” 1 .R&trofitting .- This system is easily added+to the south wall of a space , ‘e f., ._. 0

-. .f ‘* with a c/ear shthern exposure. s I. . . ,, < D -. - .A. 1 1 _

** _ -. . s d (. $, 3.. .

Conclusion ’ The system allowsb for a wide chorce of construction ma- ’ ‘i . , ‘,., . .,a, * ,t I I’ ,, terials. (exclusive of’ the thermal .wal!jI&d interior fi& _ ’ ,,

i Y . JIga L - ‘,. j’ i .I : z ‘C. ,. ’

,. .“’ ..;.’ ,,(j ( -’ . ,‘, ‘I .I ., . . .. . 2 * 0 a : :o i * : j I . I? , ,,/ I. .I - .,* : I 1 . . $

;, _,,; ,/ . .;’

D 0

\l< ~ .

i(. ‘,‘, :. ; !. \ .‘d . *

f!~$,~~~;~.‘, ,,, : .. .> : ‘_ ‘. 3. I a _’ . &<.L4,,. .,_ ., ..’ ,~_.. I, ,. I_ D ; ’ I, . . . .,

s .m- --.

-.-__ , --_._ 7

-. -.

Page 123: Passive Solar Energy Book (1)

. ,- ., s---. - I) .

.r t’ :

I

. ;’ . .

8 ; 0

I

j 4. >

i .

\ ” y

7. Chdsing the System .’ a.

.b ~---ishesl and offers a high degree of control over the i&ndoor

* ** thermal- environment., ‘Obviously, the la,rge expanse of ~ 2 q south-facing glass requires- careful integration into the ‘0 ‘

. 0 c I building’s design. -’ > . . . , ,.

;,-, * *. # *

\ m , - * P II v .a

* I’ ” L .. . Abathed Greenhouk , I -

s %oc y “7 ~ Y 1 . Design ,JElement Assqsment II >

1. 1 ! L L I - L 1 -- . . - ’

n ” . .&ilding Fo’&I The greenhouse must extend along the south face of the p

$0 ci! building adjoining the spaces to be heated. This usually

rP . means a greenhouse’elongated in the east-west direction. * I ‘4 It. -is important to cover a large surfa<e .area of south ‘1 i

. \ -wall for the most efficient transmission of he&to adjacent ) ’ a+,. \ I > ?A

’ ? spaces., ” ” 0 -a - . .

L ^ Glazing ‘To heat one square foot.of building flooi area [excluding<

th greenhbtise); approximately 1 l/2 times as=m”uch green- I * . i . ‘T%- - *< ~ ho se glass area is ,neede’cl as is -required in a Thermal 1

3 ;-.\; .;w-.’ / Storage Wall System. The .area of glass&an be somewhat ,. 2” -- . . .\. lb ,. ‘2.. I ~ rebuced.:if an-active heat ‘storage system is used: In this D ,

case, day&me h$at is actively taken ‘from the greenhouse ’ 1 0.” ,

t ‘. v and,,stored for use,in theibuilding*at night. 1 1

:..,’ , 0 . > I L . . - I, 2, , L’

Construction 3 ’ . ,A , ’ ~,The major 4construtti:on material i; ‘,the greenhouse is L

,., Materials-and double glass .or transparent plastic. The common wall ” . /-_. . ‘. Added Mass between {he, greenhouse and building should be con- .

‘strutted, with thermal mass (masonry or water), unless ac- ” r

/ 2“ ;

.

tive ,heat storage is employed. The remainder of. the

’ ,. ” ’ building can be constructed of any;material. . * * * c L . ~ J * .I” ” . .A

‘The tem.perature of .the gre&house &n -be;effe&ively ‘, ” .

: .

Thermal ,Control ’

1 , I

( *, controlled $G.thin a predictable fan&. by; propeily sizing’

~ the collector’ area (glazing) and jthermal 4a$.,,Tem‘pera- ’ . ‘. ture control.. In *adjoining’ spaces is the k$ne, as for a

I : I ‘,,. .I . * . . Ther,malStorage Wal,l System. . . q;; \ . , i/ .A.

- ? , ,* I . . ,* :I 4, * I i 1; ? h . I + -- i . (, T/j ? ‘113 ‘.. _ - -.’

1 : .’ ‘. $f<” T ,!,,,,,. ‘9,;: ‘ I -m r, . . . ..r + !:Yii. :~$.‘i:~‘.,, ,‘,,‘~. _. _, : ,: ;, .- J/l:. a : i ”

Page 124: Passive Solar Energy Book (1)

“_ . ” , ‘. . . .v “,

__-‘_

’ E$ciency ’

: i

d , .

I r

, .R.etrGfi”tting a’

Conclusion

* 1

Roof f’ohd a

Q@ a- -.: ‘,

Assessment .’ . A r@e -.. g : c.2 ” .

-. L ~.. : 9’ *-: .,

-+ * :: .’ ‘; $ ,‘. ~..

i4 Q, Burlding Fofi=;2_‘-’ Since the roof is the coll,ector, this system is #!%t suit- ; g<-,.

A :. - - --‘z::., I ,’ $g : ‘5 U..’ ” able for heating one-story buildingS,-0-r the’;pper,floor of

d ‘: , ‘8. h l”.P.u >. ‘,:’ a two- or three-story structure. The roof area containing

,*c.; ‘. ~,‘Tt .,: * ,

L L ‘: * the ponds can be.flat, stepped ub to the north & pitched. ’

$ :-, ‘- ‘1 , ‘ii. : ” I, &+j’ , Although~the system is somewhat restrictive as to building, ,’ ‘o II I ‘- height, it does not-dictate a building shape or ori’entation

_ 9. ,( _’ ‘ L

When properly designed) the ‘greenhouse will heat itself -. Iand supply .heat to adjoining spaces. All the sunlight a+ . mitted into the greenhouse is used for heating.‘The over- all effioiency of the system is appioximately 60 to 75”10 \ ’ .

’ during the winter ,months. The percentage of {heat _ suppli..ed to adjoining .spaces is roughly 10 to 30% *of the

.-

energy incident ‘on. the collector face. However, this . \

percentage can be increased if an active heat storage .i,, ,system isemployed. :,

II

This system is easily added to the south watl of an existing building which has--a clear southern exposure. . . .

i n

The aattached greenhouse is unique in-that ‘it not. only produces fresh food but hasa the potential to heat itself . and spaces adjoining it. It lends itself easily to both new

‘W and existiflg construction and usually pays for i.tself‘ in 1 to 3 years by a reduction in h-eating and food bills.. ’ .

+- and a,llows complete fre.edom tith regard to the arrange- a _’ . 3 . .., r ‘. . - maent’of indoor spaces.

.,. .?. . ‘. In addjtion! the roof pond is ‘. . . jn%isible f.rom fhe’street I.evel. d :‘,. ij I t “L ’ . * ,1 ! t , I x ‘1

. O.’ * . . . . I Gl&ng .!.

0 ” . >

d D When used primarily ior heating&the glazed. surface area

‘CL

I.~ l ’ of the pond,should be un-obstructed by shadow between

.A the hours of JO:00 a+m. a& 2:00 p.m. in’- winter.. For’ ‘. * ,. summer cooling, the .pond should ,be exposed. to as

= \, a - l

much of the nightskyd.ome as”possible.- _

:, - .( :. ’ I

Page 125: Passive Solar Energy Book (1)

1 / PITChED i 1,

. Fig. IV-7c: ‘Roof ponds.. *

1-I e&

9 Construction c

a Materials and . ’ ,i --i: Add,ed Mass ,

/--7 I

9 .

.e

I’ ,

,ty -..- - ..,%y

I

.

a- *

Thermal CFntrol

i

\ . .

\. .i+ ’ / 7 .fc&*’

-1

7. Cfioosijvg the System ”

, _i Roof- ponds are ,generally between 6 and 12 inches in depth. Therefore, the building’s structure must support ;.,. .’ the 32 to 65 Ibs/scj ft dead load the pond’system yill add ‘4 ’ to the roof. A structural metal deck, which also acts as a f,inished ceiling&d rad:ating surface, is the most com- monly used support for the ponds themselves. .Sinc@ the entire system is lo.cated on the rooftithe remainder of the building can- be constructed of any material: Using ,+% . masonry interior’walls .and/or floors .will help moderate indooF..tempera$ure fl

..mended depth of the _-__.. - f

‘a “, e the recom- c

, _ .._ . :b. >.

a

) .-- -

Roof pond heat.ing cobiing is characterized by stablr high levels of comfort due to ‘.

’ -

surface (usually the entire t ., ceiling). Daily ‘fluctuations of space temperature range * from only 5” to 8°F in a m&sonry ‘building, and 9” to.14”F _.

. in a bufidpg construc@8 of all lightweight’ mIaterrals

. . r _ ‘_ . ..I. -. , i .- 113 -’

8 . 1 .>I, m a - _ -2 .o .. ------- h

d’ I _

Page 126: Passive Solar Energy Book (1)

. L .G

‘.J ~--- . : 1

,\ (such -is w.ood frame)-. An advantage ‘of this system -?- . . ’ accrues. from. the fact that interior pa,rtitions can be

*rearranged without alterirJg:the heating or cooling system.-- - ,

<I i ‘

modular -consider-

: . 1’; _ &ohcl,usion 1 .- , - : - ., :*:!&lar roof.p’onds are, a< inexpensivs and effective met&d

.-1 I. - 1 .i - .,- . . A I li 7 I of providCng both heating. at lower .latitudes (i.e;; ~36”NL ‘& - .I

1 or lower) and co&& in dry climates with, clear night- . .I ; i ‘>

i- c , L- I” skies.- Furthermore, there are several modifications ‘whjch’ ,:: . “7 -

I’ c * 2 . . can be made to the syste.m’to:make-it applicable to a‘ -,

;,, : / ‘_&> ” “‘-. __’ .~_. -. 1 ’ -- a

. . *. variety of climates. ior example, spraying or flooding *the a-~.- -‘----, p_mmmmo . .,. ,‘, . --Y,. a_.*’ . . ~ , - i-

tside surfarzof the enclosed ponds to provide addi- _ >, ., .,,’ ~+i-- - -+4 ;,;!‘ 1 pm+. -~?A’ .- ;-y - ri’ .;#

coolingby evaporation (up:to 4 ti’mes the amount

/. -~’ provid&i+--nightsky radiatiow) can extend the 5ystern’s I .,* . ‘I. . \ 0 j ‘(, ,_, .’ 4 “e; *- -*

:- ,j cooling capability to humid regions.,lOr, placing the 1:: w ril

,,a :,q, ‘- _ P ~!‘,.Y ‘: ‘- 1 > ‘*VP.. ---‘l,.i ‘) ,

.,I; -@ads under a pi,tched roof, with the south slope glazed, a’ 1 * I

u _ . I 7 -k~-- _~ ,~i’ : ‘. ‘,

can adapt the -roof pond td ndrthern latitudes where. ,l+z u,1\ ;* ,i’l : . . I .: ‘I- ,,.. .._ .;. - i

,~.k$ay=- -;;- JiorirbntaacoJectors would otherwise be inefficient. $ : -% ., ,- < - - --.---, __ ~

‘h., ,:., : : .’ ): ” ; - i. ‘, j, ,_‘.

:~]‘@; c?G ‘- 1 ;- / _ _I ,:; ‘I y:----

: .‘a * . _. .- _:-.. * > . . L = ‘1’ : . _i L Y y j -. * 1,. ~ . *

:I, 1 ,’ :,’ .., -. -: i -’ .Li .u & ./ _ 5 c’ - 1. ~ . ,j;.:, . .’

I .J> _-I I ” .’ ~ i’

_.

,.I c , ,’

f e .

\ , - ,. ,,. _; ,;i ‘Y,, ,i 1 - I _’

Page 127: Passive Solar Energy Book (1)

l _

‘ .I V!‘?,

:’ 3 ifhe &aterials used in. constructing A buiIdinAg”wiII infl&rtce the choic&-0’; a .. e 1

i;. passive solar systemACljQOSING THE SYSTEMI7). This pattern ex$ai& the.

, range of good fn%terials available. /

. . .*

.5 .

. .

‘. e

&ore energy is consumed in the construction of.a Ibuilding than will be &ed inL mahy yeirs of operation. Building maieriXls an’b~ equipment require con-.

- Gderable quantities of energy, during their manufacture, transportation IO the constru&n site andasse bly. Robert 4!- Kegel;in an article concerning ehergy ’ , ’ and builditi-i-g matqrials (” F he EnergFntensity o-f Building Materials,” Heating/ PipinglAir’~nditioning, Juhe 1975, pp. ,37-41), analyzed the energy consump-’ -

:

.&+s+ ’ ‘tion ,of a conventional educational facility (432,O$l %q ft) in Lhicago. He

looked at the b;ilding f&n the standpoint .of bcildjng construction, mat&Is, equipm\en.t and operation. His results.indicated-that the bu$ldin’g cdujd opdrate ‘- ’ a.

, I _’ 1 _’ jar’ over 6 years before exceeding the energy it took .to construct it. These ‘\

. A results did ‘hot inklude the energy expended in .mining and transporting

b- materials to the mill or factdry. Conventional housing reflects.si:miIai patterns C’ 1. of eneigy use. ‘& . * . ! ----- ----- ~. _____- D .I’ : ‘I> -- - ._,____ -_ . . -- -- ---. The Recommendation - ._ -, , - - ( 8’ , --, ‘* *

_ & building constr:ction, use most& biodegradable and low energy-constimink “. a

: ii I materials ,which ‘art locally produce+ “For th&rnal mass and bu!k p$erials

_ use adobe) soil-cement, brick, stone, concrete, and water in containers; fbr 0’ -: finish ma&rials use,,tieod, plywood, particle board a& gypsum board. Use

. the following mate;&‘& only in small quantities or when the’y have been L P

, P recycled: steel pane s ghd co’ntainers, rolled. steel sections, alummum‘ and

e. 6 plastics. Lwu -. . p. , e

~ . ,1&,.. .-

_H . F l **.-w = %a

,[email protected], - ’ ’ ’ ; .

‘,. I- , ,‘- < A ‘.

i ,- - A fl T I’ 1

b. i :” \’ ’ ; ..1,5 , :

Q . . . c /_ ,I

Page 128: Passive Solar Energy Book (1)

,,‘>:‘~;_I ,,;--a. _ , __ ‘* -, ,. \- . a:‘:‘., ? . -.

d :r ,‘. I, ,. -;.. +..

;” I \ 1.. 1 ;‘, . . - D 0

I _I ._-.- ‘- 1 / .,. I o

, _ ,’

I. ,’ i ~-

, ._ ..

--.-L _~~~_~~s_si.~e_So!~r:.E~~~-~‘Bok. 1 _.._ .._. ._...... - .:.._~I. .-___ I,m---: - ; . . --. .~ --A- -. .-- ..-.. -- *\- ~ - : . ‘. .- I : 0 ‘r

_. : ). Distribute and size &ilk ‘materials so they work effectively I ‘. . For Direct Cain’,Systems see MASONRY H1A.T STORAGE(ll

,, _i WATER. WALL(12]jLfor Thermal Storage Wall Systems see ,’

_...,- for Attached Greeehouse Systems see GREENHOUSE CONNECTIO’N(i6); for

, I . .~~ ~ * Roof Pond ‘Systems see RO.DF, POND ‘DETAiLS(18); and for a freestanding

.t:i.,, greenhouse’see GREENHQUSi DETAILS(20). ’ ‘1 *. . .

i .- -, . ,\/ 4

,‘, ,, I

@ Jhe lnforma&ion $ -. I’ -a ., .. .,:& ?= ‘I- ., .-,; /. ’ .

‘. ~.I, .c.. ,-.;-..,-.I-+ ~-;-_I’-;-_.,-T-he,p~~~~ntention behind modern Construction practice; is to u;e tech- .

D ;;,-,. :_,., -.++: ,/:*r ‘5,:

I/ ;:-- T <‘- .nology.to keep, the costs of constructioh as lo’w as possible v . D I. r .r. /- -;. -*. . . . .._ :_ To make bui)dings less expensive-to construct, we have been willing to use non- I/ : I,, renewable resources, su.ch a,s energy expended/in the production and trans- - ” ‘. .’ ’ , , portation’df manufactured building materials, rather than pay the cost of labor.- ,7. ,’ , L.-.- :* -I- ,-Thigtrade-off does’not result in ecologically souod‘building practices since the

,,;3’ result istbuildjngs that are constructed and run at’ the expel:se of our fu,ture ’ ,L

I,. ym&-x ?-.L- . -?*- ..- _* _~- _

abrl!%yyto &leq&&ly maintain our~iesources.-.. D -J .-- . .- .w 4 . ^

-’ There ar’emahy building ttitudes.ranging from a total.ecological consciousness I .-

- ’ “.

. to the, continuation of what is easiest in. today’s construction market. Fortu- ,‘. * nately,, the requi~ement~for thermal m’ass in a passively hea.ted building**is ’ l ‘; compatible with ;.tt!e ‘:no$on ‘of ecological consuciousness. As , indicdted in

=. ~~~~pr%&~s pattern+ mass materials inciude adobe, stabilized ‘earth, stone, ’ ,, .=

,‘, 4 \o >, ,brick, tile, cdncrete, and water in container$i~ can be seen from the following : ,\

,. table that thes,e materi+-require relative-Iy .little energy to producedwhen : . .

;,” tnergy-intensive materials &rch as aluminum and! high-grade - ., . e ‘, * d _I ! _ ’ i. . . . . .- ;,:-.& ._--T--r -- 7’ - 1. : .

.72. ,- .I’ ‘\ v_ - ,. ‘. .P ,: -ln.som,e Gases mass materials will b~,as--murk~-~90~~~~olurne T-y--T--..-

of the ti.aterials used in a passively heated building. With‘some consideration.! .,*. : I Y 1 -@yen ,to erkrgy COnSCiOUSh~Ss in choosing secondary and finish m$teri&,‘t ’

<‘/ ‘: ,, -. a p Y

ssive solar heated buildingwill, by its nature, be energy conservative. ,

‘s ,’

:. : , !‘.! .m \ 77 I ., ,I; -. : ,,‘.

ha$e been terribly mismanaged -some devastated; as% bul’k or primary* material is to ‘be-avoided. As- a

. .L. d . . *

‘. however, wood is excellent. Other’ good finish and --. . * .’ <include ply:wood, particle board, gypsum board,:plaster,- r7.

. .’ : .’ ‘.)

and vinyl. The use of’ energy-intensive mate&Is is appropriate. 1 . .

_’ in .modeiation or when .the materials .are recycled. c : . * m . . t : *. , .: .]: ,

! ~ (I- ,

Page 129: Passive Solar Energy Book (1)

. - ; -- - -~- -iv -~-~~ -..-.-_ ~. -

. ‘I-.,.

‘\ 0

‘\_ \\., .= 8. Appropriate hiateriak ,, . ----

,I_ : ;‘-$ -, I 5 I’ ‘. .

Table ,IV-8a Materigls and Energy Use i

’ : ‘5 ;‘_ I, j_ ‘?. !! .,, , ;- ; ?

- ‘I

. nk!rIJ - , Source I. To Produce ‘,; !b,! * $1

m *.I , ‘3; ‘l, ;<

. .- Btidlb

’ I ~’ ‘: _ ‘, ,

Btu phr unit f 7

! 1:

. z

,;$.,?>t;e, (;olled) 11) 19,974; v a

. . .

1 : \ > (I Aluminum * ’ - ’ _ ? OfI) lJ2,67b

c Copper i ’ ‘, ’ --W) .34,144 Concrete ; .413 o i

a*, i--~___ 1 ',,Cn+ntx,". ; r'._: ' 3,755 * -O 'L ,.._ . )' 'I) 3. (111 ,O, '3b

; Sind tir;“d g&v<el i ‘.

.Lead.. ‘- ’ ‘ C&creQ2’ IZock .

(1) _ 20,486 1.1 A. * 5 1. >, ‘, ’ ,$ilic~n$m&ii and’tiigh~’ ’

(2) o .@.. -5 15,2oO py,block ‘.

I, ,’ “\.I< 4. :,

5, ;: L , ,;*“.;grade Stael alId@ 1 ,i.. ::' : (1) * . . i' ) * 7, Giks ‘r, ; .,.I . a (7.) O0 ~~ ~~ .

2 "

5,019 pei. board ft

6,945 p+ sq’ft -..,

170 per l$o?k t

.J, ., ’ i, ,,: “,

,, ;‘.? WJ+I ‘ielecting .building’materi+s,‘be awal;e &f &hat is locally produced. @y 5 / ‘suppd’rtihg Ipeople in the-.loial. labor market;ewe not only save iransportatidn .., .<’

I ‘. ..:,. :_ !~(~,@f~ -(Woney arid, ehergy) buf maintain’ the ~ life. of industries which are

:,. ,,’ e,.: ..’ .: .‘1 .’ ., :

.?I-,

,Fempat~~le-~it~.our lif*tyle ‘arid- welfare.. --

,‘.l (1 ” ‘_ . ‘.. 5 . .

. (” 5: .--L- ,;_, i - ‘i. , :.,“‘. ,, .’ i .; : - -

: \ ;, , ;c :, : ,f ,. \ . - 6 ,. , ’ . . . \;.;, is, ,,‘J ‘i: ‘:.: <“j .‘ ( _, *._ ,: ;,,, :‘;. 5. ,’ d ., 9.

0 :

;s’ ,,,‘.‘I ‘.,_’ d “,, ,*,, “.

: .”

i..:I*’ ,’ 7 ,-. ,. ,T>

_. ..,’ :::,.’ A.

- ‘.

7, .i c 1,: 1 ,, : -

,‘*.,:,..,:,.‘.” : / -: I ‘:

_ ,: I,::, ‘, ”

2 . .’ I+ _ _ .-z-i

‘/ .;’ I! :’ ,-

, * .$.’ .,

~,~~,,r..;::!‘.~~~~‘-;.” i-r--l-‘.-;!’ >,,?k _‘,::’ _,‘. : - ;-,--- * _-

._

c: Ia

. e 0 .

:,i ,w”--~;,, ,:~‘, Cl&,. :*-.‘.*,; l -3x. :. .,(. ‘. : ..\ , ._,

I _. \

Page 130: Passive Solar Energy Book (1)

. ; _ i, .i

n , l

-’ -- - -7” y qnj~

II i

8 ’

:J i-

.’ L-..

-..q

Direct Gain kyktern F-2

’ ’

9.’ “Solar Windows

. Y

. . , I -

Photo ‘g-g+ 0 B

* .\ . . . t.

“O.. -. d, ‘,

? .~ @ . I. i fi >

- ,I * i.

1 - Cb $’ ,.

Page 131: Passive Solar Energy Book (1)

,, ,’

.C :

yf- 1. .

% ‘\.

1

c J

9. ‘S&ii VVihdo&s

_ ,

,‘/,! . * -

After choosing to use a Direct Gajn~ System-CHOOSING THE SYSTEM(7)- and with ‘a rough” idea for the location of major south-facing glass areas- - WINDOW LOCA~%l.ON(6) and CLfRESTORIES AND SKYLIGHTS(this- . pattern’defines the area of sor&h-fa3ng glazing needed to solar ,heat each) J space,

_. 0 -,

. . . . . . . . pi@&..* ‘,

. . .: i L -- i . i

. _ /’ .

,. ,%’ ‘DirectG& $y,,tems are currently characterized by large amounts of south- facing glass. Most of our present information about D,irect Gain been learned through the performance of various existin,g utilize large south:facing glass areas’ for winter solar.gain, These buildings are

P often thought of as overheating on sunn ‘,. <winter days. This happens because . . . _

. ,

. - ,

solar’ windows are frequently oversized due to the lack of any accurate _;.--- .+netho-ds for predicting a system’s performance. These drawbacks,have led to a I ___. ~- -- - ” ,.,,,. ---~-.-++&&mi~ted appt~~a~o~~f-~Dir~~~~~terns in bu.ilding design-- and \i

1 - constr~~~n. mam -- ~~ - + 2 ~_ ~_ ’ . . ,’ . 1 0 ~~ ~- - - ~_ ~__

-.- ‘1 - 1.

ihe Recbmmendati6o ,

~- I 1 3 ---,---= ., * ‘.

-: If . .

1

1

._,. L In cold climates- (average winter temperatures 20” to JOOF), provide between

0.19 and- 0:38 square feet of south-facing glass for each one square foot of, space floor area; In temperate climates (average-winter temperatures 35” to -.

‘- @YE)rprovjde 0.11 to O+ square feet-of south-facing glass for each one square - .foot of st&%floor area. This amount of glazing w,ill ,admit enough sunlight to

.$keep the space pt:an average.femyPeratwe of 65” to 70pF during much of the *inter. r

.I ! 6 i’ v- 0 _ . . .i ’ ‘2 h’

‘/

3%

:',,,I'/! ,h. - . 119), '

00

Page 132: Passive Solar Energy Book (1)

3 . : / i :

‘, 4 * 1~ -3 -.- li

* i i ,, .i& ,&

- (I I.

L. ’ ,s;, .’ a*- The Passive ‘Solar Energy Bodk 32. *’ . 0 1

3. .r

i ,, ,i I. I.

: .y-..

v :>- 1

:_ +

: r

~ ;

,

I )I /

_ .

‘. 3 ,’ P

Fig. IV-tYa .

To prevent daytime overheating and large space temperature fluctuations, store a’ portion. of the heat gained during the daytime for use at night by locating-a thermal mass within each spacvMASQNRY HEAT ST?RAGEm-m -. --- -. and IN”TER.--~WA~fl~~~~~-- VABLE INStjLATION(23) over the

~‘s~~‘iyin>ows at night to reduce heat (qss and protect the windotis from the a L hot summer sun by applying SHADING DEVICES(25). The area of window needed-to heat a space can be substantially reduced by using exterior REFLECTORS(24). A Direct Gain System with. undersized solar windows can be combined with other passive systems to achieve the same” recommended performance-COMB~&NIN.G SYSTEMS(21). 0 & ” >

12b I

‘1\1 $,” ‘,’ I . _o

Page 133: Passive Solar Energy Book (1)

?

,’

b

.

.

L r

J.

:

- 4 9: Solar Windows ,

The Information

In a Direct Gain System the most important fac.tar In collecting the sun’s energy is the .size and placement of wcndow openings. A window; skylight or clerestory that faces south and opens directly into a Space is a very efficient solar collector--WINDOW LOCATION(6). Light entering the space, is unlikely .?

to be.reflecte’d back out regardless of the color or shape of the space. This means that virtually all the sunlight is absorbed lay the walls;fioor, ceiiinge---- - -- -- - other ‘objects in the space and is converted into heat. Openings that are designed primariiy to admit solar energy into a space aye r&ferred to as “solar .- windows.“-You can orient a solar window as much as 25” to the east or west - ‘. of true sduth and still intercept over 90% of the’solar radiation incident on a south-facing surface.

The sine of a solac,window determines’the. average temperatur’e in a space . over the dq?y. During a typical sunny’winter day, if a space becomes uncorii-

fortably hot from too much sunlight; then the solar windows are either over- sized or there is not enough thermal mass distributed ‘within the space to * properly absorb the incoming radiation. As a space becomes too warm, heated air is vented -by opening windows or aktivating an exhaust ‘fan to maintain comfort.’ This reduces the system’s efficiency since valuable he’at is allowed lo escape. For this reason, our criterion for ‘a well-designed spa’ce is that ‘it gain ‘. enough sola‘r ‘energy, on dn average sunny day in De&mber or January, to maintain an’average space.te&perature of 70°F for that 24-hour‘peribd.

c

By &tablishing this criterion we are able to develop ratios io.r the preliminary * sizing of solar windows, skylights and clerestories. Table IV-9a lists ratios for dtfferefi~~~tim~t~s tliat apply io a well-insulated residence. . . j

b % .A

For example, in Seattle, Washington, at 47”NL with an average January’ tem- ” perature of 38?J”F, a well-insulated spa?e needs app-roxi’matgly 0.22 square

feet of south-facing glass for each square foot of building floor area (a 2OO- sq-uare-foot space needs 44 square feet of south-facing glass). k ’

_/- /’

j, ‘. Of course, the exact location ‘and size of win&w openings depends upon other design conside.rations such as special views, natural lighting and space use. Because of these considerations, it may not be desirable to use the amount of south-facing glass recomme’nded in this pattekn. The ,system works with the

+

: 121 ’ .;. @ , u

Page 134: Passive Solar Energy Book (1)

2.

/

, _--- ---

~ \

-

3’ .-

; ‘;) : ,.

Y

Cd

+

The Passive Solar Energy Book

,

‘Table IV-9a Sizing Solar Wira&ws for Differqnt Climatic Conditions ’

Average Winter

Outdoor Temperature (“F)

(degree-dayslrd’o.4’

Square Feet of Window ’ Needed for s

Each One Squhre Foot of Floor Area

Cold Climates 1.5 (1,500).

. 20" (1,350) ,, 25" (1,200)

‘- 30" (1,650)

Temperate Climates 35" (900) 40" ( (750)

4.5" (600)

~~&l.&&dnight !nsulatlon~ o&r glass)

0.24-().38(w/night insulation over glass)

0.21-0.33

0.1 g-0.29 ”

0.16-0.25

0.13-0.21

0.11-0.17

: , j .

NOTES: 1. Thdse ratios apply to a rcsidcnce with a space’heat loss of 8 to 10 Btu/day-sq ftrl-“F. If space heat loss is less, lower values can be used. These ratios can also be uked for

other building types having similar heating requirements. Adjustments should be

made for additional heat gains from lights, people and appliances. \

2. Temperatures and degree-days’are listed for December and January, usually the

coldest months. ,

3. Within each r!nge, choose a ratio according to your latitude., For southern late-

tudes, i.e., 35”NL, use the lower .window-to-floor-area ratios; for northern latitudes, i.e., 48”NL, use the higher ratios. i

- same +efficiency using smaller openings than those recommended; howevkr, the annual percenTage of so.lar heating supplied to the space.‘is reduced. ’ -” ‘! --.. .-

kecessing windows and using wood sash construction will further reduce heat loss. Single klazing with.wood frame construction transmits approximately ’ 10% less heat than glazing with a metal &sembly. As-the glazing becomes more insulative (double or triple glazing), the type of framing hecomes ‘more _ significan’t. A double-glazed wood frame opening,wilI transmit 20% less than I a metal-framed opening. Only use metal sash that has a thermal break between’ ( .

.

Page 135: Passive Solar Energy Book (1)

_,-,

‘.;

:

e I

.,.

. i

9. Solar Windotis I- ,

.J-,A’.

,

c -

Y

iig. IV-9b: Splaying the wall will increase heat gain ‘in winter. . i . .

. a”- I .‘ a .

the ,inside and outside face. At the outside surface of a window, wi!d will iiicre%s$ ‘the 6njiltrat.ion of cold air .into a buildihg and. Will, carry away heat L g-”

-~- --------6t a faster, iate than still air. Recessing ~windotis’ back from the face of the . exterior wall wi!l decrease tke.movement of air against the window. However,

-3 wheri’iec&si’ng windotis, care should be tcken, on the south face to avoid @xces,sive shading: . 1 I ’ I i

:

.

. . . . . .@+:. I

e

, . *

I\ .z, d ’

I,

123 : .

,#^ J > 0 ‘w .- L : -; ,* .: g. I ..’ ‘, .f?

Page 136: Passive Solar Energy Book (1)

’ Di.red din -System.n +ld z

10. Cl&red&es and .) ’ i - Skylights SW

,

. . \

. .

s

, .

Photo IV-loa I e

. fj

, .

r. ’

Page 137: Passive Solar Energy Book (1)

. -- _ IO. Clerestories and Skylights I +

r SOLAR WlNDOWS(9) recommends the rea of south-facing glass nzeded to

--. admit direct sunlight, tp solar heat a space. This pattern describes methods, other ‘than windows, for collecting the sun’s energy.

. ‘

0 ‘- h. ( ,101, . . . . l a\ %$a@ . . . .

cl _’ I

,.i I c

I .I ”

There are many situations when admitting direct sunlight through south-facing .windo.ws%@t feasible or desirable., Solar blockage of the south wall by, .nearby obst+uctions, or spaces without a clear southern exposure, make it impbssible- to use windows ,for solar gain. Also, the diitance from a solar window to a thermal storagk mass is Ii.mited by the height of the w@dow. ’ A mass located too far from the window will not receive and absorb direct * . sunlight. Large solar windo&s, which are the primary source of ‘direct sun-

, ‘3

light in a space, may result in troublesome glare, create uncomfortably warm .

J a’nd bright conditions f.or people occupying, the space and discolor certain

c fabrics. For these arid other reasons (privacy and aesthetics) it is necessary to explore alternative methods for cdllecting the sun’s energy in a direct gain ’ building. i . .

I $, .J

.”

Another method for admitting sunlight into a space is through the roof. ‘Use either south-facing clerestories or skylights to distribute sunlight over a space or to d-ire&it to a particular interior surface. Make the ceiling of the clerestory a light color and apply shading devices to both clerestories and skylights for ~ summer sun control. ”

: ,

1

1.

/ . 125 i

Page 138: Passive Solar Energy Book (1)

,. i

-7. -_ .

D

/

.a SKYLIGHT “- l Fig. IVdlOa

. \ . . . . l .@2& . . . . .” _, ‘.-- ,’ w F

-

Page 139: Passive Solar Energy Book (1)

. 4. ‘s

Q <,

. n 1.

, ‘_ -

._ . 10. Clerestories and Skyliihts - - P

-_

J

:

Apply MOVABL-E lN$&LATiC?N(23) and KEFl.ECTOKS!24) to m&e clerestorres anti skylights more efficient as solar collectors. Shade, all glass areas, especially horizontal and south-facing glass, to protect them jroA the hot shmmer sun- i

, SHADING DEVICES(25). * -,*

-T nformatio i * a. -c Collecting sunlight through south-iacltig clerestories and skylIghts has siveral advantages. Sunlightvadmitted through ‘the rooi cant be distrlbuied to any part ,.+.

of a space or building. This allows for maxrmum iree,clom when locating an . interior thermal stoiage mass. When properry desrgned, toplighting eliminates G

the prob”jem of glare.since’ light entering the space from above reducesthe 1’ cdntrast between interior surfaces and <vindow5. Because cl&Festories and r

skylights are located high in’a spave, they,reducc: the c-hamcc of sol;lr blockage,

by”dff-site obslruction; and allow ior large openings in ( rowdcd building ’ . :

* situations where privacy is desirable.’ I. 9

I

.: :

:.

B

,

. .

b..

.

rr”

.

4

l

‘7.

L_

----._

4 Y’ Phpto IVGiOb: Clewsto& location. .: l ,‘A

I ‘I

17 127 e ?. !3 *

Page 140: Passive Solar Energy Book (1)

Thee Passive Solar, Energy Book -; ,. I 7

.I a( # .j tL

d

Mos~~.passive iolar alerestory9 an skylight b con figurations are derived fro% ” consideration-for collecting suoli

i”

ht and distributing it within a space. In a Direct Gain System, an jmpdrtan, tonsid’&atibn in the selection and locatiin \

: 1 d‘f a particular qonfiguratipn’ is..

7

hether sunlight-is to be diffused throughout _, - r a space-MASONRY H’EAT ST0 AGE(ll), or diiected to a particular surface-

c, ,’

l ‘- INTERIOR”WATER WALL(12).

. + c + ,!

0

Clerestory, Sawtoqth and ;bkylight Qnfigurations ,I . a ,

i . .

3,

,Cleie3tor$-A clerestory iS a <.- 05 near .&tical Bpening pc.ojecting up ’ from th@ rn9f plarie. Itis a par

hat. it strikes an effective.&ay’.to’direct sunlight entering

storage’wall. Be careful to4ocate ca

_i .-VI.. . ..1 IV.

.” * * a space so t i ~ ;.the, clgrestoty ,at a distance iiir frqnt of tQe wall, which insur@s .tha’t d.ireci

- sunli&+ WilF qtiike mnst nab thP w%irllrri’nD thP \uktpr Thic Aict>nrn refill \,-.*\I --....a..-

-_t

. . . -_....- . ..--. -. ‘.,.- . . . ..l ““.“‘b L0.L. ..1111L,,

with latitudq and I III2 “I2L”IILL ““111 vo,r

$s roughly 1 tb 1 l/2 times the height of the

* r wall:

-

- .a ‘“‘,F’ 5 . ” . ,

(‘+ .-_ ~ I> . .,

\.

a- ’ L = i.5 H -.

I&J* IklOb~‘Clerkstory Ic$itjo~. , 7 9 *

-. . : e . A

Ls ) ..‘; .’ . 6, L 7 -3

.

t *

3

B

tab

_ -..~

r

0

,

.

S.--T:

B

Page 141: Passive Solar Energy Book (1)

1” ’ _ “,” - .

*- -__~ .,-- . i

. ‘i 1: _, : s $

-? d %

. ._ &- < .

?

. fz

J .’ 1

4+++ - -” I

/ 10. Clerestories and Skylights

’ & 5 I

A Make the ceiling;of the clerestpry either a light color to reflect and diffuse’ -’ sunlight down over the space, or a polished surface to direct the sunlight to a thermal wall. Shade the clerestory in summer by extending its roof to $rovide

:, ‘an overhang-Sl-!AD!NG DEVICES(25):The angle of the glass can be tilted to ‘* I

v. P -increase solar gain in winter, but tilting the glating also increases solar gain a in summer, making sun control devices essential, The exterior ~rr3of belowa ~-Y--Y clerestory can .be treated as a reflecting surface’for maximum solar gain- REFLECTORS(24). . + .

5 P I

I & . -.

= . 7"

. i. e

i - * n

2400

I I -_ I . I I L.* l ~.~‘---~-Ex++-. ---w.+.: .-- 1 -. .--.t .- .--. $. -.- . . . 4,

- , ‘.

clec Ma/ -t, “J-.

\’ = t L I 0 I / . . 9 P r

2, ’ -*a I fig. b\Oc: Comparison of south-facing tilted surfaces.

,. I * kote: This’&aph. reprisents clear-day solar rad@iation values, on,!the

. . .

surfaces indicated, fol: 40”NL. -’ *), *” ‘X : a - * - \ r

‘, 0 . . I ,, &’ , ‘e

L * . 1 . ‘I 129 - .,I’ 1

,;’ -0 . .

Is.’ ” D *. D I -1 .

- ,: ‘%,,I 0 / i :I.

$&,:. a . ‘. . : ..,I ’ , I _

Page 142: Passive Solar Energy Book (1)

. ‘1

1

The Pi&e Sola; Energy Book .

0

Sawtooth--&e sawtooth is a se%es of clerestories, one directly behihd the - 4: t ^ I . 0’ d. : -3 other. When glazed with a t?anslucent glazing material, the sawtooth effec-

” tively distributes sunlight over an entire space. As a rough guide, make the c -. angle of yach clerestory roof (as measured from horizontal] equal to, or less ;”

,- than, the altitude of-the sun at noon, on qecember 21, the winter solstice. I - (Use the sun chart in chap. 5 for your latitude to find the altitude of the

sun,) This assures that the clerestories will not shade each ‘other during the c 0 winter hours of maximum?solar radiation. Jf a. steep@ angle is used, then clere-

\ stories‘should be spaced apart accordingly. , L( i @

,,r;- ,’ -, Q \ “ :,. ‘. Yh.’ :‘,

ANGLE a. ALTITUDE 0~ THE SUN in NOON ON DECEMBER 24” : ’

EXAtiPLE: At SCNL ANQLE a = 30” .*.. . .

* *.\ s I * se I . 4

, _ . i ,.’

‘\

* .

0

\

s,-

o-

e -.. - I

I.... Fig. IV-1Od: Sawtooth configuration design. - ‘. . . e ,.j , ’ 52 . . .

; 130- ” 1’ 1 ” s’

: .,I.) 1 - D *

c 1 *2 Q I ,” ” - . 9. -. i .; , .

Page 143: Passive Solar Energy Book (1)

I

I .:,

” D

Phota IV-10~: , Sawiooh clethtones; view looking up,

and‘ clerestories mobnted on the roof. fj

A>

6 I-

- ‘-;

“i YY

4 IT ,+.’

10. Cl&estories’~~and Skyli&ts .L b.

Page 144: Passive Solar Energy Book (1)

, i”

-1:. , 3 ?

0 ,

The Passei& Solar Energy Book . r =

5kyIight-Thereaare two types of skylight configurations: horizontal and those located on h ‘tilted roof. It is impor’taiit when desrgnrng a horrzontal skylight to use a reflector to increase solar gain in winter, since the ,arnount of solar

. energy incident on a horizontal surface IS consrderably less than that rncrdent i’ -4 on a-south-facing vertical or slo.prng surface isee fig. IV-10~). Kcmem+r that

all skylights of any considerable size should have either Interror or exterior Shading devices tb prevent excessrse solar gain In summer.

. i

Photo IV-IOd: fiorizontal skylight augmentid by. a reflector. .>

Page 145: Passive Solar Energy Book (1)

Direct Gain System a

Masonry .Heat Storage’ . .

i Phqto IV-lla’ \

I

b

.

‘1, ‘4 i

I “1 . a. I - ----

Page 146: Passive Solar Energy Book (1)

#_ -

I ; ,_ -. I

-

/

.

.

. . . ‘. P

. t. ‘L

#

0

4.

t. -’ 1

124 ; .

‘.

11 . Masonry Meat Storap.1. . . ._ L . I ‘, . :‘. _ : 94

Afret siring SOLAR WlNDOWS(9), a portion of the sunlight (heat) admitted into each space mus,t be stored for use during the evening hours.

,F, .

a”,, . ..e.*?.g;@**... :

c2- I, ,.c

Thastorage and izontrol of heat in ” masonry building is the major problem confrqnting the designer of a Direct Gain System. In a Direct Gain System, the amount of so!ar en.ergy adniitted into a spa&through windows, skylights or clereitories dete’rmines the average temperature in the space over the day. A + large portion of this energy must be,stored in the masonry wal1.s and/or floor of t.he space for. use during \the evening. In ‘the pro&s of ,stori?g and releasing he& the Masonry fluctuates in temperature,’ yet the object of the heating system is to maintain a .rrrlative/y constant interior temperature. The ~ location, quanfity, distributionand-surface color of the masonry in a space will determine the indooi temperature ftuctuation over the .day.

c

The .RecommFdation R .” .A.. ,

1 I

I To mi’nimize ‘indoor temperature fluctuations, cgns!ruct interior walls and floor3 of masonfl with a minimum of 4 inch& in thickness. Diffuse direct sunJight over the surface area of the masonry’by using’ a translucent glazing material, bjl placing patbhes, or by- refle 1

number of small windows so that they admit sunlight in ting- direct suillight off a light-colored interior surface

fii;sti tflis’diffusing it throughout the space. Use the following guidelines for. _selecting_interinrce~n6finishssr~ ..~~~ _. ~. _-. .I i ~_

. . . .I. Choose a dark color for masonry floors. < ’

, 2. /)4asonry,wills can be any color. ‘- L..,

i 3. Paint all ligti’tweight construction (liule thermal ma& a light color.

4. Avoid direct sunlight’ pn dark;colored mason+ surfaces for long periods of time. . - fl .: I *

5. Do not use wall-to-wall carpeting Qver masonry boors. 0

Page 147: Passive Solar Energy Book (1)

11: MasmryHea+ Storage

INSULATION -

I

LIGHT-COLORED WALL SURFACE

\

CLEAR GiAZlkG’ ,

MASONRY-

.

INSUIATION-

_

MASONRY -

i

DIFFUSING GLAZING

,

Fig. IV-l 1 a .

‘Lx -

Slightly oversize solar windows and thermal mass to collect and store heat for cloudy days-CLOUDY DAY STORAGE(22). It is essenti.aI to insulate the exterior face of the mass to keep stored heat inside the space-INSULATION * ON THE OUTSlDE(26). Also, a thermal mass cooied during summer evenings’ wi!l absorb heat and- provide co$l interior surfices on hot days-SUMMER COOLING(27).. bhe INTi?RI’CIR WATER

n ‘masonry construction ‘is not possible or desirable, an

,., WA~~for~heatstorage, ~~ - .>~ip..

.

. P . 135 1

.

Page 148: Passive Solar Energy Book (1)

.

1

. 1. . .

, (‘( e,

The Passive Solai Energy Book I 9 * v _

/. : 0

. I) s ‘C j A ’ . :: .

” ‘t&Since therm%! mass is integrated into the living spaces in a Direct’Gain System,- d ‘;&the amount of energy stored in the mass (walls and floor) atsunset determines ~1 ;$he indoor temperature fluctuation in the. space over the day. In winter, %‘pproxima&ly 65% of the total space ,heat loss occurs at night; 35% during --- T - , I ._ theday. If solar windows are sized to admit enough sunlight on a clear winter . day to ‘heat the space,;for a 24-h-our period-SOLAR WINDOWS(g)-then ;

” .- ?.8 . \. ’ roughly 65% of this energy must be stored for. use ‘at night. When only .a . ,‘> .’

;<.i, small’ portion of this energy is stored, tt-ien an abundance of he”at .is available

1 ,-. ,,f mduring the day and’ not enough at, night.:This condition results ir? daytime ,, -~-T- ~~ ,I overheating an.d low nighttime temperatures. .

Ia, v. 1 1

. ;;, * 1 - ‘Solar gain through so&h-facing glass is easily calculated; however, predicting’ ,

the amount of heat stored in the masonry or the daily temperature fluctuations ~

\ ’ . in a space are presently beyond the capability of most building designers. In

’ 19X1, a study of Direct Gain Systems,performed at the, University of Oregon, ” D

- .._. -- -- clearly illustrated the influence of each p?tramet&r on the system’s performance , (see E. Mazria, M. S. Baker, and P. C”Wessliig, “Predicting tl-re Performance of

Pass&e Solar Heated Buildings,” .Proceedings of the 7977 Annual Mgeting of the . American Section of’tfie, International Solar Energy Society, voi. 1, sec. 2, 1977). ‘* \

‘. I _ It rEon,cluded that the percentage of .heat stored in a thermal mass’ depends on‘

the lo&ion, size#and distribution of the mass and its surface color. * :’ I

. .- I Icontinue~ on, page 140)

*In some building types, such as a warehouse or greenhouse, larger tempkrature fhqztuations ,. myy be tolerable-k even.deskable.

I _

.~ ~. *_ . pi

” \ ‘\ . *

Page 149: Passive Solar Energy Book (1)

I : ’ L

. -

, <.

“. - e: *I

- 6 11. Masonry Heat Storage

‘. ’ i.

. Fig. lV-14b: Cask 1: Building configuration. . ‘,

A’dark-colored concrete mass is placed against the rear wall or in the floor of the space in direct sunlight. The surface a.rea of concrete Exposed to direct sunlight ovq the day is IV2 times the area of the glazing. This system-represents a space-with a horizontal band of south-facing windows or clkrestories coupled directly to a dark-colored mass which is insulated pn t-he exterior face.

.II

-..

Results:

, During a clear winter day, an increase in masonry’ thickness beyond<8 inches results in little improvement 2 in the system’sperformance. The graph he.re illustrates ‘the indoor air tkmperatures over a 24-hour period for a mass thickness of 4, 8 and 16 inch.es. By increasing thP mass from 4 to 8 in&es, maximum air temperatures are relatively unchanged white mini,mum air temperatures are changed slightly; the 8-inch masonry wall increases ihe , minimum room air temperature 5°F. Increasing the ’ . thickness to 16 inches l-i& little impact on tures. For all wall thicknesses studied, spa ’ fluctiatiork over the day were about 40

L

- ,

pm+ * 1 .B . . . . . . .._ 1.‘..... ,

,

1 J I

,

.- I

d.., , ,- ,- , -1 I ,- / 1 +~

81 1. I’. I ,

I <!a ;, :‘: ; ; ; ; ; : : : : :. 0

An .

N . .

Fig. IV-lib: system performance for a concrete mass of differpnt sizes. . ] . . I.

d

Page 150: Passive Solar Energy Book (1)

I- 1 r ? .

,

1 .!, *

.b ’ . h-

‘:‘.+’

The Pass&t” S&r, Enqrgy Bcipk ’ l ’

y a

3 1 - .

Case 2: Buibding configuration,’ 1

. , ,=

‘A dark-colored cdncrete mass’is placed against the rear wall.or in the floor of the space in direct sunlight. The surface area of concrete exposed to direct sunlight over ttie;day is 3 timCs tk area of the glazing. Ttiis system

a represents a space with vertical windows (evenly and/or translucent (diffusing) glazed openings with colored interior surfaces and a dark-colored mass.

.

4 1

I I I r I

:;ResuIt.s: 1% , L ,$ :.,

c ,’ v

1.

_’ An increase in masonry thickness beyond 8 inches results -, ip littlechange in system performance. The graph here

/ iIIustrates.room air temperatures for a wall or floor c, ‘i

thickness of 4, 8 and 16 inches. The major temperature

,,- difference occurs by increasing the thic ness from 4 to 8

” !’ iriches;max~mum roomair temperatur, b remains un-

7, changed while the minimum air temperature is raised 3°F. Beyond an 8-inch thickness, therqis very little

- 1 .: -variation in room temperatures. The temperature ,fluctuation over the day is 26°F. ,

.” ‘_ ,, ._ 1

a “:mt a.,. . 1 . 1. . I. . . . . - . . . ~ ./’ ,d’ i ,

~ \ 0 -i .’

. 7 :> )., .

.I .

b PC ,..

f ,,.

\ ,-

- .. ‘, ,, I. ‘. . . , 13i3

.I 4 .~ L -/ T --__ --.

: ..-.. .--..j ‘c ---;‘l’; 2 --r-- . ‘L ,’ >> . .I ‘,. i I, 1. t( ‘. ,I I . I ,’

Page 151: Passive Solar Energy Book (1)

’ , / .

Results:: ~ ’ ‘“8’ ~ . j;, LI- . I

. I”- ,

. -- . . d An increase in masonfy thi-cknes?‘beyonh 4 inches results ( - . in little change in system performance: After 4 inches;. .’ *

’ room air tem’p+era.tur.es ace 6et.y similar and the da$ Space’ temperature luriuatigp is oAly 13”F, comfortable for most building rntCriors.-If the same space were con- ‘. : ’ .

.., ” ,s,tructed of all lightweight materials (wood frameGth a’ ‘. , 4 1 .-- ‘. i t ” e l/z-inch gypsum board;finist$, it tiould fluctuate 38.“F.

’ 3 ‘This demonstrates the*sdampening effect of thermal mass ., -1, a on temperature fluctuations. -

.

Masonry Heat

a? I

Storage

5 \ i . -

Case 3,: Building configuration. , . \ ‘.

il

The entire space, wails and.floor, becomes ttie thermal _, c . ’ 1

storage mass. TJle-s&fZ&%~~iea bf cbncrete exposed to direct sutilighiik 9 times the art& of the glazing. This l’ e. :’ ,le.‘ -:-‘- . 3 * ,

’ m 0 ,

-, ,nt,

P 1

.

L

F *.

.,' 8 \1

'I> , i.,

c - r *

v. ml. -,

'Q

- t *

. .i

II

3

.'I i.

-" : Fig. Iv+

n-1 / . VoI , : . . , 1 r , , ,,. . . , . ,-. . +

"3 2 ,. A :s 8 7 a D 0 II 32 I 1 1 , , I I I 9 4 1, n

I,

,. /

b \ i uI ' .

N i; J . c

L 0%

v

:

_ ,' '/

-1 .' ' 0

. .

. ' : * -139 ; . ./I ,l

, . ;;’ .-. ,.t

I ” . . ” - I’ ;’ .\A. mF ’ : k

/ ’ t, * . .” #j

Page 152: Passive Solar Energy Book (1)

‘.-\; -.

,’ I n

’ . 4 .,

” ‘_ ” /

r 1 .

: . . P * ’

? ” ‘! I ‘j u.

Q

<*

I)

h&q&.. Book .. ,. ‘1 :.

I A -h : . . .

c

* .’

: tl nset '(5:0b p.m.),-da~tirne-tempsFat~res-a~ re?uced and n$ght- i

estiti@Sed , 9. ‘... ,’ . . .

// .a ii ;,’ s , 4

d space air ., i ,, ax. -.’ ,- .“!. - .;.

tu;rg fluctuation * 41 . 13°F

‘I j

Percentage of solar “: Y’ _ . /

. ” :“. c .‘y j

stored (A 5:OQ ~. l* :

i p.m.;&&nsH)* .I ‘..I ?XlQ a .. ’ TZ.7 ,, , - : 9’ ‘:.) ‘* ‘_ ‘u” $3 p- , :,. ~, : j : q

55i% . “: 60% , . . D

,*. ,*-a. - ,

. .j' ..I' ' ,. )'--

-L-Q, ., NOTE: +Perct$tape offsolar radiation.+i.mitted into the sp&.’ * 5

--y--,_ ;- ---__ : . is:

i ; . --.__ ; . -_. 4. d 0

Q

-

4 I

. .

I

;c”. . I. ..,...“4 .J; ’

“I, . ; “. ’ ;-y----- , * , 4’ * __. ;. -L.. . - ~:, . . I , D . . . ‘.. ‘(’ ‘,: .I. ” ‘. . .>

One .furth& wor$:-at;~ut-masbn‘~hea; storage! When fhe entire interior of a . a,,, I3

:p : spqce. is;\@ri$rudfed.,of. masonry, then.wal,ls ,can- be as thin is 3 to 4 inch&s’ . Y &

3’:. . i;,,if$ : r

_ ,: wittj$iFip$$jp~ flq,ct’uatioris becoming extrepme. _(I ., .:. ~ ,:.:jy. . ._,, \ ,.,.’ I . . %. 7 a ” ,/: iv

\ ~h,~&~~~&$&~~ that -Jor.a spa& td ,remaii-comforta&e during the day, each ‘,a

# .., : ,. .* . . ‘. ) r”’ 7 i ~.~~~~~~e~~~~pofdjce~~,sunlight mub be .diff&ed over d.t least 3 squaik feet of ma: ,I- *- a

,., * .,.:a. ‘* ..-..son~~S:~~~~~~;~~~sonry”tsn bC used to store h&r;

\ tit even..thick.

absorb~~~~~siore-:eriough heat when qposed to dir&f sunli$t “p qsgnry cannot _ -:: .., .-

_’ Y h;&ghout the es $+.,. -day. Mojt tiasonry materials .transfer heat from their surface to their interior . II) <*“.

‘,. ‘Q: 1.’ at a .s,low rate,, If,,too m&r heat .is ,qppli$, the-s,urfac$ layer of the, material \

,:,, *,-. ~“,. \ * ::--, : bw$.pes: ii&$mf0itably.hot, giving much. q! the heat to the air iri the space B ”

- I ,’ I, \ . a’ -* .,, * ‘.. _ .t :(..: ., .. : ,.’ > ,. ., 7 --.-;+LF_ . : ; - i. D . :i::: ‘I,, 1.~. ,;: -,:.j : 4‘- :!: p:.. i ‘.

2 $+;I~~ : q ‘,“’ . L’ , , . ” . . ’ : ~ ’ ~, 1

\. ._ “; 7, -. :;: I :!. ,,zs: I.. .i’ ..:,,. . . :: : ,:.: i ‘1 ~- e f , D “,.. t ,,.,,:.,.:, .* _. *, .._ -... E G, ;,-> .r ,;;. . Ij ,, : .‘, :. _( ,- - I .>;:,,~&d?-..q,,: :i: ) >yq ./ .i. 1,“‘3 ,, I’: “’ ~‘.:.:‘-j, ‘,‘,. ~ I ‘. ‘>- ~.. ; ~. c;. :., 1’s 2 -.-‘, .)

!s, : b _I _ ! cl ..I$ ” ““?:- .“y

-., ;.,, : ,,i, .: ., : . .,-. .?“‘,;,, ._ : . _ .; -. . . ._ ! * il.= . I

Page 153: Passive Solar Energy Book (1)

:

‘.a, ‘r

.,,.’ /

.,

‘,

I-:, -.-,

. ,, I

.’

: s-> b

9.

G,T .’ i

. I ‘. 8. * I)

, q, ; M&&iry &eat stomie: “?: - _. ‘

0 \ I’ I--.

i ‘%,

‘\ D ” \.\ _ s *

,-I’ I\ .’ ” :- 0

rather than cdnducting it aw;ty from -the.surface for storage. This condition is lcle%rly ill&trated by Case 1. : n

D c 1 % ‘;

L This ana!ysif .was extended’ to qther latitudes,, weather, cohditions; glass-to- ’ a_* ‘- “. .? fl.oor-creed ratios and space heaj lo+ez. qhinging these parameters $+d little ’

li ” hff ect oq’the’r&ults p*resented for Cases?,‘2 and 3. dl * # i ‘., ‘* .’

I_ Comfiarist@ of ‘hasonry Makrjals- ’ ,

“0 &I ;hiee cases were analyzed for different &asohry; materials. These materials ti

L..! _ _ _ - ~~--+nct~&e coi-&te. (dense), brick (common), britik (ma:gpFsium additive) and ’ ,:. ,;

- D ,:adobe,. Thich have the physical properties Ksted in .table IV-II b, ,. , ‘a . 1. / . “d i *q ,! L

1 1. . ’ z *. * 6’ . ,,i a 0.’ .I - g .._/. P * OTablt? IV-1 1 b. Thermal Storage k4a~erid Propertie;. .: I

0 ._ *. Y Specific* neat (Cp)

2 Mdterial ’ Con$,divity (k) Density, (p) ’ - ..-

_’ f *. ., . , . h ,

’ * Btu hr/ft’-‘F/fC Btu/lb-“F ” “j :. ’ Ib/ft 2 * . .

0 . /.&I ,, .F

I,‘,!. > ($n&etd (dense) * : - . i I.00 0.20 ! i n d

190.0 . ..

5 5

‘, (’ ‘gy

,).f$ ~?ick~~i~omr;;bn) & -

I .30 .a

0.42 020 ” 120.0 I- : ‘.* _I

,$ _I> n .D ” .’ -*’ ! . ). :

“‘3 .Y.

,I. P Brick (niagnesium \

. 4 / ’ l . > 4c

:.. : .” 9

f”.

& I$ ’ additive) ‘5. ,, %L 2.20 1 . 0:20 120.0. .f : , , , .’ “, ‘4 * - .’

‘. .y n

.,d . . ‘Ifi. ‘Adobe a i ’ OP3b _ ~ 0.24’ m l(-&po :,...a-;

,i -9 ,’ : ‘. 9 i ‘. e _. 1 Q . *?’ a f ,.j .-,.

‘.i >. 0

\ .-q.- -- ---_... .._ _-. By using*masQn.ry of,higher conductivity, air t’emperatur.6 flu&ugons in the, ’ m _

. 9: 0 ‘spa& \r;ere minimized. Thismis‘the result of 3. r’apid transfer of heat iway from , .P , . . ..,.., ?- ~~ ~. ,( -.” the surface of a material to its interi.or, .where it -is -stored ‘for use duri”ng q 1 . --\

-

’ $ I. -&F evening. For the same ,quaniity 6f ,n-+sonry, the largest temfierat ‘;e.

..Y c

93 ‘. Iti.cttiatiSons ocdurred “Mlhen ujing adobe which has The po&est condurti%ty; ‘. ‘iF :. I. /. ,. 3. ,I, -@d the%mallest were with brick, which has,-magne$um as an, ‘addit+e to ’

,_. 0 in,crease its con&Jcti@. After exten;ive,compute; analyses, table IV-W has p

.’ been prepared +s a guide ‘to deterrfiine daily indoor iir temperature @luctua- i -: , -

* I . ,.” ) ) I’ ‘--.@ns for Case 1, 2 and 3?ype spacq, FludJuations for; each case are given for

I’: - ,, ,‘.’ 1,:. fou;‘eotimon,ly available materials. y

* e - I. \ “. ,(A ..- I .’ I - ‘,

i - “. I’, ;,:‘:I., j ; ‘<.G .- - “0. . c f, i ,%'.a ‘6 c . . i4i ._* ' 8:; .;'; j ,' D \ *, !?~ .' 3 . . _ I';,.,.‘.' \ ,,,' " ~__ :.- .o. , i. 1.1 ,'I ~.; L " ./ .,I &$;,'-~ .,'I., _>', .;",;. ; ,;, ;' : c ,.y. : ;- I.. , 7 \ L .i

Page 154: Passive Solar Energy Book (1)

. 2 + . _ >a

.‘ 15 _., ” + : .

r, - .

0 ..~I ‘i.

. / -’ The Passive Solar Energy Boqk

/ i

*‘.\. : --

I 2 . I

- Table IV-llc Approximate Range of Indoor Temp&ature.(“F) Fluctiiations for Case 1,2 $nd 3 Type Spaces ’

. l

ThicknesS c ‘. of Material (in) P% Material ’ q’

, ‘: I , B&k I (.. I (I

“ Concrete ’ Brick -.

>’ (magtiesium-

_. (dense) .” (common) ‘id’ditive) Adobe ’ .

R. Case 1 V 8.or more. 34O-46" 45,"-60" ' 30"110" 5'0"%5

‘.\~ Case2 8’or more 24"-31" 33"--400 f 20"-26" 36"+5"

J Case .3 . 4or more j -11" -15" -96 -17" rl. 1 r _ ,"

. + \ >.-' i

q ,

NOTES: 1. If add,itional -masonry is located in a space (but net in- qirect sunlight), temperature - ., * fluctuations wi’lk’be slightly less than ‘those Indicated. f’iuctuations disted are for a

‘6 i. .__I

winier-clear day. Ouring periods of cloudy weather,- fluctuations will be considerably

ikz., less. 0 i 0 4

--\ 2. When ,using a combination of materials, IX.,, bnck walls and concrete iboT, intcr- .e - ‘L 9, olate between the temperatures given.

I IO .

e - ?. ‘&en using hollow,’ dense, concrete or. .c]iy blocks, fill the cores, with masonry ‘i (concrete) to-in$rease the heat storage capaclty’of the material.

.

- 4. Although adob>his..ttJe poorest conductivity of the materials tcstcd, rt’~s ,the one

!* material that is likely to, be%sed in greatest quantity. ‘I .1 .’

._., d ’ -._ .> . Y.,

u . ‘I

. t . F4 InteriotJ Surface Colors f

: * ’ .._ .

‘, To diffuse &rect *sunlight over a wide interior surface area, use either trans-U :-.. .,, a lucent glass or plastic, or ‘Feflect direct sunlighi, transmitter&through clear glass, off a white-coIored_s.urface~first, scattering lit in all djrections over an

, entire space. Another method might be to usedseveraIqsmalI .windows that

:; \ :’ admit direct sunlight in .patches. Masonry, swe*pt by “patches of. sunlight; will not become too warm and will ?tore a greater portion of the.oenergy incident

- 6 on ,it’s surface. The followitig general rules can be applied to help yoy ,se”lect

.* interior surface colors and finishes for spaces of predom,in’an$y’masonry ~ > construction : . . *

-I ’ ‘B : ’ 1, Select masonry floors of medium-dark colors. This qsures that_+

portion of the t$eat,w’ ‘0 ’

/-&m-rbeci and. stored in the floor, low in

I the room, w.here-rt~- can ‘provide for greater human comfort. .i ,* %2. Mason~y%$ls can t+ any color.. Sunlight reflected from light-colored’ /;’ ’

. ’ I ,& .&’ i,

. .

..’ l-e

4 0

- . .

* .

Page 155: Passive Solar Energy Book (1)

,. : :. \ .3 I; -: /I_, “. 3

’ .,-- . . I A.’ ,- 1’; r ‘- ;.-. ’ -’ \\. .- ‘k. :a Al. Aiasonry Heit S!sr,age- ,

,I .. Q

->. , ,b * *. :3 T-- --:t r ._ . . . _ -~ * 0. . : 1.

- -.- - ,I \-” L, %“. L. -.

\ ‘L masonry walls @O b ,.30% solar absorption) w.ill. -event&ly b 3 .I‘ ,. .- . _’ absorbed b)/ other masonry surfaces, in the space. -... ( P, n ir j-. ~, .

P, 3. Make all lightweight construction, such as- wood frgme>rtitions ._ i \ \ (little,therial mass)., a light color so it refle&s sunljght to -the masonry -’ >; , I_ ._: wails or floor. Stihlight qtriking a dark-co’tored material of little thermal . * . ..- -

I._. .. fiakerial: Si.nce it has little ca’pacity to store . ‘, - * 7’ .-( ,: . . .+ < . El 0. . ;. -’ b > : -.

warm. . . ‘-

,: ‘; . . ., 5. Dy, not ~cover a rnisobry floor with’ wall-to&all garpet. $p&---- l’m-~--.. I-

! . . . :. B

ins’ulates the heat storaKT,+naSs from the room. Scatter or a’rea rugs, . . e coverjng a small ?rea of the fioor, make little difference.

o ‘- 0 ._- 5 .s .” ‘1 , \.’ , . . . .*.... ;#%J) .;:.n*

-> ;.. - _,- 0 0 .

,‘,, .’ . , -. 4 . 2%’ “; s II

n

8 . . 4. :’ > \

. : i 3 *J .i ,9 .r -.

: ’ . ‘I. 4 . . ., ,-” . “&y ,‘_ -. n 25 : . ‘,‘;I I. b, I, 1 __

f, (’ , . “ D

,,‘: s ’

;;; r --_

!‘. ,;:. . ! .* 1

1: I,_ .- ‘-::- .‘-. :-

$A .(_, :,,I,. t ( . ’

,> ,- ‘..“7 . * :,‘” ,_ k-,’ ‘. . d-Y- -... 1, ,,,,,,, cc .., ‘*A\ !‘~. . I’. ‘1 . {, .I .A SC . . ;; - I_. ;.:: . x ‘, L,, D I 1, ;

, ” .

1,,-,,, ., _- . . ii ;- .,), . :: -,. \.. ,,/,.. 1 -.

.‘..

*

I : b ‘_. *

,‘,,. .

:, ., ,., . I;’ !,,, .?:’ ‘. ,;:,a . 70 _ ~

4, .,q \.’ , . . *

2,’ \ a. ..,

f’*. ) 6,:: -_ : .,, 3 * . ~,,iY;,” -,

*.I.’ 4

p. ., \ I,’ ,,_‘,

_ ‘\ , 1

L) ’ b’ e

‘1 .

j,

* I

Page 156: Passive Solar Energy Book (1)

.

D , >

Q

0

L ., . :

P”.

Dkct Gain System ’

:I 2. hite$oV Water JA/all. - .e I,

Page 157: Passive Solar Energy Book (1)

‘,, ,‘_ ” .

-._a 4 .; -

,,’ -. .

,$’ . ’ ‘II . :

t , .

0 . 4

, . I 0 0

c i

,. ’ p r

.I , *

1.3 .

i--

*. “__-_- - -2, .

t . li

\ .’ c

. . : ,‘. ,

After sizing SOLAR WlNDOWS(9) and CLERESTORIES AND ~KYLIGl-Wl.P), . (I a portion of jthe sunlight (tjkat) admitted into.each space can bk stored in a

.

water wall toi- u$se during the evenin,g hours. . . - 4 ‘, t

.~ . L I

0 n ” . .

:

* . ._ .-i-. s.3 =- - ~~*--s.,.--.~~..~__~-; =._. i . . .._ ___ _ I - _-. _.__. _. _?%~. _, .-.

L

The size .of a water wall *and .its s&ace color determine the temperature ’ - fluctuatiob; in a spa&&er the day. Solar windows are sized to admit enough

4 sunligh’t to keep a spae .at an average temperature of 65” to 70°F during most .I” & .

I ,- of the’ winter. The volu wht$r’ in’ the space -arid surface .color of the: - (r kontainer will influence temperature fluctuation above and below- , ’ *

,’ this average:* The’size bf wall ,needed io m$ntain a coinfo’ttable, . . ‘. * ‘, ..‘,.,,. ,. environment is directly related to the areasof the sola; windows.

". i-J :; ;, .; .

':, i

The Redommendatigm _; ,. 1L’

: 11 c

1, i WhehLing a3 interior watkr .$v&J!LfyJ b& storage; locate it in the spa@:0 i .- -:\,

,.that& ec@iYes direct sunlight ~be~&‘tiG:hburs of 1O:OO a.m. and, 2:t)0‘,4 ,,:.r’.+, .:I: p.m! Make ‘the surface of the container exposed .to diretit sunlight a dark t .’ :,

‘” colbr, 6f at le+st 60% solar absorptiona and use about one cubic foot ‘(TV? . ” ,, s ,I 1 I r’ gallons) of water for each one square foot pf solar window. S .: . : l

1

‘1 ” y

a ,;

. . * - ’ ’ t

,.. ., a e c... - ~----- -

I I .., - . , ,a

. I

-’ ,

‘., ” ’ :

-,

:

I -. Slightly oversize the solar wind?‘@ and water &II to colle$.arid stort?h+ flit .’ _---- 1 cloudy d@%-CLOUDY DAY STOl?A,GE(22). Insulate th-@ ‘ext&ri~or face.qf the ’ ‘I

. ’ wall whe’li’-*:ex ed ‘to the outside+NSULATl0’&l ON THE .OUTSIDE(26). In dry climates ‘, water wall cooled duririg?he*summer with cool night air will r-

._” .” ,’ I’ \. , , > 1 . 1’ ,:‘* - -. piovide f&S.UhMER COOLING(27). ’ t

: -\. : L’ *

‘S.,. 0. ‘( > ,.‘&. - : ~ m _-_ i’ ,

.: ,. ” + ‘t _ ” “--

. 2 ‘r _- 14s :,;r: : 8,.X Y : ,_, *” .,Yc ‘:;,. _- -.-

L-.--.-..-.. ,” a>. .

Page 158: Passive Solar Energy Book (1)

t ,i: .’

I I .4_

The Passive Solar Energy Book

c

t : 61 I . . I.- - ‘. *

* 4’ , -‘. ,..-_.-~.- .._,_..,. . z

. . .

-.

L

.

dt ’ .

c

0 ’

s’ * -

., I. 0’ .:

. I’ ;’ *

‘,Mason$ ma? iced Sunligh< diffused over a ly-& xurface -arei$ 6ut water in -Q-

ebntainers cat? abs&%, -Ii%% &Et%ely Even When.c ~t’i’ &ncentrated :by a -

1. rS)lector. .There are two reasohs;fok this.. .: a. _ ,r’ J’> a. I .

.; ’ =) ,’ .’ c L c ” t *‘ -... _. .,‘,.“1 , ’ : ,j ,:’ / .= i)

87 :: \ ~146 ..- I .:

, ,f,, - :y;-‘.

‘1 b D >- ‘. ‘, .’ . E . ,‘.I c ‘a . , . \ I ‘_ ii ,‘I .’ s.,; ,’ ‘,>.. * . t ,*>‘,‘ ; ” ; ..’ .L I ,,* .‘.* . . .:., 1. 0 ‘. * 1 ,. i b_’

Page 159: Passive Solar Energy Book (1)

:.. *..

,

:* .

.,

.

12. Interior Water Wall

*

I First, water is a more efficient storage medium than masonry. A cub;cfest&k ’ water will store 62.4 Btu’s fo[ each 1°F temperature rise, while the same volume of concrete stores only 28 Btu’s for each 1°F rise in tempbrature, ’

Second, a water wall heats up uniformly, using all its mass for storage, while masonry passes heat slow’ly from its surface to its intqrior. When a dark- colored masonry wall is exposed to direct sunlight, the surface temperature . rises rapidly while its interior remains:cool. Since masonry conducts heat slowly’, only a small portion of the wall stores heat. It will take approximately 5 hours for heat .to pass th’rough an 8-inch concrete wall.

, ln contrast, a water wall transfers heat rapidly from the collecting surface to’ the entire volume of water. As sunlight heats the surface of the container, water in contact with the inside face is heated, becomes less dense, an& rises. This+novement of water produces a convection current which distributes the .heat throughout the container. By using all its mass for ,heat storage, the sur- face temperature of a water wall rises very sIGowly whep compared to a masonry wall.

0 ‘;*

.

Fig. IV-12b: H&tr&$&sfer in a concrete and water storage mass. . !

i lib I 147

Page 160: Passive Solar Energy Book (1)

. ‘-, 4i 0,

.’ ‘. ::.,.

1 i .- m 1

\%

. ,”

. : . ‘ . ‘..?&. -’

The.,vo$tme of’water in direct sunlight’is the major determinant of tempera- ,~ _r;>

.’ ,.-i +;;:::.. * . c-q;... tu’re,ff$tuation in a space,over the day. To illustrate this, an interior water

T’ . .c., 1. ,: . wall was a+lyzed by computer for different quantities of water (~$11 teick- 0 ,I_, nr+ss) using jlnbary clear-day, solar radiatim and weather data far New York

* ‘.I,, . (3ty. ?+te th a spa.ce air tepperatur’e fluctuations decrease as the volume of t the wail increases. The,space with 1 cubic fpot of wdter for &ach 1 square foot ’ .

_.. 1’ “+&g i

df glass -has a temperature fluctuation of .17”F, while the’ same. space with, ;.;, *. *s 3 xubic’feet of water for 1 square foot of glass fluctuates only 12°F;

y-F ,.” .” . -

;>.: .:. ,<,, ,‘, ,. I ?’ .’ .4,-“,. ,” 5, ,’ . )-;:I ’

,_;/ ,.

‘.I

!.i : .Q ; .i..’ ~

lo1 ,- $,I. . . .._._.... .-,f‘ _

, I I , u , .-. D

fj; :\:

c-. ;‘,; -:: :

a I , I t I I , , , ( !

F : y ,.” ; .‘f .’ . . 1 -2 3. 4 .5 6 7 ‘,e pD11P223'5'8~78omll12' .

I”: ‘) c i , Fig; IV-12~: Indoor teinptiraturesusing various water tialls. ; ’ ‘, ,.. ‘- .

,.I,.” - I

‘I k ; ,;,,’ - F :,

!I,; :. .:r

‘*> I Note;: Clear-dayPindoor air temperatures are tor a we!l-rnsuiaied. space ” .witti 0.25 square feet OF south$acinR ~lass*for each bnk- sauare

foot .di.bliilding-floor.a~a~ie, a’_2 ~, __._ h~v~[)~sslu~iefee~dPSbi_lMtfacin~-~~s~ “---

I

;,,d ,‘, &auare-fpot space \h;otild .-.--I.-. - =-__, ^ -.

i: ..-!F;7-------.iy- :. - ; \y, , T

\\ o ,- , .. ,

Page 161: Passive Solar Energy Book (1)

12. Interior Water Wall

This analysis was extended ‘to different latitudes, weather conditions, sou,th- facing-glass-to-floor-area ratios and space heat’losses. Changing these param- I eters had little effect on .space temperature fluctuations in relation to, wall volume (thi?kness). Table IV-12a lists the approximate air temperature fluctu- ations that can be expected in a space with various quantities of water and south-facing glass.

.Q .

Whentthermal storage materials are concentrated in a small area, such as a . 1 watier wall in a wood frame building, it is important to absorb and store as much direct sunlight in the mass as possible. The greater the absorption of sunlight, the smaller the daily temperature fluctuation .in the space. Table 119V-12a also illustrates winter-clear day space temperature fluctuations for a water wall as a function of surface color. It is estimated that if the wall is-not exposed to direct sunlight, roughly 4 times the amount of Storage is needed. ‘Q,>

Table IV-l2a Daily Space Air Temperature (‘F) Fluctuations ’ for 3 - . Water Storage Wall Systems m

Solar Absorption ’ Volume 3 of Water Wall for Each (surface.color) One Square Foot of South-Facing Class

-9

1 cu ft 1.5cuft 2 cu ft 3 cu ft )c

75% (dark color) 97" -15" -13" II -,2” d * i

90% (black) ’ 15" ?2" /

10” 9” P r’

NOiES: 1. Temperature fluct:atioh’s are for a winter-clear day with approximately 3 squake

/ _I’ feet of exposed wall area,for each one square foot of glass. If less wall area is exposed

to the space, temperature fluctuations will be slightly’ htgher. If additional mass is ” -’ located in the space, such. as masonry walls and/or flooi, then fluctuations will be less

than those listed.

,-T , ‘ 2. Ass&r$?&75% of the sunlight enteiing the space strikes the mass wall.

3. One cubic foot of water = 62.4 pounds or 7.48 gallons. ,_

Testing th’e performance’of interior water walls using various surface colors, a ’ researskt&m at the University of Oregon concluded: ,

As- expected the black surface performed best. What surprised us though, was how well the blue and red p.ai+yted containers per-

P \

I s 149 ‘_

1 b

” . i.

,

Page 162: Passive Solar Energy Book (1)

Y

. -~ .._

c

_ P.

“=-=-wm

, ’ cl

The Passive Solar Energy Book

- .

Page 163: Passive Solar Energy Book (1)

‘,

, 12. IntLrioi Water ‘Wall d

r iii ras . . -~~

r ’ fdrrneb. Those people who prefer blug or red to blac’k will be glad . . I ’ to know that the blue containers were only 5”/0 less efficient, and red 9%, than the black.‘* ’

.

Photo IV-lib: Intkbrior’water~wall he”ats adjacebt spaces (here and facinx page). 1%

. -; _ - b -- ;i . ’ ,A *a,, :-. .._ - ‘- - 4 --. . nl / . . . . :‘?g a ‘,, J,.: . ..*

s 5 I_

9 -;- p ‘. J i i

1. ,

*Study performed by Ran Rands and’ Randy, Shafer at the Dept. of

Architecture, under the direction of Assistant Professor Edward Ma

Page 164: Passive Solar Energy Book (1)

c,

\ ‘1 - 6

\ i’h,do Iv-1 3i .’ “A,;; * 1 c.. _,

4 a ‘I__ L

< ’ * E

* se . . i’ ;, i

Page 165: Passive Solar Energy Book (1)

i

/

B

_

3

i -.

.,.

n

\

L c

.

* -

?

I

i

\

.?

.I ,.

ve’

; ,

e.

13. Si&g[khe Wall I .I .

After locating the-major south-facing living spaces-LOCA-TION OF INDOOR SPACES(4)-and choosing the heating system for each space-CHOOSING THE SYSTEM(7)-this pattern describes the sizing procedure for a Thermal. Stbrqge &all System.

Tf . _ i I .

- ,

When’ a T~q&&,k~rage .lWalI sis properly sized, the temperature in a space f will remain comfdrtable throughout much ‘of the wiriter without ally addi- tional he&g source. However, if a thermal wall is Oversized, then more heat is transmitted through the wall than is ne.eded, resulting in d space that is uncomfortably warm. Of cou,rse, heat will be vented from a ,&arm space to reduce interior temperatures. This also reduces the system’s efficiency by

, disposing of v$uable heat in winter. If a’ wall is undersized, then there is not I enough-heat transmitted through the’wall, and supplementary heating will be

needed in.the space. The correct size of a Thermal Storage Wall will change r as climate, latitude and space heatin&qe,quirements change. c

’ .

The Recommenda!i c I

In cold climates‘(average w t-temperatures 20” to 30°F) use betwe& 0;43 and 1.0 squaw feet of sout acing, double-glazed, masonry lthermal storage

, ’ wall (o.3i and 0.~35 square feet “. space floor area. In temperae

,water wall) for each one square foot of ates (average winter temperatures 35” to

.65”F) use between 0.22 and 0.6 square feet of thermal wall (0.16 and 0.43 square feet for a water wall) for each one square foot of space floor area.

. . . . &[email protected]... ’ ’

\h’ a -.

’ Detail fhe wall so it berforms effici-ently-WALL DETAILS(14): The area, of ! thermal wall needed to heat a space can be substantially reduced by using I, .

, - -- __-_._~-.-_ -- -.- -

-- i -173 .-. ‘_ &

.

,

.

..‘*.c . .__.~ - .e.---..- -

Page 166: Passive Solar Energy Book (1)

;*

. .

~~ -~-~-~ ---< o

h ‘-

m

‘-----, ~. -

*. ’ /

0

’ w-X-~

g’

. + ; :

0’ The Passive Solar Energy Book : 1 1

.

0’ I’. :; c _’ r. , ‘*. .J’ I . -_ ---..._ -..* 1 I

.

. ’ * 1 ’ _’ --* “.

. b 6 0 - .

4% I+ AREA. I< . . ” .

$ n

. . . ‘L

* ,s,

-. . . . , exterior-l@FLECTORS(24).and/oi M?ZIVA,BLE INSULATION(23). In fact,ltheir use

‘is strongiy+ecommer$led in cold northern climates. Remember that an urdder-8 sized thermal w’~l~c&’ pe’combined with ‘other passive. systems to provide ,,

. adequate sFac.e heating-COMBINING SYSTEMS(21). * 5.. e

II e J <. I ‘. _ %

.- i-----.- - ._ ._ ,_ The-Informatidn ‘I * , ’ , d I . ’ .*I j -v . .- ._ 1

3 The size or surface area .of a theimai, storage :wall..is depend&t upon lhree ’ I, factors: the local clitiate;“/atitude a.n.d space heat loss. bch- factqr influen+

a . the size of a wall inithe followin&vay: . , , .uI*

I . , ‘.C,imate’ ’ ’ rl; d ‘1 j I

, , : .J /, The rate of heat loss fro’; a space is largely, deiermined by the difference 0

. i, ..l$&ween inddor and outdodr air temperatures. The larger this difference, the _A’ ,I kiter the rate of buijding’heat lo&-The’refore, in cold climates, more he;-lt or 1

/’ ,A; a larger thermai stoiage will is i-ieeded to keep a space at i7O”F. * * - ,’ n ‘. ,

Latitude , ’ . . . .+ ” .- -.’ a ‘i-L

.s .‘+ , I . *’ il 5 . ,

*

1 a ‘Solai e.nergy i#dlent on a locatibn or latitude of !tie &ui,lding

the winter changes-as the * a ’ at 36”NL (Tulsa,

I 8, Oklahoma) G&h &square foot of theimal wall intercep’ts app;oGiiatiy 1,8@ ^/A ‘_ Btu’s duriye’a clear January dai, while at 48qNL (Seattle, Washin&on),pthe :- ‘, * same w@! fej$ives only 1,537 Btu’s, A$ 2 general rule, a The’rmal $t&‘rtige Wall

System $.Il,l,i~?cr+ase jn size the f’arther”north a building is-located. ’ P ?A. _- : I / /‘

Page 167: Passive Solar Energy Book (1)

* 4

n

a

r’.

-..f _ . /c- .) .y.$N-’

“._. * 1 ,.__

9

‘* I .

_-

\ Y

c _ -

L

. d .c

I .._( s.

, _.

.‘2 5. 13. Sizing the Wall

Space Heating Requireme& . .’ s

A well-insulated and tightly sealed space requires. less heat to keep it at a s@kified temperature and, therefore, requires less wall’. .

r ‘., , In) 1976, a simple analytical computer model was developed to evaluate the . _ behavior o.f thermal energy fbws in rnasocnry and water Thermal Storage Wall Sys.tems.* Each wall was analyzed using hourly solar ‘-radiation and weather data as !n&t for different parameters of climate, latitude and space heating ’ ‘requirements. The.advantages of this computer model are, first, the model - can be used to pIedict the performance pf a passive heating system iii an?* g location without actually constructing numerous identical systems in each ’ kcatlon, and second, the results can be obtained in seconds rather than years.

‘.._ , “..____ The results‘of, numkrbus compute; simulations were used ‘L developing, the following preliminary sizi’ng procedure for a Thermal Storage Wall System

“.__

Sizing the System :“,--.: .__._ 4

Our criterion for al well-desi’gne&~&erma‘l storage wall is that it transmita , c ‘, enough thermal energy (heat), on-dnaverage sunny day in January, to supply a space with all its heating needs for.that ‘day. This means that the energy trans-

’ * ;

mitted through the wall .will’ be sufficient to maintain an average space tern- , . ; 3

Ii

‘t,. .-

perature of 65‘” to 75°F over the 24-hour period. . ._ 1 .I .

L - ._

\

By establishing this criterion, we are atile to develop ratios for the amount of

\ ,. .* . 1 dbuble-glazed, south-facing (hernial storage walLneeded for each“square foot’

i; ofspace floor area’. Table lVY13a lists ratios for different climates that >pdy to ’ ’ * fl, a well-insulated residem.t Notice that in vev cold climates (average Jam&y, i /-

. * temperatures 15” to 20°F) the area of thermal wall needed to heat a space is“‘-, , very large. In these areas use night insulati,on and/or reflectors to reduce the . ‘\_ .I ’ size of the system.

: \_ I “,\ I . L_

. , 2 Forexample,’ in Albuquerque, New Mexico, at’35”NL, with an”averagefanuary

temperature of 35.a°F, a ‘welj-insulated space will need approximately 0.4 * square feet of double-glazed; masonry thermal storage wali for each one

Y _ ._ _. . -- 4 : I *. *Mazria, Baker, and. OWessling, “Prkddicting the Pe$ormance of Passive Solar Heated Buildings.”

7 _

3. i” I - 1. * . I

‘”

.I- 1. 1. ._ :

p. ‘* . J 155 .

‘I’

L.4 .’ ’ > ‘. I’S

- . I . “.* I * * #

: “i . -_--- ~. , I

_:” _. ,, ;. . . (. ,.< , I b

Page 168: Passive Solar Energy Book (1)

a. ’ I p‘ .

,-CL ”

.,,. /~

,

I .d:, “’ Y ‘.

, !,

(_ .

. ,’ .

.,..’ ‘?.

The-Passive Solar E‘;rerfi Bdok. i . .

. 1”’ ‘L. -_-. c 4” ’ ‘r . *

’ * ‘. I : ’ 0

. . I(.

,-

Page 169: Passive Solar Energy Book (1)

- .’

* . *

z ;:

7 13. Sizing the W$l ‘%. __. . -\

>

Table LV-13b Annual Percentage of Solar Hefting for 16 Various Climates i ” Q I

lll.l ., . _*. r- 1 -~- -- .---- ------.-_.---.-.-.- l,i’.,,, : ..‘?.

? - ‘- = :

J - Ed 4” -

2 ..az4 .

\ * I

. 0 Heating Solar

. Q i; 0 Degree- Heating*7 Percentage of location - . ” Days Latitude (Btu/ft’,l) ?$olar Heating

” ‘L. .;

Fos hgele;i, Calif. __ ”

1,700 *’ 53,700 99.9 B 0. Ft. Worth;T*irex”. ’ ” 2,467

34.0. 32.8 38,200 + '80.8 '-

s 3618 Fresno, Calif. 1 43,200 .,~$3 - . Nasnvrlle; lep, V

- _2,622. _i 'I a 3,805 a6.1

‘Al bug.uer??ue, N. Mex. ’ D ?9,500 65.2 ', ~

,,Dddge C@y, Kay. 4,253 35.0 * 63,600 84.1. c *

5,199 37.8 58,900 -71.8 . /Y ___,'

-.“‘.Seattle, Wash. 5,204 47.5 . ~42,400 r52.2 _ ._.- -New York, N.Y. 5,254 ' 40.6 48,000 -60.2

” hedfdrd,‘Oreg, .,I Boulder, Cola,,,, ‘”

5,275 42.3. 47,400- . 56.1 ?.

- 5,671 40.0 " 62,5ti 70.0. * (

B Lincoln,’ N9.r: I 5,995, 40.8 53,500 9 !59,1 P L. Madiscq4&is.

,BistiT&ck N. Dak. .’ - 7,838 ?* .-4_3,0m 443~ 49.6 ' j.4. , I

. " 8,238 .-- 46.8 53,900 C46\4 - -* 2 ’ 4 ,i \ , . ‘. ’ Ottaiira, ‘banada

-Denmark ’ . 8,838. 45.3% - 37,900 ‘” 31.9* ,, - .

----_ ----rrrkpls,ulqino

6,843 56.0" ~43,bO 43,tj ’ .--- 34.6 .- _. ’ ‘_ '3.,287 p 56,300 '85.8 . >, ,I’ * .\ ,_/ ‘. .,. .., ,,

1. NOTE: ,*The- values in” the solar heating column. ire the net energy flow through ihe inner face

2

2 _” :d , , ? ~ of the wall into the building: ‘/ _., _ ,~ * . I

SOUR&: 1; D. fjalcomb, I. C.‘-kkdstrom, and R. 0. McFarland; “P&ive Solar’ Heating’ Evai& . 1

*ated,” Soiqr Ag+, Aijiust 177, pp. 26-23. ‘< .; 9 P

Page 170: Passive Solar Energy Book (1)

Thdmal Storage Wall System n

Ik. Wall, Details’~ _ iI ,

-14a ,

, ii

iE : I D ‘\ 5 ,” ’ _*

=1,

, ” . t: .

.

Page 171: Passive Solar Energy Book (1)

% .

:

8

\

I 4

.

14. Wall ‘Details s- 1 ’ . ’

’ r ” 7 0

-Once a rough size .for a thermal storage wall is detmm(ned--SIZ\Nk;xTHE. WALL(13)--this pattern helps ,to detai,l ,the wall so the system performs efficiently, I cy%+! -

II .P 6

* 1 e c

, Y

- The, efficiency of i Thermal Storage Wall System is largely determined’ by the ,, c wall’s thickness, material and surface color. A space M/III overheat ii more . energy is transmitted through a ttfcrmal wall .than. is necdcd. This happen-s , when a wall is either too large in surface area, or ioo thin. If a wall is too thick

’ br painted the wrong color, it becomes inefficient as a heating source since little energy is transmitted through it. For each type of walI material there is. an optimum thickness.

* :

The Recommendation + D ,I

,.,. .: ...” .-_.. ~~e!ollo~g_table..ara.guide:for-selecting-a-~~l. thickness: .-_.._ . b .A.,) __.. -..- ‘-

Material . Recommended Thickness (in) . ‘_

Adobe -. a

a12 Brick (cornmop) - l&14 ’ aL - $

69 Concrete (dense1 12-18 \ Water, - 6ormore ’ 0 -., 8. f

,_____ F -- -. . Make the outside face of the wall a dark color. Irj cold climates.add thermo- ’ cir,qulation vents, ,c$ roughly equal size; at the top and< bottom of a masonry

_ . wall to increase. the system’s perfarmance. Make the total area of each row i _

3 of vents equal to approximately one square foot for each 100 square feet of j wall area: Prevent reverse air flow at tiight by placing an pper-able panel

,(damper); hinged’ at the. t.op, over the inside face of the upper vents. 1 ,

( ?A‘ .. L) .159.‘a - *

“. - 0 ”

~ . .’

Page 172: Passive Solar Energy Book (1)

.- ., ., ’ ,-y I .

Y -’

* Y - .’

‘I ,f ’

i The Passive Solar Energy Booi ..:

‘1, .

* N

i

i

0 . . . . _ . 160 *’ l

I 2

G ‘>

,’ L .

” ,

\ HASONRY WLL

2 Fig. IV-14a

Page 173: Passive Solar Energy Book (1)

-‘ d ”

: 1 . _

14. Wall details *

1 Placing MOVABLE INSULATlOl(J(23)~ over the glazing at night increases the a -. \ system’s perfoqnance; ~I’f possible; design the movable insulation to be used

as REFLECTOPS(24) And/or SHADING DEVICES(25). Wading ‘the wall in sum- mer arid eqly fall will-prevent the space from overheating. 6

, *

i’ , I

? .-. ,

. Thei lnfqrrktion * /: v

; = , . 0

a .

In $zink.the systeq,r the, area of ,wall needed for each space has been es&b- list-ied. The details d;f the’wall, its thickn*ess, surface color avd the addition of 3’

a thermdcircu/&io.n venti and tepperature control devices,, determine the ‘.,. efficiency,of the system and its.abiIity to provide thermal coinfort in winter.

w .

To help $0~ ni’ake the best possible choice of wall details, each variable is discussed at length. * ’

. . * . - r* *

‘Wall Tkkness t b ’ i : 0 ‘ . - c c I

4 ‘ihe optimuti. thicknesi 06 a thermal storage wall (based on annual- per- ” 1 formance) is dependent on the cbnductivity of the material used to construct ’ , the ‘wall. The effect of conductivity for various galI thicknesses is shown in B ! .

0 9 - <’

. I -.- -

-~--. _ ~ __+~J-~ (FT) i_.- _ - ---- --

*_ m I ._

Fig. IV-14b:“&early performa& of a thermal storage wall‘forvarious 1 8: . ,’ -\

Lb. ,‘\ -- 4 0 k I ‘.z$g- r ‘thicknesses and thermal cqnductivi ti,es. 4

._- --

,‘. + D

..) .‘.l :, *- 8. “16-l *

- , * I .’ , 0 ,- B . 0 ? ,: ,., 1 L .’ I a,. ,I_’ _c / * 1. ’

I .:, .‘:. . ‘,_ ‘, ‘,, : .i‘ ,,,, ~, -’ _ . : . ~

Page 174: Passive Solar Energy Book (1)

,-‘, : j i i : i

’ :. ‘\

,_

‘. _,

\ : --;.

.‘. . .

--------

__

_- ,. I .,._ - .._.... -.-...i c ,

- : .I

II.

_

,“... 1. I.-.-, -

:‘. F e -- &

a’. y:r 2

, ‘-de

,I’ ,

,, .

-’ . . I ., . *...

I- ‘< i. s ; ‘h . I -_ _ ; .’

; ,,,‘I 0 ,,‘y , _ :’ ’ ;“t. : ’ .I i . 2-c h. \f \ \ , .!. ,i :::9 /’ .r,;, p. ‘. ‘-I”+ ,t,;, ,. II

I. .

,,. -. The PWve Sblar Energy Book

b 0 :’ :.

,Alamosf.New +?xi&&$-thefollowing iesults, according to our an,alysis, aru “. * similar fpr all locatio’ns.

_ . . * m. .

1. The optimbm thickness o’f a mi+.pnry @l/ Increases & the ther’mal con- ducCiyity of.he &/I increases. Acw%lI ma!& of a highly conductivq’ material : transfers heat rapidly,from its collecting surface’ to itginside face aEd, there; fore, niist -be* thicker to avoid pr.oviding too much” heat at‘the wrong time. A . f . wall. of low.conductivity traqfers heat sl&&y so it should be made. thinner to. I U trqnsmit en ugh heat into b Adobe is a gobd illustration’ for the abpli- cat&n of this. principle. Most eople, because of9 traditional construction prac- tices, will make--&n adobe thermal wali very thick, say 2 feet. Adobe, hbwevei, .compa@ to other” masonry materials, has a low conductivity (see’ table _ l.V-41 b)..A 2Afoot-thick adobe,watl is‘roughLy~40% less efficient than a IO-inch-- thitikadobe wall. . . .

-2. The’ e#jc~ency of the wall increases as the..conp’uctivity of the wa/l,jnc;eases. The grtiate4-the conductivity, the more ,heat is transferred through the wall. As the c$ductivity increases, the optimum! wall, thickness increases. The ’ thickec<&a!l abzorbs and/stores more heat, at th6 e;nd of the day (sunset), for usF,athight. j, , ’ ‘. - .

f: ?i I 3 ‘. ,‘. .$. for mason-ry materials there is d range of optimum t&knesses. For example,, & concrete wall has roughly tl?e. same efficikncy wheth& it is i2 or 18 inches___ . 1 in thickness. _ *” I’ L .3 _ $~* *

- . *

.a-.. Y ‘., 7.’ : .

.

,, I’_ ,a-” ,) ~‘Tabl&I!I=--&~lis& ~ermal+3nt$ucti~nti recommended th,ickne& &or -Y’ _~ ~- :,:I : e-m<m .fiie f$&^;;lo ) , R y used wdl materials: ihe choice of wall thickness, wi~thin the 1 *’ ” ‘; i ;angeig&en fdr &h material, ,will‘ determine the tern

B erature “,$‘- :

, thye spacl-over tl$da.. flu&uation /in

” c ‘c ,i :_ 31,. :“. _, ._ : a I ‘4 ;.~I. I” :$ :,: I

?o understand tfle imbact of wall.tficktiess on indoor air te’mperature fluctl- ‘. .’

. _~ - :_ .!.‘ ,. .~’ .L., \ ,td look at computer.sirhulatioqs. for -both sou,th-facing, _-,’ .’ 1 . i arr’d water thermal storage ,walls. For’ example, in , .

,- _ +n,g Jan,Fa-ty j$ar-day ‘s?lar radiation atid ,‘, ,!’ ., that would- ,ycur in a. well-insulat’ed ’ .B

,” .!’ ‘,, sp& with 0.5 square feet bf thermal &Ii for each. one square foot of- building I * 0

5 n . . a . I’

bl, a

\ ,

:. ‘_ .; ‘,’ ,, I@- , ;, .- !‘- ’ .,”

,I.(, t ‘_ ‘,

1. : ( .- ;

--I ,D

., Ip

.- .,

Page 175: Passive Solar Energy Book (1)

_ I t. I I / ’ . u 14. Wall Details *

5 a _ . - *

1 , -’ .: . Q ; --- ..~, filoor+Oarea “(i.e., a 2O&squar&oot s&e would have lOO.square f&et of thermal

. wall) are represented in figure-IV-14~. i I, c c

1. I,. / ,,, 1 I

‘. -L- c 1 “0 i ‘* .

Table IV-14i@fect of Wall Thickness on Space Air Tempelature Fluctuatioirs -.

Thermal if

Recomnihnded Approximate Indoor Tempgaturg p~)~,. ~~_~ . .’ : Condtictivity Thickness Fluctuatio”n as a Function of WJll ’

Mater&l (Btu/hr-ft-” F) (in) _ Thickness ! ..‘. -\. .-

.’ ‘=, I . - 4 8 '12 16' 20 i4

.,* hj - in =in in in :in in \ I.

‘I Adobe 0.30 r 8-12 a’.. 18” 7”” 7” 8” . . .

.;. Brick (conimop) i’ 0.42 10-14, I _ .:. 24” 11” 7” . . . . . . 9 II Concrete (dense) 1.00 12-78.- . . . 28” 16” IO” 6” 5”

. . _‘; Brick (magnesium

additive)” I 2.20 16-24 * .: 35”’ 24” ‘17” ‘12” 9". t

” Water3 ’ - 96 or more ’ 31’ iSn 13” ilo 10” ,,9” ’ S), . . . . :’ _ .’ . ?, :

NOTES: i.. Assumes a dquble-glazed thermal w’all.. If additional mass is located in the space, ~ , . ” z~h-a~+t~asomy~~lli and/or floors, ihen tempeiature fluctuations-will btiess than o (I I

: __._.--- ’ _ .those’IistedlValues given are for win!er-clear c@. . ’ .’ .-- . ‘. ,. j nt

___.. -.-- -- -_-. 2.‘Magnes/~m is comfnoply used as’an addi&e to brick to darken its color. It alsd !. ;’ .,. . + -2 . greatly increases.the thermal conductivity of th: materiil. ’

1 0

i. : i___.-., a. ._,-. “‘7*.‘*“-““““.,.““.~...... ..,. . ‘3.~ WheTusing water in tubes, cylindqrs or oth&r &pes of circular cohtainers, tise

I at least a 91/q-inch-diameter contajner or l/2 cQbic foot (31.1 lb or 3.~4 gal) of water ’

‘-. :, ) for each one square foot of&i& s -1 - -- ~-~~ m-m’ ~~~ ___ -..--- --

-s--y -- ym ~ __ _ ~-~ i*r - ~-~~

‘>, , :

_ t -A-; 1. , ’ - .-,_. ,

7s y . . .P d.-. I .- 1 ct ,- 1 ‘: ! .Note that indoor temperaturdfluctuationi over the day are notiteab‘ly different ‘, , 4

:I’ for each,wafl thickneis.*?#$e space with Bn S-i&& concreie. wa/L’has a tempera- - - ture fju&ation df 28Q+vhile- the same space with a XI-inch c&c& ~a//

2‘ , ‘. ’ has. on!

J

a.$“F fluctuatidfi. A‘space with a ?2-inch water wall (1 cu ft) fluctuates 73”F,

I hile tb’e same.3pace with an 78+-t& water wall (1.5 cu ft)L fluctuates

4.’ only 70%‘~ O’ur %nal.ybs show@ that differ&t latittides, weather conditions, v wall-to-filoor+rea ratios and space heat. losses.had oply a slight effect.on in- _ \ (I . a.

.I ,, T dotir teibpeiat’uce,,,f,lu+ations. As a general tile the greater.the wall thickness I ;, ‘,,’ ii* the’lem+Cindcpp&&tperatur~ fluc&tions. - ’ . 3

jY -, . ..; ., ‘,a.” ’ .-\

y

, . ’ ‘. : ~ . I

‘,/ ‘. . ‘. .: , I. ,,, --‘. /- i I’ ! ,! I : ,. ~ I” < ‘. ” ._ ,j&-,.>, 6’ ‘. * 163

‘\_,_ ;- “, i

!. l <-. _ t, D. ” . ’ o _I’ h ‘!s ,, _ ” .,I ..’ 2 ,~>~i,,,~ ,; _, I ; _, . . .,, .+s-,(,. -:” : _I j 1 -‘. I’:, , ,, .

Page 176: Passive Solar Energy Book (1)

A---/ . h

ff

- I_

\ /

-. -- . II. so-

---;

L.

8.; -

d-

i /

30- D I

k

.;& '9 -

_---~ r

'.. 1

j ( s

i . to .-l-.’ ., ._ r .,--. ,. ...r _ .,.-. 1 , , , , , ,,I , . . , , , . . , , , 4 j t 2 3 . 5 B 7 II D 0 l nq ,2 I 1 3 4 3 8 I 8 0 la II I2

C&KRETE THERMAL STi?kAGE WALL = ) ’

‘?,? I i

.

.

. 0. ‘ >a * ; . P , .

)-,, . 164

t TThiz assumed: no heat loss throug! the thermal wal1.j f , ? ‘. * .

i : ‘: 1 -.

j 1;

.’ 1 ~ I ” . ..--

., ./. . . -

Page 177: Passive Solar Energy Book (1)

.

II

1.

14. Wall Details l,’ b

.’

.,

*

Photo IV-14b: Interio%yeat,ment of thermal stora’ge walls. 4

-

165

+

‘k ‘.. -,

* * <

j_

Page 178: Passive Solar Energy Book (1)

’ , > ,..

* , ,

. . ; I - I

. . P

.*

The Ppsive Solar .Eriergy Book. 8’ , - . -

. 5

*s, .” A final point. Wall th,icknes”s can%be,used to predict the time of day a space will

- reach its maximum and minimum. temperatures. in general, thwhicker the * . wall, the later the maximum space temperature, Figure l-6 in Appendix 1 ” ‘_

graphs daily maximum and minimum temperatures for various wall materials * ‘I? - -.._ -Xnd--thicknesses.

* o *

,/,’ ? . . 4’ b

:. :!. -4 . . ., : .’

‘.’ .r ,. ission .dp heat through. the wall to the b -

‘. - . . ,;,

I

I .

.

,I, 3”.

Thermocircu&ion ’ bents ‘(Trohbkd) * 1 :J’ .

. . -. -7 on a sunny winter c&y the tempeiature of. thk’air in th& space betwqen. the j masonry wa!I’and glazing is ve.ry warm (*140”F): Locati,ng ppenings’ (vents).at- the top. q.d bottam,pf the wall ‘induces the natural (passive) cit%ulat& of this. -. 2 \ warmedgir mto the’buildiing. As warm air rises in the ai’r space, it enters the room,th-Sough open’ings~at the top. of the wall while simultaneously drawing h- J

-~*

, ,* ,I coql;air.-from the rr)om,through openingi in the’bottom of the wall: The nat: . i

’ uidl con”rect,ion,of heated air c:ontinues effectively for 2 to 3 hours aft& sunset ... ,L-?. ” ~&vhen the wal.~~uqt%ace$ecomes ioo~coql*to”induce a warm aikflow.‘.’ ” .,

2 .~ , 1 l ‘.,

. :i!

: .‘T

. : .,. ,

.-I

I’,’ . .

‘. . . 3%

.,

i”

At night th.e a.ir in the space between the wall and gl&ng’*c$ols.,As & cools ‘it

i ‘~ / ./ becomes. heavier (dense). and. settles. Thi&&ol air enters, the spa’&; thfough the open vents in the bottom o&the wall whiie, simultaneously d@wing ti:med ‘r:<. * ‘.

. room aii through the openings in- the top of the wall: ,To preveijt$ev,e&-aii-. i flow at night, attach an operable panel ‘or damper’o&r ttie’ins~de..fk’e. of the

upper vents (see fig. IV;14d),. I ’ ’ . -~. i ‘* * ’ ~ . .---- --. :I, 1L. - el

1 L :. ,;_ ’ The impact of.climate on ‘lo, ., . . 1.

. I i’ -. +----;-; -~-L-’ -b- p--- .

I.j.o* 1 _-- 166” ( :.

‘,‘,.’ : / ‘, . ,_ ,-

,) : /. ‘.,“. : I) : “ri;+ ,c;.:, 1 ‘.‘,, I ,,’ ” ,,*:i rt;:,! _ ,:y;, ,I,‘. j ,.i: f .‘G. . . :

.‘i’, ‘.. .~ 1;‘: I\ ’ 2 ! , ‘. ’ _. s ,a ,‘I . em.: -: 1)

Page 179: Passive Solar Energy Book (1)

I - ,

;; ;. *y; 1, ,. .,,,. ‘. ..i: * D 1 ,, _ I .

,;,:’ ‘. ” .. ,L.,

J,.‘-. ; 7 ., ,.

.;. ..-. ., e’ 0

- _.

:. a

‘,, .._

: : ...I

_. ._

/’ c

4 rl : ’ c

, i, 1 ‘. I

I *

n

1 without,vents, is given in table Id-14b..Th,ree, walls were studie& for each . ation>.

.

’ al (L “IC

: , .,. I’, . .’ . cz

b+-- ‘- ., 1 ,‘, I, ‘, L

. ‘_ s* “S. I ,) ._ .i

I. Solid wall -No thermocirculation vents. *

2,” Trombe -wall-Th”ermocirc$ation vents with airfloy duiing the *day: ‘n . .

_. time only. Reverse ther’mocirculation thapnoimally oc- * 9 b curs at night is prohibited. . A *

3. Trombe walIYThermaci”rcuiation vknts with no, .reverse contrdl.‘Air- . ,

e flow occurs at night. .‘. .-

o : ‘; . -t h

. ) 1

>.’ .

.- ’ - I

ile IV-14b Annual R&Its for .an l&inch ,Concrkte‘BThemal Stor&e WalC 1 -

,. C’ty ? ’ L ‘. : ,,

Annual Percer+ge of Solar Healing ’ ; *

’ ) \

‘- 8 .,: .‘-

.- ‘\

.’

0

‘i. :, ) D SW I

. .- TW .G‘ tW(A) ; ; ,_ “ ”

‘I . . ,’ f 7 ,$ 1

p98.0. .4 -Santa Ma’ria, Calif. i I/_ !', Dodge City, ‘Kans. . 69.1 .. 7 .

97.9 ’ *, 97.3 -71.8 62.8

:/: -- ,1 - * b Bi$ma.trck,‘N. Dak: ,~ c 41.3 46.4 ' 31.1 : ', -, Boston, Mass. 49.s 56.8 I?

, 44.9 Y Albwuerque., N. Mex.

e 'I -84.4 $4.1 '

‘, Fresno, Calif. . 81.1

a 82.4 '. 83:3 m 78.6 ' Mad,isom, Wis. ’ ‘. 35.3 . : ,Nashville, Term. ‘“.

41.6. - i4;7 b

Medford, Oreg. ,/’ ’ ’ ‘. 60.7 65.2 54.1

53.3 p 56.1 42.2 : .' . 1,' I 7 I,; -

c ‘a , z , =’ : __~ NOTES: 1, Eklding loid = Of5 BtulhrsF-sq ft.1 .’

- v i,‘.,’ ,- I., 2. SW: Solid wall (no vents) \.- ‘XI* :,:+ , TW: Trombkwall (no reverse vent flow) .’ ” ’ ~__. _-. .- -- j _L 3.. ~_

il. -. TW(A): Trombe wall with vents’o’pen at all times (&verse flow at night)!-’

: j ’ s,olJ D. Balcomb, 1. C. Hedstrom, and R. D. McFarland, Passive Solar Heating of’Bui/dings

,. ‘_ .: _

(Los alamos, N. Mex.; Los Aiamos SciGntific Laboratpy, 1977). ‘* ”

d ,-’

. - I” .:, 2’

” I,. ‘, a *masonry wall

-- 1~__ + ; 5 in mild climates, ;:‘: “. 0.. comfortabie”and \ ’ I’ ‘” . . . ‘ ’ .’ . ,,‘, ‘. “ D *o #

” i ,;I,, II ,/:,i ,-

:., .I 163 --~ - -.

,:)I_ :,,: : s,* B *.

I:,‘y,,:.;, I c. .,

!:’ ;; .. .* ‘. _. . \

” A 1

i ‘... _, : ; ,.( ”

:;- Cl - . .I / . . . . .._.l___. ‘h \ I

Page 180: Passive Solar Energy Book (1)

‘.

,

2

\’ ---my:

I

The Passive Solar Energy Book .’

Photo IV-14~: ?hermocircu!ation vents in a masonry wall. . e

heating is usually nit needed Jt that time. Providing vents without reverse

flow control reduced the efficiency of the:wall in’all locatio’ns. In most cases, the addition of vents with thermostatic control results in little increase in annual performance.’ Vents shou!d be equally spaced along the top .and bot- torn-c&the wall. .._-.-. - i,

Space Temperature. Contrkl I ,’ 0” If a space becomes too w.arm, movable insulation (such as curtains, sliding panels)-‘pIaced over the inkide face of a thermal wall turns off the -heating system: Thi‘s is a very simple and effective way to control indoor temperatures. The system can be adjusted by covering all, part or none of the wall. Ventila- tion is ‘another method of indoor- temperature control, though somewhat less effi,cient. By opening windows or activating an exhaust fan, warm air can be removed from the space. q

168 .’

‘ . ‘I+

Page 181: Passive Solar Energy Book (1)

14. Wali Details jl

(, Q

i . .

C’

. r P9, .

: :

e

/?

+/ -.a

’ ,. 2”.

I

/ d NIGHT

0

* ‘Z .

L

a/ *

4

1 9

.

QGHT - 4~‘ “4 ~~I'I+ITFERM+~R~~T~~N~

I * . _ , , I

b

-, _ 1 Fig. l&l&: Trombedl with thermbcirculation vents. I --.-----~ ~- ---

L.- ., j ------. --- -a- ._____, r.-- -_ --. I ii,. ‘I ! : ?.A. c

I __ .I

----, -------- ._ .c 169 /

v-;’

Page 182: Passive Solar Energy Book (1)

I\.’ .v I F “: . i 1. .. . !

c. .

* 2

I

. \ / /

, 1 .t& ;

I. _ - -.

;JI

/-

:a: .‘le,

,.I *

-f; . #he Pas&+ Solar Energy Book ,I,‘~ , ^

. !moi,>- .-,;A Masonr; Wall VerSu’i a Water Wall

! ! .“For the same size Rail and h&t storage capacity, a water &,]I is on/y slightly I, a j . more efficient than,a rn,asonry’wall. A water wall has the ability-to,absorb heat-,

quickly enough to k&q its surface temperature relatively cool di;ing the daytime, while a ma.$&,~‘walt, which ciransfers heat to its interior slowly, can rea?h surface temperatures df 13O”F, on sunny days. High surface temperatures reduce the wall’s efficiency due to increased heat loss through the glass, to the outside. however, at night the0 situation is reversed ari’d a water wall

Y e 1 <a- mai.ntains the hij$e; surface temperature and jthus has a greater heat loss.

-. J 1 0

.J -‘.~-<,.

. I k;,. f.

. I

;: ,_’

:. Y -.__

Heat transfer through a cqpqrete and<-Gater wall. .A- : ‘J

!’ / /

:

Jig. IV-/l 4e:

Page 183: Passive Solar Energy Book (1)

” While a water wall is3 slightly more efficientThan a masonry Fall, .containing the water in$-r aesthetically pleasing ,way so that it is acceptable to a large consu-met: &arket is a hajot- design cohsideration. .Tb date;most applications ..

,r ’ of water wallsShave been either stacked %-gallon drums or freestanding metar * I :. ..j -1 .

and-plastic cylinders. These clearly have limited appeal. With the manufacture , of a. va-rietyof wall containers, public acceptance and utilization of water walls

: : , should insrease. \ . I’ I

3

\

.

a

.y ’ t

‘i 4

I ,.__. er. ’ D

/iJ.i :

.,

,; ’ 5, 1

.

n

6

.A

*

; --9----

--r-

-

,.

I

,

. . ,’

. . . . . l \@......,.‘, \h. _ ‘1 .D I. .

- ‘. Q -. I *

~’ Y ., ” ‘4;

- ‘. Q -. ,

* ~’ Y

., ‘I ‘4;.

” fl 5

. 0 : a*

.

- , c

*- <‘,“, ~~ mm,_ ~~ ~~ --A . .

__-* ___--- ---, - - - ~- - - _--

-_ m ,i * .

a -_ c 4.

- , c

*- <‘,“, ~~ mm,_ ~~ ~~ --A . .

_-- __-* ___--- ---, - - - ~- - -

-_ m ,i * .

a -_ c 4.

\ I

c

a R

_I

a- -Q I

L_

.‘\ j

,’

1

.

- .-

b ‘<

- -

Page 184: Passive Solar Energy Book (1)

Attache greenhouse !!jyst&n I( y;

I / 1’ -_ CT:

..‘.“’ I %- ~

*. ’

;A Photo IV-15a *

r I /

.

“1 7)’ i J 1

Page 185: Passive Solar Energy Book (1)

.

B

:.I 5.

3 7 .I I L

0 d7 :

\ 0

il!

/ ,’ ’ b

u” ‘,

i

’ \

.-

Sizing.the:Greenhouse

(

*

I

A building located in the nofthern portion of a sunny’ area--BUILDING LOCATION(l)-insures’.@hat any additions or projections along its so&h

‘I ‘ ,Awa4’1-BUlLDl,N~SHAPE-AND ORIENTATION(2)-will receive direct,.sunIight.

r * __-~- _m_----- ~_I-. Thenr~r~greenhouse, an efficient and econo-mic -way to produce food, wfli,.

supply heat to a bui.ldin,g v&ten attached to its ‘south side-CliOQSJNG THE c,SYSTE$4(7). This pattern helps size the ‘area of greenhouse glazihg riecessary ’ ,’ a - for collecting enough solar energy to supply heat for both the greenhous’e and -the building. * ~ . . .I

II I ;

r.

.

I

~__ -- b

. ’ ,

” The con$i6at& nature of thermal energy flows between ,a; attached green- A ,7- house an& building makes it dif&ult ‘to accurately size a greenhouse and to

‘ n ’ ” predict its perfo&ance as a heatinasystem. W’h& properly sized, the attached 1 gre’enhouse not only heats Itself but heals the spaces adjacent to it. ‘However,

0 ’ the quan@~f heating pro@kd depends upon many vaiiables such as lati-

I. . ,+tude,*clima$e, therm$$ora’ge mass,.,trzgd the size atid insulating properties of : the greenhouse and $pbceg’bei.ng hBat:d. c

+ i

.a d’ * ‘H 1 :‘. *_ * ,

1-P ” / The RecmAmdation .* * ‘x I

I ,

Extend the” gieenhbuse al&g th6 $outh ,wall of % the buildin$.adj.uln~ng the - *spaces you want to heat. 16 ‘&Id climates;,uG between 0~65 $,kd l.Ssqclare feet

: :

for’each one square fodt ‘of (adja- use O’.33 to 0.9 squate feet of’

ing floor area. This area of glazing will,?& day to keep both the greenhouse and

of 60” to 70°F.’ B I _’ .

Page 186: Passive Solar Energy Book (1)

,Z.’ _

i ;q 5.’ - , .

./ h. *

b ?

.* . , . .

d 1 I d

n . 1

, e

b - ‘0 -c i

The &ssivq Solar Energy, Book - * -

, A

I

,I .’ , . *$

m

i’ *

‘I ’ P

I 0 i

I.

‘9 ~ -

I ‘I’

\

:

,. . 7

‘1 \ -. . i 3 . ..., <g!$Jfy@ . . . . .

8

‘I -3 . ”

‘, f \

I .

, Locate ‘enough therma.l mass in the greenhouse so that it absorbs direct sun- a . ’

., 8 light and dampens interior temperature fluctuations: Construct the mass wall‘ betkeen the*greenhouse arad buil-ding,so that it alloys;for the efficient transfer

:of heat bet-the t~Go%pac$!sT r ” 1

: _ ” I’ If4 1.: @

r*EE~-coI;INFeTION(1,6).- 7 .-~ - *

: Q(, :‘-

,’ i . . !,The l&x y&ori

y ;. .;f r . ” _ ,, q J 1 . -,

, ,~ ,-’

,,

“i’ t , ; ,b : c “, ;A$ . . .* ; 5

,#.ln m&t cfimatesk well-constructed attached solar greenhouse collects mofe ’ m ._ * ..” P+-rergy on a jl&ar winter day than it nee&foi heating. For ex%nple, a green:

house’ lbcatedk;n r\?ew York ‘City needs about 720 Btu’s of thermal, energy for ’ I’ , \ &c-h square foot of greenhouJe gjass (double-glazed) to ‘keep it at an average

“I .” .2 temperature of 650 F .over the’day, However, the daily solar gain. through ‘e_a_c_h_ -.__. . . *. square” foot of dowble‘glass’is apRroxi.mately 1,420 Btu’s, ‘or inea& 6 the

quant;ty of 4ieat needed by&e greenhouse. I a i’- &, ’ ’ 1 .!

, i .A 9,portione of this extra energy .‘can be conducteij through the common walj

~‘.V> ‘0 7 between the greenhouseand the building. In this way, an attach,ed.g&~%oti?,e j$’ ‘4 I . B ” ” ;

3..

d ,, -, 174, ;;‘i ” ‘,, _“‘: , ~ , . *. ~”

,.I .‘e ; m’

ia, .’ . . k’o. ‘9 - P \,:. ‘., ~ _,.( ~ ‘.‘: j”- *

I .- ‘P

Page 187: Passive Solar Energy Book (1)

.- --.: r;‘ i -- *: :

i I- ‘h.

, ‘,

7 ‘_ : . . . 1; .’ . . ‘b Vt :- : __ f

\ . * ,’

I 1 L

0’. lb.

* I. t , 15. Sizing the Greenhouse * c ~ -_>----- __~__~~~~ ~-~ -- -----

__-- -i r

T has thspotential to supply a substantial amount of heat to the space(s) ._ . I . ’ r) i- I

erm;l relationship between a greenhouse and a building, actual

1 - interior and ,exterior condtiions were modeled -by computer.,From simulations,?

U#ig various’climatic c;andifions ,a$ greenhous&building configurations, rules !( I. bf ?humb for sizi 0 an at$ahed greenhouse were developed. Since a, green-

;; mostly glass, the quantity of heat iollected over.the ..g.“‘, the quantity a?d orientation of the glass. Table IV-Isa

6. ‘. ’ 1. Iists-th$area of south-facing greenhouse glassneeded to adequately heat one 4 .

: ^ sguare foot ofPpdjoining building floor area’during a winter-clear day. That is, ) a 1

- enoeh heat will be collected by the greenhouse to kee,p it and the adjoining j ’ space at an av”era$e temperature of .65” 1 to ‘70°F. Apprwimate glass areas

~

. \ (double-glazed) for cold and te’mperate clitiates are given for greenhI%+ d buil,ding combinatipns incorporating either a comma-;! masonry or water stor-

age ,wall betweeh the spaces. Y , . ‘?dd -,A : - 1 I J : a>. . .z e ( ‘> -., 4 . .F ‘.

,i\ , I . = Table IV-15a Sizing the Atta&ed Greenhcyse for Diffckent Climatic’Conditions i

.) -~- ~~ ~~~ ? ~~--- JvGa@ Wiritet I.

: Outdoor Tempehture (‘Fl ’ . ,

-I Square Fe’kt of Creenhouie Glass ’ Needed _’

*‘-. (degree-days/me.)’ :B J ‘;

for Each One Square Foot Of Floor Area ’ ’ ‘& ;)’ 1

‘I * ,> :. c’ \. 0 ---

>’ ’ ‘. Mason& Wall I d ” ?

* I , a. p’I: @Id Climates L ’

* I

L I i 20" '(1,350) * 0.9h-1:5 - I 0.6a11.27' -"t ' * ,

. . 26" (1,200) .

"(

0,78-1.3 1 " - 0.57-1.05

'. 30: (1,050~" ' - 0.65M7~' ), 0.47-0.8 -.

, -T_emperate Climates . . . \ .” .! “1, ,..r , '.\ 'I 35" (ho), - 0.53-0#0' *'

0.42-k& * *

0.38-Q.6si "' 0 ~0:~010;5f .:' .

,'., ' 40" * (75@ ',. .1 45", (600) ’ I’ i 0.33-0.53 * 0.24-0.38 ". ' .

,L : .: '

,; NC~TES: 1. Temperatures ad {degree-days are list,ed for December and- January, usually the t *

coldest months. I :, i ,I’ , 5’ * .* ,. 2. Within each .range chodke a, ratio akordihg to

i.e., 35”&1,, use,ptJ-le lower glass-to-floor-area ratios; D use, the Higher ralios. For a poorly insulated‘grkenhouse:or

more glass, 0

Page 188: Passive Solar Energy Book (1)

/ I

1 I

\‘

‘. , , ‘.l(

1. *‘li

‘. p,,, .,, ‘ II). l<,. 1 .,.,I ‘ .,S_‘~‘_

, , , , 1 “K,. ,.a,, ,>,,,. ‘,“y 41,,1,4,‘ ,.,.,...~ ,‘)

The Passive Solir Energy Book

1 r %‘ L. IP

Photo IV-l!&: Ait;lched grmnhousc extends along thr wuth \V,III d the bullding---beiore----and after. .

Page 189: Passive Solar Energy Book (1)

i 1

~ 8

:i .

15. Sizing the Greenhouse

For example, in NewsGork City (40’Ni, average January temperature 35”F), an 3 attached greenhous,e with a common masonry wall Lvill need about 1.2 square feet of greenhouse glazing for each square foot ot’ adjoining building floor area (i.e., a 200-square-foot space needs an attached greenhouse with 240 square feek of south;facing glass). ’

When using a thermal wall for heat storage and transfer, attach the greenhouse so it’ extends along the south”wall of a building exposing a large surface area of thermal wall to direct sunlight. A greenhouse elongated along the, easL-west axis is \he most efficierg! shape fo’r solar collection-BUILDING S$APE +AND CiRIENTATION(2). *

Whenever possible recess the greenhouse into/the. building so that the east and w,est walls are also common partitions. This not only reduces grccnhousc heat l&s t7_ut iTcreases the amount of heat transierrkd+o the adjacent spay+?:.

‘* ‘./

--.” “,_

D

Photo iv-15c: Building surrouhds th&reenhou2e to reduce the exposed r: d ~ * ..--

~. exterior surface area., ’ 4: 1:

* ___,._._, .---.-- -%y- d $ “I .I .I . . j ’ ‘,?

\ 177 1 ‘, , , _’ . , ‘. r’:’ -7 . . . . i.. ,,._, *& d,

; I-_

Page 190: Passive Solar Energy Book (1)

‘,,,,W ” Ix- ’ -

* ,

-am’ it

P .

:

I a4

The Passive Solar Enelgy Book

,

An attached greenhouse with less than the recommended glass area works with the same efficiency. The amount of h eat collected through each square foot of glass remains the same, only with ie& glass, less heat is collected, The area of greenhouse glazi:ng will determi(e heat supplied to t)e building &e

the potential contribution of solar he year-i ’ I;

When a greenh,ouse is attached to the .south’wall of a wood frame building (i.e., as in a retrofit), heBt’.iX supplied tv the building mostly during the dar- time and early ng. On a clear winter day, because high temperatures are generated in t eenhouse, heat is conducteds?through the common wall

, into the buildin le wall, though, has li;tle thermal mass and stores only a ,’ :1

‘L

Photo IV-15d: greenhouse addition. . 1 >

k

,i 3, d: L?

.

Page 191: Passive Solar Energy Book (1)

ij 15.. Sizing the Greenhduse ’

,I- /A-

4. ..,

. small poifion of this heat. At night, as outdoor anal ‘greenhouse temperatures .?.

\

.

I ) 1.)

/ i . . --._

i

drop, the frame wall cools very quickly adding little heat to the adjoining space. LFthough the common frame wall is not a heat source at night, it is __~ not a heat loss erther because amngtF% greenhouse to the building pro-

.~ ______

tects the wall. , :

When the primary func’$on of -the greenhouse is to heat the building,-taki heat from the greenhouse by mechanical means and storing it for use in,-t .building ,wjll increase the efficiency of the system.. This approach works best .wh& the greenhouse is allowed to drop in temperature to about 40” to 45°F

-. at night. While this system is feasible in temperate and. cool climates, in very u

’ -cold climates most of the heat collected .by’ ttie greenhouse is needed to keep _ I .‘ it from freezing at night. ‘( ’

‘.\. * 1 ;. ..: 0

I ’

” 0

I

i

a

,

Q ?

, \ _: ..*.. -. .-.’ ; --- -~ _- *-*- ~-~ B __, .-L-L .

. _ - I ‘, - .

. . w 1 : ,X ,,,_.. r _... . . . . . . . “” _ t, ci c , a m . ’ I],

0 = /, ” I- j

< t i ^ j : ,\ h ’ -I” :’ *. ,’ ” ’ ;;/ ,: c ;;“;

Page 192: Passive Solar Energy Book (1)

,- i L- --j

. . i - \

6 \

. Photo IV46a r

*

4 . e

Page 193: Passive Solar Energy Book (1)

16. .Greetihouse Conned&i I_ 1 Q l a

_ _--~. .--~ ~~~

( 4 ? F * I

’ : ,

>I ’ ’ ,

. a . _

. .

This pattern completes’ SIZING THE GREENHOUSE by specifying the ‘:’ ‘. /’ details necessary for a pro’pelj- connection between the greenhouse and- the

building. in -1 -, , 2 -

< / <’ : , 111, t . .

- , y-.0 .o:. <,:+a l . . . ,. , ,

@ ‘, , - , ,

/I I, . ,, -’ 1

1 ‘t ’

‘- , I .%

1 ‘---.___ , p ‘,

. _’ ‘4 1 -’

‘* s :.

““i, The ‘detailing of the thermal f tonnection .‘between rihe attached greenhouse . L

and the building will determine the’effectiveness of the greenhouse as a heat- ’ ’ _ 44 ‘- -1 L

. ’ ing source. For systerps that rely on heat transfer through the common., wall between the gi-eenhousE.and adjacent space(s), the efficiency of the system is

~; e

~ largely determrn&d by the surface-8rea of the wall, its. thickness, material an.d surface color. ,, ” **, .-- \ i -. - . *

. ‘_ _a . - n i

, * ‘Tie Recomn&jati($ c ’ ’ , 1 , _ * 1 .

* ”

. . When t,he principal kethod “df heat transfer’ between’ the greenhoye atyd build.ing is a thermal wall, use the following table as a guide for selecting a wall ‘thickness: 1 . Q. “( .

/ * . I , I *

Material Recpkmended Thickness (in) + , y_

* ‘, . + f

PI . 0 .J *-.-..d + 8-12’ . . 0 . Jdobe ) I - ,- .- , ” n ” Brick (common)‘. ‘lo-34 , ;GP !‘-

r , . .\:. n 1 .

,% I o_ ! ,” ; i .L ‘J Concrete (dense). .r

~ i ,\’ l(;

I\ Water . _’ ‘..___,- .

R 3 . 4 ‘u. .-.

~~ ~~

ake the surface’ of the,wall a medfum &ark color-and be’careful not to’ . u_ direct sunlight from; reaching’ it. -$I cool and cold climates,Jocate small or operable windows in the wall to, allow heat from’ the greenhouse

directiy.into the buil($q durin$he daytime. 8 p 0 i I . ‘I _

r\ 1 ’ -i . 1 I ”

&,*y ,181

Page 194: Passive Solar Energy Book (1)

1 --‘“3

J I

.*

_ 8: . , _=

‘.e . , .,y:; h .” , tg .- 1 ..; ;J .:

,. ‘, : *- “i’

‘% ’ T&e, Ppsive S&dGE,eigy Book .h -,I* L. “. . * ; \

c . ‘. *’ . . ., . * * . i ;& . . \’ + .,., ‘,, .: .’ , 8’ I’ , .” . , i

--

I.. * a ’ ,‘p

1 . .F . . -’ _ (i * ’ - I

blASONRY ., 1 * ,, -

.* LADDED MASS i

4,’ ,I’, ; 1 -\ , -” - (--‘,. ‘* . .- a .‘.._, ’ ’ ” 1’ c :. , ,r *s a \ ,: b . . .¶ . . * II ‘2 . . s *.

.* “LI -- 7’. . Fig. IV-16a , ’

. , b- .” i r . . D *

i -3 : ,

. 1 - * * .* . f

c #L * ‘, . , .

I - . ’

*

I

i

. . Provide exteridir operable,vents and shading ,devices to’ prevent x heal buildup e ,I< ,,; In the greenhouse durin;“‘.the summer-GREENHOUSE‘ DETAILS(2O)dd.

d 0’ r

. add M$lyABLE iNSUL+sTION(23) and REFLECTO.RS(24) to make ‘the green- @ L

.. II house more ejYecNve AS a heating sokrce-..

1 : .I -‘=I

-.. -- .- ,. -: .- __ _- D L

*

, fj -.

the greknhouk% td,:the ”

.( AC a’common mnsonry, or w:,ter thermai~*wall between 0 ,* b . 4 ‘1

.A% -. . I. 1 a, .**- ? 0 ‘* 1, ‘a b

‘b . ; :‘fi .: 0 _.. .:;’ 1, .I ~ ;. ;I:. ; I ’ ‘^ ! .,. : . I ,, - .-

I:’ “;\ ” <’ ; .’ *. .I_. 1, 1 . : =

Page 195: Passive Solar Energy Book (1)

4&

I >.

-..v

-L--L ._._ _ _ ___ ’ _ I

-, .

, -_- ,I * 1

16. G,reen house fCokection .

0 ’ * a .” *

th;! spaces) or an active rock storage system with pakive. h.eat distribution. - 1 The active.system is ‘inentioned here only becake.it.ij so f.requently used. , .’

___. -~ _ ~~---~-v~~~~~_.~- .-~- 3’ 5 -~

, +mdn ~a~cmry’Th~~aII’ ’ ” 1, , -. .-I \_ . . . /

I

P When a common masonry walljs the method of heat storage tn.cl taransfer ’ ‘, a~ - *between spa&s, daily tern-peratures io he greenhduse will fluctuate V4Oo to,, ’ ” ‘, 90°F on a clea-iwinIer day: because the masonry -alone cannot _ c ‘.

. “absorb and store enough the greknh-ouse shou?ld gontain ,, additional&thermal-- (wate~;~-co~tin~~) to -help datipen fluct$atibns- ’

5-- , I-

GREENHOUSE. pETAILS(20). d . s. /1 2 ” . ” :j 1 _ I - _~~. ~. - I- I _’ .

ey are so .

ace fqr adequatg heat absorption and transfer. e ‘1’

(I a.5 ^ . . ‘, .*

..:” -‘.. -- - -.- ---

- 1:: .-I- +. ~;

‘. ,greenhous,e’ by. a fan is stored.-in, a rqck bed usual& Ideated .‘in the crawl sp&e under the floor of, the buildin ..’

$ The idvantage of this &tern &+ha--l------i.

tile gl;e&hoyse can be. constructed .u +ny material and need not contain a-- -Y ‘1s. i rmtil s&all, This* is Simpo$ant w&n .a strong visual conn&tipn (large

i J” t ,’ ’

1.1.: :

Page 196: Passive Solar Energy Book (1)

, G, i: .++$& t--- * -.

. - p&-- :*.y _, ;“.;;~-+. ,.2+ ” J+& . Pi

_. . ,,I P .3.$ _ I ‘ .

, ‘ ., .” __ .’

* +. i x-- .

.’ , _,r .’ -. ‘.- .* +:

.- _ . :

.The Passive Sojar l$t-&y Book * ._: . -

* h’ ” ” B %yf ;

.* _%.. -2 *. .L1 . _ _-

/’ , ,” 3 *a . -. / 0 I . “= .! I

** \

+* L

-. .%

‘,- ’ . : .

,.: . . L

c- .!;d , .:

- ; *: .

0 LROCK BED

.p ,

d, -.

Page 197: Passive Solar Energy Book (1)

,i-- .

.- I’

. ’

- ,. .- t’

.m - -&.I.6 Greenhouse-,Cinnection z. , ,. .-*:-. ~ aI

a- ’ L - ,, -2’ .,t _., -- y>g :. 1 il - 2 “,,< _,. ---: A@I@&Q be&een the buildin and gyeenhoupe is desirable. -In this case, .the n --.._~~~~~-::-~~~~~~i~~~~,o~e wiil Fe&v; enough heat back. from the b-b*iIding at night (througti 2:

‘-1 ,-‘ .,_. =$#G$-timqn wall and.. g .-I bet&&n inddor and out

keep it at a .tgmperature roughli/, midway --

I ~~~&d&&-&& windo mperaturc?. In this case it is important -to 1,’

cqr to. ac+e that during peri@ of exkefftdy -7.

cold’ weather the g can r&eiGk dirett heat ‘from the building ‘t6-” ’ ’ \ keep it from, freezing. In cold .clima\es (average winter temperatures below

. , -._.

.I

.-

35”i), in addition to operable window;, some therma. mass should be located 1 , ( in the green,house for daytime heat storage. This insurd an additional supply

a of heat $I -the greenhouse in: the evening to keep it above freezing in ’ ‘. wintej. . I_

. . .

Fo,r id,equate heat transfer (passive) from the rock bed to the space, .-

it is i@- “2 -

0. psr.tan’t that a large surfate ,&ea of the floor act as ‘the heating source. In .‘. ,

’ cold climates ,thiz shpuld b,&!.$~ut 75 to 100% of the floor’s surface area

. A ;

and in ‘temperate &nt&~Iim’stds 50 to 75”/0. This can be accomplished by I- supplyifig wa”rm air tb”$$ ?ock bed in .the space between the bFd and the floor, and returning ciosrl ait, to the greenhouse from the bottom ‘of the rock bed. In’this way, heat is distributed over the entire underside of the [loor and then is radiated to the space. In cold climates use roughly 3/d to llh cubic feet. of fist-sized rock.or 1 l/2 to 3 cubic feet of rock in temperate, . climates for each one square foot of soutl+facing greenhouse glass. There .!

are many’types of active:tack storage systems, the major variable being the . location’of’ ;he rock ‘b&A. <or example, another common location iS in the _- c

* wall beh a

I’,

en the greenhousk and -bullding.

I

._ - --- ---_ ‘. : 7

,!I * 111, . . . . l a< gZ@....;

,, 0 %

i ,, J !” 1

i II

, .

,

185 _

Page 198: Passive Solar Energy Book (1)

I - L c

.o

-- Roof Pbnd. Syst ,’ ”

.

.-.

Photo IV-l 7a

Page 199: Passive Solar Energy Book (1)

b

Since rodf ponds igenet$ly act as’cohbiqed sok collect&, heat dissipator (for sunmet cooling), storage mediuin and rpdiiitor, tliC area required varies

. - ‘accocding to whether the potids are used for heat&$ ‘or &@ng, the type of ,.,s, _-. . -movable insuldtion used and the pe of glaiing a9 well as ‘climate, latitude

.’

*; I’.\ 1. b.: ‘; and building load. ‘4 : -c * f- 4 c : .’ /

ihe Recommendation I ., .-m 9

- (’ -.a ._’ - \ “..C For. -heating, the recommended tatios of ,roof pond &Hector area for each ! on& square foot of space floor area are given in the following table:

k ,s _ ’ I. Average winter. 2” ’

B- &.”

1. outdoor temperature (YF) ‘IS”-25” o 25”~35” 35045” ‘\ _i : .2’. ,. ,. + .

* _ -., y

DQuble-glazed pohds’) .*,p : _ Y d

j ,a- w/night insulation l , , , . . 0:85-1.0 , ’ 0,60-0?90 r‘ ‘1

._ ’ , /? ” ,$ingl‘&glazed ponds _ . 1

” . ! ‘k

- ‘, e ! w/nigh~in,s&la$y I ’ :. * ;- ‘:

,‘T. and reflector.- . . . . . . 1 . . 0.33-0.60. ‘. I s .-:,.,

‘< \ -!kubli-glazed pond :A ~.~ ’ ~. _

a.- 5 i j,

” w/night in?ulation ,-p; - , . -?nd reflector . . . . 0.5w-j .o 0.25-0.45 -

. South-sloping collector ,’ q ,

I. 3 ‘,.

II s i cover w/night iiisulation 0.60-1.0 5 0.9-0.60 0.2cF-o.40 s. ,* . :’ ;t .)

t P .,: IL i - ,’ ~~ ,187 ,~ -. . .

. -.. - *

Page 200: Passive Solar Energy Book (1)

The ;‘Passi& .Solar Energy Book ~~ - i---- - --,, , -. n . . ” .

L r/ . _- :.\

--A:

Wlthm each ra io according to your- laiitucfe. At lower lati- . 6 1 tudes use the .at higher lafitird% the higher value. Roof ‘- 7. L’ --k,-

z ponds &uire augcne.~tatioti by ;eflsctqn;at latitudes gieqter than 36”NL. 4

I 9 . * *..

.

.. , 5 Re&timended reios--bf roof “pond area tcPspace*\apr area for cooling ar? .,:. \ ,,r. /, L , , _ .d - ’ ,givkzn’ *ih thk, foUowir@ ,tablli?. -The’sk’ G&as. aie -based’ dv t$z._a@etG_o@ 4l+t,

the &xls are r& “bkxked from seeing at *asi. thrde‘-fourthi df ‘the whole -

-+&me. I . . “- -.

- I

TyyC;of Pond ’ .

Hot-HuTid’ Hot-Dry

*? .sJs Climate ., Cl/mate ,._ L ‘\ k, 4 Q j . . ~

_ 6.754 .o ‘. L -- _ .Sit+jl&glazkd pond ,- i.0 . j -

t’: .-e&y .” FSi’ngl’e-glazed‘pon~ a _ ’ 1 . 1

_ . .\ 1. augm.ented. by 6 ’

. ~ evaporative cooling ’ 0.75-l,.O r '0.33450~ . ^ .

.

- .a.

t

GlAZlNG AR .- -_

t.

. :

I / I ..\Y

- :

: - FLOOR RRE$

-d

Page 201: Passive Solar Energy Book (1)

1 . . -

‘1, q

. Q h c 17. Sizing the Roof Pond. _ ,. J :

-; I 8’ b b a ,* .A 3

1’ * .- r,

.V 4 > :

. Work. out the ROOF POND DETKlLS(18) ‘so that the system is-srmpIe?o I

- . .

I q q - build,<nd functions efficiently. *. ., . @ sz * iz,, c . ’ . ~>. . . 3

The h-&~a~iitm .- I I_ ,y, _, y : ,_ 1, _ ., , , _ . us: .

, rtr ,i#,,‘i,‘.,,I_,! \,I,!, ,t,,,/, I_, ,

_L_ -...--_-. . I,, Besides cli’mate .and: builh$$Yheat loss, sizing tt&ro& fiGl;ld.-is -dcpep&n’t ’ ‘,’

x.

upon the piimary function of the pond‘theajing or”cogling),‘its rclatlbnship . -0’ .I. Y i

JO movable:insylatign and the, type o.f. glazing prov,ided. Each ‘of these h’as I ./ the following influence: * ! .,

6 *, . - !’ x 3 *. ,h .oFubction _ _ La y . . . . . . s 7 4

11 - The pbnd size and,configuration d&end upon whether’& emphasis of t,he ‘I -

- -* .

systkm. is gn heqling ol’&oIitig,‘or a balance” of bolh. -. a . .I a :

Heating-In *winter, at lower latitudes_(28” td $6”NL), the sun rises. to a _i 1.

_ high enough position in the skq ;foc adequaie solal coll+ction. At highci’ 3 .(‘ 2 latitudes (40: to 5G”NL), since Xhe sun p,ai’h is I”ower “ii< the sky, the optinium-

. . * ~~ heating configu+a4& for62 solar soUe.ctar is x sou&iac;ngtilt, This is’ im- ’ . ,, possible to do with a - roof pond since water s-kin its own level J’nd a

-. i pond at, a slope would be prohibitively ~e~penstv&ti contain. To increase . . = ’ ~,

.- the solar g&n of a horizontal pond so.- that it b&copes a viable’“coOljector, ’ _ solar gain can be increased by the use of a’ reflector. ?his,is accomplished by 3 au..

’ 9

0 steppi’ng the ponds to the south” with the movable insulation folding in ’ half and becorping a reflector in the *open position. Another approach’is to - t .” ’

a hinge the refleC.tor/moyable insu:lation and I?ave it act as a large ;efle.ctivG * ” * lid ope.ning to the south. In norther;n.cIir%ate@ where heating is pa.ramount -’ ,‘... ’ ; and a snow problem exists,, a sIopitiB”io&f can be built ov.er the ponds- with , . . ‘. ” : the south slope, glued. In, th,is case, movable insulation can be hi..nged in,

1 such a way a< to refl&t Ipw angle s,un onto the flat roof pond. . ’ . . .

Cooling-G contrast to heating, the optimal cooling configuraGon IS- ’ 4 ylat r .w

pond that i:-_gxposed to the entire hemisphere of thQigh@y. Up tq.20 to 30 ,” D ’ Btu’s per square foot.of pond surface per hour car; be disiipated undel very ’ r . . r,

clear skies with low humidity and COOI nighfiimg temperatures.,‘If greater coql-, . . ing is needed and/or climatic conditions are not optimum, the.outside surface - .) gf the enclosed ponds can be sprayed with water or flooded to increase ’ - qj

: cooling by evaporation as well as by nocturnal.. radiation .and con-vection. . About 4 times,,as- <much heat can be dissipated from, Jhe roof pond. by ~ *

ecaporation as bv iadiation. I ‘* L. n - k

1, b?;? T I. :, Y -)I _ -. 189

. 9 , (I ‘_ . c I .” , : ..w+..: -(i,- , -

Page 202: Passive Solar Energy Book (1)

c

* ~.. _

:.

I.

p.,,’ .

<.. ‘*,. . . .,, ,. w 1

‘*

?

! n.

I L

,-

7

;‘\

.:h ,% - ,*a c L.

,I_,, k. ., b ‘_ 1’

‘, ‘. / .-

a‘ ._

\ - *_ \

. . f0

I.,; ‘.

\ _ I. 0’ _ I ,>. . “.

‘\ ::

.* T.. , X_l.r, A.~.,” . : ,.... “..: ,.

r :.., .,* v . I

Page 203: Passive Solar Energy Book (1)

. _ q- ci :- . .

*.

I. .’ . . . 0 . .

, ‘. _

. . J

-

17.. Sizitig the Roof Pond,

I e

Relatidnshig to Movable Insujaiion -‘-’ . , . r. a

Movable insulation can q.ct as a, reilector when In the ofxln po~~;~;~n, Increa\- ,

, ing .the hearing capability of the root’ frond, t low~~\~er, unlcs’: (~dr.~~tulIv dc- Signed,’ it can decrRasc the .cooling capability of thr systc:~ by ohscurIng sonie ‘of the nightsky. and psotccting’ tht! .ponds from (jrqIr;lbI? ,lIfiloLt, 1’11 ca$ej; -where lower ‘outside flight tempcraturt>s \~oulcl h(>Ip (ool th(x fronds by’ natura,l convecti’on. Th(l optlrnum angle oi thk r~~ilt~ctor to the‘ pond IQ gbotit’8CI” to 90” in winter. 6 Ii

K .

Gluing’. , , ’ 1 . - L 0 _I

The cfficicncy oi .;J :root t)or?cl ~;*sreatly Inc:‘rcl,Lsclcl L~I!/I- c!oLII)I(~ gl~7111g IlLIt~ ‘* ,

to the large surface. arCa i:sIYoscd .$\I c-onvrclivc~ k)t;5ct\, 4injgIt~-gl,t/tltl root

; =’ ,-

-, ‘Photo IV-I7b: WjXter daytime position oi reilect-or/lnscllatIng panel. .

9 .’ && . . 1

\ I ,,. 191 2. ./ 65

l

i

. I

&A

Page 204: Passive Solar Energy Book (1)

a Solar ‘iEnwgy Book * A - .

&nds are, generally not applicable to* rdegions with ‘monthly tern- + ! peratures lower than 50°F unless enhanced by as .mentioned _ above. The most economic method of providing double glazing for rooe’

, ponds is by inflating an air cell, over tt~ pond as” part :of the plastic bag X b” containi #e the water: This inflated air cell is easily removed for more

’ effective summer cooling by me-re[y deflating the ce!l. Single-g!azed ponds- are-twice as effective a< d6uble-$lazeb ponds. for cooling, so this flexible c

characteristic is va1uabl.e.

’ 1

i ’

,

\ ‘.” ‘: * , I’

k

;;

I

‘1

I

,, I.

\. _/-

-‘\. - ~ * ~

‘I \

?,

a I’ i * ‘$ . ”

:-.:’

. a

1,

;;\ -.

\ -- *’

t;.

\ *

.

-I a

I ’

I

,

+

. *-

Page 205: Passive Solar Energy Book (1)

---.., / - ‘L- II.\

- ~~- ..” I ..- ? -.. .

‘i., r ,_-. __ ,_ ______=___

A. .~ ..

z . .._ i \ ,

_ ‘I ‘--L 4

‘._ ; \

\

_--. . “Y ~

z-z. 3; .m..e 0

-_ _ ‘\ .

-,I,;

! - -‘. ‘&, : __ :

,. ?

,’

! - : 1 k ’ Roof u Pond .Dd$ai ‘_ . ” ‘\ \ f * , - ‘_ \

_. . .

Photo IV-l l3a

Page 206: Passive Solar Energy Book (1)

Once a cl&a;‘ idea for’ the siie and shape of the roof pond-SIZING ‘THE. ,. i. -..I.* m ‘-_ -.,. -- , g-.,.‘, .) -.- ROO~‘POND(77)~i~ establish&d,‘it is necessary fo. detail the system so that

. - ‘it functions efficiently. -’ ’ . .

Due to the integral nature of rdof ponds and architecture, especially with regard tdstructirre, roof and ceiling, there are many details th‘at need careful ctinsiqeratio,q, Although, roof ponds are simple in ‘concept and potentially inexpensive, major problems .have been .caured by failure to adequately work out the numerous small details that make up the system. Generally

.

‘.

\ . L ’ 1~ The..Rqof .’ I . _ - .e’

. . ‘. I

‘) ‘y e ponds on a’ waterproofed metal or thin concrete d&k. Paint the

*T,‘~. e L ,of the< roof deck (any colorj and‘ leave it exposed to the space . #‘optiyum heat transfer from the .ponds.. ,, s

* -# . &; .

j&..PO”& ” d 9 z 1

._ l-.

I :, ., D Enclose thq water pond (6 to 12 inches in depth) in trans,p?rent iplastic bags or -. .\ b in waterproof struMuraL metal or fiberglasS, tanks, thaa form, the rdof and

_ ~: * finished ceiling of the ~-space below.. Make the top. of-{the 4ontainer trans- ‘. . parent and the inside a dark color to tiihimize heat stratiFcati@n in the pond.

) -‘- - . .

~ \!,, ,I: ,. 1 b ,l

-’ The\ Insulating Panels _“. i I..’ If! ’ -, ! _-.- ~. lor d flat,, roof--p&d- with horizbtitat sidings panels, make tjie panels as large

as possible to reduce the. amount and cost of hardware (suth as tracks, seals). -’ ‘,

5,

Page 207: Passive Solar Energy Book (1)

: ., . ‘&

., r, b L

r 18. Roof Pond Details G .

3 I I . >

i* Construct the ‘tracks for the panels to withstand deflection and make sure .j

that the panels seal tightly over the ponds when closed. To increase the effi’ciency of this system, design the insulating p nels $ so they also act as

_, reflectors’ when. in the open position. Use either a bifolding or solid ‘panel .- ,

.hing+d along its’ north edge and construct the surface of the panel with a ” reflective material. . ’

3 . ,

,

: For a’! south-sloping collector system make the angle of the south glazing ,’ ’ > ‘roughly equal to your latitude plus, lx”. Use movable insulating panels over .)

the g!$zing at night and make the surface ofe the panels, exposed to the “‘* /

- F r I-- ponds when in the open ,posiiion,. a reflective material. ‘L

1’ :’ 1

_/ ’ d;.

. ,

TRACKMfAY - ’ EXTRUSIONS

-_-- . .._ __ -- . Pm

-._ _.... - . - CLEAR PVC

WATER \ ____. -_ . _. .-.. BLACK LAMINATED

-_ . - _ _ . . POLYETHYLENE LINER

k’ =.

____,-- ---.-

a, ;‘.

_r

- _ _ - _ _ _ . .

----2.-. -. .“. .._..

- -.. .- --. ~_. _. ASPHALT~BEALANT - . . . . . . :1 : e-e

INSULATION PANELS:

--PVC FLAP SEALS

ti.V. INtllBlTED CLEAR .Ol&IN

fR

Fig. IV-18at 4%

T VIES” ...

.

.<

. ,

. *

* .

. 195 , a ’ I .~.+ _ . .

* i u _ . . . ‘eI(.Y ‘.. /j’ ,:.: .’ __.. = I

Page 208: Passive Solar Energy Book (1)

, Tkg-Pm Solar &rgy Book

I -.

‘. . /

.

1 -

l ._

il c

’ * . . When the panels also double as reflectors, optimize the angle of the re,

f!ector according to the information- given in REFLECTORS(24). Adjust the s depth, of the pond to provide heat for CLOUDY DAY STORAGE(22). :z.

t - . c -- \

1 .* 1 ;

& . ” ’

. - .- The lqformatiorr :

4 ‘..

i: -

. ’ . - . ” . CT ci

. -5 “, . . b

The Roof _ . I _ . . ” In .a Flat Roof Pond System, the clear span for a m&al deck is generally i .

. 4 9 ----- -.

I .L ,I ‘.:’ . , _, ; . _~~ .~ -~ d s*-- - It is e&entiil to keep the transfer of heat iromethe pond-,tb

‘7’ --.’ as-great a-g possible. This means it is desirable to waterp f&f 8

deck~with a thin plastic sheet such as double-laminated ‘pal .i “C?‘ ,_ /o/-- -fully sealed at ‘the edges or a tibergIass”she& and a thin coat of asphalt. ~ ”

__ ~-- 0 emulsion. Hot-mop ed asphalt and layers of felt’provide too much; i.nsula- -

B tion between the pond and deck and is therefore not desirable. Careful

,. E ‘p d

, attention, shq.u.ld beg-given to waterproofing the connection between‘ the r- .

1 - -A +. .- -~ suppor&for the insulating panels and the roof ‘deck. / b ’ d _.

It’ 0’ Opti’mizin the’ heat transfer-en the .ponds and the space requires

- that the nderside of the deck also .be usdd as the finished ceiling. It. is P

-. ’ important to ‘paint ,the underside of the metal deck since galvanized metal is, a poor radiator when bare. Because the ceiling radiates at a re,latively ‘low temperature (t7s°F), it can be painted any color. \

7 i

1 :(-If an acousti.cal. ceiling is desired, use+a perforated metal acoustical panel in= ‘, E==mI good th.ermat contact with the deck. A. metal deck. must be carefully in,-

sulated at its peirmwrto eliminate he&--loss-At- its-.edge, If the m&al -deck -2 ~. . -~ -- “. extends past the perimeter of the building, .for example’ as a covering-for’91 mm-

. patio, then insulation must be. placed between the .interior and exterior

,/ : deck. - * oi - ‘, % ‘, -. _ __ ._

4 .’ \ ‘1 -.

’ c c 196

1 *

. ” i

, - I

s

. , *

w.

:> .’ - _r _

,1 :.‘- ‘_

,I .

Page 209: Passive Solar Energy Book (1)

1 v .

?l ,’ - ” ^ ta ._ ;

., - i c I’ .I,-, 1.8. R,oof Pork Detai$&$&~ ~$~‘~.~~

‘!a m , _ q$/~ < .- ^ r

3 % ! e jj-++ $“ ; 4 ;I*

1 & 7 - -.?“.fc T

The Ponds 1 4 . ‘; _‘,. \\ T$; -. - ,&3 .

Ponds.can bb ,in&pensively const’;u&ed* by enclosing water, -6 to 12 inches. -3 2

I in depth, in plastic bags made of b&ethylene, polyvinyl chloride’di-other*: c?‘..~: . - “. _ forms of in$xpe sive clear plastic~++Ghi~ settse -the-, ponds wiJ!- reserpbj:e. a. \j. &ater -bed. Ton,’ s can also J be.-const&&$ of metal or’ fibergla

-,rjgid transparent plastic coyers b enclosed.-pon&7 using the latest

----- ~-~ I

-..^_- 4.. . ___ -- -------w&em over- +period of’ a year -11. o’

0. the surface *(apparently caused by water vapor

. _. plasticizer). L b e

------ --: c ~ j < <,C.. ._*

1 OF between top and bottom. d

, ‘- of water., causes excessive

,.

l ,

.,I metal buildihg igsubti ? @is inXitaJ-- .- to 4’-0” spans b.efore, uiring support ,~ ._

Page 210: Passive Solar Energy Book (1)

I--. ,

The Pa;S&e. Solar Energy Book - n _,

Ph,ato IV-18b: Sliding insulating pk’fels; winter daytime position (open), and winter nighttime position (closed).

_

. ’

. d l _-

0

$8.

. 1

;’ . \

* a

Page 211: Passive Solar Energy Book (1)

-.’

I. , ’ . : .. 1

. . 18. Roof Pond Details *,

2 Panel trqcks .ahd supports jhould be designed so that the panels for& as ~~ + ~~ --tight--a+& s* % !’ especialv f

embly~ ++~~~&l+whet+ closed. This-- r_equires careful detailing, r the skiding pan&Is geneLaIty ap,pl$d to flat ‘roofs. Sometimes

;. ,.I

- the tightness needed may require *.the- pse ‘of “neoprene curtains and ‘seals *

_ ,’ which rid& along theipanels. ~TO il+strate the %pdwe of s.eals, a Study

\ perfo-rmed in_*1973 .shdw&d. that 24’4 oaf the energy strik7ng the ponds on’ an .‘. -:averag& winter day%a$,,t-ost back fhrough- the insul?!i& at night. M:ost of

‘i ,_ .._ ii ‘_ this loss was due tb air infiltratjon a/round the panels,‘even though neoprene ,‘ ,i .xrtains: were: used. Althdugh.the sflstem still provided the .house with lOOoh ..*‘ : ,

.-Tf j&heating and cooling, it is cask to see that greater efficiency cauld be I . I .

<.r . ./ ,

: ‘_ ‘, .

< 9

:‘, 1’ “..

a’

, Ti 0

- . . ,.* ..I,.,

,.

,, r’ I , - ‘_

. . . . +I$@...” ‘s ‘-’ : ,,

\

i . i

, ” ‘, _*I, \ ,- _ . / ‘. .:

- .- :

.\ y I,: ; ‘.

1..

.otxamea.

: .

“.

‘,. : .,. ’ -lgg .

:

Page 212: Passive Solar Energy Book (1)

Q

P

,

Greenhouse ? . . . (l9. \ .sout -Fahg - -, -ho&e (FSf6estanding) ‘. n .

d Photo IV-l% i’ , L/

- tr a r

‘ BP’ . II

e

--- _ _. - :.---_

f

, ,

v

Page 213: Passive Solar Energy Book (1)

R

I

I

tip

r

i

,$

Y

I

= ;. ., 19. South-k&g Greenhouse (hFr~est&&hg) q + ’ s .I. 7 .L? - , . ;,

, * .. --. ,

“- . .

k , L

&’ . I. ‘<

,.

.,

. once a location for the greenhouse has been”sele”cted-BUILDING LOCA- .TION(l)-and a rough shape .defined-BUILDING SHAPE AND ORIENTA- TlON(2)-this pattern will help to complete the overall design W--the buildin .

P

Ia I : .I .Y ..,w

. . ,‘----

.

4 The large surface area oiglazing in a traditional gree.nho;se entail& a,sl’gnificant L*., ., 4h .‘: heat loss, requiring the extensive use uf costly and energy-cqnsutiiag con; ?, vendonal~ heating systems. The class’c greenhouse’was originalLy ‘developed

4 for use in the European lowlands. The avercast, mild winter climate dictated ,! ?- ~. a mainly transparent structure which would.permjt the maximum %wllection y

, s ; *of diffuse,,sky radiation. These,. original structures have been copied, w”ith

c I

‘).‘. little change, for use in nearly all other climates. h-r cold, northern climates,. .i, 0

< for example, the sun is in the southern sky all ‘winter. For ,this reason, the transparent north wall of a conventional greenhouse, ,&ile admitting little

- solar‘ radial&t-r atthis time, contributes s&nificantly to the -overall heat loss ’ 0

\( of the space. It is important that the design of a greenhouse respond to’ ,climqtic conditions in order to function.effectively. ’ 1, ‘., 0 .I

.- Ila * . t

I

a

,

:.> n

The Recdmry$datib~ . . , $-’ ’ . .m /. ,. - 1

’ .

:

_’

_’ 1 3 ! B

. . QPi . . , I_.

./ .

In cold northern ar&femp&ate climat&s, eiongati’the &kenhc&e along the . east:west axis and build~‘ih~,north wall of opac&e’ materials, incorpoiating- - - at ,least 2 inihes ‘of rigicf‘or 3 &chqS of bat-t insulation. To prevent one-sided ’ V ,” . : plant growth, and&r---upper part’ of the north wall’ a light color t6 reflect + plant Cpnopy..

. ‘:” ’

. ‘t- - i; ”

Page 214: Passive Solar Energy Book (1)

* z

- I.,,’

CI

‘1

,P -

1

I

II

The Passive Sola; Energy Book 1

-

Fig. IV-19a

9. ‘-5 :

.I : , ,*,‘-.-- . ,

,‘ ., -,

, . . . . . 6 :@j,&i . . . . ,, ,..-

. . --~~ ~. , __. _~

i . 6

/, ,. -

_-. Add thermal mass to the interio; of the greenhouse to store excess heat collected during th.e daytime for use at night-GREENHOUSE DETAILS(20):

“’ The inforrna~ion ’ I _

TV,-.. , ;” L . I’

..’ . In 1973, a study was undertaken at Lava1 University in Quebec City,‘-Can-ada, . .

‘. to determine the most -effective- way to reduce the extensive, heat losses

A. ./ . a-sso-ciated with conventional~ greenhouses in northern &rrjates. Reports of ’ ‘

, : the study state: . \ &-Pa ‘.,. ‘3 ..(. .i’

A new design of a greenhouse has beeQ,deJeloped for colder r& .e 1, \ ’ gions. The greenhouse is .oriented on an e&-west axis, the. south- . .

. ., facing, roof- being, transparent, and the north-facing &all being in- ,. sulated.with a on the interidr face. The angles of I

the-rear, inclined wall are each designed transmittance of solar _ radiation

of this radiatiorr’onto the plant canopy. a

, s .,

/‘_ ‘I ,-. ,:, ’ L I

.

Page 215: Passive Solar Energy Book (1)

‘“.

-----CL---

Y ,”

, L.

19. South-Facing a’reenhouse

,

An experimental ut-it ‘has b‘een tested at Ldval University during .

one winter. I$ reduction has :been found in the heating require- rrients of 30 to 40% compared to a standard greenhdke. Results of productivity of tomatoes and lettuce indicate h!ighe,:r yields, passibly -. ^ due to the increased’l’uminosity in winter.* .

, :I

*. -9

c .I 2; . ,’ \

REFLECTIVE Vi&L LINING

INSULATED NORTH WALL , . . . -\

SEEDL!NyED 1

R,OCK PILE

\

Fig. IV-19b: Lava1 University greenhoyse, Quebec, City, Canida. : f

*T. A. Lawand et al., “The Development and Testing of an Envtionmentally Designed Green- r house for Colder Regions,” Soklr Energy 17 (1975) : 307-I 2.

. l ,. 24-L.

Y . i 203 j, ‘ * .‘\~ ?

‘\\\ “% ‘\

Page 216: Passive Solar Energy Book (1)

The Passive Solar %nergy. Book \ ’

h.’ , Photo IV-I9b: ExteriAr 01 Lava1 Univcrsltv Ereenhotlse

_

.N .

‘. . ,

Quebec City, Canada. ’ - I @. r,

/ t ‘-,, a Since thqre is little sqlar radiaiion gain through the north face of. a ‘green: hous& in winter, it was determined that a solid, well-insulated north wa!l substantially. reduced heat loss. Naturally, if the north wall is solid, then the entire south face (wall and roof) of the greenhouse rhould be t;ansparerQt.- ’ 4 I ‘t

The efficiency of the south glazing as a collector can be increased by iilting it to allow for maximum winter solar transmitta‘nce. A tilt angle between 40” to 70” from ho’rizontal is opti’mum. However,’ tither .factors must also be considered in the desibn of the-south facade. For exa.mptk, applying m&able .

‘1 .-:~-,~ -

insulation to a tilted, rather than a vGrti&l surface, can’ be more difficult and -expensive. If the tilt of t)e south :wall is too greaf, the’re may be probltims of .$dequat& interior heaaroom. .Also, in climates characterized by long, . periods of cloudy winter conditions,‘,la.rge’ skth:facihg glass areas, tillted -30” to 40” -from horizontal rath,er than 40° tb 7(1”, are ide,aI.t’br cd‘lI,ecting both -.- . diffuse and diredt sunlight. All, of this suggest5 th% the shape of the gieen- house a!cI idsign of the south, facade &II depend ueon mdny factors: Photo-

‘graph,s IV-19c illustrate the &de ragge of,.apprdprlate greenhouse configura- ti,oiis applicalble for passive sola,r heati!g in norihern climates (32” to 56”NL). ’ -I

I . 1. . 4 .”

204. I.. I ;j ’ .

, ,” c ‘, 9 ’ I. *i, ?’ L

Page 217: Passive Solar Energy Book (1)

:

c

1 .

19. Sckth-Facinl Greenhouse

The important concept tb remember is $at the north wall should be solid

, agd that the sowth wall and roof mostly transpar,ent.

Photo lV~19tiC r qppropriate greenhouse configurations- , Y

1 (here and on next page). . . ’ . . .- Y _---- _ Y

$ h L,I.AI 1. ; I’ ;.

f P I , ’ : 0 4 i r # \

m

* _-

I A-- \ I

‘205 i

, ,

Page 218: Passive Solar Energy Book (1)

-. 2, ‘\

.a

The Passive Solar Energy Book

’ ,

Page 219: Passive Solar Energy Book (1)

,. a .I * 5 -1.. , I.‘. . ,. ‘-7-d L,

: ,- ,

.,’ ~ I

> /

,._-- I .p s ,

: .T k. .

s ..

. . ‘ * , ‘.

. ., ’

,-’

. . . c-. ‘

.>. ‘. i I

i ,

19.’ South-Facing Greenhd&e . s.

,

- “. To giv.e a’ rough idea of how well a >greenhouse will perform on sunny .,

‘, winter. days, table IV-19a lists approximate ..average indoor temperatures for

/ ’ various outdoor conditions. It should be noted that in all climates,‘ia welt-

,,: I constructed, 7double-glazed, south-facing greenhouse’with+_solid north wall will collect enough heaton a sunny day toaheat itself 67 that 24-hour period, ‘, even w&h\,daily outdoor temperaturegaslow as lS"~.' * II ! -4 \ n J - , I ,z 1’

‘: r I \ 1 Tqble IV’:1 9a, Clear-Day Average Daily Green house Tempeiatu’iek /

. .’ .

. ,.; * kverage Daily ^ ’ , door Temperat& (“F!. Avetag@ Daily Indoor Tempepture (OF)*

: ‘, ,’ L .r,;, j

.’ ;.. , i

,, _ ! :, ‘*, ./’ . ,.”

Single Glazing . D

1,, -;i- ,’

,, ‘/ ‘jo”: ‘, ) ~ ,‘. 35”T-45” ’

,i (_1. / 15.“. ’ 40”-50”

* . 20” . 450-55” _’

t ( . i 50”-60”

.I ,i\ 25” ,*-+

1 .I 3ob ” - 55”-65” .6F’-75: n ---. -._ ~_ ‘k. .’

_- -- 35” -*. -- 60”-70” -- - 70”-80” 65”-75” 75”-85” .

,. ahd 4WN4,. Within ,each range

For soutbem latitudes, i:e., 32”NL,

Io ;% 1 i.e., +3’NL,, use the lower tempera- with primarily south-facing glazing

*

, * ? .~ ! *. * .,I * 1 I ‘L,.

i

_’ v

_.(

, .

./ . .

Page 220: Passive Solar Energy Book (1)

Grekmhousb ’

20. . GaLeen -.’ 1 use Details . .

, .

^,.

’ r’ * 2, L ’ .a,,. n ,:c ;,:. .?

SI ,* -/

d

!ra, 0 i\

.~‘p

\ .

. .

. :.

is d .’

P

*. 1’. -.

- Photo IV-20a <

0 i ,

‘F , 1

. :

I.*

r

1 /‘<

‘L .= .>

.

Page 221: Passive Solar Energy Book (1)

.’ I .

, *

‘L+ ,“. -_ d

:> , - _ * , . :; * _L, +; Ir ,.. .’ . --.’ . . *:ym -2 I ;-

k

. Q h 1

20. $reenhousti Details b .\ -” y% ’ ..- *.--. -I= . . . . .* > t I

-x& \ ‘j. ‘I; . I= . ’ I : ; .’ !-

Thi!: pattern completes SOUTH-FACING GREENHQUSE(19). I.t,,describes several w,ays to provide thermal storage mass in the greenhouse.

1

i

-a r \., --., Excess solar heat collected during be daytime in a conve&ional greenhouse is allowed to.escare.’ All

.of building .greenhouses, greenhouses are in, fact solar: Ih current .methods

however, there are no provisions for storing - ex.cess daytime#heat for use at night. But it is just this refinement that can b make an enormous difference in the, way a greenhouse will perform. Wrth- . . . . out provisipns for heat storage, the daily temperature fluctuation in a green- * house will be excessive. _ .8; L

. .J _. :--- __~- ~~ -K

I d

The,e&ccynendii&n - r * a “$7, o _’ n. ,.z h

=-- -~- ---Provide efrougbtherrnat storage mass in-the -greenhouse to temperature ‘fluctr,&tions by using’bne of the followCng methods: .

’ ,“,i . I- (4. : -, B >.I.* .,

Solid Maspmy Constructi@ with ,Additional M&s ’ -“3 L . . I / ;v“

” I . e”‘,, Construct the opaque walls .a~@. floor in the greenhouse of solid masonry? at. ‘+ -. ‘.”

$, -jeast 8 inches in thickness. N4asonry alone, however, is not sufficient storage, . .’ p _- so fine-tune tlie greenhouse after construction by ‘adding thermal mass (such :.

‘as water in containers) .un& the%door temperature fluctuatibns are accepb- ’ I.ti able. Make the surface Oo# the mass a mediumito-dark color for maximum 7 . , _ . 0. 0 ’ , ,P solarabsorption;’ L ‘. ;r r

\ (L

: -._ .n

k

-.

u . :, .J * . .

. *

a ‘_ * & ‘. * O” -

-.. Integrate %ater into the’north wall of the greenhouse using’roughiy l/2 to 1 -‘. ..I .cubic,$oot of water for. sach one square foot’of south,facing glass. Make the

! .

+ \ surface of the waterti~all’a dark color and be careful r&t to block direct sun- o light from reaching it. .*3,,;,‘. ” , 3 ‘- ‘: h : l

. _

._ . .

‘. \ /_ ~, ‘, 1: *

B

.~ ,’

‘k 1 . .L i

.‘.. b ,. , I:

. . ‘0'. 0 .' -

-, . ,:I’ r’ l r I ,, c .y

209 . .-

Page 222: Passive Solar Energy Book (1)

_

I

, -

--

,

The Passi,ve SolaE Energy Book ,

* A&e Rock Storage Syste& _ ” .’ ir

Locate 4 roxk bed in the crawl space under the floor, or in the north I o‘f the greenhouse. Duct the warm air from the top of the greenhouse t @I the rock bed whenever the greenhouse air temperature is about 10°F whrmer .’ than the rock. Use roughly 1'12 to 3 cubic feet of, rock*for each- one square foot of -south-facin,g glass.

,+ i” .’ ,IS . ,.L,. . “... i .e . -. ‘-

..<-.-, ,= ,‘. ‘; .-.-. :i,’ _ y-. 1 /&?&~g$‘~.

v.~i+a+TL~~:, @a ke t h e greenhouse more effici-ent as a solar-heating system-REFLECTORS -, .. /J v; , 4), MOVABLE INSULATION(23), INSULATIOfi ON THE OUTSIDE(26)-and

) -;*.,&i. ; :q+ 1 ‘ad&additional thickness to the mass f6r CLOUDY DAY’STORAGE(22). .&i” ;, .: 1 .I

i:: _ ?; :. ‘ “+X ” -the I~formati~~n iY iIL&,

I "~ ,!c ,, * .- y. 'L

i I, Consider ‘thata greenhouse without any means of heat slorage or auxiliary her71 I . .

Input will fluctuate in temperature as much as 60” tu 100°F over,a sunny, but -cdd wi&er day. Ai example o-f this condition wouM the a greenhouse that reached a’ daytime high ‘emperature of 100°F and a nighttime low of 30°F.

.; -a I. The a&rage t&&mperature in the greenhouse over the day wobld he about 7O”F, d

._- .- --which is adequate--for plant” growth, but a ftuctuation of 70”f over 24 hours + is vat a ‘desii-able.. condition>; For this reason,- a greenhouse must contain

enoqh thertiqal mass to absorb and to store excess daytime heat for us&’ at

!%pposej now, that.‘the gyee I .I Ideated, to,’ reduce the” daily

for the’day wou,ld’be about

Page 223: Passive Solar Energy Book (1)

;: ,.‘. D. Q

----- -- h kDRUM ’ ..‘?I& , J-- “,?\...C I ” $CL

. -

1-Q I . . .

. 1L” ~/

20. Creknhouse D&h,

a

*I .: 3 I -.

.-.

.i‘ i . P ‘. II

.’

. m .

B

I .

INTERK)R WATER MU&L’

’ I_

.

.

7

t

a . * , <

., --

. 1

-9

_.* - - ----

E * . Q , ;c ^ r’

L

/ --

* * P

. I

’ ‘, ACTIVE ROCK ~STCWAGE : I .’ ‘,,,w e. c

T’ ,,$-ig. lV-2Qa ,*,” I- : . * D c? * 4’ ” r L

,?. .’ -‘,,‘.* -1e ‘ --~ ;:‘ .E.

.’ : \ : -* I- . ;., I

: _ _ .l, w 211 -.

. ‘~ . (. .r ., -I .: * ’

-,. ,:’ t D .r -

-( -’ ,:

* 1., ‘* . 1_ ,.* ,.

,’ ~,- k ,“’ 2’ .,: ,’

_’

Page 224: Passive Solar Energy Book (1)

.

. :I 5

.

s 24

0 . , ---

+

e I \ \ -.

:

c.

L’

1 ’ ,

_- ,’ .J __ .

I

*

\

n

J 1

r /

- 1)’ , \‘\ ..yo

IS . .w I 3-

The Passive War Energ; Bfpk ’

I 1 ’ ‘S I,- ~-- ---- -? On i -._ - - ~~___-_~

of solid masonry. HoweyeP, masonry &ill dampen interior’ fluct;ations only slightly. A greenhou’se‘ c.onstructed of masOonry will have daily fluctudtion’s on the order ;of-45” to 70,“i. In most instances, this fluctuation $ too great ior plant life to flourish. This rneq that additional mass is need;d in the green- ’ house td further feduce these flubtuat.ions. This is’ibsuaily accomplished, after the greenhouse has been covstructed,‘by adding containers of wgter, (or ,any other apprbpriate substance) in the’ space until the daily fluctuations are

~

ac<eptable,20” to 40°F. Whenevir possibie, j[, is desir$bi& to loca’te t5is mass . e in direc,t sunlirght and make its’ surface’ 4-1 medium or $Brk color. Fine tuning the g.reenho%se in this way,*Thowever, may .lead to pr6b ems -if enough interior

4

’ space ;s..,not left availablk for this e;tra mass. So remet ber, if this apprdach is taken, itd’is important to plan ahead.

I 5 _1

-.. .-, --

c ” .>a .c

_: J

Photo IV-20b; Added thermal mass deer ases daily greenhouse /’ temperature fluctuations.

4

I’ ;

r

,t

-.

21_2 , 4 0 p-7

* p ,.“i’ _ ..,y- 0 .- . . P

I - *-:* - ‘2 .qi+ .% ‘-a .i 1 .._’ P’

Page 225: Passive Solar Energy Book (1)

;,: I ..-..i !1%:- I ! ” ..‘..p” ..’ .q, a ,~, ..‘;.. n P ’ ~ 5 .’ . . b - : ; * ‘/ ., -.’

.:- . I

I b 0 * I ~__ a~~ ~---- : . .+--c ’ .

, i. ,_ . .

? . ,,., _

:I / .; : f;,” ,.,y

.. /’

0 it should. generally embody ‘the largest’ fiercentage of water ~. ._

2 .? 0 west walls can also provide some--area for water storage, ’ but ‘car-e’ must be takennot toecreate un.desirable shading, patterns, such as -

0 0 .’ shading the north-v@1 for a-goodpart of the day. Agreenhouse with a water

,‘. _ ~ \clllrll (dark-su.rf.ace, col,or) in direct =sunlight will have temperature fluctuations (’ on”t8e order.o,f 20” to 40°F during clear winter days. Table IV-20a gives the

,’ . exe&ted daily range’of fl&tuations in a> greenhouse with various quantities of . o ‘. tia’ter storage for.each square foot of south-facing glass. i

-. L I;’ - - .) i. *

=. n ‘) . * I ,” -1 . . ^ 0. 0 ,~ . I

0 . * . *. .“i a ~.“. .” .- u Table IV-&t Daii$reenhbuse Rp~l&e of femperature

D %. Q : I n T

/ ’ I. , e’

, ‘3lucfuadon<CQFa ,Water Storage Wall systqm . = 1 .\ .^ -

n Yolumeof Wateerli& ~-~ .- - r i o E&h. QnekquaYe Fbot

t”lti&~~ge ~ ’ : , ’ * of Tcmpet~turc (“F)

‘: _ -. . .4if south-kciiig Class (cu ft). ,*- ’ “.: _ 0‘ -3,

Ffudu$ion .” . . ^ _I .. ,’ :_ 0 ” .:.. . ‘.A

'. a , 0.33 4L / . .*. 30"-41"' ' ~ -- .

.* :0*50 ..O . 1 ,..!28"-3gQ ' I, : 0.67 1- * <, 3. . . 0 .26"-31" , ' 2 .

1.0 , - Y,- <LA I. ' . . . 24°b2.90 . .' a

'_, ,I - " 1 :. 1 !' n 1.033. 6 q-j:-2ao,, I'

' ..(" :, 0 . L 3 0 .' '. ' &

i . NOTES: I.‘ One cubic foot of water; 62.4 pounds & 7.4% gallons. ‘, -, “I . (.’ ” II.’ *., ,. 2, Approximately 75%’ of the sur$ight enterin+e space ‘is ‘assumed to be absgikkd’by

the water wall.‘lf less is absorbed, then fluctuations will be greater rhan those listed. /

. , 5 ~: , ” a> p “X. .’ L

A-’ 6r ..:: . ‘-.( .1 .’ .‘rl 3 ‘.’

AcfjGe Rbck Sto&i~~~#&m a c

/ :- _ p. ‘, .\ ” , _Y I , t \ ,’ -; ‘:

I- An&third, since m%any greenhouses use- a combination of Qadive/pas&veh sys- m .) ’ . ‘. : .I_ tems;, it -seem< &ropriat& to. give a’ siding brocedure for a simpleoOActive

Rock StorageSystem. tn this ‘case, warm air is ducted from a high place in the 7s _” greenhouse at-3 passed through a rock bed. Heat transferred fr@rn. the,,air to - ”

Y B the,, rock i$,stored for .use at night or on cloudy days. ‘1 I_’ -’ ? el * . ,’ c I*.,

,’ ‘a D .! “’ a:

B '1;. <' E d. . n r-

.213 ". <, !j ;; I __--- D < ,'? 7 , . ,I_ . '., ^'\ . . 1-" I& : ., ,--- Y c ' :. I'&: i' I 5.0 .

.,->!. ., ,'~ ~ c , .

Page 226: Passive Solar Energy Book (1)

>.-. i

/ 1 /

&

_-

3’ - *

/

‘-

.

n a

,

0 ,

The, Passive Solar Er&gy Book 1

?he ,location and design of the rock bed will vary depending on spatial and functional consi,derations in the greenhouse. The most’-common placement, however; is in the foundation crawl space (under the floor) since this. is e

- ,.

&&entially a free container (see fig. IV-20a). A wood floori or concrete slab is then constructed over the rock bed.. During the charging cycle, the fan transfers heat from the space to the rock mass. ‘At night, as the greenhouse : coois, heat is supptied to the space passively from the floor which essentially B functions as a radiant heating. panel. If additional heat is needed, warm air f@m the.rokk mass can beLirculated into the greenhouse.

& / .

f

.

FLOW .

A

;,

i Fig. IV-20b: Rock be&d~,mens;ions. 1

” . . Ld * j e .

’ A variation of this system.is an enclosed, insulated rock bin (container of fist- . sized ‘rocks) yhich uses air as the only heat transfer medium. The bin can be located under a,planting bench or under the floei. Again, warm air is circulate$

0 throqh the bin dying the day to store heat. At night, however, the system’is. ,’ <_

* <,;;‘ reversed, and cool greenhouse air, circulated through’the bin, is w+rmed and ” vented:-into the space.-

.% _- “.

0’ - ,/- _-

Another variation of this system is a+ rock’ mass expused inside the greenhouse. * . The north wall of the greenho&e is usually the best@,,.location for-the mass. \ This system works in the Same .way as a rock bed;--only’ now the. rock wall is

I.

.

,214 .

I

- - l I

,

0’. . /I

Page 227: Passive Solar Energy Book (1)

F *

.-_

._

1 ‘,, ,I.. - ~ “. .-I (...,

=~. ~ - -*i- -

*’ 2,

,_* -a

. i “_- --__ .- .-.. --~_ ---. _ 6 .

‘, .

r,

n

. 4

-a

-I

1

*

‘i ”

.

=z=z=zS- ..h ”

I

’ ; also’ in a position tee absor.b sunlight d-irectly. In ‘the No.ti greenhouse (seb - photo 1V-20~) w,i~~mes’h’proved~to be a satisfk$ory method of contajning the ”

exposed rock.

s 0’ 1 1

1.’ WINTER i. ’ day

i .

I . . I + ’ .I....

1

I

‘7.

r

i:;‘,_

t

I

T ! L,

s

-

Q~

! L- ., r. .1

i.

0

’ 9

io2 X&enhouse Details I ’ . ._

._

.

I

* 8 - l Fig. Iy-iO& pay@&-and nighttimeIkat f&v. ’ ’

I I .“p, 0 .41

c

v 21

Page 228: Passive Solar Energy Book (1)

3

I

r

The Passive Sol/w Energy Book

0 h : \

I Photo IV-20~: North wall rock storage. i

b ‘,I

I?I all, the Active-Rock Storage SyC!$m~ stidied, the ability oi the mass ,td . dampc:n greenhouse tempera”ture iluctuations was n,early identical: Teriiperal- ture f ;ctcraiio,ns $f 20” to 40?7n the space can be expecte’d during clear

_ winte+ days. The rate of kirflow through the bin nrSd qunntit,y of rock largel) determine +c” flucluations.

.-+ d!F

For e~h one square foot c?i’ south-iacicg gieenhpuse glass, LISP about I ?‘z 10 3 .cul~ic feet of ro’ik. As a general rule, 8 to 10 feet is the maximum width ~‘i

* rock needed to circulatk the air through, and 311’~ to 4 feet is the mintmum. Increasing the size,of the storage mass beyond 3 cubic feet per square foot of

‘soutt -facing glass will not inc.re@t,he $erformanceYoi the system significantly. 1

Ventilation in the’,greenhouse fmctions not only to control heat buildup on wart-r days, but also;’ tg cant-rol ’ humidity and dise’a’se by discouraging stagnl neces high green

216

ti

a ar

I

(

- I

0’; and replenishing: the 5 plant’; carbon dioxide supply which- is ’ ry fbr photosynthesis. To indurg airflow, it is desirable to prbvide both Id low operabje vents. or windows’ (of roughly equal size) i*n the 5 Iuse.

Page 229: Passive Solar Energy Book (1)

n 20. Greenhouse Detds 1

.. “

: . . D -

Photo IV-20d: Operable greenhouse vents. ”

Photo IV-20e: Louvered shading device.

.

Page 230: Passive Solar Energy Book (1)

5

d&y f$@w Solar Energy .$ook 6

I

“*.A\,,- - k’:- e. r 0

,“- . . 0 L e. 1 ;’ * I *

70 prev&t- dverheating in~~&mer,~i&‘k a$o es5entiai to partially ‘shade the greenhouse. There are’several way’s to ac~qm$ist--t&i% si~ch as using movable : louvers or rollable shades, or applying whi.[&wash to the glaring. ‘1

” :

.And fina,lly, in the case of long spklls of cloudy, cold weather, .an, auxiliary , *;>- -‘I heating system ‘can .be installed to maintain adequate.greenhouse tempera- ’ ; tures. Any standard form,of greenhovse heating system can be used: the choice ,. ,(’ ’ of a,, u@it should be based on -lo&l fuel ava4ability and cost. Ho,wever, ii a greenhou.se is properly desiined, the amount of fuel needed in.winter wilt be’ minimal. ,

,1-

.I_ .-.;l

- 4~-- /r,l. --

85

I - ~

,+

\ * I

-i\---

” D

. I 4. .

.’

.

- ~. .

>,F& *

,‘

c . .

I

1 L

,

1

-.

.

P ?

.

I

/ . \

’ .i

! . ,

-, I” Q

z

: ’ I

,’ ‘I

’ u

I *

.E I

“‘-“A . -_-- .“-_

,Y ~ 9

‘, .I .,

,* .

, 0 .- &3T ,. _ . ‘. _.. I _. I- -. .._

Page 231: Passive Solar Energy Book (1)

I . ”

- ,

n

9

D

c

< ,.

. .

1.. . ’

.

8‘

.

” ,J

. :

‘I r , *

Page 232: Passive Solar Energy Book (1)

I. \-

i. ’ t1.

. ,I .e

.

LI

c -. 7 *, 1 If mbre than one ‘system. is chosen to heat a- space-CHOOSING THE SYS- ’

0 2 T[M(7)khis ,pattern will help determine the relationship between the sites , ,. _. .,

: of the various iyst&ns; . : a,

f 0 ,

),: c-

r- -- / ,,‘* ./ A 4

.*...*w @ &** , J . -

z

,

i’ /’ .

i .

/

I-

-

/: 7

It is very likely ihat a combination of pasSive systems will be used to ,heat a space. Howetier; sizing. procedures are usuali; ~only given f&’ individual systems, ‘For example, mariy passive ,solar heated spaces employing a Thermal Storage u)/all or +,ttached Greenhouse Syste‘m will also include”s’outh-facing windows in ‘the space. In some cases, direct .gain windows wirl be part of the thermi wall. In thk &d tither sin-iilar situations, the sizing prpcedur& given in pkvious patterns must be adjusted. _ ‘+ .

* -k

Thk &6~ndatioFF . 0 4 ----_ 1’ c ---_ ----- \ 1 . . - B ----__ -----__ When-siring a cbmbin~ation of systems, adjust the procedures given~~pG3us-----~__

u patternt4+$ordinge-to the following ratios; for the same amount of heating, e . each 1 sq.$are ‘fodt of direct gain gla?ini equal&&square feet of thermal storage wall or ecjw6ls 3 cquare f&t,of greenhouse.common wall area:

: :, _ . /, .w I. .I .i- ‘:..:..,, 1 1, :*,,J ’ * . .’ . . , VT”,

. .!..&@f Q .

S)@ . . . . T 51 1, *. +*

t ‘5”- ‘-4 .A. 9’ . . . 0 *

, :Tdat the de,taik of each systkm ai if it i&e the only system, and slightly over- siz,c- collector,&eas and’sthermal mass when-heat storage for cloudy days is neebed-CLOUDY O.D+#Y STORAGE(22). 9

+

p.

b :

0

P

[The Inf&atibn, s* .‘~\( -;;- \, . ~___ - v a’ ‘. .

r %a. J’ , _I ’ . I ------ -1

--------- -Whkn* most of, the glazing normally used in a space also e]ou&s 6; the,,

.

1 220. ,“_

._ Q’ ,

,. “.I> m \! ;?~- . . I _ ( 0 I . .,

. ,’ ,\’ I) ,

.$ ,- * ,’ ’ - i, - 1 .1 . rs /

Page 233: Passive Solar Energy Book (1)

1’ L

:... . e

.

i ; a 21. Combining Systems n J

.

n

‘.

C’

+ : . c

, 1, ,

. .

I .

. . _

, , -‘

‘ *.

-i

“;-“.L.., ” : =,a Fig.IV-2la

Page 234: Passive Solar Energy Book (1)

A’-‘\, A’-‘\, ..’ ..’

‘,._. O* ‘,._. O* i i

,L,. J$ ,L,. J$ 3.

. . . . i _. i _. . . ’ . . ’

1%. . 1%. . ..,_. ..,_.

\,, _

-A - -A - 8 , ,*. -,

- ; A. ‘, i_ 0. +..

: . :. 1 .,. I: - . 1 ‘..

$ .-, ” $ .-, . . l . t-3 t-3

” . ” . e e

.hJ i .hJ i

q _ .’ _ .’

: : m m :, :, a The PassivqSolar l&qy,sB~ok

?8 ” a The PassivqSolar l&qy,sB~ok q ~ ? ” ’ F ?

..’ ..’ . . .I .\. -’ L ‘L. 8 . . .

L 9

1 . -

. 1 \

coll&tor area (south-facing. glaziiig), then- a ‘Di&t Cajn System-wil,l utilize -2: I . aprjrdximately 60 to .75%‘of the energy incident on the cbllec{o~ (south-facin,g” @zing) for space heating. Thes,e percentages-; are largely determined by reflective and absorptiye,,:gadiation”!osses through the glazing,.,, $1 *,- * @ ‘,.

-_ ’ . $. I .

:_,

/ A. Thermal Storage Wall System’will trsnsfir about 30 ‘to’ 45% 0) &e, energy , .b ‘. incident on the collettot in@ a space: This srstem’s efficiency is,determined

. nc&bnly by reflecthe and absorptive losses through glazing, but also .b;y heat ./ . ,’

%i lost- from the-wall’s e>ite.rid<. surfaceVb&i;ause’ofkthe.‘high temperatules &ner-

--w-_ b ,$ted-LWALL-DETAlLS(Ta). ‘= .a . : , . . ‘I * P

. . I * ‘D * , .,: W’ a / .

I* F *. f The Attach.cd Greenhouse $ essentislly a Thermal St&age Wall Systeg. How-

9 I z. d ever, thaercentage of inci$e?t energy (6~ the coIl&tpr) transferred thr;ougti - ths,cammon’wall between e,he greenhoi&and bui!ding is less than a Then-r&l Storage Wall, or only .I5 JO 30%. The reason’& simpb that a greenhouse336s il . _..

>: C. . ,:- ,$ .‘r,*

r more suif$e area and-co’nsequently more heat loss !&a!, glassplaced-only a

. ,’ few iriclies in front-of.oa wall. This does not imply +t this system is inefficient.,

.’ .) 0~ th_i! co’ntrary, the energy‘collected by ttiecgr&+nho&e thit ‘is not trans- * -

-.. feired into t,he buildirig is used to heat the greenhouse itself-l’ ~

.

c a\ l F .. am .

, \ *’

5,l

2e.

. .

;;.

‘. .

All of thi’s suggest&.=th,a<a ratio of l‘(Diiect Gain). tq.2. (Thermal Storage Wall) =_- V $ \ ‘/ .to,? .(Attached Greenhouse)vexists between the systems. (If the coli&tor glazing ‘- -* “:

. a’ , :. I. En a8 Dir&t Gain System is -additi’jal- to ‘the amotint that would normally be ’ . ’ T

’ L‘ Ii ‘us&lx.i.n a:‘pace, t -.en dduble the‘amount of coll.ector a,rea (needed.) This means r / a that -each 1 square fdbt of. Collector area ‘(glazing) .in a Direct Gain System ’

,p. sup,@lies‘joughly th&;same-quantity tif heat-to a space as ? squ’a.re:feet of thermal .^

j,, storage wall, or 3O square-feet of atta;hecj greenh0us.e wall a”rea. According to . theS’e r+tios then,‘5,0 square feet’07direct g’ain glazing will produce roughly the. ’ ~ ,

I same glmount of soJar he.ating as the’combinatioh “of 25 square feet of d;re”ct “’ , gai! glazing and. 56 square fegt of. thermal storq’ke wall, or”25 square feet ~of j direct, g’ain glating and 75 square ‘feet of attached .greenhouse cdmmon, wall

-.+a.:, ’ - I: *’ . n , ,’ _’ s

0 ‘. _. (1 0. 1

I c

--A+ / I .

m

Wh{n heat is a&&/y taken. from the attached g”reenhAuse and’ stored .in the

h ., ,( ~~~b,uil’ding~CREENHOUSE~ 4 CONNECTlO&J(l~6)‘~tlie pegcentage df indiden.t’ ,I’ ’

j PnFrgy ‘supplit$ to a space increases. In this case, the ratio of direct gain to ,T’ t ‘/ ,-

/----r ca.tt$$ed, greenhouse collecjor ?_rea is; roughly,“1 ,to 2. --- . , ,,: \

MC,... ;‘. I ‘, _ * :J L . - -’ : ‘b .“A’ :

3 ~ “ * 232 .J’b __j “. I/ i ! I ,

‘. 5 ;, ‘,I:,

.* . . ” , \ 9

: “!

;,;;;;.. .‘. -I ) : ,; i ,; 5.. ’ ,’ i_; a _,

’ ’ ;fi:.. ’ , :

. . ‘. ,, ’

.‘ ,.I /?,. ,,,.“~d (, .” ,1 ,:,’ ,,, ‘_( ‘“.. ,’ . -, *.>I 1 +i, ,,:“- ,, -‘;Y ;~ .b’ , ,‘~ ‘0 . .

Page 235: Passive Solar Energy Book (1)

.

..,-4 -_ ,

S.

‘U

. .*’

5

j

‘- 3, ‘i 223 , , -

Page 236: Passive Solar Energy Book (1)

19

.T6d Passive S&w &ergy Book i ” I , .I’ ;- c a, * .:

_

@a I

a .

A

Be&se of the many:roof pond configuraticjns, it is difficul; to gi&.rule of’ .. Q thuiib for combining the pond with othec systems. However,*fsr the ‘same _ ,. .

_- amoun’t of*heatin& the ratio of roof pond collectorJ’area to the cqllector ared

’ . of”other Systems :c%n be determined-from the sizing procedures given in the I ’ patte’ins,$QLAR WlNDOk%(9), SIZING THE WALL(1.3),%l.ZING THE GREEN-

’ “’ HOtiS~(jl5) and’SI~ING’THE ROO,F POND(17). ’ B .A IS

/ ! e

_’ . . D \‘.’

* . ./ ,,,. ,’

Y! ,t’ (~ 224 ._ _ : : .%ii;L .c ”

: :, -.I: ’ “,/, _ “f!,‘-; o

I ,‘, 1 ‘< 1 L !’ I;., -1 . “! 1 1.

\. ,

!,,., F .) 1’ ; \ *. I

Page 237: Passive Solar Energy Book (1)

B

.?- ’ . ;\ 1 b \ ‘. c :a L

..$.; _’

,~~ZIL -(loudy Day Storage ‘- - n . #’ .>

. :

c

” c

. *.

-. Photo IV42a e . c ‘1 *’ J .-

e ,.I’ -

1. n ’

,,* r- % 5 ,$L I ” , b i

7 .

..L_ . .

Page 238: Passive Solar Energy Book (1)

c

-- “i

_. IThis pattern: comiletes all thk sizing pattern&-SOLAR ,WI,NDOWS(9), ” . ’ I M’ASONRY HEAT STOfb%GE(?i) .and JNTE.RlO% WATER WACL(12); SIZING

- ,

/ ” ’ 9 : THE WALL$l.3) and ‘WALL DEiAlLS(14); SIZING THE GREENHOUSE(15) and, p ’ . ’ GREENHOUSE COhNECTbN’(16); SIZING’THE ROOF POkDQ7) and ROOF

r *. POND, DETAILS(l8). Ih alI of &hem, the ;ize gf the.GoIlector area and thermal ” c. o

\ --I --&ass can be adjlrsted to provi &eating during periods of cloudy weather. d . --I j -, /. L’ n

* e z . ~ I , * . ’ , d 1rr.a p+ssii;ely h&ted buildirig ‘where thermal mais is part of &e~l.iving &ce$ --

‘- ,. -

.w additional heat collected will $fqdt the. ave.rage temperature in the space.

, .kTpatter’k .give kl-es.of thumb: forr si*zicg. a system- ‘to-: ma+i@ain”ag - .a

., .aCerage ’

1 . e 2. 2 ,- 1, - i’ . . 1s; c3, d :,’ 3 .:,

. . :

‘I .: II * -* 1_ .;‘, ; * : -

I “.‘*As a. $&eral~n&!, fo*provide’beai s&a@ fol; onb or ~yd,;cl&dy, days,:increas,e ”

. , . J .,,a ‘.‘. ‘i-. x l ’ * ,I’ < ,‘b k j. c Tb c r-$44 ’ i

es ’ the sc$~h’gliizin~‘(collector ar$).by .jO to 20% and:‘ * . c: .I, .: ’ .

*k> , - 1 ” 4 ? co&&t :interid) wall’s and.?oors of..&id niasonry 8 &he+or more ‘. ( .I , .’ , in .thickness, oji F’;‘Sl?’ ,l. ~

’ “i .a ,. _.I : ,. . 73 3

4 . u.‘. ., _ “I .* us& 2 to % cubis feet of i&eriqrPwaier “wall’ for $ach one &hare -foot of. ‘O * . . . I sout)! $a&& - .‘:. ~, .i~ o ._ * d r o ,. i a

0 ” - . *., @ . .4 . , ,: . ‘ 3o (I /

In&r&$ Garh“Syst&s. : ; e. >’ , r’ ,.: s.8’ ; ’ , , - i :, ..!’ .- ?

<, . . _. i c ‘. - , ..,a . 1 etii ,.‘T&- provid6%&t’ ~t~~ge for ohe 0~’ t& Jcydy days: izcyea;e ‘the collector ’ : :

~~~4’ ‘abea by ID’to 20%‘ianf use: - oh .:.. i ,‘, -, b

e . ’ . . S>f’ ;* ? ‘.I

. ‘LT. _ _ - - _ -- - _. -@ . . . ,. t , ‘. - _ ,*.. 0 - n

: _ . ” ‘wall of areate bdyity, ’ ‘Y; .- 1, i w . o.- ‘i ‘. .. 1. . ,;. y ,~-1 ’ ; _ .-I .’ . . a /I _ 1

’ ,. -‘, . t’ * - 1 e’ ,’ r J - , ic ‘. 0 * . ,. a .’ - ---.

Page 239: Passive Solar Energy Book (1)

::-I~ :-- q ’ - J .\ ::. ,.:. I . .b a -_ ”

.>,

.- _ : _ ” Y >: .i , .

. .“b is. 0

. .

1,

/* _ t 0. i 0 :

i’

;/ ‘. :

s * ‘. 0” udy Day Storage . ’ . e I I , L.,

. ‘” * % ,~,ly.“,.l~.Il~..l”.II.“.” ,.., _. i -‘-‘-‘““-.-I- -,*,:;,,.,

I l ore cubic fbot’ or’ more of tiater wall for each- h~‘*square ‘foot Of -‘“--lU.*~UI*.rlrr-l~~~“~~~- , ’

cOllector area or 1 ‘. . L 1,

‘0 6 tg 8 inches of roof pond depth; 8 to 12 inches for two or .three days. D ,, h *. ,* ” z *I .) hfat storage, * - _ I k V^ \

n r . . . . (I

. *

.’ . .

r3 \’ 1””

“a

10

,? I * s ,

. ..+.@< [email protected]** “c . s . .

” . . 4 ,**- . .

‘: ._.

I i s-3’: .a _-

.., d 7 0 +. 1 *

* .

.

1

..- ,’

<-’ _ :’ ,’ .,

1’19. .* . I . - I Slok..&e rate -of’ space. h&t jcjss,o’k~ cloudy days by applying .‘MOVA~LE

’ ‘. IlYS~~LATlbN(~3) ‘over the* south ,giazing at night. In. climates .with hoi-dry” _” 0 .;. :,- 0 stirkners, co& the therm?l~,rn’a’$ at=hight to’ provide for SUMMER ,CO@jr\r~ v ,.. B F

1. I. &’ I- : ;- :.

.‘727) ipthedaytimti’ ” . ---_~~.--&~~ ---- m--;;mi m _ ., . .

--\ r _ _m1m -- - --,- * .

I . _

-,.;+-- ‘. *. ’ \ \ ~~;,:i”‘;;;. ‘:&&q ii,~~~~~8,~~f~,~,~~~~~~~~~~~,~~~~”,~~”~.~~,~~~~~~~~~~~~~ qmji$:runs; 3. pqssixl,y,: ..: j..: Y,:\: .:.I s..: :: -. l(!i.4L,~pIL,~:,li1( e.1 L,, L (L , t, ,:’ _. ,, , ’ ** )%!ated s1j;acBl will, Gab7 Ii& as sy~te~.‘.Thi~.meacis.fhat.tHe heAt.-infbyt intg. ,tbg ., _, _ _,,, ,, .I . ,;,p. ,,,- - space. will .equ.al.,.thk .heat puti ahd the average ‘interior temp.e,ra$re will _ _ - . . I :,;;:$. :- ” ren$n,,approximately the to .day ‘as long as these ;copditions

*.T , . ‘_ . . ‘4&i+- ,. B *.... :,: i-. ,; ~ “‘b ,_ ; j ’ * * ooo -, y., h ~,‘.

Page 240: Passive Solar Energy Book (1)

CL . ., . . - \ .& ? n

.C I , \ a 0

I .‘P, , . e IT

The’ f%ssive Solar Energy .Book ; ,, , +

R ;P , “I Y 0 -. stabilizes as a system (is fully charged), the more mass it-contains, the longer it will take to cool down. * @’ - 0 \ ,~ . . . ;

J Fo; these reaqbks, in climates where. consecutive stinny days are cbmmdn.in ‘” 8 ,

4 winter, the storage of heat for cloudy days-is accomplished .by, r;lightly ov”er-’ 0 slzirig solar windows and thermal mass. :With. larger sduth ‘glazing, it can be

~.

expected that the, average ‘teinpera.ture in-a.spac,e will be warmer than 70°F.

. 0; sunny winte.r days. And, beca.use-. of the additional mass, the space will - J

+ .’ ;cool slowly during periods of cloudy weather, a few degrees each day. An example of this sithation is a. sp&e with slightly o;versiz& solar windows and , .

* _ i

- P‘ mass that maintains dn average. temperature of 74°F duri.ng su&y weather. If x

L_

., :

’ th; average te~mperature in the space drops 4°F each-cloudy day, it will-not be 9

uhail the sect&d .or third d&y that auxiliary heating is *needed. - -mj . _’ _ r- * - ..

. in climatys where cloudy or foggy winier Meather conditions pr&ail, design- ~ , ing for clgudy day storage is not recqommen rice_ i-t takes a-Qeriod ‘of Cnnsecutive sunny days to build up tempera -it’\ a large (thicK) t’hartial * .

‘. &mass. ,ln cloudy clim&s use the glaiin& are’s -minimum” mass thicknesg z q;!\,‘,$.,;; .f. r, L 1, L G, , b PV -1.. 5 xmyqrpme;&fixl,- ~n.5KX.AR &VlWBoWS(Fi); ‘hA$ (&AT STC)RtiEfll) an$

,_ INlfERlOR WATER WALL(12). This-does nobt -mean thdt- the systein is ri’bt workihg on.clotidy days. 0~ the con\rary, pajsibe s@tems are a/wa+‘working.

.They collect ‘and ‘use all ,the ene,rgy that passes through the*- glizing. qn .,” *, .9 cloedy days, hqwever, a space does not collect enough diffuse sunlight to;

-.a\ . keep interior tebperatures at 707, am,: therefore, some’ auveat-ms~;.- -Y--+ I necessary: LJ \ ,. Y * I _ I I . \. ,:,. i jddirect Chin 1 ,

JTh~rmaJ Sto,dge da//,~Atrached Creinhqqse a/d Rod Ponds) . .

/’ I - i,. . I 1 1’5 0 .+Si$ng adjistme/lts ioi. cloudy Jay stor.<ie ark .different for masonry and waker. .I ~ :

5 - ,heaMqrage.. I 1 - ;,, - ‘-,, o ,_ s r ‘,‘. . :

Depending upon its” $ermal’ iro@$tieGWALL DETAILS(14), GREENl+&,ISE ..’ CQN~,E~TION(16)----8 masonry thermal .;toiagft wall or cbm.mon .&sot& wall bewe&n a ‘grehnhouse’ and building has .an.. optimum ragge of, thickness&., if the wall is mad&- too’thick, then little h&t is ,transferr& through ihe wall . . - and’ thd system ,is--inefficient. Therefore, to siore heat for cloudy days, the’ surface area of thewall (of a given material); and-not jts thickness, should be D increased. By incretiing the wall area, th& dally average- tempkratuq ih 9 s’pace Ml al‘s0 rise above 7OPp. Fo.r a day or two .,of clou.dy weather !hen, the ‘,~ average space+mfierat& tiiII remdin &-the cbmfdrt ranee, dropping ‘3 few, “I

.” ,

‘., ,_, ~ ;: ‘. .* s ’ bZ

+ -I :\ ,- \ ,, 228.‘. . . ,.- .

Page 241: Passive Solar Energy Book (1)

::.//I:; ‘* :, ” .c. ;,’ ,’ 1. :,

. d

y ,^d

i a, / ” ,

: * i:. . -“., ..,

.:. ..: ,- ~- Il..,,

. . ;; . _ ;:‘-’ b : * /:. -

I’.: . _ I . . ’ ; .-. ’ .

.:-. ‘.. .

._- ,_ i

I :

0 ”

I

. .._ .._ _,_ ,

22. cloudy

. . .

D;:v

\,

4 . . . . . . . . . . . . ..,. .

D < -5-m

&.

Storage $ * ‘“u. Is

I

0 I -... ( *; . ‘, ” ” ._ ”

degrees each,cloudy day. T$e rate a! which the, space cools is,largely a- function

; ‘h ‘, of the.quantity 06, heat stored in the wall at! the hgginning .of .the -cloudy

, ,

:.- mendations ‘for waII,thickness4t can be seen that the-,. ‘. ,..V’, “:

.: . . I ity of ,a material the greater its optimum t-hickness. 10. i ‘. (_ .generaI’, after a- of $nny days,*thicker wajls of higher conductivity will, 1-S . , -

,, ‘(.I : I ‘. ,h’eat than -thinner walls with‘ Idyer conductivity and4 ., 9

.’ : -a/slower rate;’ , : C . . 2 a n_. :I i ’ e , __

/’ -8‘ . 0 _’ <. s$;yk By making the surface %ea .bf ‘a. water ‘wall p’F’roof’ pond larger than that

*

* _- ’ ‘3 ‘. ._ ‘:s: I” ;ecommende.d -in,.~SltlhJG THE :yA$(13);, at$ -SIZING THE ROOF. POND(17jI - D >’ l .

” * .-;

:j, the average- temperature in a”space wili be greater than 70°F on sunny winter ,T. ; : -~.da+. Since a .water wa.lJ is an eticel.lent ‘conductor., of heat (becauserof water ‘, ,-’ * .

_.__I’ : n ”

‘* thermoci’rculation) it can be .made i any. .thickness (volume). Using a large

.: :volume,of water per ‘square, foot of south glaC#causes a space 40 cool at ‘a ‘a 1 very slow;‘rate during cloudy weath.&; However, increasing the. volume. of

‘, - I... \ .water wall also implies that jt will take a period of two or more consecutive . . ’ .,

‘s d sunny days@to fu!lly charge It with heat; Therefore, in .cloudy climates with few .- ’ sunny winter days, increasing. the.volume of water ‘above that: needed to ‘, * .

:. I li. , da,mpen jntecior .temperature fhrctuat[ons is not recammer@ed. Again, &is - ‘. I - .

I /i’.’ ’ does ,not imply thatla .watei Al or ,roof psnd -does not work well in &tidy b ” . : ii,. ,.climates; they are infact always working. ’ . 0 .” pi 1 -

storage, $x&e- overheating will occur * . _- -_. _

possibly causin~g discomfort. In a D.ireCt Gain

*. ‘. , i,, 3 System-*bleat. can be ventilated-from a space, by op@ng windows, to lower dl ’ s .’ - :I : : ipeiior temperatures.- lfi “ati ‘Indir.ect ‘Gain System ventilation is “also possible; fp.. _ - ‘v I .. 7,. , I_ ”

,: {+ -Rowever, placing an ,insulatjng ,panel br curtain over, the isside. face ‘of the :.

. . -1. “. ( t :& , ,( Ipa wall-w’ill~effectiuely cdntrol overh.eating, . ; e/’ * ‘”

- ,.. II, - s12 : \

Q . 1 4 -la.,. / t: _... I ‘S‘

a’ l

’ a

.I . . ,-

I ‘.

_ .L*- ‘.

i

<“., aa ”

..* ,’

,. ;‘: ,

;‘.

1 .a

*.A L1 .-- - . ~ ’

,’ % -

* O., p D

.’

: a ~- -*.-

‘; , *

0 *- D A . . -

; Q

0 0 . r I

; : :‘e;, .o 0 <

s . . 0

.

; :; ” - ,Q

- I .’

. ‘* .‘. i

is .) 0

,‘!. ,;’

.:, .A ~

1 AC d d

~.’ ,

;;

“. , .” 9

u I

j, ” ., * w .:-j ~

. _ -’ - ‘-a 0

.* -

_ !. -*

/

1. al’.‘. *

,/ e:’ 0. o ~*,

6 4

\ .

~&---.P -_.. - 0 , D’ i *

s ,- -.

: ./ ‘ a’ 0 :

‘i 03 8 :

I b

.., .I

‘, _’

‘, y. . ( _.,

e -+.

; d

~ ‘:I ‘I 0’ 0 - . .

I ; .

P

Page 242: Passive Solar Energy Book (1)

. .’

‘I/ !

c

‘:

s- .

23- l

,

c :

0

.

\,; ‘i 4y.

’ .

u

t

,’ -

1 .

\ ,h \

1 Movable In&latiori . . . L

.

Photo IV-da = -.

Page 243: Passive Solar Energy Book (1)

10

‘“L . 1

,. *,.

, i ,_

c

d ‘“,2X Movable lnsdqtion

I h .” .* -. ”

Once the solar - system r for each living

/I l’ . . . .._ . . .

;r, _-. I

‘e . . i

i .

i

b

--i :

I\ .‘. !

). . <.

i

11 0 .I 1 :s

.

I e

I

,I -

/ ‘*?

jspce h.as been determined- CHOOStNG THE SYSTEM(7)-and the glass; area: for each space located- WINDOW LOCATtON(6)-the building cat? ib

r by the use of movable insulation. ‘)I) :

[I ma-de more-&icient as a. solar cpl’lect I’ ’

.% 64 h? -*a ” h

ptitential. to -admit 3 ’

.

-.

opening. . ,

t I

‘r; c

,

, .

. r ,r’, -\ b- ” i. 8

a I

2 . ‘7

83 4’ .

2 f$&.

.

t Cc>ntrol &ii? amount of sumlight entering a space at different times of the year

t4 -. ,, by %detailing m&able .it%ukttjon so it doubles as SHADING DEVtCES(25); * - * . i /_‘, When-using exterio; insulating shutters 01: a,panel$ design them so that they

1

0 . . -_ / ,&. -.- (. ; \

/ f .- a _ _-- _I

.” 231 I' ,_ 0 ,.o- - > !' I_

Page 244: Passive Solar Energy Book (1)

I -

_f *

, p . -

f ,.I” . . I’

I% ,

1% :,.. -...... . . . . . . .._.... 2 ..,.,.,., ,.,... .,.,- k

.- 7. 81

‘._ ‘.._ - ._ . . The Passive Solar Energy Bad / I

I I- 0

t Fig. IV-23a

:i

, dso serve as KE-FLECTORS(24) ‘to increase the solar gain throu’gh each square 8

k _ , k n 0 Heat is transfe.r;ed through glazed openings by two duction through the-glass (or plastic) from the interior surfa to t,he exterioror by infi!tration, the exchange of s

* outdoor air-th ough tiny cracks aroundpindow fraines. F /.. . c . , ’

0 The purpose of movable insulation is. to ,:educe heat losses when the g.reate’st. In winter, the major heat ,loss

i example, in Boston,’ during an;average / ti’on heat toss, through single.orSdouble

single .glazing with night insulation performs, more effec: glazing without insulation.) However, the use of insulating

I va,lue of IO) can reduce this heat loss by approximately 80 I togo%.,’ . “,.

\. ‘j

li I

. I 1

232 0 I - @. 1,

i n :r ,1 I e:,,. ‘: ?, ; %

5 , ’ 1 1

i p:, ‘,. */ ” , ;“. . : - -

Page 245: Passive Solar Energy Book (1)

(I

C’

ti

r),

*

I*

I*

.

*

5

I

c

._

v

.

‘B

.I

**..d

/ t

# ” 3.

’ ‘, I , .,.

. I .23: Movable lpsulatioh 0 * I \ --d *

Table YiV-23a Conduction Loss& through Siti@ and Do’uble Gldzing 4th and without Shutters for Boston ’ . s

3 Heat Loss (Btu/sq ?,,I ’

Single Glazing Double &zing (w/shutters [R-101 (w/shutters \k-101 .

Single Glazing ’ 1 Ddubte Glazing ’ at night) at night) . n .

Daytjme (9 hours) 368 *‘.,’ 211 17 368 211

Nighttime i .e a

,(I5 hours) ‘679 390. 51 48

Total heat 16s~ 1,047 - 601 . . 419 . 259 6 ” T ‘.

NOTES: 1. Average Januaty clear daytime temperature 33.8’“Fi average January nlghttlmc tem- 1 perature 29.9”F; indoor temperature 70°F.

. t 2. Sin&la glqss U = 1.13 Rtulhr-sq ft,“F. : *

3. Double 81~~ U~:F .65 Rtulkr-scl ft-“F. rJ

’ 0 \ t ‘, B

A well-sealed insulating shutter will ilso dramrlfically rcxjuce thth infiltration.of LoId air around window edges by crmting a dead air space between the , . , window ,and shuttkr, This can bc di‘fficult to rich-ievc>, however, since ‘an effective seal Is hard to design, and poorly ‘fitted ‘shutters, a.IIow G convcct,ivrt airfldw between the insulation and glazing, thus increasing !he transfer o-f.heat

through the glazing.

i .

P - .

n 0

.I I

h

D a

Fig: IV-2,3b: Poorly fitted shutter.

_d

t :

233

Page 246: Passive Solar Energy Book (1)

The Passive Solar ;nerg; Book I \

I . ’

-e

1;”

m I

_;

. 5

. -

:.

‘3

t

e

,

.

P

n

a *

. P

*

-..,

. ‘

’ .

, r’

.

“” 4 “-

* 234 ‘d .. : 1 x, .- : t I ” c >_.

- II ., .*’

?,’ -- (7 0 . s *

Page 247: Passive Solar Energy Book (1)

D

’ 0

,”

‘i. 23. Moyable Insulation I : 0

4 c 9 -

Stephen,‘-Qaer who has been studying this problem for miny yeacs obseives: I, i

a?, , t l .

The great probl.em with movable insulation is craiks. . .

* ’ Be E ,

I If you are . likely to have cracks, plan to torture an; air that daresAp& thrsbgh’ ~

\“,” ;

0 .a

q thepi. This can be. done by pressing tJie in9tilatibn -panel di&+ly 9 ’ against thep lass--any- air leak around the edg+Omust then spieid -

. . out in q. thifi film in ord.er to warm the glass. ExperiFenting tit-h snioke introduced. in thin. films behind glass., you find that once

ca er-- %. It ’ P c &I$

5 235 1 ‘- I , .D r .-

Page 248: Passive Solar Energy Book (1)

! ; .I

f a d

* . *: .

I- ‘7 : -

. 1 5

. . -1 . . Sk-- c 4 ._ ’ \

I .’ .

1. .i st

9 -The 6as&ve Sola! Energy yak 5

i . \ . ~

this layer (space betweeg gl,ass azd’ panel) is less than l/16 inch in F

. “s thickness, it is slowed by endrmous re$stance and actj almost like %’ ’ ._

c s&p. dieat a glass area like a %hip--brea!? it into separate’tompqrt- 1 ’

* 9, * -I ’ ’ ments so that a leak -in on@ place won’t be datai.* ’ . I c .

* ,a . -I.

!3$ uS.ing insulation over large south-fa’cing &indo@s or skyiights, the sol& a’_ hea! gained during the daytime-is prevented froi escaping at night. In this-

, . ,,1’

4, Gay, a large heat-gain area during tbe day becomes, a low heat-loss area at . *. t.

A .F ’ night. Heat ga.ins (or Ig$ses) through spyth-facing glass, with and without _ 8’ ra movably ir$ulation, are‘pldtted for monthly solar and weather cqnditions. in . ,_ 1

fo~r.,l&itions. ’ , ’ “^ .I.

Y L.-e ~_ * -- _~~_~ * c ‘“‘..’ i Q

’ , ‘km & n . 0 Notice .th’at single glazing wifh night in’sultitioi is nearly as effective as double , II

glazing with night insulation in Seattle, Madison and New Y&k, and in _ , , : b Albuquerque it actually outperfdrms double.glazing with insul&i,on. It seems.

reasonable .to co$$u.de, that in msst.c;limates, double glazing &indows is not .

,necessary with ‘insulating shutters. However, a.masonry ‘thertial storage wal!, ‘,-becmsgvof” the;high surface ten?p,eratures it generates afjacent” to, t$e glass;, ‘,

..I should be’.dsuble-glazed: i’nsimates to pevent excesslie fhea.tO loss. 3.’

a ’ ’ I.. . * ’ .F , , ,. 0 \ . +* ’ *,^_ 2 4 I

I, ,

1 -4 : T&i application of movable4insulatiou can be divided into three c,ategories: - .i’

Y ’ - . u] ‘ha&operated, (2) th&mally sensitiie an&d (3) mot& driven. Hand-op&at<d

d&ices in&de sliding pgnels, .hinged shutters and drape’s The initial c&t is , I,. -.

:.

,.‘,- ’

~“,* _,

.

generall’y low, a’rid the rnakrials tisuall’y pay.& themselves in energy savi:ngs within d few years. Tl@&taJly sensitive devic&&!e activated. by heat coriyeWd = ‘to. mechariicai. mov@n;ent. So’me examples -are,” Skylids t +I Fyeqn-activated. _ r$oxable louver0 system), -heat -motor9 (as used i@,greenhou ar+ large bi.metalMc ?tGps. ,They.‘fun%tion automatically an x

ve,nting systems) ’ can be. placed ‘in 3 +

are&~,,,d$fitiiJlt to rea’cb *like skylights and high ‘clefestory witidows. These “mechanisms use ho el&iricity’Land ire usually more expef’isbe thati hand- , ,oljerated: devices. ,MotoT-driven ap$ications can ,be -manually aq$va.ted or ’ , cotitrbl!e$ by aiJtor&ati.c timers, t’[email protected] or li’ght’ sens”itive devices; Some examples are~ac&val!~ $ (foam beads ,blown between double glaiing) and ’

I

Harold Hay’s Sk<t?&rh $ysteti (nibtor-driver+ tiiding insulatidn panels). The ,. f -;\ a “. , . . w I

: .

-. . 0 * * ., -”

*Stephen ‘c. Baer, “Movable Insulati&~(~ P&s& &jar H‘ating an< Cod/ink conference and - I Workshop, Proceed&g .(5i;ingfield Va.:.lj&oqal Techpica IRfprmation Service, ‘ilJ76). ”

‘tSkylidi are a batented &vice by, Stephen Bq%r,;“&mewoiks Corp., ,Al6uquerque, N;.Mex. ’

*Beadwall is a ~ate&d. device by &id’43&ison, iomeworks Corp., A&uquerqti&,.N. f~4ex. *

I*_

\- ,/’

..

..,

“* k

: lIc yj

.,;,$$ :, ,, t ;

;.,, , ., !_I ,.> .a,

,’ ,’ h ._ . ,b+...

;,,,;,. , 8, 1,’ _ 1’

:i’ ,; ‘: i I* ; ./. ,_’ : .’ *

.t. . ‘* - -

&j’ :,,’ l ,y*,, #‘;: i *

. .’ s

I. .dI_

-4 ‘I

: 5.: .J. i ’

‘,;.. ,. i‘ .

. .: . .

* b’ 6

-Es -* -

. r’ ’ , /J+b .‘. .a

’ ,! g\ I “8 . : Y

- -. _’ -1 .

Page 249: Passive Solar Energy Book (1)

\ 23. Movable lnsulgtion

U @w/w . . . . *s' ,.'

;

0 . seatjle,wash 47”NL l

‘r . .

B .’ 1.

, .: . . . ”

,:K :: - ‘II- - I

“,;’ i-----++- .--. 7 h+“f .-..-....- etqa _- ‘p -- _I__.--.._..--I. ~--... ..c _..--.. I

A I

I .

?-- I I i ’ > I -__ I

I ‘i

Abuquwque,^N.hx. 3?pL . 1.

- ._ - .,. P ,. _

,“. 0 ~ *-- ” .

&l

\ ,. -3

3.

L _ ’ I’, 0 ,‘, Fig*. IV-2% ; Glazing perdorniahe Cth and without m&able i&ulation.. - 0 o : -. 4’

‘I 1 / = r%r ” ,,(, m . I, . . u .

,.: ” d. : , . > , *’ R

. . c. :. LC . _ ‘I ,‘. 0 . ” $6. _ ’ \ - -, 237 ‘- ._-

11 0

Page 250: Passive Solar Energy Book (1)

‘Y ’

Jhe Passive Splsr Energy Book ”

L % ii

0 .

7

4

Photo IV-23~: Insul~tiq devices: thermally sensitive,Skylid (above) and tiotor-driven Beadwall (facing Fage). 0

D . I

23Q 4

s ) I . 3. ’ ,

Page 251: Passive Solar Energy Book (1)

k F .. / 4 .- 9

I :> ~ 23. Movable Insulation ‘3

4 ’

advantages of these devices:a,re possible automatic operation, use in difficult- r, to-reach areas and the capability ,to move very la?‘ge insulating panels. The ~ disadvar)-tages of motdr-driven a,pplications Gould be the. use’ of somewhat m’ore complicated equipment and higher.initial’$nd maintenance costs. n

Movable insulat-ion offers additional benefits. By reducing nighttime heat {ass, ;jess collector area is needed to heat ti space. t. ‘-

0 -- . . . . . .i* <‘& i* .,..

..+ ,,.: _’ )” .

Q r -, . . *B . - -. 239 b I

~1

Page 252: Passive Solar Energy Book (1)

. ‘9

-. - : * . ;

.,

II

3. 1

. . . :

I

c. -.- 4

; P’

1’ L.

e .’

‘. ‘a v,

‘i- ‘. .w

. .

*

‘:,, . t . I.

@ -t ., 6

,

-\ \, _ . , A

. Photo IV-26 .‘o,.

, _ . f El

D .‘. . d I- - _ I_

.

B

t -

*

L.

a

Page 253: Passive Solar Energy Book (1)

>/ ” s * ” . “,

‘. -.y ” ‘.

/ . * 0 D c

I 01 *

. .

>

.d

24. R.&flec&,” ps’ .’ o, . Y.-’ -Q .; 0 ~ m ’ 7 8’ y ,.. -.8;., - ie ’ !’ . ;. - *> * ‘-1 . r ” ’ : (, *2- ”

:Afte;~‘~-~OOSiN:~.THE’SYSTEM(7) for gaeh space, th% ar$unt 6f solar ene’;gy ’ a3 incident on a collector cati .be increased with the additiqr;l of’ a reflector.

, ” RFfEectors, though, must:be integrated info the, building’s desjgn ,$hbn sizing and detailing the solar system.

A n c 0 Q .p ;. ” e .,-

L ” I , Q

* B B-‘ -0.0 f@. , .;:r8’,-.,

+J 111.,, <I’ 1. I

.:l? * ..:y.*< ,,,, ?;*a’*..

0.

“, ~ ” I

.I 7 “.

‘.. n .) . . - -..\ <, . d - +

_: _I _i D t z - b

e .>

a- ’ A=large amount of’collector area ,(s&th-iacing &ssL.rq&*not be feasibl$r or. : - ,?, “,

.O des.irable in many building situ&& .In- a num&r of situations;!.sudh as partial

i P shadipg ‘,bi rreLirby buildings o”i vegctatioh, acgthctic considerations *or’ the, - ’

I ‘IimiPed availability of south wihl. for so1a.r collection, large s~ut)&H~g glass . , * j 8 0 areas may -not be possible. In addiiidn, since glass is a ~~oF&uI@~L, it makes. . ‘,; . . Di (.. . ,$e,nse id’ mi’nimize .the!‘area of, glazing needed to heat a space. ,By u.s.i:g .. .

‘9 exterior reflector;, the .a$qunt of solar r@iation transmitted througjl ea-cjl sq,uare.tiot of.glass can be dramTaticaIIy increased. , TD -- / .- :. ‘- I _

\” i, 1. I

.’ I v / The Recomme”ndatiori ll D

- k

<

1 . ‘LI

. , ‘I s 0 : ,.

.For ye’%c$ @ping ‘us&a horizontal rgfiector roughly ‘kqual in width,, dnd ‘1. to’. BIW 1: 2 times’the h$ight, of ‘ihe glazed opening in len#h. Tar south-slo$g’skyli&s ..‘. .’ #:

j-f-- I- i “loch-reflector -abo%e, the .skylight .at=a At. angle-oLapp+xi~~I.fM_“,~ -.‘-..L :Y: .

/ J’, MaJw the reflector: r6ughly equal tq the length and wid!h of the skylight., ‘_. . @Y, ; ,Q,“* ‘\

s ’ ,, :: _

t?. ” - -’ . . ~ s . 8, ‘3 &;, : ” . . /.

.. LJ %_ I

“. .o r> I L . ,

. . Iu Iu . . . . = = >’ . . >’ . . & & ” ” * * * * * * - o rJ - o rJ - - , , , , b b -E -E _’ _’ . .

0. 0. .&ten possible, d&si.gn reilectorl’t~~~;ncti~n as:Si-tADING .$&en possible, d&si.gn reilectorl’t~~~;ncti~n asSi-tADING DEVICESGW DEVICES(25)

, , insulating.‘.~hutt~rs, insulating.‘.~hutt~rs, tiOVABLE lNSULATIrOtij23)z r r M’OVABLE l~SULAT~,rCX’f(23)z * . .

_* s ; . . _’ _, ., d - . . r ” _* ,,:‘r ^ ,. L - _,,- ” .b

: : d . ,. (, .C’ .

. . . l l

“’ .‘, 1 -.,, . . ._,. .

. .

. .,, ,1 ,. ,;.:-.,. . ..*.. ..n ‘,>

. ‘,,.i” ,.,,*

D . .’ &‘-

b

.’ ‘.

s’. “.’ ‘. b

._ ’

I’ . __ __.

2 :

‘,. ‘-T:, (1 . ‘C>, :

- : _ Y. .

‘. .,,:., ,.$I‘ C>L _.’ “”

“- 0 h

i-‘, . .

and/or “. 0

d

0

* ?..

,

Page 254: Passive Solar Energy Book (1)

0

“: 1 “2

.% r )-- _

$

_ a IThe f$ssive Solar Energy Bodk D

e

a

.s

I t

-.

x

i

f,

“.:.

A.

.

--_

\ .- *. *

D =.

z

:. * .c - ’ <

. ”

:fi .

!

/ ’ -A ___ I ___-_-_

.I _.. ---- - . . ._

/

.6 c-’

0

s ---

i . ‘,i

, . ‘L=l to$,xH 3 u

/Y A ,I .

/ . _:

Fig.%-24a n

. Cl

I The Inf&nation D -‘; p z’..

n

Q \

There are basically’ two types 0.f exterior reflector/collector configurations: reflectqrs couplid with vertical or near vertical glaring, and reflectors coupled

, 44th south-slopislg and horizontal’skjAights. ‘. I* ,* I

.For vertical glazing, a horizontal reflector directly in front of the glazing ii b&t. The winter perforpance of reflector/collector configurations for vaiious la,Jitpdes was studied at the University of O.regon i’n order to arrive at the ./ + r 6” B

242. 0 .

\\ : 0 ’ . ,. ;.

p . w “’ - ,.” ti

-. 1 : ffi . . . . 0 . .

-..... -..*- ..~~._ li : ~__“.._

Page 255: Passive Solar Energy Book (1)

,,‘/,.‘, : v .’ 7

.$ “” .,T; : ?I , . r * . ..,:c

I

--. -- : I . . 0

’ **

” i,

i 1 ). I =

e .,*! : .., . i. .

.

9,: _. B

g;-":.. :

,,

: . - I 24. Reflect&s . $0 i’. 0. : . i I , . . ._ ’ 01 . w Dr,

8 optimum ge metrical arrangement for reflector/collector tilt angle>.* Results ~ i

. I - ‘.gf 0

” for 48”NL in&c&e that the optimum reflector ang6 fo,r v@i’cal~ gl.azing. is ’

,-_’ D L about;9S”, or a 5” downward: $loping reflector. The result of similar c&ula-

: , tioas, for ‘35”.NL, found the’optimum tilt angle to be 85”, or a 5” upward .’ _ ,/. >J sloping reflector. Howgwer, for architectural reasons (such as water drainage),

3 it’is conveni?nt to use:,a-,sl~ght~r;war;d~-slo~~g reflector.* 11 is interesting .-_ , a. to note that,at 35”NL’ogly a small, loss of collected energy (less than 5%) ~

1, ;” _. +‘!* ,. Woutd be' incurred by usbg’a downward -slopi@ (5,“) reflector. , h _” . .* _. : 7 ,

. I, i The Lactical optm$m length of 2 reflecto? for, vertical glazing y/as found 0

to be roughly-:1 to 2.‘times the height of, the glazed opening< Theqjresults for , .; 45”NL during the month of January are presented’ in ‘figure IV-24b. Notice -, , i /’ ,,’ . that the rate of enh.ancement (percentage of added ‘energy) decjines sharply

-&--, --,--.--‘-,~---.:-.a~ :the..reftectsF--le~gih ,j,? increased bey,ond2 ti@es the height of -the collector: . ,_ I ~ 13 .” The energy g”a$&ed with a..reflector IengTh of II/Z. tin&s the hei ’ . ’ ! b. _- coXct0.r is only 7% Jestis \han.that gathered with” a Wry long reflec ’

ted declines almost linearly - : 0 K ncement .of 35% is pQssihle. Similar results ctor combinatjons’ at, 35?NL. For maximum ; the shortest possible reflector’- length is ,‘I.

*&” . -*- . . l. 9. ,’ -. B. . f- . _, 0 c> ;

: C .y,t ,L u.,,~~~~~~-~reflectcus. int~~~,solar.,rad~~tion incident on’ vertical ,’ ; , /..‘. .gla&ng can ‘be incr .3Q to. 46% t during’ the* winter months. , Ir

\ * I .’ - . ..,: - eJ

ieved .b,y. using a reflectok. in conjunction wit.h I-

. Yj-tt ftom-)M~ stko&ontatl-zky ‘. ‘, un, the reflector sti?qd- hake an hgle of. r” ~ *

.sou?i-sloping skylight’ and. 65” to 80”’ - - - \>, L o

; ‘_ * ‘,\ ‘*- ., 1 -. 5, . : ,. ‘- *. . I.’ This -t&e of reflector configuration/ uniess adjusted -@$y$ tFo$g$& does not .o ” .”

!“:’ : v$xk.vvell in cloudy climate.s’, such as coastal regions of the McifiC’Northtiest, e : .__ d c *.*; ’ .’ (. ‘.I ., .,t because the reflector shides p&t of th.f&kydome thus :reducing* t,be amount. I’~ :

. . , ::. /j of,-.&f&se &y ra’diatiori collected -by&the &flight during -... _.._L. the Rredomitiantly ‘C-i.m.;I -- /_., #L- ,, .-,_ ,,,1

b . .L ,: :. _. ‘.a y 0 **-.,

. ~ .. I . ‘.. :. , IJ ~_ I. j : .“‘..f$ ~, _ ., SW_ ----;--:-. -./-- .’ ! _ . ~ +Th&egercenta& ap$dy tp ~a.kpecuk.r ~refkctor with a &face re~e&@e of 0.8.

:>, ‘s,>, . “*

‘. . ._ ;I \a .. “_/ ’ :, :. . . ‘I _ %

h.* ‘5 *: ~\ ’ : % . . / ,:, ‘, , . . . a -\, :.* c ,, ,’ I.. - ..:,’ .p”, ‘.- ,. . . , . ‘. . . yi. -’ D “‘,“. *. ..\ ., ”

\ -243 .~‘. .1 ,.!‘V, ,- ,,“C.’ :,.’ ‘. ._ I” - . - . ‘. r.. .‘*I - < * a . 1, .

i ” ,..- .’ :, , .’ a .*;‘,,e “\)\

; . ..( ,j : . . . .‘ ,.. , .-: ..*... -, ,.‘, .’ ., &&;:J;y (’ Ai.) ; ‘.~.i “, : *,*L.y:;,r. (I -,-

,~ “, :&rF ‘., l .’ :’ ‘._ -,__

., ,: _‘. . . .

.‘,.. .

‘:\I

Page 256: Passive Solar Energy Book (1)

i. 7

‘, .f, ‘: ,: ,,

I

. .:

4 ~0

I, , I, . :;.” %

I \.- *

c

The Passive\Solar Ene’rgy Book

C’

a- * .’ . .

\ ’ 35”NL .

._ ‘1. .

\ mvi

9 \ =

\

\ c

\

\.

\

I \ i \ .; ’

I I I I 1 T T

1111 110 c lI#I .’ loo ‘j# 4 .r ;a

3tEi&3+t$CKLECTC+R ANOLE (TNSiREES) _ ’ ; . . .L’ ’ :.

.” ,p

Y---.:,’ ; F$. JV-24bi Perce’ntage of Aar &&gy enhancement for various g ,, v

. , refle&or/colkctor tilt angles ‘at 35”NL -(herb and _

i .; ; ’ -, .45”NL (iacing.page). ’ ,, . :-.- c T c * I . _ _~ ..-- . .._.. _ -z. -=. . --.. D ‘, .-

k ‘. A,

_

i& - :,

dF*, I, _ .

\ . . 5 D

Nbtc:’ values plotted are .for a r&ktor with 0.80 refle&@g.q. &d a * ,T ‘.. ,o.. ‘” reflectorlcolkctor ratio of .2.0 (or the reflector is 2 times’the

9, :

. ..’ heightof thkmcollectoi in length),’ -. ‘r ,

J ~ #

- Source: -S. .B&er, D! &4cDaniek; and. E. Kaehn, ‘:YTime Integrated CW , :

L culation of the Insdatiry Collected by a Reflector/Cdlector System.“” ’ : ” I

or-. b “* i I . / * *’ . .! -._

._ ,.- 9. . 7. I ,

. . . : h .

:-_ - _’ c 0

. .j .

.: -.

’ 0

0% Si .

:)_..,‘. c

;.

/ .

244 a*. : . r

‘. 0 : ;-

I 0 0 =_

, , * .a .* 5: ) ,I_ &I

“-_e-.

-I .-_. --._ “. _---.“- -. 1 __I--7.--

c \ .

. 1

* . .

.

. .

0

; I 2 , * 4 _; * a .) ,\ ,

Page 257: Passive Solar Energy Book (1)

.i

)- ,,’ *-:

- ” 0 1

“q’ Qa -- _ -

* I” \

. 0

-i- -t ---- -_~.

0 l

0’ a

24. Reflectors 0 I

&

.

. . - *

( .O 0 .-

1.

y. *r *.

-*,‘”

1. I

,J \ \ ’ I\

\rrol

1.B Y . w--. I Y I . n .n t*, 0

. 00

.

.

” I/ * , ; .- / ~REFl.E&U+RAMU,@HyREEb) ’ -r--

/ .o - ._ m”.. :.. 9’ I . . “. . i . * . . .”

iAIIL$ b&a ~Recorn~i odd * ~R&c-tor Tilt Arc@& for ,&tith-Facir&‘Skylights : _’ . ‘. . . . .: ._ _ i : .P

i. 61 ’ &yllfh! -Slope,, _ -7-- + _-..: 5-M. .:

.‘. ‘. ” %.’ I

.,,. $‘;$,.* .,,, ,.!: I.., L ,L.. ,.,*/‘,.I* *‘.**I.I-,..; . . . . . . . . . . . . . bI.j.l. .’ : ‘. . . ’ . . .o iv , L horirontal : ._. ” .i7 -‘_ so0 7QP'. 7+ sip -: 4 y . / b : li ‘1 .,, - ’ ‘_ . 30" I:. ‘.‘\ loo” - 97” 93” 90” * j - ._ ‘.

. .+ j- 46;; ’ . : 107.O. a039 .loo” 97” “t 4. ti. 1 :* \ I. so”/ ,: * 11’3” .j-q& 1@“. I()36 ’

b . “. 3 I I . -. NO%; l I& in&e -deta

~ T, .reflekiorkoll,estor studi& fpc%q& avgilable, resotk&nda4 reflector . .

_ /~-: ,“_Z ..-- . .-_~ _ - :. -_ -..- - .._- . . _ . . .._. Lc tilt-on~f~-.~y-~~.~~~-, -- ..S.----- --L--n.L-I---‘* 9 _I . .‘& .I

_,..-. ic::d ___. ..,.-.“.,,...;.:...:::...,....~.~.~.~.~.~.......,.:.....~ ____._.____ _ m 0 :T * ____.___._ *s . . . . . -..

-.- \’

‘7 ‘. -.“...:...*...*...*.* . ...,-.-. _.-,..-.. ~-.-.- l.:,,,...s.,...:: .i..... :. * , - _

l

Sl<yli&t .refje&xg co&d ,be adjusted f6r the sumrrier .tionths to serve as g-2$- ,

SHAdlNG;,DEvleESr(2s). l~~~,~~&zr the refkxtor wqutd 6e ‘raised to ‘increasi ‘. r

,.sylar. cglfectipx, an+ in sunjrpq lowered .t’o .stiade the skylight. .Remember d ‘. i. * ? P e ,i ; I (I\ ‘1.. :’

, I i : _ ,, ‘. I 0

,j” ( : _ : ’ ,,y: .,. 1 .I 245 -~

‘~ I ” > I&.. . I

‘” I -” \ L<’ .’ ,, .~ I_ ,’ ? ” _ ‘..);-.‘.‘.. 1,-y .; ,“..,. ‘. .,,. .._‘..I .

Page 258: Passive Solar Energy Book (1)

, , # -, .,

27 -9 .

c - 4, I

,u ‘, e

-. r ,. _ ,.

.- ,.._...( ,.. ,,. ._. . .

‘4 9

246 ”

Page 259: Passive Solar Energy Book (1)

,“’ ,,., .,:, ,, v 1

..,.... :

.

/ -r

...._( ‘.......

::

_.~_..,... *::,. .

* . .

,..,_ ,... l..- ., ‘1 ‘“‘S’.” . . . . . . . . . . . . . a. .,..... -..--

. wa .>

,b .. 0 . /

‘ .”

/I

d

-’ -1 “< d -. ’ _./ ;-

.,....~..... ..,.,. . . . . . ..I. .,. ,” . .._. _. ._,, 1’ ..:’ . . . . ,: :..,.. ,.,. “,.” II

i’

I ‘C”

;’ .

< -.* I

-. 1

I 0 d . . ‘(

~\, .”

c

24. Refktors

Adjur;tablc reflector with

agouih-facing “skylight.

Page 260: Passive Solar Energy Book (1)

: b

R

._

, 0

_

__/-- .-

/ ‘

B

0

i

s

e J c _

n @I I_

‘The Passive S&r Energy Book . I ” .

water wall. .Mgttirials suitable for- reflectors include shiny &etals .‘such as polishe”d altiminum, thin metal foils, and gl&s or plastic mirrors. White- colorkd materialls’ can be. used but &ii1 not perform ‘as- well as polished surfaLes. ‘Care should be taken whera using reflec”tors with windows because of possible glare. ,,

. 4

/ Table Iy-24b Norma.1 Specular War Reflectance of various Surfaces . . -, ”

. Surface . L Percentage of Specular Reflectance .

I -- . 0’ Electroplated silver, new -\ ,0.96 ? a

8

.

.

_,-

3 High-p;rity aluminum, new, clean e 0.91 Sputtered aluminum qptical reflector 0.89 Brytal ;processed aluminum, high ptiiity - . ‘,’ 0.89 Back-sjIvered’water.white. p clean .:. 0.88 , .. Aluminum, siliconeoxygen c 0.87. Al,uminum foil, 99.5% pure 0.86

,

Back-aluminized 3M acrylic, new ‘. ’ 0186 Commercial Aizac process aluminum ‘(plastii.w/ ,(&(I5 1 ”

aluminum surface film) , B&k-aluminizcq# 3M acrylic, n?w .- . .. 6.85 *. Alumin&d Type C Mylar (from Mylar side). 0.76 p

,

CI I _..

NOTE: *Exposed to equivalent ob 1 ysar solar radiation. .’

,’ :‘ I - SO,Ul$[: ‘job” A. Duffie and w’llig.rp. 4. Beckman, Solar Ene?gy Thermal Processes..

-- .: . ..‘Y. * 6

/-- 0 c \ _ “*!q _- &. . 4 . - D , : ,

.’ ‘\.A ‘I .,, -< ? l y l 1 @.L..’ __

~(, I. .. :

0 ‘:.., * ..‘,

,e r. a

:, .,

1' 0

? ' : . . . 0

i \ *.

\ I ’ * ” ~‘.. I *

I’ “‘B ;’

1, = .) : \...

y- * ’ .-__ :.

\ --- '." .' -.

%. . . . . .

l

.. #‘ J’ . ...\,:,:. a

*

1 .[

h !’ s ,’ ‘0

, . d- ” :, (0 a . /

‘. D -. \j=-‘; , .

,sg - ,’ ’

! :.‘. #

.\ ,.

c

(.\ n .o 0-e~

‘\ * b ‘1

‘. ‘/

. .,,v \

,a

a

,

.-

,.

.-, -

ul ”

-

.

0

.

.(

d F ,

Page 261: Passive Solar Energy Book (1)

CT3

e Shading evices d I

‘. Q

. ,:: T.

Photo IV-25a ’

/ E

Page 262: Passive Solar Energy Book (1)

* -25.’ Shading Devices . ’ \ ‘. .”

_ , + 1,

CT ,/’ -! , .‘ J hi

‘1 ‘ I + .Yi Y-- , 0 0

in the building to for shading these

. 1 Q%

. ”

;‘.

!

,/ :

* .,.. •;‘~‘;i.. ..”

,!

@.

* ”

.*

‘, , \.*2’

e ia

7 .

Yl

,v :.

I

.L IS

large souttyfacing glass tieas, sized t.y admit . wilt also +dmit solar gain in summer &hen it is not

less .scqpl’ight ztri’king south-facj.rig vertical ’ enough to cause sdvere *overheatii-tg, problems. Forttinately, by *‘using an * ov@iang with south glazing, summer sunlight can be effectively controlled. _ T$e- kffectkeness ‘of any s.h;ading device,’ however; depe’nds upon. how ke1.l ” /’ 4.i shades t.he glass in summ.er wi.thout shading i,t in wi-nter. ..’ ,,I , I

,x b G’

. .;

.“& 1

“.G ,

I

. u

m-

- .

when possible, .design~ shading deyii&- t‘o act 3s both REFLECTCkJXS(24) to increase solar gaiti in winter, and as insul&irig shutters-MOVABLE INSULA- TION(23)-to reduce, building heat Los+ .d . :~-,. -.

‘.. Q 4’ ’ ‘.. .I \ d

550 * ‘<

c 5 ~ L 0

7 . I

-_-~ - I 0

I’ c *’

. / 0 ..:,

The”. kecoinm&ndatibb .’ I r r,,’ ;#’ - ’ 0 .Siiad.e..wuth. :&zing with a. hori?on’tal overhang located above the glazing and, equals in- length to. roughly one-fourth the height of the opering in southern latitudes (36”‘NL) and,one-half .the height of the Qpe,&g in northern ‘latitudes (48”NL). -

_ ,

.i .

I _ ,.

Page 263: Passive Solar Energy Book (1)

ff I

a

p. *.

1 *

25. Shading ~Cj.ev$cew i’ 2 r 2 * I j

* c, c 6’4

, DD

0 -4

8 0

- 0 .

i ’ --. ~

d”

,

Fig. IV-2Sa

, I I 0

,The In’formation + c n .’ b The most effective method .for shading south-facing glass in summer is kith an overhang. This shading. device is simply a solid horizontal projection

‘located “at the top ,_exterior of a window. The optimum projection of the ’ ’

, overhang from&the face of the building is dependent upon window height, , ‘I

\ latitude and climate. F’or exampl the larger the opening (height) the longer,.

the overhang. At southe.rn latitudes (36”NL) the projection should %e . slightly smaller than at more northerly latitydes (48”NL), because the sun follows a higher path across the summer skydome, An overhang when tilted up will. not only function ‘as a shading device in summer, but also as a reflector in winter. i 3 -

The foIl,owing equation @ovjd.es a quick method for determining the projec- tion of a fixed”overhang. p - /I . ’ o 1 , r t 0 . ., ’

O^. 7:

Projection = . window opening (height)

in F

.o

f,,.,?!‘$ , L”i :,:-, 0 , ‘,g ?$’ 0 ‘?s,>,,‘; ‘ where: f= factor from following table ., ::~.v~~, ? d ‘I5 / ,L-

251 Ij . . i _

, .- * < ’

Page 264: Passive Solar Energy Book (1)

-.

.

r

Th; Pas&e Solar Energy Bock- ? 0

c de

_ ’ North Latitude I F Fact% l s,

D

* 28". 5.6-l 1 .l

i 0 32" 4.G 6.3 -

-a ‘-. 36" 3.G 4.5

-. J 40" ‘2.5 3.4 ‘4 -. v

7 44" 2.c- 2.7 48" 3 1.7-- 2.2 R

B 52" ., l.5-' 7.8 b ,i a

1 T

.I 56: 1.3- 1.5 7 .,

NOTTZ *Select a factor according to your latitude. The higher values bv111 provrde f~“;b shadrng at noon”np June 21, the lower.values until August 1. .

EFLECTIYE MATERIAL

.

INSU

t. ,-.,.c \ *.\

h ., , < ,.(_., ;: i,“. !...: m ,: ., .,;.,‘,~.:j.,‘.\.)~‘.. 1

i Fig. IV-25b: Overhan&reflecpr, ‘Ike Williams C&qr&~itysCenter in- + Trenton, New:jer$ey. ’

I * .

.

.b _ .

252 + 0

I i \

I ”

i d ‘. . ‘a.. I

Page 265: Passive Solar Energy Book (1)

L

25. Shading Devices _ /L

*

d ‘.

Photo IV-25b: Fixed overhang doubles as S reflector in winter. , ’ F ,

P

A fixed ovqerhang:.h.oweverq is not necessarily the besG%lution for shading sduth-facing glass singe climatic seasons 3do tnot correspond to the sun’s movement across the sky. -In the Northern Hemisphere, for instance, the middle df the summer cIimatFc season &es not coincida with the longest day of th.e year (June 21)>, nor the middle of the winter, season with the s,hortest day (December 21). In most- regions there is a time lag of at least a month. In addition, a fixed exterior shading ,device will protide the same,, ‘+~ sha.ding on‘ September ‘21, when the weather js warm, and on March 21’.,,: ’ when it is cold. ““Th& happens because the sun’s path across the sky is the

.

@a same *on those days. Adjustable : 44 ’ 0 \ /I 6 a

c 2’53 , t*,= 0 ,z/

0 ‘6 Q 3 .” 8 3 .

F ‘- : 00

L ” 0 P s> i o- p

Page 266: Passive Solar Energy Book (1)

,I‘ i

/’ . /‘”

c :

*

c I “%,F.

The pas:jve Solar EnLtgy Book ,.

i ,_ f

ii i!’ i’,

Page 267: Passive Solar Energy Book (1)

:-

L ’

I?

’ e-

* 25. Shading Devices

J

rr ..

[I .” . ” ’ 0

1

” _I - * -< , ~*

-- % ._ ' 4 :*.

0

i,,, Lt.- s. - ' ."

'_ .‘ ~p&*h~ng. Since vcgetati(,n ‘<l~seI\’ Gllpvs rl~matic rather than soiler variio

e will be .cov&ed with 7eivcs “in ,surnm&r ;tgd tMrc in &lntcr. 1 en lo periodically tt>ln the vir1e.s so the,/ do not grow too

bade the glazing in winter. O1 r i i P 0

0 !I # do not providk ad,equate ;hading4for mrt- and kest-facing’ glass,

y~p+~~n~rcqs tree; amd tall hedges, tvhep properly located, wiLI blocky th: low ; :;‘4GG. f$$jJ i “” 'i x-?~i, ,,j,,~p,rn~~ and la~e’aft~rnoon,su~~~mer sun. . -

I’ 0 yG$:, aq, , i ?%I$ -,,. & ..x; ‘.f / Y 4 I. ” _. $*/I/ .,*-;,&Lh2 ’ ,: . :&c’- _I,..: ‘b,.,r.s ; ,;, .,+ ,. Adjustable verticar lo&ers a,nd awnin@ or ,retra+ctabjIe eitrrior ,ctirtaiKs are

:, *. als6i’effective nlet~~ods 6f shading ea.st and west glazing. Vertical buvers n

4 .

c

9 -

.” . 3

c

Page 268: Passive Solar Energy Book (1)

.

,. , )O

Page 269: Passive Solar Energy Book (1)

0

:’

A , ,

r

.C

25. Shading Devices - i 0 I .. > ci? 47 - . .* ;

CI adjusted to face south will admit thg afternoon winter sun, but when c~ .

pivoted to. face north, *they shade the glazing from morning‘and, afternooh --.,

a. simpler and less expensive solution is an awning or ic front of the window. For a r-nose complete ,explans-

tion of shadiing device calculations, see YThe Shading Calculator” in chapter 5:

\

0

,

* .

i

1 n

<.,..d.,, . . ..**‘T§*

0 -ima*...

“, , ,\+.

,

i. I Y.

l r

8 * p-O-m+---n- r-- -7’ z-Lix- .~ r-F: ._ dd.l,I.C.,.F . . . . . .,,...,.... .-. - - . . :

a

‘3 ’ .

v 0 >

_ 0 .a I

I - a’ ” . ‘- 0

0

.’ I c

@>

a -

Y

Page 270: Passive Solar Energy Book (1)

J’hoto IV-262 .

.

Page 271: Passive Solar Energy Book (1)

s

26. Insulation orhe Outside

8 b

0

Th’is pattern $i%pl+tes MASONkY HEAT STORAGE(11) and INTERIOR WATER WALL(12). 1.i desc,ribes methods for keeping hedt stored in an interior thermal mass from escaping rapidly-to the outside.

‘r

_ R :

” n n I , ..’

While good “at storing heat, a masbnr)c exterkf wail uvd a; diheat storage , mkdium within a space will alsb readily’ pa+ l-this t&at to. ihe outside. M&dnry ri?ateriaj: such as brick, stone, con&W aid adobe’. can stbre large amounts.,of heat. A ma;dnry wall by itself, though, does not provide -

:4i. :,

’ G ,good insulation. -For example, 3% inches bf fiberglass insulati6.n has the I,

insulating p’ropeytie’s of 1.2 feet of corkret: ‘or 4 &et of--a&be in. a Direct -Gain System i large‘ pbrti’on of-the heat stored in an exposed mason.ry wall .‘

i* *Gill be lost to. the eyteiior. .’

.‘,’ ‘2 < ‘., u. p-“,

0 0 t

‘t

+ W-hen using a ,,hson, walr (exposed to the exterior) for heat storage, pl’ace * . (iqsuiatibn on thtk outside of the wall. Also, at the pgrimeter of, foundatio-v

wails, apply appkoximately I l/2 to 2 feet’ of Z-inch rigid waterproof insulation b&w. grade. This will preqent ‘any heat stgred in the walls and floor from

* be&g Griducted rapidly to the outside. - 0 0

‘. 259 w

* $’

Q

.I

- -. J- .w

Page 272: Passive Solar Energy Book (1)

___-. ._ .I - - . , I I

. \ P . PI

The Passive ‘Solar Energy Book I i 0

.I @

,. ; Fig. IV-26a +. 1 ‘*

.: .;.

I

. ahe Information 0

When hsed in standard ma;onry construction, insulation is Customarily p*laced, ‘., --.-73n~,the.insl‘de-f~ce of a wAt;.diyectty bZhind.ihC,interioY Eni&, or within ihe .

. L cavity of- a wall. However, to be effect& for heat stara@; masonry -should not be insulated fr& the;iDterio?>space and, ‘mom 2%. r

*’

’ \ “’ .‘ B ?&> -di. .A # D 0 Y-

Therefore, when us~.,rn%on+ry‘In an. interior iall ‘that also .faces the exterior, place ,the insulation oh the outside face> of the wajl. :This kheps any heat

” storedy,,in the wall i.nric&e the space’. A masonv wall coqstructed in this way b -. --can ab$qrb solar radiati’on lduring the day, store it’as heat and.re,lease it to

t&! spate at night when’needed. 1 ’ , 0 I’

,, d

,i

. .

/ & . . : 1’ o - I ‘3 ~~-.

O -There is one exception to this rule:? tn sunny teniberate wi0te.r climates, sGu?h.-faci& masonry wall!+ with, a dark -to medium-dark exikrior ,&iface ,J’

.

.’ &&?r can be left uninsula9ted, since the souih&%ll absorbs enough su’n’light : . .i (heat) during the dayti.mq to offset any hea! flow out through th&;$all at

.night. . . .

L’ = 0 “’ h l -

>2- * *

~-----““‘-7~~G5i%@GG’i,n the -form of rigi.@ boards applied directly to the wall, or s 3

;: I T- ., ,. ;I%$ insulation fastened between. tietdl or wood siu.ds. When placed on the’.8 * ‘iexterior face’of a wall,‘$s;lation should be prdtected from the weather and ‘I’

,, . ,‘. *

iphysjqal damage by,apptying.stuccd or siding. - * , v’ ,’ 0 --I i-

.

*” ,.

. ~. .

260 ,‘. > 0

“. 3-i

* >., .* :” a I , ‘. *xe .-. ‘.. f

3 ( I ‘,i. .’ , .- ’ : ‘. ! ‘$, .. * _ ‘PC”- I ,. .1. _ ;m-. u ,I,, ;;;;$wy : o ‘- y

!‘,, ,+ . - ,” :

Page 273: Passive Solar Energy Book (1)

, , d’

.:/

a

I.

26. l’nsukation on the Outside P

! ‘Y- c

” 0”.

Fig. IV-26b: Insulation applications. r B i

When considering.,a masonry ftoor as a heat s&age medium, it is mxmary ,I,.,,, , io know whether placing ins&tion beneath the fJoor and at the perimeter ,

I - ~. is- ~rthwhiie.~ -or‘. Francis C. Wessling, in, a pi.per titled “T&mperat%r& 11 I ResponsP; of a Sunlit Floor and IIsSu.r’rounding Soil” concluded: y w _ ,-

Y . . ‘.

. . . calculations show the ener given up by tt@ Sloor to the- ’ . . .’ 0

rooti (iffer? by less ‘thah 10% re rdless .bf the use of insula;ion. This indicates th’at:the.use of itisti-lation.beneath q’2-foot-thick floor is ‘-? ;-a, ii. -.__ .__ ;.. - ,, c. -.,_ ,-- i i.i

. . probably-not warranted. The peri~eiteIP-T~s~~1dro~~s..not affect the. - .‘,‘- .i I( er$rgy given up by the floor, to. the room either. .Hdwever, -the ;. . . perimeter ‘insulation does !ecrease the total house beating ..load. ‘,’

~ : I 0 .fl. .

‘b, .*

-ihe placement of peiimeter insulatiln has dn effect on t e birilding’s..pA- 6rmance. &cording to the study: 1 ”

yh >-

.Y ,. q _’

1:

;;I -’

‘j * The soil. floor pith. 24 in, s of perimeter insulation ..a.pi;ears’to ’

Q perform better than the &inch cdncrete floor with” side and bottom B ’ - ’ ,/, ; * irrsulatio~Q.* .’ 4 ’ . - o sI

*q c j t

. In’ dry 4imat$, it &apparent thqt’ insulation beneath.,Oa floo’r s.Iib iS not @ insulation beneath a. ma,sonr’y floor in w&t crima t

‘,

‘. a&ant’ageous, j-~ *,‘,

.is ~probably zdva . -0 I

i’ .,_ ’ P I * t i ’ ‘. 0 , _. . Ln D %’ ca a

. . . t+-: .I -$;, . , . . ,, ‘L i-

\:

. h D ’ -: 0. s - , 8. , I .

es -“’ .

.- 5

.T . B and Coqling ~.&~bw~ce afld Workshbb Procqdings _ ’ ”

’ %,

* -, (, ‘-. j . I.: : ~ . _ ” . : .._

-.: - %$ Service, i9761,‘pp. 73-!8. ‘&: ‘. ” .4 I- -, - d d _I /. I t i F 26-j 7 ’ :.

ii @ , Y ‘. !J .?+ - .- .,.I -, .~ ‘. L . . . ._ ;

Page 274: Passive Solar Energy Book (1)

\ ., 'I

' '1

L

4 d

' - "

1

0 .

., : f ;j

L

.'

\' .

..I

.

-i. 27. * Summ~~r’ cooling L

I Y \ “

. Ii,

. t‘ 8'

-.--

0

.,,I *

I.- &I,& the building’ up at riight (operable windows or’ vents)’ to -~._I r”.- __.._ - - veirtilate and cqol’intenor thermaXa&

_ -.. .

2. Arrange large ope$ngs of roughly equal size+‘so’ tha.t inlets face ihe 1 * Sprevailing nighttime summer breezes qnd outMs are located on the

side’o”f thh: .buildi’ng directl,y oppos@ the &lets&r in the 1o.w pressure. - ’ % “; 0 . . 5”;

.‘ area! on the~~o+art&sid’e4 of thk building. * 3. Close the:buildin’g up dur$g the daytcime to keep the heat +t. -’

+j? =-. . R

.- e # ‘1 - . _I . .’ $‘. , :$‘. u .

. ’ t

262 ,‘: c I- 2,~ l ‘.

*.j mIi *

./

r,

,: ‘.I !?s.; ; *-

2. 1 I s : $. *x.-’ I .

I - ‘\

c:.

: I

.*-’ n

a_ .I * / . !-

I- _ ‘.. . .

. ‘9

‘. ,:

I ,. . i ‘k ‘1 i,

1 )

\ l.

While.sr,multaneously deciding on th,e placement of win’dows for winter solar ,” heat gain-WiNDOW L-OCA~IDN(6)_thoug~--Prmsr G-given to the location .., of openings for-summer breeze penetration. _-

.*...&G&** . . . . .

Q,

,

* a , ,.a’ ?

Ftunity 4o uGlize a passive system for summer Aoling is often over- ce th: majqr emphasis of passive building d,esign is on keeping

n. winter. -There are essentially two el.ements ins every passive,. solar uth-fawing glazing for heat gain and thermal mass for heat storage:0 ents, when properly designed, have the pcLent&ial to provide both

hea.ting,and cooling in clcmateswith cool or cold winters and warm summers. When designconsiderations for summer c’ooling are neglected, the glazing and thermal- mass can work to increase heat gain an.d storage at a .time when it is ;

“nod: wanted, causing,extremely uncomfortable intqricx conditions. s 0

I

.

. q ?

A

The &commend&an - *. ( .

bake ;h& roof, a lighi &to; br reflective material. In &mates with hot-dry Wtimers: a D , i e 9

c 0 _1 c( c li % ’ ~ “:

Page 275: Passive Solar Energy Book (1)

,

* 27. ‘Summer Cooling ’

In climates with hot-humid summers: Q s

1. Open ihe building up to the prevailing sum’mer breezes during Yhk day and evehing.

2. Arrange inlets, and outlets as outli’ned above, only make the outlets slig’htly larger than the inlets.

.

the area of .,, , ‘-_

*-. :-??$

.

d

0 * i

r, Y ‘..

-8 0 0 /-

,* ”

. I

+=H.iGHPFE!sslJRE tinbutt ‘I

‘..

Fig.’ IV-2?a 6 .y

-=LowPftEpuF@buttet] ‘>.- y . . . 1’

D . <,’ 0

I * . _. .. ..s..,;

. . . . . . l f‘3) *i&T.. .o ’ * . ., ,,d Q ’ <I 0 9

.i Shade al.1 glazed openings in sun~me~FS~ADING~ D.EVICES(25)-and setec- r

tively plant,, vegetation .for b&h wimd,:@rotqctian in winter md sha.cjing i? sum,mer.

5 1 .’ 3 . ..-

,.. .? . . ‘69 .‘ ; _. \ ” i P

= i . ” , .% : I ,’ A ., “’ , , 26.3 ”

Vd 0 I ,- 1: 4 . 0 .’ ** I c . 0 ** .; r:..; . I

Page 276: Passive Solar Energy Book (1)

/. I 1.

, I ” - . -

- i ( , \ 8 = 1 , ..$I

c . The” P&W S&m &rgy BLok a ’ *

&V z -’ \ a h z. ,- . 0

. ‘a, * .13

ihe Infaimation 1 . = . . l I ‘- ” r c , 13. _ -

a Building requirements for summer cooling are dependent bn summer climatic 9

. o ~ conditioris. There are essentially ho distinct conditions: hot-dry and hot-

i , humid. 1 ri 1, $7

0” D ,; . 9 n 4 > ’ al 1

_ H&dry; ;, 0” : ~ ”

e .,De;ign fdr solar .heating and sum.m-er ctrolingQin a climate with cold-winters <

’ I

- . ,,’ ,/’ and h&-dry summers is compatible. This climate is also characterized by ljigh

/

daytim’e and low nighttime (comfortable) temperat.ures in summe‘r. The large

’ /‘. I (I daily’temperature fluctuation indicates intensive solar radiatidn during’ the

,cw ” * day, and strong outgoing radiatiorr (c1-e~~ skies) at night. These conditions ,

9 rtec$ssitate shading, reflecfive &,rface colbrs, insulation and .mason<y construe- .

c ,=a --: t@tooreduce and delaysdlar and convective heat pins during the day, land ‘ i

Irjighttime sooli;g of thermal mass by either ventilation or nightsky radiati0.n. *b

u- .’ Shaaing-The first litie of heat control begi% 414 the exterior of a btibilding “0

where both trees and SHADING DEVICES(25) are needed to keep o;t the sun . in summe;. Trees he$ to- moderate tempe’ratures near the’ g,round under the

c D ,tree-and when proptirly located: are effective in dntercefiting s’olar radiatibn . *

;.. h before illreaches east- avd,we.st-facing windows a’iid wall6 If a building is wet1 . ” shaded in gummer then heat g&n ,will.be timited’primarity to the_iconduction.

of hGat thr.ou’gh rhe skin of the euilding. . 0

: / : v/ ’ .,a

,I’ L S,urface:$Ioloi--The ‘next line of heat cdntrol .s I/ ,I , ” -,I

i.- * $urfBceS which reflect rathmthak absorb

’ i , “: the the&al energy- that is absorbed will reduce the amount of .heat trans- R L

? ., \ _...’

1. : ,mitted to the interior. Conflict’ arises when both dark colors_ fo; maxi&urn .,

* solar absorption in winter and 1igh.t colors or pdlTshed surfaces for’.minim’um’ l

; absorption in summer are desi,red. Arc’hitecturaliy, by taking adva.ntage‘of the ‘. ; s

,, ’

. . sun’s se&al baths, ttiis confiiCt can be solved. :The s&h facade, made a

* b medium or datk color, will abs6,rb low’ soeth ,winter. sunlight and ,the roof,~ 0 .

’ ’ *_

made a-light tcjlor: or shiny material, Will reflect’the high sbmmer .sun. To ‘, .- atiriye: at. the.most effe&ie. sur#ace finjsh or for .&ast- and wesr-facing -’

: m

;

7 : -.:~ ~~.~. _. ‘----~- . .

Page 277: Passive Solar Energy Book (1)

._ ,_ ‘J::<, .’ ..a *

._ ,. D’ . I

‘.. - *

j,,d I “’

. . . . d

I

‘-1 27. drnmer’ ,.. .. : . ‘., -

8 =.

-Irisu~~&i~r~ knd Ma&ry Cb.hstruction-+-All, exterior heat impacts .must pass, ’ .

0 f . through the skin of a ‘buildi’ng before a,f@ctin’g indopr temperatures.‘Ai h,ear ; - , “; D ’ flows. through a material. i< is. both.slotied in times from.*reaching th..& interior c

andireduc& in ‘intensity.. Both,these qhar&ctetistics of rqaterials can be utiiized .R B ~ . to cr,eate cbmfortable’indoor summer. condi tions.

. 4’ ‘) , ; J+. __ ._- , -\, ,1 ‘; ” ‘” 0

ven- those con- 2’ i& “andinterior ~

water wall+. I i -

” In essence, the bassive sys night, &hen outdoor tern

.- “.

1’ i, 3

Page 278: Passive Solar Energy Book (1)

. 0 i

._

.Q -

; --

D

. r The &sive Solar Energy Book e h

D 2 , ,“I c

iy 1 T

n

.. outlets (relative to the inlets) increases airflow buf not in p<o@&r.tion to the - .f * additional area.

I7 - . 3 ‘ *. s. . G I, r I 1

- Tha temperature difference betweeniwarm ,indoor air and coole[ outdoor aif e

* will cause a stack effect. Warm air risks out throughtopenings located high in a .* space while simultaneously drawing i.n cooler outdoor tir. through openings m h ro located low in the space. The darger the temperature di&rence bktw,een

i .‘“‘. indoorOand outdoor air,the greater the height between inlets and.,outlets,’ and 1 ’

, * the larger .tRe openings, the greater will be the flow of’ air. When natural ’ . d ven.tilation’is not possi&,~other methods of inducing airflolv.i.nclude wind-

“?. ! . driven and mechanical #an systems. ’ . rs,

* ; ,_-, ,, a- -

-_. - . .- , I -_ I .;. t -s/

’ c Hot-Hurt& ‘. ” I 3 ‘:i ,,it 0

.: ci $ocations in hot-humid climates are characterized .by high0 daytime and night- I

P ” x/

time temperatures. There is very little” outdoor temperature fluctuation over ? the day. Indoor comfort in this:ciimate i<,largely dependent upon the control . .

p . . ’ -. - ..‘;. ‘. of radiant heat: .gain and‘air. move-ment. These requicements~ call fok, effective n: .,, ,. . . :. shading, light-colpred. exterior surfaces and -reflective ‘materials; and well-. stg

. %rs@!ated .construction.-’ Since outdoor air temperitures do not cool down a ‘.n - -s6bstantial!y .at?night, too’li’ng is accomplished- by moving a sufficientquantity * . . -.. ‘. .+ of air past the’bo’dy to.ensu.re-the rapid evaporntion of sweat from the skib.

-.--.-- __ .,*.;;.;;,z. - -. ; 4. To:.provide,for‘ adpquate air movement foI.low the, sugge?tions’ for0 natural * ,

. vent$at@n outlined above; The: most effective coding takes place with a high q

.\\ I, velocity’ of’a.irf.low. This G.an:*be acc’om&ished by maktng. the

:.y... \ \ . . . openings larger tha,nthe.intets. F ’ $ I ” -.._.. . ‘.‘..__ s

‘. , . a ;.. ’ * Since interior fher.mai mass has little effect on indoor temperatures ; in-this

cliii;iaze,,3lt.is~:r~~~ssa~~ to weigh tl& rengthand .intensit&‘of the,various seasons i_

I. in order-.to de3velop a design tha’t makes an integrated s.olution .p;bssible. For

. . . s exampler-.$-Roo.f Fond Systems .with:.: eti$orative coo/in8 can’ p’/ovi.de both

.. . __ . . . . , ..: ‘. 0 e. s. _ *-so -heatin@it$&inter and coolin.~:~~.:climates with jong ‘hot-humid summers;; ,;‘. ‘-en.” D” \ .

.- ., . . . . . ,_ * y..; .Yf ~ . . , *“, -a t= ‘_‘a “” I ^_I *..I. . Y. ’ .:“~ 1 .a . 0 : . P

8 ~‘0 ‘.

: ., 1 7 0. * - . )1. - : 4 ‘, I : . D 0 , -... o I .%’ . -“.. ., L ..a .: f 1 ‘8 ..‘-/- 0 ) .-A;. . -‘. * .’ ..I,’ * .c. ‘: - : ‘V,

. . 0 “I l! * *. ‘> ’ . ‘. j . -4. ..I? . :I

0. o J.’ ,: j .o.’ c [i I. I 0

: .. Q a. '.-. I -4'

. _ . - '. 6)

_.:_ l .0. D_ “. ..

"1 d .

:. 7 ,;:

. : 4 / . y$ a 0 ‘p 1 '.

,, a' ,, ;. . i

-3.

..2p 2:;. il 4,. . -.: : .;I ,, .D O..

a‘.\. ~ . . 4 . ..$ '0 I

_ i . . . . :'" ,_.

::. 0 ---..

-, .-

: .s. ._ I ;. . ,4..1* ,i'

, c * 'p i 5 .#'O '0 .I 8 .' . * r;/',. .

Page 279: Passive Solar Energy Book (1)

R

? S. r -I ,

.’ ‘3 Ue. L ,> . , ” T . . ; ‘?.

:

ST For our pu’rposes, it is convenient to asjume that the ea’t~~=.i.s”stn-tionary ~~cl“t.hc ;“‘$ ,,, ,$

’ sun iS in mqtion around. the ea,rth; Figure..V-I lists+ the 5ngle (declination) of .+% *.“‘I ..! - ‘“%W - 8 the sun akbve A+) or below (-.) the $q’ua-dir, on the twentieth of each n?dnjh, :F ,t .:

as se&n from tkc ea&. froni’Phe Northern Hemispke<ei ,yoti’&,n $T .tll_a-t’the; . + .- ; ‘:

sun lingers at its higRes1 position in the sky for three m6ntbs d.urjng%he suti-t- Y I’. .

-.. c -9 1)

. mer, ‘thin moves very qyickly through fall ,tpw.ar&_Lv$nteC YheTq it appea.rs ICW in the’sky fpr;,anotheP;hree months. il. iz : * ‘1 z “# 1 ,~ “,;

_I . ‘F ,lA, ,:

D .” .’ - ‘- ‘i *. .I ‘!(; ; ’ . . . .

t . .:’

The Cylindrical u?iderstand-8nd &nvenien,t waq’2o

*t%s seen from any. poini”%.‘the D =‘- \ . $zrticaI projection .of the SU’&‘s

R t’har theiStin’ Chart is an; *,eo d &y%or;;ue. <* .L .o : ” ‘.

.I. 2 -: ” h i , -.rr.

r s

‘In order tb undFrsi$n$ a& be responsive ‘so the efiec&‘of rh$ -sun ,bi~ th.e. ’ , \ * locition .and design of plpces, it is .h”ecessary [d Jpc& ai,any.:giClen $timent; ; ’

‘a the s$‘.s pdsi tibn’ in the’&$.% rrnation. i;‘li~c~~s’sctry~n~o~c~er to calculbtti’ I salar, heat gain,,and-to J~~ate%c gs,,?.;tdc& spa&s, irit’erior ro&n ayrhngc- ’ rnents, wiridd&, shadink deyj, egetation and sglar co’llectors. ,,.’ ‘. -& ’ .*:- ; .,

. .

. . . * .Q . “L o . :

“p; a ” _

-+ .,

, _

.,!, (

@8’bil -c

Page 280: Passive Solar Energy Book (1)

. * I.’ P

Th.& Passive Solar” Energy Book ,, 7’ r

o-

.n ’ 0 (I

> ._ Tl,

, ” ’ . . i. _

L 6 . Q

*“. d i

,.*. I )

b:j .&; I

MRUJAti . -

‘8. 7 I .a

.- I .r

B ‘. , b

The &bfe ‘below listi approximately how far above or. ‘i

below th.e eqyatar the sun: is on the twentieth day of each month.. I” . I 0 _ .

I : 0 @ ~“. 3 20th of, - ? t.htgftH , .I 8 D

p . -1 jan: --$0’ v

. I Feb. c

’ . h&K

--iI- ‘, .I -

-’ (i, ip '0 ‘. ,

,Apr: :’ 11 trr

.f /_ I I

I ' May 0 ’ 7 20 k '. r El .s . : June 23 s ) .'_. . c \ : ,2-l- B

. . . JU'Y& _1 Aw*.

// . ,3 ,, 1

Sept. (-j(-t* .

‘Nov.. , :- ‘n I -20 I

/ / i , .. ,’ . ‘. Dec. I ; v

‘y -23 "* 0 ) /' a ,1 f * i .

/ .P; :f A

“< Fig. &Jz The sunas it a’ppears frqm earth on the twen,tikih’.day

‘I . * .ib of etih month. -* 9 I c : . ” i‘ . ” I^.. 2 ;

& .F, :v _) . .Li m

. 5 B”

Page 281: Passive Solar Energy Book (1)

- ,/ _. .* 1 Y‘, < m3 'r~ / ,'. .-, . .

,..:' 6.6 B. 3?; " \ -c i

. ,, ',.,. .b

a *I_ 3 L- v ” ”

I s ’ .I s .=’

; I . . _.“d a L. , hL. ,. I.

* .., The Tools _ -, ~-

+. .2 >* -* ~ -= * d ._ b D a ‘a L Q i I s, * . . . . ‘I 0 1 ._ * :a “.., c. .-; &e -foIlawing sequence is. a:,descrlption of how a,‘sun chart is developed. ’ 0 _

‘. * ‘.]t is included here lCo- provide’ you w,ith a visual =understandi\ng ofl$e suti’: -a<. I ,.

.’ movement”across the skydome. 0 * * j_ .I , 3

A I, *1 c D 7

-,. c ^ *

n TWotc&rdinates ard’needed to rocate the positipn oi the i8un ip the ski: Theye

- ‘. t ,.

7 7, -m+. ’ _. D’ .I : L -, 41 ,> I 0 e a/Gtu;e and.a$muthB (also Qlled the bear’iri:g angle).? 4,s j . .* I, 1.

a~e-&dl.ed th -. (. * 0 \ _ 1‘ R 0 a, /^.

+a - -: ‘i . .;t 0 .

0

$1, - 0

I ..-. c 6 . .‘. 6

. 0 d ’ \ ii I

. . .. .

7l .Ja .* -> ’ q\

.h ZA ’ .= h

I;“. ‘* . ~

Y -- P , a .

c .-‘t, . - * _

- ,, i

-e.. *_ ?. ’

; .”

1 : ._

.’

:

‘-..< e :< *.Y P

‘-_. I - :

e R ,r .”

,,,4 ‘.. h-,

;+ * c e

..c 2 , I: -‘- ^.

r --< t a , .$

. ‘-.

x--.,e~ig i&2$ Al’titudc and azimuth angles. I ’ I : 0 .’ J , . , ‘, -z ‘w * r t .‘- ’ . ‘6 ;+ . . _” * -1 < ‘* ; .\’ _’ . . . . ’ - ,. w $69 ap -/ ‘\.. # - : :. a ” ‘.

-a, .:. - -0 ‘? L : * .’ ,, .’ /* a 8 1 .Y .. 8 ‘l j ..?.-

‘, - $9’ *a ~ ‘O. l .’ * “1 ” -J’. . .

c ,“+.. : h: .-I% ‘!”

Page 282: Passive Solar Energy Book (1)

A' ..+a. , :

the Passive Solar Energy BIdok i i

Altitude B rj ++ ,

Solar,;aItitude is the angle rr-teasured -be’tween the horizon and the position of *. the sun above the horizon. T)e horizont.aI lines c$ the chart represent altitude

angles in IO" increments above the horizon. - .%- *

* ’ . .

,j 2. o : !:; .-1-y.* _ ~.. .‘. 1 .,-.. ^ ..~ ---:Icp

. i..L d __ ‘“?:S . . . . i....- ._ I

:. -.- ,I . .:‘~ .I .” j@ -I--

ui#angle. . 5 * . . 0’ I + I r+ 5.

.a -- ‘, u ’ -%

Page 283: Passive Solar Energy Book (1)

0 \ The Tools

, 0

r ; Azim’uth (bearing angle) .’

Solar azimuth is the .angltJ ;ilonp, ttxl Jhorlzon oi Ihc“pOs;tlon nt’ the sun,

rnetisclrod to the ctL~s[ or W&I 04’ [rut’ &?b[tq Y

h

6. $

, .

l

= <x .-

1,’ I

r .

+ L

f,, *I .

0 \

P ,-

n ,

h

Gi

.’ ,.

,..‘:

.

I c

Fig. VA: Azirrl;ih angle, ’ i ” ., a

. 1 .

27-t &. a _*

’ . . 0 I7

Page 284: Passive Solar Energy Book (1)

B * WL.

D , . .

The Passive Solar Energy Book

Skydome (ski vault) . I>

,,_- 3’ 0 -.a ? The skydome is the visible hemisphere oi’sky, above the horizon, In all dlrec- ’ tions. The geid on the chart represents I;he vertical a~i,~j horlcgnl.dt .~~ngtp\ ()j the

whole skydome: It is as /f there wercC;l clear dome aroun(I the obsc~rvc~r’, ,IIIC~

then the chart:$ere peeled off of this-3ome,* strctchld out and Ia~d fiat ~’ ‘,

. 0 -- a-r-- --- 0

LA--- : 5 h ’

c

_ .

, *

.

c.

a

“0 i : *

P 1 0 1 30 rl _ ,a . ‘- L 8%’ Ii* 0, -. . .

;. . . 4

, Fig. V-5: ;:kydomi. . . 4 * a

O. il I ,, p

,3 . ,’ . ‘, s

. /

. il

I : ‘In rraltily &is IS not possible. The intentIon of the illuskrat~&, IS to present you with CI v~sl~al’ image of theskyclotrk projectcd,onto d flat sheet.

a

” 1 4 -I II- ” P

!/ * .“. - D ” _” 2 D 9 I( . 0 ( = .a ,j73 . _ ,’ .>

4 . “). 0 L’ ti 4 ,

7 c i .’ . e 0 ? ., (1

., c n ~ \

Page 285: Passive Solar Energy Book (1)

9

I

Sun’s Position ’

r

position in the sky.

_ __ a-,.. ! -.._

=,

0 -. oc t

* .

m . . c

B s 5

’ -, (1

. :. . .

1 a *

f .’

:y .

. 4

* I>

‘, I‘ , ,> -

a

d

.b’ . \

; * ‘

.‘” ,. * ,

‘0

at any *’ :

. e .

. . * .

. .,.

I ,

0

t b40 _.I_

iI . * - L . . ,...”

..I, CT++ ’

. r

.- * ,. * ,. f 7-. ‘.. _” .

.,

. ; . . . . ~ .; . :. _. , , .. .,

,’ 1 < i ; :

I,. 1.. I _ _. .._._ I._-_.- me’ ‘<

.

. s >:

w

2 -1

273 2 v

.’ ,. ,. .’ , I. \

‘\ I 1.“. .-”

Page 286: Passive Solar Energy Book (1)

*>/ /I I%( il -.. P’ .

.I

’ ( -. .*.

.

t _ * 1%

;

. ’ . ,. , 1

ct. + ., -

. .‘j q i+ .

.\’ - . _ -, .

* ‘. .

_‘.

The ;Passive .Solar tnqgy .Book , ’ - -0 + ’ l “i

.r I . . 1 ,a j

. - 1 \ > 5 A ST ’ c a . &‘s Path ’ ” ’ ?.

* ’ D *

By connecting the.points of tkId&ridn”of thecsun, at different times throuih-. h I-

8 .; t out Jtib day, the sun:s path for !hai ‘day’can be drawn. . ’ 5

I

t

,‘. 1 .

A

*’ 6 .,’

,I- r/. ,a :

4 b

-. ;

! . ,_ * . -‘,.

! 1, ,, *

i .,.I Ii i J c

bjy$J+-\

’ *. ; .I

, P ,,\ ‘. . n

\r **

\ 1

, Q

---=.. -4 4,. *’ I ,,g

‘yy

“,&j ,‘,,/_ 1; ‘: ‘,. , “a&&

I

-‘. *P .’ * , . 1

- ,/ , I / ‘km 1

. . .

0 a

x ,,m

/’ ,, >..

I e

! ;I - ‘.

I s ‘. “‘, i ; :: , . *

“S” , i

* t 3. .

Page 287: Passive Solar Energy Book (1)

I?, ,,lv,. ‘? ’ /I I, ,

/) / --z. . ” ‘,‘.

/‘, ‘_. .’ I .

;/ , , ,./

I*. I I’ I *

i 0 *

,. j” r . k.

, I

. 1 1 . .._(

_ I ‘. I; ‘. The ‘Tools q * . B .

0 1 . “, ,.’ r . . Mopihly Paths ’ ’ ., - ’ ‘j 11 P ., This; we can plgt the sun’s path ‘for any day’ of the year. The lines shown

represent the’sun’s path for the twentieth day of each month. The sun’s path . . ~ %‘. ,L < . . -h is long&t during the summer ‘bonths, -vhen it reaches i‘ts highest altitude,

\-rising and setting with the widest azimuth angik frdin true south. ,During t,h~# ’ ^ . w’inter months the sun’ is mush lower in the sky, rising arid Gtting with- the

narrowest azimuth-ingles from true so.uth. ’

. , .

‘> *“ -.- .,. Fi,g. V-8: Monthly paths. e-, ._ . s

Page 288: Passive Solar Energy Book (1)

t . I _’ “+ , / ;* I‘,

s ‘.... E c,

.r ” 1 ‘?

* I,

C’ .,‘I ‘, .I,, ei . ” . 1 m > 5.. r. 0

, 1 Q (‘: D .

. . ; -0 0 ?

.w ..*. 3 I

i \ -

. ~, >‘,.‘ : L -‘_ ~, ( h ; . _ * “* * -, .,: o

h c !I - ”

i’. 1 ‘ The Passive sojar En&gy ~‘kook S .;- -_ , ~ 1 :* ’ I _ _ + J c

_ \, \ o ’ 1; , .’ .* : -O ~, ’ ,’ ,. ” *,, ” : , Y p. , I ,.

‘Q ‘ -\ 4 * -‘b 1,. ) ’ Tin;res of Day “. ;’ a* f e ., . D ,’ ?

Finally, if’we connect the?times of day bn each sun path vyc getna heavy $.ott&k t b . 6 i ’

!5 ‘b r- I . line -which rbpreser$s ,the hours 6f the da!. This c;tiplgtes .the Cybindri.caI-

Su&Chart:,X. ‘&a immh- ‘6+&&pP ‘* / 1, i .:

; ,- - . 0. -- I

.a

Y

Y I IlIlt UI uay. .

* L::’ ,‘dy . ‘;11-- : . :,, : : ‘: 276 ;p;. 1 );’ 7i’ )I ,C. .. , P- J.;,

,!, o. a-. (, ~!,;#A’;... 8.. , : ‘:

11. . .. . 5’ ‘ii<,” ( . . 1. 1 ‘I

.*-,L e-5

4

Page 289: Passive Solar Energy Book (1)

, .o

v .a s The Tools . r

0 . ‘0 1 P. , I .n Note: The times on the sun chart ,are fo.r sun tim’e. This may vary from standard tim,e ‘by as mu,ch as 75 minutei to; different locations and different times of the yE;r. This -‘ii fine ‘for. *mos+r:practIcaI us.cs of the sun chart. It’s n

,: f,mportant to remember to atrleast use standard time’ Iit: daylight savings time is in effect, subtract 1 hour from locql’time) when using the charts. For tiery ,. detailed studies, where it is necessary to know the exact relatignship betw&n .

o sun time and local time, an explanation of th’e conversion process is provided !pte.r in this chapter. 4P 0

7 i 0

1. _ _~ ~--s ~~ \

’ n h 0 ‘(atitude atid Magnetic Variation

iince< the sun’s path varies accoiding QO the:locatibw on.e,ar.th from whick hit

0%

_/ Lis being qlculated, a different sun chart’ is required for different latitudes. Sun ,char?i‘:f.&‘r latitudes in “the United State3 and southern Can,,ad”a (28” to 56”NL)

1 D

‘are brovide’d in this section. The vap ,in figure Vi11 will a&ist you in selecting t *the sin chart (latit;de) closest to your.Jocation,

. Q , I’ ’ d

’ The .rn~ap~.al& shows magnetic cpmpas?, variations’lor your area. Becduse@f the eprth’s m’agnetis field, it isanecpsshry to adjust your compass rea’tling by ,a few

- degrees east or west to obtain true.north (as different from magnetic north). ‘) .The amount of <variation depends upon your Ioqtian. Wheh true and maghetic I

.nor;th are in the same location, the variatjpn is zero. In the. United States a line of ,>ero variation runs frdm the- e-astern end of Lake. Michigan to the Atlantic c@st in northern Georgia. !f you are located on th@ w&t side of that line, ;~ur cotnpas.5 needle will point to the east of true north. This~is called an- _

4

TRUE SOUTH

Fig. V-IO: A,westerly &iation.

Page 290: Passive Solar Energy Book (1)

/

P .a

D 0 6 I

*: L *

\t

-A 7--t I .

-t-+-i.

(.. . . * : (.. ,I 0

.I, I .1 * _

/’ ’ , I 6 \

I ‘\ I: \ ,

., : ,, P :’

c : .:*2781,

/ (

*

Y P

Q ‘J

. . , L. i! i 0 !

_- . . . I / ; * ..\>. ‘[ ,J. :_

Page 291: Passive Solar Energy Book (1)

t

I’

I I I .” ,*

. x ‘i # 0” . .

./*I . . .=- - n ” : n

.

‘! 0 .

.i -. i

;

, ,,

2’ ‘8

4 i

b f

I 1

,’

..:. 0

) qg, .- 0 _I . .“‘ 1 1 ” The Tools

. a + c) ’ ‘, ‘.’ (0 _ I . ,/ “. , : c ?

* . /.

3 : ‘./easterly variation<.!J Similarly,. if you are located to the east ofi the line, y&r . . iT *

- combass.needle will point to:the.west of true nor!h. This is c,alled~a “westerly0 variation.“+or example, the map’shows a deviation ,of 14%’ west for Boston.%

.,

. ,.. .Tbis ineani, that. the compass is pointi,ng 141/20 to the west of true ‘north; or’ .

&UP north -is 14% “: to the &St of compass-:indicated ‘north I’true south is then '.: $#;lz" west of ‘compass south)., Due to “local attraction’,” magnetic yariation rl .

- fr+@‘E%$ig~tly different for your locality.* The’map is accurate for most uses of the sun chartT,for ‘mpre exact information, consult a surveyor. . .

I. ; ‘. I. e *

~-F p -“.. ~~

YI.lTbe su,n chart enables ‘you to.gczsosition of the .SU-I ;t any time ,of, day,, i : ,‘,tdtir.ing any month,.for any location within theoU:rii\ed Sta-tes iexcluding.Alpska) ’ = i) ‘v

and southern Canada..’ ” ’ ‘I ’ _ i .

5 ..- ,G. 9 .~ s 1. a! I 2

I’ \ i ’ 3

Page 292: Passive Solar Energy Book (1)

*’ c -”

_’

.*.t

233

0.

fi, . .a

n Jl

I ‘- -’ .( ,’ 1 I

I . 0

w L t- h n L <' . . *Y t 1. l/

ii I l\ I\

,- y/

,.J i.,

F

i . . . I ~ .F j

,’

c ,

.I

;d* ,: -:*

‘.b . . 28b ‘. *” --,““& .

+;!, - b- ,-. .;.‘

a . . “’ 8. . ..~ -y.. ’

,-_ 0

-y Yl!

*?+I F ‘cd

. .-

•~ . I.. - ..--..- - . . .,-___ ----$~~ f

4 ..- -. -... . ..._/, _.eII ..-, l-i__ -_--

0 g

Page 293: Passive Solar Energy Book (1)

j’i_ -.. I- - .__ ” ’ -- _- .,.e , I- ,> .

.r .’ _-._-._ --..,- ‘ d ,I .~-. . ..‘L.-. .- .’ k / I-O I “. :, ‘i _.... ‘-- ._. iA t :* / t, _ I-- _, ._ >- .--_-- 4 -- . I-.

. 1....--.,- . . . ..- c

’ ;. 1 I- _._.. -.. ---_

I

.- ‘/. ”

. , 0. 281 . ’

‘.I

Page 294: Passive Solar Energy Book (1)

. j A---

_-

/ :

.LJ

.Z

“co m i--

c

-.-

L

.

Page 295: Passive Solar Energy Book (1)

\

,‘!

) :

, b d’

8

5 c -

iI+

- 3

. ‘0

Page 296: Passive Solar Energy Book (1)

. . 9

8

I I I I= I I

I I I

I ,

6

I I I

284 ‘. -.

Page 297: Passive Solar Energy Book (1)

1

I- --_

--- __--_---

I--

---L..-

‘.. 285

Page 298: Passive Solar Energy Book (1)

.

t

I

286 \ - , ‘. + i 5, _ --- , -

J L.-’ .

Page 299: Passive Solar Energy Book (1)

‘7 ,:

\ _> I I

( _. rp

I I I 1 1 I c

. , . I . 1 11, I

,. 287

Page 300: Passive Solar Energy Book (1)

The Passive Solar Energy Book ‘?& +:.

! Sun Time * . .

..- _ 1 ,

As the earth or’bits the sun, its speed varies depending upon its distance from ” the sun. As we move closer to the sun, the earth slows down, and as we ,swing _

i

away +%rn the sun, we speed up. This difference in the earth’s speed is ,* responsible for a variation between sun and earth time, stnce a man-made clock keeps time uQi.formIy and does not take the earth’s speed into account. From the sunechart, you can see that sun trmc is measured by the position of the, sun above the horizon, solar noon corresponding to the .sun at its highest position and due south. Figore’ V-13 give; values for the “equation oi time,” or the difference between sun time and earth ciock time. The upper parI of the chart (-+) gives values when the sun is ahead of ctock time, and the

lower part (-) when the sun is behind. j

.

MAR.- APR. Luy JUNE ’ JULY ho. SEPT. “OCT. Nmc QEC. -

Fig. V-13:’ Equation of time. lb . t, .: I’:

k &.: .ii ‘< 3 .

_. * ,. . . ,

Page 301: Passive Solar Energy Book (1)

The Tools

For the purpose of tellfng time, the earth has been divided in 24, time zones -(longitudisal segments) of 15” each (a- total o! *X0’, or a complete circle) extending from the North Pole to the South ,Pele. This corresponds to 24 hours (I hour foi each 15” or 4 minutes for each 1") for the earth t plete r lution about its axis. The time zones that affect the C’nited States and

F 7

make one com-

southern anada are eastern standard time at a longitude of 75”, central ” -standard time at 90”, mountain standard time dt 105” and Pacific standard ‘time

, ,.* - at 120”. .

A,t any given iocation’within the United States or Canada, sun time rr fsund by starting with local standard time (if daylight savings time is in effect subtract 1 hour from your local time). Since it takes the sun 4 minutes to move 1" longitude, a correction needs to be made between the standdrd time longitude line and yuur local longitude- Find your location on the map in figure V-14 and subtract 4 minutes for every degree of longitude your location is west of your standard tim%e longitude line or add 4 minutes for every degree of longitude your location is east of it. The equation of tlnte adjustment is then added to this correc’ted tin6 to find sun time. D _

/ . _ .

Fig..V-14: Standard time zones of the United States. . I

Page 302: Passive Solar Energy Book (1)

.

-

,

0

_,‘_

. .

..,

To accurately determine the tims”&at direct-sun\ is blocked from reaching any point on a site ‘it is necesp?-$1~ plot the obstructions as seen from that point.’ This is done by p@@@&$“skyline” directty on-*u’n chart’.‘tf the skyfine to the south is l&%it~ no obstructionssuch as Itall trees, buildings or abruptly rising hills, the followirlg procedure is-unnecess4t-y as al! pointson the site wit1 . receh+--suRduring the-winter.

\ I . .

The Passive Solar Energy Book

\

. .

‘i

. /

Then use this simptified equation to convert standard time to sun time:

sun time= standard time+ E +4(L.L-Lti)

where: El= the equation of time, from figu-re V-l 3 in minu\ei L ,,t= the itandard time longitude line for your-k& time Y

zone Lloc =, the longitude of your location

:

For example, what is the,, sun -ti?ne corresponding to 11:30 a.m. centyal standard time on February 15 in Minneapolis? ‘19 I !

_- - To find sun time:

,

7. ‘LOG% Minneapolis on the map. Its longitude, is 93” whi;fi‘is in- the _ -.--. 10 central standard time zone with a standard? time longitpde of 90”.

Since ihe stm takes 4 minutes to move 1 0 the equation is 4(90--93)’ or 4( - 3) or - 92 minutes.

2, To correct for’ the time viriatiori onC February 15, the tirpe or E from figure V-13 is minutes from standard time to obtain sun time.

1

“% ’ ‘, I .A,. _ \:. sun time= standard time -L&--IA -. ? sun_ti.. - : -:--.

e=-77?Da.~~-26min.=l1:04a.m. I .i _ _-- _- - _ - ‘

Plottirig the Skyline I-//---~-. 1 - -- :.4 . .

IIS ‘$j. , \ ,& ..:+. ..,

To plot the skyline, you will need either a tran$it or a compass (to find the azimuth angles df the skyline) and a- hand levd -(tti find the altit~dp..angtc~6~~~-’ ” the skyline), and a-copy of the sun chart for Y?UF location. . . .--.

___.--

Next, place yourself at the ap~r~xins;rfe.:lb~ion on the si’te where you want to ____ -y-y : , 2 .~. __. -~ ---

--..-- - _ _. .’ .-,* .._.--- _.- - .-

Page 303: Passive Solar Energy Book (1)

-. - --__ _ The Tools

put the building. Plot the skyline (from that pornti on the sun chart as follows: !

1.

2.

3,

_. Using the compass or transit, determine Lvhrch dIrectron IS true south (remember magnetic varratron; see fog. V-l 1).

Aiming the hand level or transit true south, determine the altitude (angle above the horizon) of the skylrne. Plot this point on the sun chart.above the azimuth angle 0” (true south). Similarly, determine and record the altitude angle .oi thr skyline for each 15” (azimuth angle) along the horizon, both to the cast and west of south, to at least 120”. This is a total of 17 altitude readings. - - Plot these readings above their respective azimuth angles on the sun chart and connect them with a line.

_’

. \ _/’ . . .‘- fi

,

. r)

Fig. V-15: Plotting the skyline.

I- 291

Page 304: Passive Solar Energy Book (1)

.‘, ,

)i-,

r--* ” - (I

L

*” t ..:,:,

6 B

1.. 4 ,

-/;- ‘,

0

. . The Passive Solar Enbr.gy Book I-

. 1

7. Fig. V-16: Plotting t,lll permanent &pcts.

+ .

4, For isolated‘tall objects that block the sun during the winter, such as _. ,tal! evergreen trees, find both the azimuth and altitude angles for each object and plot them on the chart.

5. Finally, plot the deciduous trees in the skyline with a dotted line. These are. of special nature, because by losing their leaves in the

Am winter they let most of the sun pass through as long as they are not densely spaced. I \

. . This completes the skyline. The open areas on the sun chart are the times when

/ L’ . the sun will reach that point on the site. 1

.

292 * i

‘1 I

Page 305: Passive Solar Energy Book (1)

\ I I

* * ‘, Y

. ‘1 ;

, The Tds \ \

i .; r . .- .

‘. The Sahr Radiation Calculator ‘!, \, _. c : ’ / /’ IrCthG &sign wf passive solar beating and cooling systems fqr bufldings, it ti important to know the amou> of radiation or heat energy that strikes a sur- face on a dinter-clear day, over an entir’e day, or at some partikular hour.

-

, After making some basic assuihptions about the nature df the itmosphere and the nature of reflecting. surface<, it is possible to< calculate lhe amount of ’ ___~

‘.radiation (sun’s he+{ measured in Btu’s) intercepted by a surtkce, on a clear .~ -’

-

..I

j- _.

&y;-for any position of the sun in relation to that surface. A :computer pro- gt$m -was developed:* to plpt all the possible pbsitiqns of the sun where a >quare foot of surface would recei<e ;t fixed quaptity of radiation, such as ‘50, 75 or 100 Btu’s in one hour. T/ie ptsitions of the sun, for leach quantity, were connecteJl a@ drawn as four illustrations, that follow, called solar pdia’- tion calculators, to fit and be used with the sun chart.

.

- . :..

:

: ,,- :

. .

7 ‘7 ’

The solai ii\tensity m&kg are used to determine the amount of heat energy strikini a surface. The lines on the masks ,Tepresent winter-c/ear day, hourly totals of heat. energy (in Btu’s) striking a square foot of ‘surface. The mask marked “90”” is for vertical surfaces, mask "60"" for inclined surfdces of 60” (as measured from the horizon),.mask “3Oq” for inclined surfaces of 30” and a- mask’%““+or horizontal surfaces.

.,..

,Transfer th’e mask you choose to transparent- nt.at&rial and use the “center , axis” and “base I$%” to align it wit6 !he sun chart. In order ti find., fhhe .amount of heat in Btu’s per s:uate fdot per hour intercepted by .a surface facing in any dir&tion, “set the base line of the mask cjirect!y eve; the has? line of the sun chart. Using a compass, determine the.directio? that your surk ‘faqe faces to the east or west of.& south. Keeping the base ‘lines aligned; . shift the pointer of‘th,e mask to line up with the nuinber of degrees (azimuth. angle) your Suiface faces to the’ east or’ west of tr& South. You are now read? to determine the solar inteniity valuei for that surface.- . I _,

- , 1..

‘- Set the pointer 6w the ma& ti:line up ‘&ith 45” west.on the base line oi th$, L’ ’ sun chart. Be su@ the &se lines of both sheets are in line. fie sun chart and mask are now &li$jnecj to rea.cj the solar-ij&psit)i values. -’ .. ’

-_

,. . I . ._ . . - ,

l Comptiter program w&&&l~ped by Mark Steven Baker frbm wlar radiation iormulas fount) in the ASHRkE /&t&#ok of b+~~aamenta/s (1.97%. f

..I I

.: i.- - ‘-‘P -. : ’ i I * - . ., .% _. . . . .

4 , *- I __.’ . . .- iq

. . .: . .,t .,._ -. 1,

Page 306: Passive Solar Energy Book (1)

*. _‘. ’ ,

!

’ ! * ’ 3 ; / ,.., ,f.[. - ;:’

’ 2 : --

-t- --.--_--I- . -__- - ____.. -----L-

_-i ___...___.__ --i C___.__--L---- A.----J!!!- . . 1 1

-iI

i ~-~ .-- 1’ C---------L.- ---I

_- .___ - __._ -----+---.L----...:

Fig. V-17: Solar radiation calculators. I r*

Page 307: Passive Solar Energy Book (1)

.

. .

. 1’ _b~ _e-_--

’ .‘8”~ “. 1 _

?I 4p’;r ;

.c

-

CA

_. The Tools

,

T -6

Y 0 .5 s

III

Fig. Wl8: Alignm~~<&~;nple fur a-pertical surface facing 45” west Of so”,“. ; (’ ,-

s., + 1

’ Hawly Radiation Totals ’ /’ ‘< _’ ,/ * .’ ,

s TO determine the winterw?leasday, hou’rly totals of heat energy,,in”gtu16 per ‘- ,,A i . _ ~I , hour+triking each square foot-of surface area:’ I’ , ’ > i !

\ -

*

,

. .

‘3

.,

1. - Selec,t the proper mask based on t,h6 slope of. the surface (horizontal, 30”, 60” and vertical).

2. Select the proper sun chart for the latitude of your location (if your lpcation is in+between latitudes, choose the closest one). i

3. Keeping the base lines aligngd, ‘set the pointer (center :axisjc’of the mask on the-,azimuth angle that the surface faces to the east or’we of true south. 1

-7 Y

4 Select the month you want to takethe reading and use that sun’s path to read the values. ’

‘I .- a 5. Select the hour of the month in which you wantthe reading: the inter-

I G

section of the hour line snd the&n path will @ate the po~sition of i

4; 8‘ i- / .@- .i -I

‘/ ..; ,295 4 I 7 “

Page 308: Passive Solar Energy Book (1)

$3

The Passive Solar Energy Book

Y t,he sun. Read the number of Btu’s for that sun’s position from the radiation mask.‘If th,e point where you want the reading falls between :

. radiation lines, interpolate to find the value.- - I ,

D Note: Bezuse the -value of atmospheric moisture content varies greatly ’

’ a~c@s-th@-united States, the solar intensity numbers need to be ad- __ _ .*--- s-* ‘--justed depending upon your location. A correction called the Clear-

ness tactor inust be applied to the cleariday values. The’ map in figure V-19 shows lines of equal clearness for wirrter conditions. Find the line and corresponding Clearness Factor closest to your area and multiply’ -= i it by the hourly solar intensity numbers from the mask.

.i I -_ 1,

.

I\/ 110”

I

8 - f$UrnMpl 1lV

W - WIN;r_E7r! I

m . . ::i / L Map of clearness adjustme& factgrs. I-

>.- Source: “ASHRAE, Handbbok of Fundamentals, 1972.

_ . 2 cl

0. . .. 1 Daily-Radiation Totals * c <. * i> .,8.

To determine the tots-l- daily amount of heat energy striking a surface, simply , . . . “a : .fqllow.%he procedure for hourly total,s for each hour on the sun chart and total

these to get the daily total. Cf the h.ourly totals have not b@n adjusted for your are& then adjust the dail;$&tal ‘by multiplying it by the‘appropriate adjustment

,

factor from the ma’p. ’ - ‘% I’

._,’ . --_. . . _a

7

3

Page 309: Passive Solar Energy Book (1)

_.- ~. -~ __ ~.-~ -- --

r) ~- -?XJtJV?~dDlATlON CALCULATOR 4’ 0 H,orizontal Surface Btuhjft* 9

I :- i I I .I I i I i I -t I

t i i I

i

--f---- 1 c I * I ’ 1 -. ,, ! j

/ /I

L

1% ------ I

I

,>a

,

0 0

1

.o

: 297 -_ .~

‘0 . . ,:.,‘.:~--.

_+

* I

I

Page 310: Passive Solar Energy Book (1)

c

~gld --SOLAR ‘RADIATION CALCULATOR .

‘0

\ ’ .. 30’ Tilted Surface Btuih /f t2 0

-

; I ! I I f I. L I I I : I I I I I I I I I I

1

/ /” /’

/

,,,j /’

m ,~

/ /’ /

/’ / I.

/

\ \\

\ \\,,\h,b ’

.- . . ..w

*

Page 311: Passive Solar Energy Book (1)

-4 I

--2\ . + _

c

.A

c

, c

Page 312: Passive Solar Energy Book (1)

D L .

(D I SOLAR .RADIATIObJ CALCULATOR 0

VeFtiA -Surface Btuh /it’ 0 1.. C’

; I’

#__---- ~-‘--~F.------- -------- - -,----\.~ ‘,

i I

\i \ -\ ----- 4- / / i’l i I

\

2;. ---I-

-W--V_ -a.--------

-A-e ,H’

. ;2 ./

. .

Page 313: Passive Solar Energy Book (1)

-i- .-

,- I

;, The Tools

The Shading Calculator

c

. Looking from a window, a shading device -or any obstructionfor, that matter

(such’3s.a t.ree or building) @II block part of the skydome.from view. To put jt another way, the window will be in shade when the sun travels-across the obstructe’d part o,f the skydome.

~~ __--~-- ___---

i-

For any surface (such as a window. or clerestory), skydome obstructions and shading devices can be graphically plotted to construct a shading mask. This I . mask, when superimposed over a sun chart, accurately’determines the times 4’.

that direct sunlight is bl-ocked from reaching that surface. Since the masks are geometric descriptions of the shading characteristics of a particular device or obstruction, they are not #dependent\~on latitude, ori‘entation or time. Once plotted foc,a particular device,. they can be used over any sun chart.

$

Shading devices/can be grouped into three categories: the horizontal over- hang, vertical fin, and overhang/fin combination or eggcrate. The horizontal *

overhang is characterized by a shading mask(with, a curved shadow line’ ’ rrlnning f.rom one edge of the mask to th,e other;

,

-~---- . ..~. MASK the vertical fin is characterized by a shading mask with a ~~?~idti~~*~~%.-!jj’?~;

L -----_- . -----_

LI . 301 .,’

; % L J -,. / . ,“ -, ’ 4 :

Page 314: Passive Solar Energy Book (1)

.-

>

I

. .

I

The Passive Solar Energy Book

Fig. V-21

SHAM -- LINE --

1 and the- combination horizontal overhang/vertical fin is characterized by a combination of both curved and vertical shading lines.

.

. .

Fig. V-22 ‘_

302’ -ii

. ’

Page 315: Passive Solar Energy Book (1)

SMAl?lNG CALCULATOR

Fj@.“V-23: Shading calculator. -

Page 316: Passive Solar Energy Book (1)

,

I ’

D

--

,& (

The Passive Solar Energy Book a-. -a- -. .-:+, ,.+ 9 _ ‘..

i .

The shaging masks are.ipdecendent of the size of a shading devioe, but instead depend upon the ratios generated by the dimension’s of the device and th’e window. These rat& are expressed as the angle the window makes with the. shading device.

The shading calculator show.n in figure V-23 will assist you in generating a shading mask.

The curved lines that run from the lower right-hand corner of the calculator to the -tower left-handcorner are used to plot horizontal obstruction lines

)w and the vertical lines on the calculator serve to plot lines parallel to the window.

paral,lel to a windc vertical obstruction

SHADING CALCULATOR ’ _(

,I .

d

Fig. V-24 ’

Page 317: Passive Solar Energy Book (1)

- ..,

/J \ .i -h

I

___~ __._ -L------ ~-.

._.~_~ - ~--

. s

!

i -. The Teds L

ct 4’

Plotting the Shading Mask ‘* - ~

Horizontal Overhaqg

To construct a shading mask for a window with a horizontal overhang, .

first determine the angle from a-line petpendicular w tk-bottem ~WW-- ~~~ II-~~~ window to the edge of the overhang (angle a), and ‘the angle from the middle of the window to the edge of the overhang (angle b). These angles represent

.

?OO”h and 50% shading of draw in the shade lines that

l. &*.-:; ‘3 .

the window. Then, using the shading calculator, represent ,angle a and angle b.

.

‘~‘qECTlON - ‘Fig. V-25

the shading mask. The mask has a pointer and a base line fQr

tie sun chart. Select the sun chart for your latitude,’ then line of <the mask directly over the base line of the sun

of the mask to line up with the number of-degrees faces to the east or west of true south. -The

the times that the sun is ,above the at the 50% shading line.

Page 318: Passive Solar Energy Book (1)

The Passive Solar’ Energy Book ,

/

Fig. V~26: Alignment example for a window facing 45” west of south. .

- . Although the mask plots 700% and 50% shading of a window, the prmedure

‘1 can be repeated to generate a more complete r&k which includes 25% and 75% shading.

Ve~Gq$l Fins

.

----------

There are basically two types of veiticat fin shading devices,: those that project * -~ - ,out perpendicular from the face of the window and those that project out it

an angle. To.cohstruct a mask for either device: > ,i +.-

306 -. . . li

5

Page 319: Passive Solar Energy Book (1)

h _ ,.’

;“c ‘.;2 .

. The Toois

L

First, determine an&s a and b as shown-in figure V-27. These angles represent the IOO~IL shading lines. Then determine angles c and d; these repTesent the 50% shading lines. From’the.base line of the shading calculator draw veitical

?,-c lines that correspond to angles a, b, c and d. This completes the shading. mask.

/

/

I.

- _,’

’ r-’

.

k

3

, . I

.I ,.

$9

I

’ ./ /

1 _I /* ‘kg. V-27

r 50%

rlOO%

c

MASK

Page 320: Passive Solar Energy Book (1)

The Pass,ive Solar- Energy Book . 4 I

. Then align the shading mask over the sun chart to the angle-_the window faces to the east or west of ,.true south. The window will be completely shaded

.i during the tjmes the sun is outside of the 100% shadi-ng lings and partially shaded (50%) at the 50% shading lines. . L ‘7 ;

.*.. .k ., . \’ ,<~

Combination Horizontal Overhang/Vertical Fin 7

To construct thb shading mask/for a combination horizontal overhang/vert<cal fin, simply combine the shading masks for each device. *-:: : =

.

t

. 2. , ./

Ii L

4.. 4

-L ‘i:

I. / . . “1..

! .\ \

‘,

,.I

\ L Fig. V-z8 1 “ . \ * b

b< 1 1 * 308.A ;: , -

.“. ‘_

-. -4.k : I-: .’ . ‘.“’ - ., 0 : ; -.. ,. .- 1. ,

Page 321: Passive Solar Energy Book (1)

I / j,

‘$i -_

1 ,-. 7 I) -“jj. Appendix

1 .._ ’ I

.‘.L

F . Performance Calculations 9 ~ ’ o (.

So far, general rules of thumb for designing and sizing a passive solar-heating system have been given in th%form of patterns.‘The,,E$terns make it possible. to integrate

. passive solar conce$tsY,\when designing a btiildipg. They give enough detailed * inform.ationio size a system that will function effecG,vely. After a preliminary design

for the building is complete, it. is ,then possible to calcui,ate the thermal performance 1 f

of each space and make adjustments to the system, if necessary-. . ? $

The patterns give rules of $umb for sizing a system based on clear-day solar

\ \ ._I radiation-and avera.ge outdoor ,tetiperatures lf,or the winter months. Es,senti,ally, this

j* - sizing procedure balances the h&i‘~ost‘from a space (kept at 7O”E! over the day with XX -3 C’ .y the energy col!ected from the sun (when shining) that same day. This condition is-

f ‘~ referred to as the design-day: Because design-day data have been used, it can be Y expected that the system will not perform as effectively under more severe

conditions, although ‘th,e massive nature of passive buildings tends to moderate the effectsof weather extremes. It is reasonable to eypect that a sizing procedure for the

b

.s worst possible winter weather conditions is usually not practical. To do that would ,

. . YesuIt in spaces that are uncomfortably -warm during periods of normal sunny weather.and would lead to a design that is oversized, and most likely uneconomical ‘.

.lo build. For this reason, some form of ba&up-‘heating system is desirable in most passive solar heated buildings. Due to the complicated nature of energy flows in a - ____-- passive building, cal&lating system performance ‘is a difficult and tedious-process, usually rec@ring the use of a computer. However, bj?.~compresstig this process into a few relatively simple calculations, it wasfourid that o&\ly a small degree of accuracy

i ’

was sacr$icedSinceeven the most sophisticated calcuiation procedures are subject _---- _-Am~-------I---

to error due to the large number of unpredictable variables associated with passive systems (such as occupant space use, interior furnishings and surface c&lors, estimating infiltration rates), this simplified procedure is, appropriate for most I

small-scale applications of ~assive$&ems. . I

,_-” ‘I

. .__ /’

/” 309

Page 322: Passive Solar Energy Book (1)

. . 0

e

Ibe ,Passiire Solar ,Energy Book n

0 i I A m . d B

. ,. c d -4 r n ‘- _ --~- , . . - :i

There are six steps inv%lved:in calculating a system’s performance: - **1 __

I. R ’ * 1

.-.

e 1. Calcuhting the rate of space heat loss. D v

#I ” . 2. Calculating spate heat &in. .

3. Determining the dverage daily*indc& temper&tire: . .’ 4. Determining the daily indoor temperature fluctuation. : J .:.’ . a 5. Calculating the auxiliary space heating requirements.

.’ 6. D&termining th:e cost-effrictiveness of the system. . . ia J > ‘. 7 ,

“,, t “&* .. ,* . . n \ ij

‘\ 6.

” .,.. .: . .

,_ ‘. - step 1 l ; , , r % ) i ’ 1 ,,_

.‘. .~. Cakulating ‘&I&& Heat Losstin Winter’ ”

’ ‘. : il c ; . .” * -,., .,’ . . ’ “& c * ‘\ f ::..r*:,* ” - ‘k -: .,a’ I. ,‘. * . “:* ‘.. . . ./ The qu&ttity “of solar energy need& by a space in winter is dependent upon&e

. hourly rate of heat loss throughihe exter@’ skin of-the building. Heat i&lost through .I .:. .; - . : .‘.‘ .( .’ .~ 1.. .” ._ . . B ’ ,’ the skin of a building by two methods: he.at,‘Iass through the \;sall_s; floor, roof and * :. ;:*: . . :. * wjndows (cond$uciion losses) anddthe.heat loss through the exchange of warm4 ’ 0. “ra... ,;. indoor ai‘i’with cold outdoor air (infiltration losses), The total space heat loss is th,en * L( :, ,: . n a_ D. ;- 0 :: ..:

.: ,. * .i *, ” 9 O’.‘thp.,.sgm of the conduction losses pius the infiltration tosses. in calculating heat loss, it I

-0 _.: .. 0 .‘.,, . . ., I .is:necessaryto compute the hourly rate for each space in the building separately. .: . - _. 0 . . - *_s .-n. “,’ 1 *,,

I ,..L ‘.a$& hourly rate, when div;ded.by the floor area ofthe ‘space and then . .._ I:‘. ; “b - . * r,;a.;” ., “-?$ th&rs, gives an o\erall space U value, expre&d’in Btu’s perTday per

; . . -L1 ., ,:’ : : ‘fi.e&area:p& OF @J/day-sq ft+&-OF): ,. @ A .i’ 4 il.‘: <,’ ~-r-!..,! .’ ,; -\: I . I . C?, . *- _ -. ‘. e . . ” _ ;,..i’ 1; ‘A

I, ;:.‘I1 . .: ( ., ; .-c L I,* .A I n ,I .: i. . *C : * ,. -,: .. . . ‘/ *i ;. ,.. *i - . ..- .j. J, ~ 0~

.- _ ” 1. . . . ,.,..: :L:;.:. sl+- ,, D . .- (” ;, rl. ,:., , r, c ,:‘,. : .(I... _ . - .

2. jo .* et . .+ D e * -. ;faN , ‘* _r’.. ~ . I . ;,- 8, *dI) -_ * _ P’ ‘*, a. s, 0 r( .”

y 1, “d ,;,,--,‘:‘, ,. ‘A. . . ;.;- :,~~:‘ii~‘~~~~irenie~t figure to use whe? calculating in&& air temperatures and.the ‘* 1 . ;a ‘. . . .

: .’ * .---., ‘, hL- ; ..i “‘.

yearly *dCjntrib,ution,of sQtar energy. ’ L . * \. .., I(

i : ; .a= :b. 0 a I” ‘,: 0 C’ EI < *: _ * < i _’ a_- - ‘.+ I) = ” ,.. ;- :..,, .C : .I F’ htl ” _,<‘, ,.ef &is re&nable to expe& that e overall space U value for a well-insulated residence . ...> -‘. - . 8’.

‘, :,:‘-$@ . &ill~&~,between.% and 12 BWday-sq ft,,-“F, and fora gr&nho8tise between 20 and i

4[1,‘Btw/d~~~s~-f-t,,~OF,- Table l-l is included .here to provide you dth ‘a quick an# -. n ‘) . . _. ’ s. easy- rneQ+ of-arriv~~---atuj,;-Hte-~ble;skot,l~~ be used ,for-estimating purposes ” -,‘a - ----

a.,<‘ , n ‘,on.ijl., For a de&iption lof detailed:heat loss calculations, seetheprof&ssiqna/ editicm * a < ;‘-<

‘, 0 I , L- cifi?l4f, Fgsi~e S&i Erkrgy’ Book or the ASHYE H&dbok ‘; 0 :’ of~~un&pe@a~s. .’ :i 0 I’ 9 o. : v..

: I ,P . ‘_. * .’ ‘,.,;,’ 7, ,: +, ” . $1: < . .

--+Jb’ .,:“.‘ ,, 2 by

, ” .I .I., ,t ,,# .G /(: . c ,. I -’ - 0

. * ’ )‘, . ‘_ . . !. .‘( - ,II . . I :,.h r ,‘U . _ . . I ,r *. . , ,; - _.I ” ..I,, <* , I. ’ ,I ,.‘,;. ’ i ~_ ‘*. 1 * s ‘ij) L; _ .’ 7 ‘._ ,,; .“. L 00 i 1.: , j, I.

Page 323: Passive Solar Energy Book (1)

,.

*

I

I -Table l-l Short-Cut Heat Loss Btimating

. . 2cnw ‘.’ 0

’ 1Exposed Expoud F

A y,, , : * D Wall walls 7 .c ”

>.\ AI ‘.

‘\.-F{rst-flo& space .’ )i

. “Single glazing 8.1 ‘* 12.2 7.2 6.6 ;

1 ‘f4I _heat+= space fbove j. (B . : :’ 7 ‘: .\ 0 .

j Double glazing or 0 ’ . a P

1 * single glsningwl n ) insulating shutters 4 5.6 + a.9 i 5.5 4.9 I

!. :, , T P, 4 / a

I n Upper-floor space $ngk g’laziy 0 ‘a.9 .13.0 or one-story-typq ’ I spqx” ‘, D- ,’ P .,* Same as above but L ”

a I. l/$?:story-high ‘.’ space 12.4 78.1 ” >i> n

/ a.0 a i 7.4 0

11.9

5.7

il

j.2 _

.1.; _-

.

‘,@..

91..

: ” /

0 - .

‘.a g 1. &uble @aZing or 9. F o .- ~ single glazing yd ) - f

,, ‘6 :c b.4 ,I 54.7

:-,- insulating shuners ‘.L I

0 ,ja+.-? \

I same as BboveLt .. . /

-L a I lL?-st~ry.~~$igh II ” 1 9.1’ l l 3.7

0 . . space : d” a.. ’ . D u

. .12.5 i

= 6.3 ; - _’

9 .:y ”

2:. ., ’ . N()fi& .l- .b&es apply to-a wellk&lated spate with 3 112 to 6 inches of insulation in the walls,

Q 6 inches .or more ii-~ the ceiling, 3 l/2 inches M under flcws above pa& of 2 ih+e5 d peiiyger insulation for :a Zlab on grade. F

/ 7. “-..-.-.-.--.--.-. -... . . _- _.. _ _ ._.. “_ ,__- -0 . ;,.f.. .’ & 2. ‘&jtq is b&M b h Wi*in l!j,;a’** istE?Cm far &i&E5 W!y..

d . L . _.,. .---. ?‘. 1. __ -_oJ- ., .

. ,. . .

3. Are, of glazing is &ghi{ 20 to 30%:dhemspace.flr#x area.- a * _ .. .{ _: I,. . C’ : Q . . .

_ ‘4. Assimes no heat ioss througti%e th%rnaJ-$I. . ’ . .

1 r 0 .1 . ‘, \ * CM-. _ 4 0

-. .e_ 0 0 . I. ,;,- -3; ,&&“les ir6. heat loss thrr>ugh ttk common wall betkeen’the space’ and gr&ha;.. :*’ _ d. .’

,~.li_ 3 -- - s -ooo / I ,’ _ .I . ,, . .

.a I < I, .‘I*‘: .’ -L - ” ; .” . 0”. . I CI .I: 411. - , 7 _ :,t

y' . _ 'CL -2 DY. . . .<. ._ 0. . "* :..: - -9.. ‘7." ; i.., .;; ._ . . ,,: .." .- 'd I -.A... .

Page 324: Passive Solar Energy Book (1)

The Passive Solar Energy Book

’ Step 2. ’ &Mating Space HeatEain in’ Wider ‘- ”

Heat ‘Gain Formulas

-~ l Directftiar~Heat Cain (I-/C,,,)-All of the sunlight transmitted through a window 3s collected by a space, as heat. However, the amount transmitted through each square foot of glass depends upon many factors, such as the location or latitude of the building, the orientation of the window, the number and type of window glazing used, and the shading of a win-&w by nearby obstructionsn/incIuding shading devices.

ApT.agndix.6 lists daily totals of clear-day, solar heat gain (I,) transmitted through * double glasssat various latitudes and window orientations. To calculate solar heat r

gdin, first select the proper table for your location. For instance, at 4O*NL, if J vertical window is oriented due south, the solar heat gain through a square foot d unsh,$ecl

0

a

’ j 0 /

/

, / /

./ *

.,1 /.

/ /

. I..... __ ,‘;

- I

I

” “0

.e’

_ I

I I+

J

-i 1

L / I Fig. l-l: Methods of spaec heat gain. @.

i - -c I 0 _--

i 312. ‘- : __ ‘.

n * s

.

Page 325: Passive Solar Energy Book (1)

, I...., ;

,.(

” n a

- -.

3 ^ double pane glass during ihe mbnth of )ar$ry ii lm,Lii05 Btu/day or 1,506 x .,a (%9b ‘, .; h abs_cx@n I&J =, 1,415. Knowing the solar heat gain through one square foot of0 t

‘?&k&v, the heat gain through an &tire section of wit$ow (HG,,) is -calculated , - _- --‘IT _- .fe 0 _ ._2 4 * using the following equation: ‘. - 0 ;\I

0 I . k

n a so, 3 A,, x It I ‘\ * . n ;:A ”

I 3,’ n ’ where!! &, = sirface area of the unshaded pot&n of the glazing in

‘\. \ - -. - - 3qual.e feet .

or 0 : : _- It = solar’ heat gain through one squae “foot of glazing in .*

r Btg/day ‘- >.

_ ,i- ,e

0

3 &e important Gate: This formula<is used to’calculate the direct solar heat gain in a I

space includingngreenhousks, attached or freestanding. The solar heat gain for glazing used with a reflecioi will be g”reater than ihe value given for If. Appendix 7 =.

-@v&s the percentage of, enhancement of solar heat gain for- differ&t I_atitudes and .o II- ~- .- .reflector/co~lector tilt angles. ,,_,,,. . ,. 0 3 ” 0 0,

l Hea? Cain kti a Therma/.Stomge !kall, Rpof Pond or Attached Greenhouse * (M&&-The heat gain ‘into a space from a thermal stdr&@ Owall, icmf pot-d or atta?&d r~nhouse..(HG,,)*can be calculated using the fpllowing formula:

#5-y/ , -?“” ’ ;a ~ ” 0

Hdm =- &,, x I, x b -8. * ~ (I 0 0’ . . -c )’ * tihere: A,, = sur&e~ kea of the unshaded prtigrp of the glazing in

I’ b i ’ -

sqGm.3 feet. .I . i. . ..~~........~~.................. _ . < ., n I .’

.,, n Y I, = $ar heat gaiq through “one square foot of; glazing in ” -

.- Btu/day ’ .~

0 ” * . ‘P f P = tie &rc@age of ikident energy pn the fake of a icermal , ‘.\, ., ’

0 1 . .y .a^p. wall or r&f pond that is trapsferwd to the space ‘I * .,> LI 0. ‘\ . -if

Values of P for d,duble~gla;ed thermal. storage w&i (black exterio! v+ll sudgce ‘\..\

-I- “\+, ‘-. color) and tkf ponds are plBttd.for a variety,of conditions in figure l-2. To find the value of.P, first determine the ratio of the~~&wal+- orro&pond+rPXtC,[email protected] :- .- .--

,.F%. _’ ._. ~~~~~~~,~,~2T7D’-sq~.~re-f~~+lyce tith a 1 &kquarEfoot’congTete thermal .? _-.- -I---- .---.--- &k has-& ratio of 1 OOti60 $ilj?X?: Then, fioki”i 50 ‘on the hoiizontal scak, folloy a s

v&&al line until. it intene&the c_ljfie for. the oerall v val~e.(.U;,) df the%space= you i calc&&d.i.n Step 1, Calculating’Space Heat Loss &?/Vinter. From thk M&&tioti

: . ‘. ”

_ ” move horizo&lly t9 the left and read the pe!eentage of erikr&t~nsmjtted through .-_ 0 0. ‘W~~wall &!he+&tie&scate~tf~G- ZkampTe, .the ZOO-scj,yare-fodt space #ad an 4 n

O&&i u value Qf 6 &u/day-sq ft-OF., t@n- P will equ‘al 35% or 0’.35. Whet-i ysing

. , -_~ --- -

. . . _. . yable “’ -0 O1 _- 1 , & o ,’

Q.;:.;. Y 0 0 insu!?ion 8over‘gl&zing ai night,. ddd.5,% JO Ek value of P.

-_ : _ ., ‘.’ : riJ. ‘.,.. : ” - & 1 .I -~_ 0 ‘.I n I_, * rv i? h . ..” 0. - .3.1$ +-’ _

-3.

~ .a-- c 0 \I e ., i “’ 0.. ..e _ T:‘. .,,_ ‘.. ,,, ,. _. . . ‘# I 0 . .

^ ,$s; L, @ ,,.. ..-- . 0 :;. ..; .I . , ‘?- . i 0 8 ::... ,I, ,;. ,,,,,.... / ,,, ,. -..a;. .. 0

Page 326: Passive Solar Energy Book (1)

I / I \‘-

: -%

I _. --. -_ ‘>

‘. .

-i L n 4’. :

c

I

4 1

mi- -, - f . . 4 .*

/ i I. .mmm_o 1~

"~-&r~;Gf+r,~r~~~ ,-., r-T7 ..,-, +.,TrT~--T~T-.lT+ _._._.__-___ ________Tr_____* _.._____+ 60 -- 0 a 20 30 40 ‘so '@Jr

, ._ _ 0 tat&dthumdndrulRmxuu . I . _c ’ CONCRETE TERMAL STORAGE WALL (1 Ff TWCK)

,I.. ’ .I. Ed. ~_~~ I i

- .

i i r

r----.,7 .

.

m ,>A ;“”

.. , z-. 3 14 .-- 7’ I_ ”

“. ” .‘. ..’

WATER THCRYAL STORAdE W-ALL AHD.ROOf FOND (AMY TktlCKt!4ESS) ,’ ?

I&. &2: Percentage of incident en’z& transf&ed !h&ugh 1 i

thermal storage walls ‘and roof pmds. .

.a . I’ :. .- Ntite: Graphs are plotted (or styage waJ.15 dith a black exterior

: siuface,color. I % &.: q’ I 1. . . .

i

3.. “rr..> 1-- I. __-/-- *- &‘ / ___ - ---~

.-. / . __-----

Page 327: Passive Solar Energy Book (1)

;.

.

i_-__ L-_

-- ” . _ ~..- ~, _ . Appendix 1 -:

For a space adjacent td an attached greenhouse, the percentageof [email protected]&’ through the comtion wall is difficult to predict because- df the many variables. involved in heat tranSfer between the spaces. In this case,*.qy,ly a iery rough estimate w p

%,.;.a ,:=,,-

can be given. Table J-2 IiFts values of P for common w&g; constructed of either masonry or water: Select a value based on the overall ‘$te .of heat loss (U,,)

a*, --- .- ,calculated for the greenhbuse in. Step 1. .e

. c q

T&Be l-2 P,ercentage* of Ene . _ between: an AZtach 3 (P) Transferred tlik&h t)re’Comkn Wdl

-Greenhouse ind q@&ent Space ., * . *’

. Rate&f Hemt’bs

.:--” 2 .,

-fmmiheGreeflhwse :. ChldOOt-Thick water W$ll u,, mhw4 h-w ConCrete Wall 4 (all thiCknes&) ,n i,-

., ” . .,& ., :

24 " mm_ ~.~~---zm ~- - _ .=:

.~ .

., ,36 30% ,, _ ; : ."".

'. ' 17% 24% #4a' 14% 21%

\ -L- ~. ~.I_ NOTE: l Foz.Fmatingpurposes only. These percentages a&y to a &l-insulated space with a heat lqs of

‘6 to 8 +/day-‘&q ft,,-“F, and a them&l wall$o-glass-area ratio of approximately 1 to 1. Thk greenhouse side d the thermatwal! iS assumed to be a dark c&r, and in direct sunlight;- If the wall

-is shade&% not in direct sunlight, the value of P will be considera& I& * ,

I . . . . . . . . . . . . . w&[email protected] $-&&l. . . ’ ~. * 8 ‘% , % “

-_ To find the’total daily solar heat gain for e&h space, first establish the design-day ‘.,, conditions. An average sunny January day is a reasonable condition to illustrate a \\% system’s Fjerfocmance. lora Oirect.Gain System,‘ usi‘ng clear-day January values for I

_ solar heat” gairi through glass (i,) from Appendix 6, calculate the heat gain through “\.\

“.s,,, I each unshaded skylight, $!erestory and window opening:

. \ b;

\

kol = It x &,I

: t gain, in Btu’s per day, is simply the sum of the& values, * . /b 7

, fti Bids per’day, from a therm$ s&uqe--- L-.--F

- Y

-.- -. ““, i_“_ . gild the heat gai.n; from eadh L..‘\ > -- --.

0 __~ ~--- 0 -----a; 0 ___--- e’ .-- -- ,i I . \ es

, 0315 ' . .

t * l -

, 0 1 I * “. 1, , * , , ____ - -.--- .“.-“.I?-. “._. .-- ._..,,, .____,,_ _._ ‘. _ _.... - I ‘----- ., _ _ m. : ,. _” ---- I

Page 328: Passive Solar Energy Book (1)

._- -‘- ‘jh --

/,’ - I. I

n

_I -------~. -^

___-_____- -----

- 2-w _. .~~_

.r + 4 ‘,‘.G .

The Passive Solar’Energy Book . .

R ,.

8 . * .” -. _

; To convert the totalV<Fjace heat gain into units that are convenient to use (Btu/day-sq 1

-3 r) ft,,) simply -divide HG,, And H&,‘by the floor area of the space: n

_~~ where: ~I%&,,= total space heat gain per square t73ot of floor area ’ _ - * \

i - ~- m-“.-.^.~“.-~.-,.“, .-.. A.^ . . . . . . . . . ...” .,,,

~~ 3 Sf’e.p.v.$ . . ”

0’

,‘i. d _L Deterrhing Average Indoor ~ernper.&we~-T + . . After 1 to 3 days ofsimiiar weather conditions (clear or cloudy days in a row) a space .’ will stabilize as a thermal system. This means that temperatures in the space remain

-.. roughly the’same from day to day. Finding the daily &&rage space temperatuie for ‘5 b$,

8. this condition is relafivelystraightforwar& .-- I, a. -Yip

r . .I -C’& . Using the rate ofspace heat loss (U,,) and daily heat gain (H&J calcul,ated in Steps i I .

+-.-A- -mmdzheragEf-oal or temperature&is%und-by divt?ingH& by U,, rtnd s. 1:. o ‘adding the result to the average daily outdoor temperature (TV* for the design-day. I(-” - c

:j t = H&P a [ -+t L

U SP 7 @ ‘I,, , . ,:

\ ;. ” “.

-, where:. HG,: = rate of space heat gain in Btu/day-sq ft,, *

. . . . : _ \ .A U SP

\- / L -. , _~ _ b I. k = rafe of space heat loss i,n Btu/dBy%q ft,-S I

*.‘_I I , ..~

/* ‘!.

mt, =. averSj$&&ly outdoor temperature . ’ ‘i \ ~

i

.~:-;\ * : -

: ( !

~‘~------... ‘b,.’ “-- &e-member ‘that this calkulation must be done for each space. The&e of Jinuat$

-- \ 7 c~tearclay~sdlar radiation and temperature! data is recommended ,as @put, howe,ver,

., _i ._ . I averagdindoor temperatures canbe found for any month. Simply use solar heat gain r. .-” and’outdoor/temperature data for the month you want to calculate. , . 9 9

m. ’ Figure I-3-presents a simple graphic~method for calculatjng the average,daily indoor. ..- --

: temperature. Knowing the rate of space heat loss(U,,) and daily heat gain (H&,),-the ’ ._-

-i g*,4an-bLused--todet~ne tk-n*&~~theG~Woor ‘.

:;’ _ ‘.. ‘Average dai,ty outdoor temperatures (to) fQr each n,qnrh are given in Appendix 4. * , I ^ - A- ’ ,r

’ a .F _ _.-- ~~ -. 0 ,I, ;:’ i --

;‘..‘- ‘. 316. ” __-_ --~ -. ’ L ~----~ a= :;r., ,’ *..: , ._ .___ _- .*- ---_ _I .,a ___- -_ .i .*‘ : .’ ‘; ~~- -~ _- --_ .“i’ ---- !s?+y- c ~1 I.__. .“... ,-. --- .’ Q’ __--a- .-J----- M;, .._ _ ., . . . -*. ; - ‘1’ -y ‘_ D f, !. , II ‘(. .

Page 329: Passive Solar Energy Book (1)

.

,’ .’ w. t

. I

\

\

1 Appendix 1 . , .3 temperature will be above the average ttzmp3am fum, for example, a

space located in New York City (average Jan&ytemperature, 35°F) has a heat loss of

8 Btu/day-sq ftr,-“F and-.,a daily heat gain .in January of 300 Btu/day-sq ft,,. To determine the averagvlndoor temperature for this cqdition, first follow a vertical line from 300 on the’ horizontal scale (HG,,) to where4 ~intersects the curve that _,

Prepresents the.overali U value of the space (U,, = 8). Fromthis intersection draw a

straight line to the scale on- the left and read the number ofdegrees the average indoor air temperature will be above the average outdoor tempe \ ture; +38”F or,

simply, the average indoor temperature is 35°F + 38°F or 73°F. ‘\\.\\_ -._.

I \. “\ - , ‘\\, \ \ \

0

I

hi

” / 1

-4

-T GAIN mti-c$F- :. ”

B I

n Fig. 1-3: Deterkining the average indbor temperatuie: 9

i I ; : ’ i

L

“‘

” :~ f

‘,, ’ \

; 317 i\ . : a ~ P o

1’ ., _,- * ,\.I , \ . .@ :j;, : ‘. ‘? ” . it. - A ‘.I ’ _ ._,’ . ’

Page 330: Passive Solar Energy Book (1)

.9

.’ c

, n

. r

.,., - * -

The Passive Solar Energy .Book

* 0 \ ‘: ‘\

\ .s

c Until now only the heat gain from passive systems (the sun) has been con- . sidered. However, heat from lights, people and equipment ca xbe considerable. In

certain Lbuilding types, Ii ke theaters and educational facilities, thik,heat gain is ‘very

1”

complex and will not be discussed here. In a residence, though, these’sources of heat are -intermittent and d-o not appreciably affect indoor temperatures,ovei‘th,e day. To account” for this heat gain, add 2” to 4°F to the average daily indoor temperature. Although the average temperature will -be slightly higher over the day, the nighttime low temperature in the space will not be affected since there is very little activity in,a residence during the late evening and early morning hours. ‘,_

I L Because,of the complicated n,ature of building design, there is no ideal average

Y, b

‘indoor temperature, but as the average-temperature approaches 7O”F, enough heat is admitted,into a space to supply it with all its heating needs for that day. If the average indoor temperature is too low, it can be raised by reducing the rate of space heat loss (U,,),\increasing tfie area of south-facing glass or supplying heat to the space from an auxiliary heating system. e

0 ^ ,5 , 0

,P :. *

Step 4, __ D_etermihag Daily Space .Temperature Fluctuations

; . c 0 ..,* Having a good idea of how a system will perform on a sunny-winter day, the air . temperature fluctuatjons in the space over that same day can now be determined. A

a-. space may’have different heating requirements at various times of the day; depending

.I upon occupant use:. An office, for example, should be kept ‘at about 7’0°F during working hours, but at nigiact”, when the space is not in use, it can be kept at a much

hat time, and by how ,, ow the daily-average. In uirements of a space.

- t of tjib3rmal mass on indoor temperdturefluchuatipns -isexplainedX length -~ -- st.ems in MASONRY HEAi’~TORAGE(11) and INTERIOR WAT.ER.. 0

ermal Storage Wail Systems in WALL DETAlLS(14);. for spaces nhouse in GREENHOUSE CONNECTlON(16), and for ”

houses in GREENHOUSE DETAlLS(2Q). But .since ’ indoor temperature flu ,ot always symmetrical about the daily average _,.

nd below the average), a series of gra.phs ms(figs.l-4,5,6,7and8)isincluded ’

peratures for a design-day, first ’ . .

318 5, 1 - ., 9 ., r La \- ‘, i I ‘_ _I , ’ ., __ ‘I I_ I I *” ’ .* .o ,-_ , _-- ., .I .

Page 331: Passive Solar Energy Book (1)

. ,

Appendix 1

select the graph that corresponds to your system. Then, using the average indoor

temperature that you calculated in Step 3 as a reference point, plot the number of degrees the indoor air-temperature is-above or below the average for each hour.

.

Direct Gain System

l Masonry Heat Storage-Since the relationship between sunlight and thermal mass greatly influences indoor air temperatures., two cases, each representing a different relationship, are presented. in figure l-4. Choose the case that most clearly rep- .

CASE

Fig. l-4: Haurly indoor teinperatbres for direct gain systems ’ with masonry heat storage (here and on next page).

Page 332: Passive Solar Energy Book (1)

/ ”

.-w . .

The passive Sdar Energy Book

resents the way sunlight interacts with masonry located in the space. A graph cor- responding to each case gives hourly indoor temperatures above and below the daily average (t,) for four masonry materials. If a space falls between the%o cases, theninterpolate between the graphs plotted for each case. Also, it is probable that a space may not be constructed-of just one material. Therefore, when more than one material is used, for example, concrete walls and a brick floor, take the he&-ly temperature somewhere between the values given for each material.

CASE 2 +ze

320

Page 333: Passive Solar Energy Book (1)

‘.. .I

.

: ,i

. .

_I .,

* i’

/. .’

:- . . - ’

i ‘h ‘jj - ,? Appendix 1:

.ir L 0

,a I - .

l lnierior Water ‘Wall-In the case of an interior&hater wall, the volume-of water iilr , I

C’ direct sunlight is the major determ%ant‘ of space temperature fluctuatiot% over the! I/

day. Figure l-5 plots indoor tempergtures for variqus,quantities of water per square/ foot of south-facing, glass. To’5orr@ute t;his value,. simply take .thq volume of witer , (CIJ ft) in the space and divide it by the arqa of south-facing glass (sq ft). One J imm;?nv note: The s&face of the waler wall is asstimed to be a dark color. If the wall is painted

, a light color, ,then air. tempeiature fltictuatio?s in the space will be higher than thosk given, d

e’ I -.

__ ~- ~-

‘I’ a . I’/ *

,’ ’ * C’ .I .

,’ . . ‘_ 1

. . ”

I.

-

1. ,I /

__.I’ ,” I

.

.’ I

-; ,L

j.

*a.. ** .n...’ i

.*-

L I *. -

.a

.

c-

6

i

4 I, . < I- . I , c 1

- P

-1P - ,I , I

/' .' \. -,----- -- --- ----.- .-.- _._..; _._ ~-~ -_ ._ l * ~

:,

-MO& -,-----z Ir, -

,,’ .

/’ 1I.I II I 81 11 III1 ’ 1 ’

.

3 ,..+’ 5 6. , *

-.L' 2 6.. 6’ l0.H 12 1 2 3 4 5 6 i 8 0 x)011 l2

w 5 /

_' . . ' e e - :

, / ‘Fig. 1-5: Ho,u&y in’doot temperatures foi dire& gain systems b D ‘yvith various volumes ,of water.storage per square

_ e

‘foot of south-facing glass. _ - . i ‘. *

321 ’ I _. s .1 ed. :

-. -. 25 . < ., . .I \ ? .,). \ ‘, ‘, ,, < ;. ‘,*I’- y1 _ ’ ” 0 : ,, .~ J”;;‘. .:‘. , _I’, .,, 0: _ ..a-‘. (, /- 8 z .’ __;._“- -,T” 3 .i - Q ,‘: ) ’ -__. - \

Page 334: Passive Solar Energy Book (1)

a n ’ e

e* : :! 7

/ / The Passive Solar Energy Boo6 ‘c-. *

c,

Thermal Storage Wall.System anddpaces Adjacent to in Atwhed Greenhouse’ 6

The material used to construct a therma’~storage”~aIl. and the thickness &the wall are the rna@r influences on indoor air temperature fluctuations.. F,iire l-6 graphs

jndoo6ir temperatures for various thicknesses of four ,cornmonly used Gall ._/.- -, _ --- materials: concrete, brick, adobe 2nd water. Daytime.tc,m@‘ratures can be increased ,’

above those indicated on the @aphs if.warm air from. the greenhouse or face of a maso(7rry thermal. wall is allowed to c’crcuiate “into the space However, nighttime” ~- temperatures in the-space slyill remain.t&&me. Notice-that maximum-and minimum space temperatures-are reachedat8ifferent times of the,day.fordifferent thicknesses 0fiYall:. _ D.. ,. n

__ ” _, u / __--

_, ~- .---

_. . . /- ;L

/gppL-~-.L -m.L--LY.-L j .

b’..L--.. -. --L-L I 3

, ~. -i ---t _, _.

>-- _’

,_/ :j- - . *

/-- t

. _^ . +,g- I- __ _.-.-_..-._-~.-~ ~-: .---.---- ,-. .T. ---t----. 2_-. + / ,-;/<‘. , [- ] ,,,‘. , ”

..,. _ /.” 8 . “..,, ..... i

, +@ . .-~_ - -. .- .~~---- ~.. -- --- .-~ - - --~-- --I .I. -- ~I- - - - .* R ., lzy-- - (y t I

L --:-

.’ , “/ A) , +5” ~~ ‘: ~~~. -1- 1>&.-- t

’ , -- --. --- __--- --~_-~- -. . . . ,_-’ +);. /./ .,,, -y--;y-,’ -I--------

z,.-z:. . _,-- ,- ‘.. : ,/I---- ,/-- % ..E ,;

f ,H -16” 3. ,i F

_-_ * _ %;;r .. . . . . . . . ,.

---- ..----_ T----- ~- ------A ,,’ -

i -Y&F 1 . . 7-~-T ~~T.-T- 1 I T57 r 1, 6‘7 6 9 a. 11‘ l2 1 2

PM

CONCRE+&ALL~ Y ..

x

*,

6

’ I

I ‘/ii& l-6’: .Hourly indoorj temperatures fo*r thermal Storage walls of various thicknesses (here and n&xt two pages). ;_

. Note:.Tempe[ature fluctuations’bill be less if additionalbmass is ’ _, %&

\, * located’in the space, i.e., a masonry wall and fly. 6 / 0

_ - 3 /’ ” -

- 1’ . /” < /’

, .

.%~ 322 ,‘,,/ il 1, -.. .;

pi:, : . ,” ,/ / ” 0 n

. : ,: ., g ,,. . a )*I” .,I,. ‘; - ^ I :’ “:* = ;~ , ,_ .” e -. * . ) . .L : ,“,, ’

Page 335: Passive Solar Energy Book (1)

n

.I . ii

\ I’ -1

__ -a’

c,.

-I t TN

? ,’ .I

1, J

a

*lo” I ,_.,.-*-‘- . . . . . . .

/ ,$” .,.=. ..*.

: . .

c ,.*.

.. . .

. .

J

: ‘. +50

‘. : :* *.

s . . .

- . .

2

7 -.., :. . . T . . .

2 . . . . . .

.* ..,..... -.. .*

. . ..A

‘<.” >-.-’ 1

“k,: iF-

i ,’ a

-150 ‘,'

* .. ii i ' " 1-a..

4

1

r,

1. ! I ,I I’ I ?, I

n - .

-2& .1 -T..--.T-- T-nT- T--TCT- .i ’ -7 l--7- T.T-~ ‘r

< 1~2 3 4 5 0 7 a8 wa n t2 r 2 3:‘ 5 a 7 0 0 10 11 32

ADOBE4U:LL * is= Fu" , . J

1, WATER WALti;. _ .*

\ 323 g ’ . z - e * y

Page 336: Passive Solar Energy Book (1)

“‘, - .- II \ .* b’

? , . . .

n. c c1 ‘_ 0

, T

I I/ i /’ _(. ‘

P :a

h&..i.s & .I f

D 5s“ : ? “, I , e

.i

'.i n I 4

.lS t- ;

-_ 3

i L c

Y , ? .- I.

0. rb. * _ , . . . I

. I ” ‘” .

“k

% 4

I / ‘.

rn 1 45” + _ I.

? 2, . i.

II i

Page 337: Passive Solar Energy Book (1)

m

$, D - k 0

?, “C 0 n

0,

I- I .

d

5 .:, I

‘,

.

-t

. cs +, ,,.-. ’ Appendix 1 ’ . ? ,;

“0 -

,: _-

.Y .

RBgof Pond $&q,y . ^ c .

: . Space temperature fluctuations foi’a R?ofl%nd S&em .are proportional of the pond. As the depth insreases;the fluctuation decreases. F,igure 1-7

,indoor temperatures for various dqpth? of roof ponds.

.‘, , 3 h

a

to the depth plots hourly (

‘ - li

u ‘. ; o

:.

IS

L.

,.

da+!, , , , ( I ; ( , , 1 , 1 I , I **I I I / 1 I .I 1 ! ., . - 1 , .Z 3 4 I 0 7 8 0 l0 ll. Q f 2 3 4 S 6. 7 8 D lo 11 (7

\ . AH m &p. .

&i 5'. o *"I'. < i

“; kg. 1-j: Hourly indoor,tegperatures forroof ponds of,,vyious .. * I 5’ depths. u ,

‘;Jote:+-Temperatub fluctuations wjll be less if additional mass is 4

.: : il ‘0 7 located iri’ the spaxzaxze., a masonry floor. *..

.m

Cry&d&se (attach&d ori freestanding) * -.~ n 1 P 0

l Solid Ma&nry Wa//s ‘and jloor& a greenhouse’ constructed of solid masonry w&Is and/or flobr, -many factors influence indoor .temwra&;ie fluctuations. The rate of greerihouse heat’loss,.~ the aria of south-facing glass and the” type of masonry

.9

miiterizil alI contribtitk; to the extent of,greenhouse femperatqe flu&ations. All this f n ’ /mplies that $=iS @ual!y jmpiissible .togener.@i z~.,,$-n$~ graph to ‘&edict indow - = * (

4 .‘W”i(WL.~. .L.+...1 .L*h..r- -- ._.

.a ‘* / I

-/%

. 0) - _ . 4 ,-,“&P - ‘. ~ * A y” B ‘0 : -

” .D

a .. ..’ 0 ~ e I \ . Y . \ cc ‘. *- * 325’

562 ’ ;

,‘b ,” 5 bf* 4 * , :‘. s .y . 0s II .l : l

ec ‘,

n i,.,,, _

,,: ,’ ..l

,:.-* I(.. *, . 0 ‘\ ~. * .

,.

Page 338: Passive Solar Energy Book (1)

.j

b

B - c

.:.: 0 :n -“‘.# .II -0 I -

k ct

0 ., “( ,T _---

,z,. ,> I, 4 .n

9 I.“.$ CJ ,m

*. L .

/ ,I -’

The Passiye Solar Energy Book t ..P ‘_ d c

,- I. -- -~

I‘

“‘- e . ‘” *’ hourly.ternperatures. In this case, the daily ,range of ,indoor fluctuations for various q

greenhouse,conditions can only be estimated-GREENt-@LJSE DETAILS(20). i 4 D * > c

l Water Storage Wall’-SLnce a greenh;)wse is essentially a’Direct Gain System, the’ * quantity of water in the greenhouse (in direct sunlight)- Iargely?ktermines the indoor’ . .: n V temperatu$‘fluctuations. Figure l-8 graphs hourly indoor temperatures for var.iouP ’ quantities of water (cu ft) &r square -foot of.-south-facing greenhouse glass. The J. D

,.- ,, . 1 ,

c Y . “’ .~ ,. 1..

I

* : : .‘\I B7cuft y...: : +s” ’ . ..y 7” . <y ..‘. If! \K . . . .

: 3 u ‘L Hpurly gr&nhb& temperatures f@ various volumes pf qater:tiorage per square foot of:south-facing glass.‘ ,4; 0 u’fl

.* I

r- : -* .,. o’ 4 - 326. 0 .-’ : .i’ 0 -, ‘ -. I:

i

Page 339: Passive Solar Energy Book (1)

b ,. \ I ‘. ‘.

,,-:,;.. .!- i R ( -c ,p c : L 6 ,\ - Appendix 1 ’ . .

“P .L--. ~--. ~A”--- .-. - - L- ~~~ ~~- ” - i : “ .

.Reiposed surf-ace of the w&; &II is assumed to,be a dark color ,and in direct sunlight’ m&t of th’ady.

1 ;. _1 . 0 0”. ” ,. .-- ‘a _. - ~ ‘a , .b. 0. 0 * 9:;

c “on@ final wgrd about ind,Aor t&$&rature fluctyations. Figures l-4 through 8’plot L , . _ _ . : .a “$. 1 hdti~l~ji&$ei~itures foe a space .&it6 no addit!opaq ihermal mass other than that

-& 0 incj&rted f& the system., bf additiSondl mass is located in a sp&e, then fluct,uations Will be”:lesg.than thosg.gra&ed. For .ins@nce, a space co?structed of lightwekht .

’ materials (wood frame) Miith an 8ortich Thermal Water Wall !System.&ilI&pve a daily -. *$:&%perature fluctuation of appdoximately 12°F (from -fig. l-6). If the entir; Space we&

\, .iil ‘a C cobstrucjed of tiasoniy=matefials (w.+lls and floor),~,#& &e daily fluctuation might

be only S’ or.6”F. As a genera rule, additional th&nal mass distribute,d~-in~~Space’ ’ :p :- Will rdude indoor fluctuations from those indisated on the graphs.

. e T 0% :~ ^. .F . . ’ *fi

‘,3 ” ey :*I n ‘>‘” )‘r 8 i. _ . . :. n

Heating Reqhxkrnents i ” * \ c . r .. . ;i\ ” * L. ’ .,

5 -.L .~ ;&A’

.5 -The&qiCiary energy”<required &J heat a sp?& is the arnountOQded, in-addition tq. that p&c& by the solar system, to keep th$space a? a deGe@$nperature ‘&cially y ,:r 1.’

-. ‘,; ..

70°F). The-auxiliav 6nerg.y requirement (Q%,,J is estimate? on sn annual b&is fop;: .;

’ e- -:. the entE~R&building.9t C.FI$ b& &ulated by the eq”o$ion: *’ - _. ,: t. 4’

Qaul = Qr L - Qc ,,I’ -y--------- . . .____ ‘, -- -- -- -..... -.-.: -l?q .______,-_ c ---- -.- _.__ yz \ _ 1 m., . . , ’

.2 . where: ‘“Qr’,r =

. I. ““O%. an&&l s’pace heating rec@:rements in.Btu’s ‘. “” o %

_ ;r, b a I -; -- “XI L * Ij I 0 “cG-~’ ? n a.g “‘I , ,, 0 ,.’ _ $$Ap ’ zn Q, -i&r F annual solar. h&&g contiib.ution ih.‘Bta’s.

.;- i 0

-.;i ‘..?,a j ~ < 0” . “.,,~.”

I ,.?a __’ CG 3 ,‘, d 0,: /@ P 1. _ ” : :,:. “h

,$ .‘J>’ -1

0’. ..‘4 .A. - a ‘$,

-

&&al Space He&g -R&ire

:.2. ” space U value by ttt,& fl&~&&‘~t: thgspace and the number of h&ting degree- o “~ a. :. for the year:. ; ~ ” 4. . . , I .*c .~ da a _ * .g 8.. 0 .( i

.‘< ,.. ; \. ,_% ,, . ./1 O.,

.I % ,, PPI, .n “.%.. s’ Q:, 2. U,, x A.f,oo, x DO,, c,, .“F),

” .;.; i p

,,. -- .._, *, I ._ -- ‘.T ,r ’ ‘-,y--.!&erience has shown that the heating requirement% of a ;pacq:,kepY at approXimately 70°F is’diiectty &’ ; proportional to ti&riumber d degre&i

P average,<daily qutside temperature:<falls below_ 6WFJLhg,--- ---., -- ----_- --- y

’ ‘: E “G

_ d&g&day is l@d&i this fact. Thus, t e number of de&e&ys.per-d%$“is the nun+&%fdegr=~ -khe : - - e+&P;’ 1-- ” average outdoor temperature is Iqej0-w 65’~-or,~~-~~~it.an&her way, the num&pf degree-days foi a ,

1 g?‘v.en day equals 65°F miti& the d$ly.~$r&e odoor temljerature. TIWIWJ~ de /’ Ienger briod of,time is then the sum’of tIiiiYdegree-days for each day

. ,c .’ . in.that*e-C o-, A,

..-< _ _ ,,I” ...yY : cl “p- c ., .’ -. * o 4 327 ,”

-.I ,o l _, _ , , CT.:; ig ‘-13 :;

. 0 _.a. I _---

L

. -. .._- P

‘, ‘.“.., -. 0 0’ ‘, 8.0 ., ,

. Y sbo.--- h( . ” ;i

‘: ,,’ L : >, -.“L- .7-,-~-=?r~~s171~. :;;,,:,‘y‘ ._, .f .$.), ,, ‘:.%‘:;--: .

.-=L.L;,~i&-. -,-.--_ ~.~~=.~-~.~-.--~~-.-L=~_ _>le Lz._=;lr-mri LZ,, -+2. ‘--=7-y --z-Z? ,, . , “._~.a ,“$l

Page 340: Passive Solar Energy Book (1)

i .

.n

J/ .-- ‘. = .

0

\ ’

\? %. .h

~~._.+- G-- ’ 0. ‘“/ ._.* -..., s* l1

” Tke PassiveOSolar Energy Bogk 0 ‘.$ : :. ~ ‘, :

.d’ .o’ ‘- .! .’ O.‘O -. __i>___ -2- .~_ - ‘-- -3 -- -- - --.--- ? ~- -.

where: U,, .; rate of space heat loss in Btu/day:sq ftp,+ ; - > : .o

IV , e - floor area of the space in square f&t rx \ .’ +,,,-r - a’.. ,;

Oq,,, = degree--days @zk year I, :.,

t 0 I 09 .1 .~ e 3 _1 / - .5;:-

I 0 ‘0 1

_D egree-days for’tiajor cities in&@ted Stat& and Canada are giv$‘in Appendix 5. .

I e 6 n 0 I R . ’ 0 e 4

’ ‘, L

Anh&l Solar Heating Cbntributiipti4Q -* .- 3

~ .o, : -Rtif P@ndS and-Direct Gain Sjitems* _ ‘d -0,:’ ._d - ‘\O Thr&computations-,a& nedessaryto d@eyinine th”e annual sdl‘~~eatingco~~!/~~t~~~

“0 I ‘, for passive sysiek: - ,-* :

: . 1 .: 0 0 . .

d :. , 0”

. LO 0

a. Cakul_ati,ng the ipace Load Collector 6x0 ‘. , I

P

Cf -iI .i 0. ‘A 0

b. Determining the kaction of the total y.e?rly space he, ting. requirement supplied by ‘solar energy. 0 n’ “.

.: 0’ I 1 0 b ., ‘_ . c. Computi%g@& annual solar heating contribution in &“s.‘” n _ 5-

Od’ 0’

,’ IO al Load Cbllector Ri+io (LC.6)’ 0

’ .” ‘The LCR is calculated by the formula: . . ‘, “.

7’. r a:*~ p 1. D I’ D _I ’ , .-j : “~ 4.

\ ,. b , . z LCR = ” W,, x A,,,; : “” o &’ ,

-m p .’ .: 9’ solar collection area (sq ft)

i3 where: U,, = rate of+pace heat loss in Btu/day-sq ft‘,-“F

? 0 . a

. ; ‘v’.2T -,,. + r”. . . .~. ._---~ : G : d’ .. : .s-u :(.‘.

(exclusive.of the south glazing) ‘$ ‘\ 0.i. L .* I

; -.d

h ‘-‘$f,wr. f flyor area of the*space in iq ft . . i . I 0

.$ . solar collection area = the actual solgr. col!&tion qperture .J

P -“s I- 0’. “’ ‘3 . __ P’ , . I.,, . / 5 l ib. Frytim .bf the Tot+; Year& Space Heating Requirknent Supplied by Solar

. . . Eqergy &$F+Tal$ l-3 lists by city the estimated fraction of the tot&J yearly space h.@iing G&iretient supplied.yby solar energy (SHF) for properly sized water and

. masonG rh;ermal storage wa!ls, roof ponds and di.rect gain systems, with and without ? \ 1 D < night insulation (R=J.q).‘i%cate the city and system typ& of interest in the table. If the

,LcR cakulated abow+ is exactly qne of the values listd in the table, then re%d the t ’ ’

.

I_ ,

l,.. --- .““ckesending.SHF. If the LCR d&s not exactlimatch one of the values iistd*; then 9nterpQlate.betweeri the tti6PGfosest values.*

__~.~ _ _ ~____ -.--~-- I

‘0 . . ‘.: 0 :.-;..- - -, _ _ -_ _~~_ --~ ~-~ ‘. .;.r

1’ ~_ - -~-,-J , ,>v: 1 ‘Ada&&-from 1. D.‘Balcomb and k D. McFarland, “A Simple kmpirical- Method for Estimating the ’ -.

=.c - _ 1 Pkformqnce,of a-Passive”.Solar Heated Building of the Thermal Stprage Wall Type.” Proceedings of the

OI = Second Nationa/ Passive Solar Conference, Philadelphia;karch 1 fj-1 B, 1978,

df..--’ :. . _. .y

0, , _ - ~..

328. .~.~ 0. . / e _I 7, :

I’.,,’ sr 4 -. -- *y.;g;,

.~ ; ,, ‘, 5. I, __ ..__ ;- .- - ._ c- -A-, &--A .I. _ “-;-7 -..--,.._ ‘: :-- -. -,,I.: ,,“’ ,.,’ (8’ ‘,,“~, ,,; ~_.~ . ..-.. _ ;- .k -- -~- .’ ,* ‘. .

/, ,~ ‘r’-+

Page 341: Passive Solar Energy Book (1)

! c ‘..

Appendy I

-. ------~ __...___

.m

ll)nYal 0. c. Annukl Solar Heatin.g Contri’bution (Q, .,,) in _ solar heating contribution in.Btu’s, multiplyQ&~~ by the fraction of the total ye,ariy

!p--tent- supplied. -&‘-solar energy determined in ‘thee previous space heatiing require computatlan:

_. !

1 ,

Q c year = Qr year x SHF

4

,

I. . I

-- - Table--4!3 -Fr&tion;of the To&l kearly Space-Heat& Requirement Supplied by Solar Energy i 5

I I

DD = ;;;%ree-days i TW = maso& thermal storage wall prombe) WW = water wall, rooq pond or direct gain TWNI = masonry thermal storage wall (lrombe)

WiVNl= wiif er wall, roof /wmd or direct gain with night insulation

Page, ‘i

Ark.

with night insulation ’ 0 I

St-IF .I 0.1 I

ww ” 196 WWNI 312

195 304

0.2 0.3 .;;

Y -54 * 91 56 89

, 0.4 0.5

37 27 65 49 37 25 63 -. c)- 46

0.4 , t 0.5

435% 189 123 176 -

0.4

132- i 185 121 173 ’

0.6 0.7 0.8 0.9 s

188 26; 179 247

88 145

94 141

0.2 0.3

a4 407 287 386

0.2 0;3

291 403 @ 284 -m

0.2 ,-

108 66 172 107 112 ’ . 67 1-65 103

” P

184 256 176 243 ’

?- 0.;

102 145

88 132

@ 0.5

100 142

87 130

\ 0.4 \

46 76

.44 .73 _’

,

0.5

33 57 30 54

” ” 2’

19 38 17 3.5

13 7 29 22

-11 6 26 18

IV5 3. 6,632 DD ,

I I 12 37”N

4

0.9 i

29 49 ‘1 21 .I ’

f8

0.6 0.7 0.8 Phoenix, Ark

1,765 DD .: .,.,,,,.,.,...,.,.. . . . . . .,........ . . ,..

33”N

SHF 0.

78 114

64 .lOl

60 44 , 90 P 47 33 76 56

ww 626 -WWNI 863

. ..JW .,_,_._..._,.,_....,...~. -53.7 TWNI 819

B 0.6 0.7 0.8 0.9 SHF I’-+. 0.1

LPVW 631 WWNI 871 TW - 578 p&/k& .~- &r&

Tucson, . Ark / .

1,800 DD 29 49

~/21.-L -- 38

59 43 89 68 46 _ _3_3 75 56

rt *

0.7 0.8

17 11 35 26

- . 14 9 30 22

71 112

63 99 ’ 32”N - ,-.~~.

-r

0.9 Little Rock, i Ark.

0.6 SHE. 0.1 I -

ww * 239 WWNI 365 Tw 232 TWNI ~ 356

24 44 21 40

18 -3;219 DD

^ 14 35”N

6 / .

‘:29 -,. _. .-.I-.. ,_ _.. -----.-.___ - ‘---‘-7

Page 342: Passive Solar Energy Book (1)

I

The Passive Solar Energy Book ~__. _._ _. . ..- ..- ~. - --

0.6 0.7 0.8

42 68 36 61

-

30 -52 25 -.

-45

2'1 39 16 32

0.6 0.7

125 97 175 1'39 103 75 154 117

0.6 0.7

~ 0.8 d

72 107

54 87

*r . 0.8

. 40 66 34 59

29 50 24 43 ,-

.* . 0.7

t. r .v 37 I' 60 a

30 52 '\

/ 19 37

'15 31

0.6 ‘ -

50 ?7 42 69

0.8 0.9

26 ‘46

20 _ 38

52 80 35'

.. 65

‘SHF 0.1 0.2

ww 409 187 WWNI 585 272 TW 376 183 TWNI 556 259

ww 1028 482 WWNI 1375 649 TW 916 458 TWNI 1294 608

’ SHF

. ww WWNI TW

0.1

405 577 370

0.2

b6 271 181

0.3 0.4 0.5 h

115 79 57 170 ';120 89

111 74 1 161- --.-olF2 .- q.-,5 82

0.3 0.4 0.5'

301 214 161 ' 407 290 221 284 194 140 382 270 202

0.3 0.4 0.5

113:. 77 55 I 168 109

117 87 72 49

ll0.. ??

+-- 0.4 0.5

Davis, Calif.

2. :.’ I,, 2,502 Do ..J

11 26 -9

21 ._ -3~~N . ., . Ye

,, -‘

Tr

Y ii Centro, _L'-~ ~Catif. - '~,_

1:458 DD. : 3

i 33"N

F&no, * Calif:

0.9

50 77 36 , \. 60

0.9

10 * ' 25

8 '-20 * .

-2

-2,492 DC$

90 66 e 132 ' 100

84 59 124 92 -

0.4 0.; ,

158 118 219 165 145' .. 103 205 153

0.6 - 0.7 .

0.4 0.5 '

160 r. 121 221 I 169

*'

146 . -105 207 155

.- .9t 70 131 -103 ,

75 55 i16 -0 88

,' .

0.6 0.7

94 ‘/ 72 . 134 1'06 -

77 56:‘. 118 . . 40

0.4 0.5 0.6 2 0.71

~124--. ~~-- 96 179 ' 137 G 115 83 166 , 126

74 56 108# 86

61 , 44 .96 73

. I n ' . .

I .a.

2 ' .

1

m+pN-----mm .TWNI ' 550 c____._ _. ._-_- -----.- __.. ..-.. ~-

Inyokern, ,. SHF 0.1 Calif. ,_

WW 3,528 DD ,WWNL

TW 36% -) j TWNI -. .,.

453 641 419 613

Los AAgeles, _ SHF D Calif. ,.

- c_ tiW

0.1

257. 159 - . . ..___ A_.--- ~-------.

0.2 0.3

209 129 300 188 204 124 284 177

9

0.2 0.3

763 763 2,061 2,061 Db Db : : WWNI WWNI 1032 1032 ,, ,,

Ip ” Ip ” -34"N ': -34"N ':

Tti ’ Tti ’ 687 687 'TWNI 'TWNI 979 979

+I- -Riverside, Calif. *’

~HF , 0.1

ww. 767 1,803 DD. / WWNI 1039

Tw 692 : @4"N. . : TWNI 984 $

Santa Maria:, 0 ,

L

?iHF 0.;

362": 225 498 310 ~, 344A 213

.464 291

0.2 0.3

Calif. . -.:-I i!Yw ---.-. 544 " -

2,.967 DD WWNI 752 .:

,. TW

-. 514

35"N TWNI 720 ' i,

356 224 488‘ * 308 1 344 '214 459 29u

. 012 i d.3

~272 : m.G6- _ 376 247

264 167 358 231 -

4 . -

: ._ . ‘”

. . . .

’ J “

,..,~ ; * ?3p c

- ,,’ ~I ‘, ‘I : . .*

,,,.. /, ..:., .’ :y:,.Y ___ -,

_ P'

0

16. . a' 32 .-~ . 12

. .?5' c.

0.9 35

‘I 57, 26 :. 45' (

0.8 _ 0.9 / c

53 ,4 ;6 :

82 $8 .. 40 .= ,26 . e 67 46

,*. 0 0.8 0.9 -

41 27 66; J -'45 1

‘ 31 20 ' 54 36.

Page 343: Passive Solar Energy Book (1)

.

SHF. .I’ 0.J

WW 196 WWNI 313 Tw 197 'r. TWNI 303

5HF O.l- #

ww 199 WWNI 317 Tw 201 TWNI' 310

SHF 0.1

ww 179 WWNI 292 TW 180 TWNI 285 .

e

SHF .’ 0.1

ww 700’ WWNI 956 Tb! 635

,TWNI 906

. SHF- ,+ 0.1.

ww ' 7il WWNI 1000 4 TW 662 TWNI 943 I

P’

. i.

, ~j_.~,_.__I,_,-

,7 m

n

%, ‘I

c . . Ap~ench 1 . i-

l \

s . ‘1..

0.9 .

(I ,

a,

r : Qanhy, -. Cola. 0

0'.2 0.3 6.4 0.9 ' 0.6 0.7 - 0.8

28 20 14 .a 51 40 31 23 ?& 18 I 12 7 48 -36 , 27 19.

0.5 '3

*'

28 51

. 26 48

0.6 0.7 0.8

20 13 39 30 17 11 36 26

22 6

19

0.5 0.6 0.7 Oo.a

22 15 44 f 33 21 13 "

91, 31

0.5 , 0.6'

9 25

a 22

.a-

0.7.

.la

16

0.8

110 155

95 142 o

0.5 '

a5 65 48 32 , 123 97 75 53

70 ‘ 51 36 24 k

loa 82 61 '42

0.7 0.8

116 , 162 100 148

0.6

90 ' '129

.73 113 _.

69 102

54 86

51 79

0 39 64, 44. ' '

.

0.5 0.6

b

0.8 0.9

97 75 138 109

84 e 61 127 97

_ 0.7

&! 57 87 4s '73

42' . 28 67 48.. 32 21 54 37

0.5 . D

210 283 179 258

0.6

166 * 227 134 199 ~

0.7

129 182

0.8 0.9

98 .- 69 141 ". 102

0 1.

.

1 .'. 2

1M)” 7j 49 >

152 ' 114 8o ,! ‘"' r S!

$ d 4. I !

II , c

90 a 56 39 0 -(

* 15 . 5,524 DD

40"N '

146 94 -67 K 58 38

143 91 ‘6'5 13

0.9 Grand Junction,, ,i . GOJO.

5,641 DD

39”N

0.2 0.3 0.4

92 56 -39, 150 .95 6-7

97. 5s' 38 145 91. 64

15

12

012 0.3 : 0.4 I

79 47 3.2 '135

,K " -58

8.5 ~131' ., al - 5:

a

0.2 0.3 0.4

0.9 Washingto?, - D. C. i

4,224 DD - .12

39-w ~10 . I.

Xpalachicol& - Fla.

- : 0 1,308 DD’

3O“N " :

+ Gainesvillel fia.

,,‘l,

l',i3ri DD’ ,

0.9 -

44 P 34.. 204' 145 , 281 203

$13 ~ 194 133 -240 266 189

0.9 0.2 0.3 9.4

333 ' 212 152 457 ' s 292 211 326 202 139 e35 276 197

35 ='56 '

25 *'

300N 5

v I I Tallahassee,

Fla.

1,48FDD _ ~ .o

30”N L

Tampa,, - ’ Fla.

.

1 , 683 DD a

. 28"N - _

< c .a . .

StiF 0.1 0.2 0.3 0.4

285 '- 179 . 128 397 249 I' 1aq 279 172 117 376 237 - 169

ww‘ 621 WWNI 857

J-w 563 TWNI a09

SHF o 0.1 :

iiW 114> WWNI 1526’ Tw urg59 TWNI 1443

s 0.2 0.: 0.4

573 374 272 760 a 500 365 548 351,: 245

:.717 467 339

a

‘,

-? . . c

. :. i. ,,e.

j’

” . *

.’ ,. /o.

. r

r .

;..

Page 344: Passive Solar Energy Book (1)

_ ‘” (.,p.,-r, ;;,. , ,~., ,- ~,, ~, .: : . . -. - _ ). -.- -. ..%-..” _= -. -” ---

:‘f ;,_ :

‘ I

.

Q _ ~.

_mA:c----:-- - -- I _--_

e 0.5 .

..

- $e Passive hlar Energy Book

.

” .

t ,Atlanta, ‘) <Ga.

.2,961 Dd

34’N ’ .

SHF

WV” WWNI TW! TWNI

0.1 0.2 CT

301 136 448 207 286 138 431 0 198

0.1 0.2

185 a3 299 139 182 86 290 135

Oo.3 * -

a3 129

83 123

Boise, _ :,.SHF Idaho 11 .” .

I ’

0.4 0.5 0:6

58 43 31 91 69 54 55 38 ' 27 '87 64 R 48.

0.3 0.4

’ ‘- tiw- .“I ,... s,8i)9 lDD WWNI TGV :

44YN TWNI

48 86 50 a3

31 20 59 43 31 20 56 40

Lemont, . SHF III.

ww I- 6,355 DD - WWNI

TW 42”N -TWNl \

,O.l 0.2 __

* i20 51 279 100 129 59, 216 ' 99

*

0.1 $' -10.2 ‘. m.

136 58" 239 109 ' 142 -{ 65 235 loi.

0.1 0.2

..lli so’, 215*. * 99 127 58‘ 213 .98

011 0.2,

214 99 335 160 214 104 327. 154

0.3 0.4

29 61 33

61

ia 42 20 42

Indjanapolis, Ind::.,~ .-

SHF 0.3 0.4

‘1

5,699 ,DD WWNI . Tw

40"N I ,WNi ..' -

AI&, SHF

!qwa

33 67 37 66

: 21" 46 23 45

0.3 0.4

. -ww , !,-. 6,588 DD tiWNl

; TW .- .- -420N TWNI

29 61 33 60

ia 42

20 41

6

Ddge City, Kans,

.

SHF ~

i&w 4,986 DD _ . . __ $!((I- 38&N : TWNI

0.3

6.1 101

63 97

0.4

43 72 41 69

,I *

Manhattan, SHF’ : 0.1 .0.2 K&,s. -' .,

0.3

;Nl. ;;: 128 74

iw,. . .

169 80 - ,> TWNI 269 125

44 80. 47 78

'0.4

30

56 .30

54 I

.!; /

I

i

0.5 : ,- F 31 'i 54

A 28 51

21 42 20 * 40

0.7 -

23 42 ia 36

0.8

-cl 32 12 26

0.6 0.7 0.8

12 '6 31 23 12 6 29 21

16 .

0.6

.

0.8

24 -7

22

1-a

16

0.6 .O-- 0.7 0.8

7 '26

a 24

'Ok

1.9 14

17 12

0.7 ; 0.8

23

6 22

la 12

16 11

0.6 0.7 0.8.

23 16 10%. - 42 33 25 20 13. 1 '> .I a

38 29 21

0.6 0.7 0.8

14 a 32 ! 25 13 8 30 22

18

0.9 ,

a I. 22 ,‘S

7 17

0.9

10

a

0.9 1

'a

7

0.9 o n

9'

7

0.9

a

.7

(I.9

Page 345: Passive Solar Energy Book (1)

.*. Lexington, SHF ,> 0.1

KY. , WLI/ WWF4

14-3 . 4,683 DD “2451

TW 148 _- 38”N TWNI 242

/

La e Charles,

r

SHF ’ 0.1 La

_ 0 -

ww : 522 i,459 QD WWNI 730

: : TW 481 3Q’?N TWNI 695

Shreveport, SHF 0.1

La. . . .-

’ 2,184 DD ’ .-361

‘ ,W&‘NI 524 TW 340

32”N ?jWNI - ” ,500 f 7. ,b

-’ , Caiibou, I”. . .‘SHF 0.1 Maine

* ww g,‘1&[;‘--I--- . .

83 WN 1” 172

. . Portland,

r. .&i&. o >,I

r’ “7;511 DD ’

‘k. <, Boston, . . .

Mass.

5,634 Db

42”N ‘. . ‘8

East Lansing,, G Mich.

== f&fJs DD

d ~ 43”N *

P

0.2 ; ‘0.3

‘63’ -36 114 70

7p ) . 40 112 69

0.2 ~0.3

239 152 338 214 237 146

.322 204

0.2 0.3 .

166 104,

0:4. o-5 .I

24 49 25 48

16

36.

1% 35

‘cl

0.4 0.5

109 a2 1 5,s ; 119

“rpo 71 146 109 i

\

\ -0.4 \\ 0.5 \__

‘” 74 65 111 =‘a5

69 49 234 105 ’ 79 e b

4 0.2 8.3 0.4. 0.5”

. 34 i7 a 78 48 33 24 43-? 23 e12 .5 7g 48 33 23

.

0.; 0.3 0.4 0.5 I ,_

I 54 31 * 20 13 103;. 64.* 45 33

62 35 ” 22 14 . 102 63 44 e 32

5

0.2 0.3 a.4’ 0.5

60 %’ ” 35 23 15 > 110 _’ ’ -” 68 48 36

67 39 24 15

108 67 ~ 4i , 34 .

:7:

0.2 0.3 0.4’ * 0.s

46 25 1 5 ii’ 3 a 94 57 , 39 1 29. 54 -30 18 1. 10

206 z 93 57 39 28

/. ‘ :! /

: I

Appendix 1 ,

0.6’ O&7 O& 0.9 .

10 23 10 26

. . J” 10

8.

O-.6 ’

63 - ‘a 94

52 ‘83

0.6

42 67 35

. 60

121 15 5

19 13

0.7 0.S’

48 35 74 57 38 26 d3 46

0.7 0.8

31 ,

22 53 40 25 17

45 33

0.7 0.8

0.9

, 23 4b

14 28

10

0.6

22 ‘...... ‘a._ . 14.. r+ ** 0.9

17

17

13 B a

12 a

b.7 0.8

’ 0

4

0.6 0.9 *

7 25

8 23

19 14

If j 12

0.7 0.8

D .

21 ,_ 15 5

18 13

- 0.7 0.8

\ i

16 !J I---‘-- .

l _ .--

15 10 . . ,I’

-- , L

_ --

: 333

8’

7

0.6 0.9

9

77 9

2.5

9

0.6

-8 .

0.9

i

.- 2’-2 s

- 4. 20 __,’

-; 7

i;

- .;. x

‘L-3

Page 346: Passive Solar Energy Book (1)

a’. __ _ 0

c

,. ;. I ,

‘.

_. ‘_ ..,

.I c

._.’ , _i

: ,*.. : .;-

II ,’ .

: , ” ~.

‘.i PI j

0.3 014 0.5 0.6

. ‘\ :.:

.’ w I . , -4

_” The Passive Solar Energy Book \ , - ^.

6

a

0.8’ s $

9

a

i.8

_ $3

la

15 .

0.8

17

14

0.8

0.7 0.1 ” 0.2 Sault St. Marie, Mich.

e

9,948 DD

SHF

ww 100 40 WWNI 193 a7 TW 110 +49 / JWNl 192 a7 ”

SHF. 0.1 0.2

39.- a5 48

13

13

0.7

ww 96

WWNI , 189 TW 108 TWNI .189

26, ” .15-‘ ’ 7 , !s 36 25 ia

SHF 0.1

.-*a6 4

, o.2 4 0.3 ,L

14 0

13

0.4 ’ 0.5 0.6 __ o-7

ww ,. 175

@RY!L 287 TW 177 TWNI 281

46 ‘a2 49 # 80

31. 21 14 57 43 . 33 31 1 ‘200 13 55 41 300 ,, ,

a 25

a 22

SHF. 0.1 0.f o 0.3 0.4 “’ 0.5 _ 0.6 0.7

WW WWNI TW TWNI. ”

168 277

i. 75 44 _.. - 130 aa~ n

1 71 -1 80 47, 272 ). v”6. 78.”

29 19 12 56 41 31

19 12 39 sc,i .29

6 / 23

7 21

‘SHF .5*

0.1 0.2 0.3

r 63 37

115 71 69 40

112- 69 .;”

q.2 ‘2 1 03

7; “3

~. 45 133 82

83 ’ 48 129 ‘79

.i

0.7

0.9

5 : 4 D

* 0.9

46-N I

St. Cloud, Minh.

1

8,879 DD 5

46”N

- Columbi& ‘:

Mo* 1

5,046 DD-

5, . .

0.9

\ 0.4 c&

‘\, 0.16 -* -‘0.7

20

la .

12 ‘3

10 ’ 39”N -

0.9 / 0

Glasgow, 5 .Moni.

8,996 DD _ ,i

._ 48”N l

10

‘, , 47"N ~ “’ - TWNI

143~ 246

,1,49 243

SHF 0.1

-ww, 175 WWNI 288 Tw 176 TWNI 280

- SHF 0.1

: I& 172 WWNI. 282

-P 178 TWNI 277"

9 -.~--

0.9 I .

Great Fails, i Mont.

‘4

--14 d I 8

.

- 12 7 . : D

0.8 0.9

‘% . - >

I

* Lincoln, - Nebr.

5,864 DD

‘41”N

EIY, Nev.

57 42 31' "20 55 : 4b.

30

1% 12 . *

16: 10 ’ o

0.2 - 0.3 0.4 ‘( 0.5 ” ” r

35 25

61 .47 y 23 59 ,44

80 50 134 j 8%

86 52

- ‘131 83

-.

7,733 DD

3TN ‘\

,

Page 347: Passive Solar Energy Book (1)

.

- /

T-- - ,

0.2 0.3. 0.4. .- 0.5

209 300 205 q4

/

0.2

130 - 188

126 179

92 ‘58 134 102 . 85 60

0.3

88 54 37 ‘_ 26 145 91 l 65 49

93” 55 36 24 141 89 62 46

* 0.2 013 0.5 0.6 0.7

72 43 126 78

78 46 123 c. 76

20 13 8 41 31 24

0 19 12 7 39 29 21

0.2 0.3 0.5

133 83 201 128 135 83 193 123

0.2 0.3

04

29 -55 29 53.”

0.4 T

‘59 92

* 56 87

0.4 0.5 .$

0.6 0.7

, 84 52 139 89.

89 54 136. 86

26 48

’ 24 , ‘45,.

0.2 0.3

3% 83 46 83

18 0

--- -: 2 *_ 1 -5

P-3

9 1 34 i

0.5

-

24

13 i 6 34 ’ 24

0.2 .-

64 117

71 114

0.4 . 0.5

38 72 42 71

‘is 17 L’ 51 -38

. 26 17 49’ 36

’ -- . .

Appendix 1

SHb 0.L L 0

ww 448 WWNI 632 TW’ 414 TWNI 603 ,I

ii __, _---...

SHF J O-c

;;N, ./-:er

Tw 192 TWNi 298 ‘

. -

0.8 ’ 0.9 -tlI& 0.7 __ \ .-. _

52 39 --. 80 63 43 31 71 53

Las Vegas, Nev.

28 17‘ _ 48 33 21 ‘13 39 26

‘2,709 DD

‘36”N ,

0.8 0.9 t

Reno, . Nev.

o$ 0.7

6 21 13

5 _’

18 11

18 12 _I 37 -, 28 16 10 34 25

- 6,3‘32 DD’

SHF 0.1

ww ..I 63 -

Seabrook, . N. 1.

0.8 0.9

.

4,812 DD.

‘39”N

( J Albuquerqbe,

.< N.~ Me-&.

4,348 DD

; 35”N * -

3 Los Alamos, N. Ibex.

WWNI 271

TW 167’

TWNI 267

13 27

23

7n 18

17 11

15 9’

0.8 0.9 a

16 /‘9

33 .

0.8

7” 21

6 a 18

0.8

.9’

16

0.9

14

12

0.9

5

4

0.9

10, ., ,.--

9’

..?Sf@ 0.1

.ww ‘278 WWNI 4:14

---fW t 271

0.6 0.7 B

33 24 55 a- 28% 19f 49 37 TW 402

2HF ’ 0.1 D

ww 179 WbVNI 288 Tw 183

’ TWNI r-, 285

. v 6.1

WY- WWNI Tw TN1

1. New York City, SHF N. V.

1 ww’ 4,871 DD . WWNI

41’N o ,, :Tw

TWNI e.

147 <250 “152 $247 a.-

18. 12 37 -29 1 6 ;’ 1 1

6;604 DD c

36”N .

., i-f4 -r._ . 3’

O-6,:. m .:

25

0.7 .

< ; Ithaca, N. Y.

,’ !

;, 6,914 DD

i-i. 42”N

18 13

17 ” cl2

il.6 .0.7

11 .5 29 22

(i 11 ‘r 6 ?7 d 20 ,.

Page 348: Passive Solar Energy Book (1)

wlar Energy Book ---.._-

-..

Say-de, L.1,; 4 SHF ‘j N. \i. ’

ww h,8i 1 DO + WWNI

41”N .w TWNI . *

165 7; 45 30 . 272 129 -80’ 57

- 169 81 48/ . 31, 268 125 78 - 58”

i .,

t

II Schenectady+ 5HF ,,y. Y.

_ WW &~$:D,D L WWNI

_I’ L,. . TW i 43”N TWNI,.

? ~r&nsfmo, SHF

_- _ : N.-C.‘ ‘”

I. I ww

3,8Q5 DD V\iWNI

,,. ” TW

0.1‘ 0.2 0.3 0.4

84 ‘. 34 18 9 174 79 48 : 33

98 43 23 13

0.5 0.6

24 6

;. 24

2j7 107“ 66 46 ” 33 ‘,,,;.107

’ 367 170 75’ 57

36’N 0 .I -’ +j-

Hatteras; w .D f+’ N. C.

231 * &112 ; 6% I 44 30. -- ,TWNI 354 i165 ’ ’ 103 72 54

I ^_

0.1 m 0.2 ,0.3 ,0.4 O:5

. - -&DO. ~~~~ _ I I

A,! 35”N _‘, m

0’

,

. . . Ww ‘ijl~-.. __ ” 1’89 ‘; 18 82,‘” 61 WWNI 5w. :-:‘. n4- . -../ 173 ,123 ; 93. TW 387 187 115.;‘ 77. 54’ TWN 560 D 261 164 115 Am

” _. .I

0 : Raleigh, SHF ” O.l.% 0.2 0.3” 0.4 0.5 : NC. :) - 9

‘\,I”

~Z

..‘, 3,393 PD A.- ~. ~. ‘-,. ,1 ‘/ :3&N, .*

i: ,‘ ., -MN / ,-

” ‘* ww WVSil

I :TW-

G/W WWNI WV r -iWNl

‘256 ; ! ._ 1 i ,,/’ ,-fL 50 - 391 wz”~ 114,. 80

2--- )

;;;; ’ c.. 175 1 fo I l -72 109 = 48 7-7 0,

--c -‘? o.i,‘a 0.2 ‘* 0.3 I. 0.4 .

0 /

,‘lll’ ’ 46 25 ’ 14 108.

4: 94 57 ; 39

170 J 54’ 30’ .I7 207 9’4 _ 57 ._ 39 .k

i-

i

0.6 0.7 0.8 0.9

37 ” 27 61 > ir8 33,, .* ; ‘23 57. 43

‘9 1.8

17

0.6

24 44 21 40

0.6

46 73 39 65

-0.6

‘-6.5 0;6

.,,$. -0~. 21

27 20 i ‘.

6 il a .

i, 0 - CJevkland, SHF .; ,, , 0.1 $2 ‘p:” 0.4 0.5 ; ,0.6 :, C.’ ,, :’ Ohio .. ..’

_.. lJ5. : . * ‘&IN. ‘-4’- @ ” 6;,351 D-D

~ l,OZ 41 1 22 iz WWNI ’ 202 ” : . 89 53 .c: 36 ‘26 i0

,, _. 4VN’

7-w ‘3 TWNi

.114. 50 89

27’ z”‘i ,, )

fj ’ 5 200 ’ -, b 93 0:’

l’s,

- _’ 26 . 26. / 19

..- 9 25 18 ’ 12

._ 8 4 * 22- 16 10

0.7 ’ 0.8 0.9 3,

13 9 5 i*

12/.. 8 , 5 /

,0.7 9.8 4 0.9 I

Y-6 17 ‘i . 35 26 18 14. 9,’ 30 22 ‘14 c,,Ar.

0% 0.8 0.9

.34 :24> 15‘. 57 43’ 30 28 19.’ 11 ‘_ 49 36 .> 24 I

0.7 jI.8 ^ 0.9 L A

19 * 12-j 7 . 37 :-. 28 19

16 10 .5 32 23 I5

p 0.7 0.8. Q,c) : : 8

“15 10 6 .

14 :*4 5 ~ I P

0.7 6.8 0.9

14 Jo ,y

13 ‘,9O

-. * .a

- . .

6

g5 . %

t

Page 349: Passive Solar Energy Book (1)

,” . --! ,. -_

‘- 1

.f

‘/ - I,,. .a.

<.

‘I

.,I,. I’&

0.1

120 218 128 216

0.1 ,

102 199 112 199

1 0.1 1. 1..

250 382 243 370

0.1

207

322 '205 -315

0.1 i

224

” n

Appqndix 1

1

0.5 &6 0.7 . '0~8 0.9

11 31 12 30

22 17 '12 6

22 16 11* -

0.5 .%

0.6. 0.7 0.8

‘25 s 6

25

4 8

16

0.5 0.6

" 36, 68 32

,I 57

0.5

26. 47 23 43

9. Cf6

26. .50 25 '47

17 37 16 '

34

0.5

24 ? 48

'- 24 I 45

-0.5

20 43 20 40

0.6

0. " 16

_ 362' 15

,33" . t

.,0.6' i

' , I\*2 3i '2.)

'29

-23' Ii -16 9 .' j_ ,.

6 ', ._. 21' 14 - " '8 a

= 0 "-31 \

L 0:6 0.7.. ;. ".a?+-;t'j* ,*

lq ~$%;9 . ., , : -1 i il .

.I i

Cdlumlys, SHF

F ., Qhio .* ~.

‘WW 5,211 BD WWNI

TW .4O='N r TWNI .'

0.2 0.3 0.4

e 51 29 78 - loo 61 -' 42

59 33 20 99 61 42

7 3

. 6 '- s;‘

0.9 Put-in-Ba$, / SHF Ohio r,

‘= kw 5,796 DD i WWNl

TW 42'N = ,:I-WNI

-

Oldahoma Ci,jy, : SHF OkI’& I-* :

I

.3;725 PD. 9 ww

WWNI TW

35"N , TWNI

0:2 ' 0.3 0.4 0 '_

39 20 9- 88 -52 35 48 -, 26 14 87 52 35

13. 8 _,

12' 8

0.3 0.8"

. 19 12

. 37 28 " 15 10‘ 32 23

0.7 0.8

\'.r, 0.2 ‘m 0;3 0. '._ I y-5

0.9 -

115 i 70 4? y 179 A12 1 8o .

1 l-8 71. 47 17x, 108 76

q 0,9 , / I. Astoria, SHF

4~’ -0reg. ,’ :, ’

.,‘. . _, *5,‘186 DD J. ‘:, , ‘6, ‘i

> \’ -2p4’ ~_ _’

, - -:

Corvalljs, ““,$ ,;.:Oq, ~

l l -

‘* ., P’

45"N. ' p

/, Medford, ’ ore& ; ‘_i rD

' .5,OOi ‘DD I

ww .WWNI TW TWNI ’

J AF R ww

-‘WWkl ‘TW TWN!

Q loa2 Ov3 Oa4 L ’ .,

9 / 1

'27

')-9-

lg2y, 1' --A. i B t

24 1 16 < 9

0.7 9-8 r\ ,o.g .

- .9

t . 7 I

26 I8 ii

9 -- . 23 116' '1. 9 C‘

‘2

38 59 39: 158 99 '69

99 59 38 '152. 95 65

0.2 $3 5.4

SHF *

WW WWNI TW. TWhlI --’

StiF I

wwy ‘TW TWNI

ra

96 _ 5-7i--..

352 L ~~ 2l+

341

ii8 97' 67; 100 58 '~ .36 : 153 ' 93

," .O.l

188 !06 186 296..

0.1

0.2 , l0.i

83 _._ '-49 139 86

87 ‘50 136 83

8.2 , 0.3

117 50 ’ , 214 98

126 58 ,243 b- 97

63 <.

. 0.4

31 60.

. 31 57

‘, State C$lege, pa* ” ;.i- -_

0.5 0.41

I 18“ 42

20 41

11 ‘. , , I :- - 0

4,7 a 12 7 :, : * 23 : ', I .?=-;

6 .' 8, 9- 22 L 16' ; 11 -e6 &

‘\ *, I

5,934 DD - 0

31 12 30 41"N'

.b

I’ .I .

. .1

Page 350: Passive Solar Energy Book (1)

:,. ,:., :,,7: I, ,: v : \* .B

t? _ I,.,.. ‘. - _. F i ‘.

L -/ * ‘/ ” . _I ‘h. :*1 ..,( . ..~

+ 5: “i ,“_ . . ..A

,_ The Pas&i, Solar l&rgy Book , /‘ __ ‘. I < ,,._ ./ . - I’

NeGport, S;IF 1 0.1 0.2 .0.3 .;-- /I 0.4 w R. 1. o _’

i’ I ww 150 66 -. 40 27

5,804 DD ( WWNI 256 118 ‘74 52 i

i TW 156 74 ’ . ‘k ;. 43 27 ^

., 41”N TWMI. 251 -1 1 6 72 51 , 1 ’ -

..-- _ Chailestoy,

* n SHE 0.1 ’ - . 03 0.3 -0.4

* I .-.

..‘l c Y?,S.C. / _..:

./” ,, .* . . . ww ;4 204 -’ 2,ij3j”oD

127 90 L _ WWNI 624 295 184 132

: _ ---- ,_ ,c -5 TW

33”N . .’ ‘TWNI 4b7 ,, 202 124 ,?84

i -- --sty 279 . ~ - . . * !\, 0

i’ Rapid City, i

SH-F . 0.1 ‘.(, 0.2 0.4 . .. ww” 149 io 67. 40 26.

,.W%‘NI : .253 * 52 -- TM!

,,,118 74~, .155 73 43 27

‘. TWNI; 249 116 72 . 50 1

SHF 4 0:2 tF “‘. 1 0.1 0.3 .- Ol? Tenn. ‘, ’

99 59%. ’ 40 355 161.. ._ 98 . m 68

‘t 103. 61; :..39 ‘< 1,55 -, 95 .

0.2 0.3 0.4 ,..-e\ .. ;Tenn. 1 . . -’ .q l;ijk,; : :

,.1 ‘. .,-.ww “-*‘&IA ’ -90 54 36 ,. ,, . 3,877 DD ’ : %,‘i WWNI : 4, 325 149, : ‘I i,,,;..,.’ ,‘2 I 95 + $,,

,TW 20’1 : I ,‘_ 3&N: I ’ d TWNI 315 ’ 145 ‘4,

i -‘- .

;465 s*. 342 *.

; _ Tex. ‘-:

b,, *’ \ ” ..I.” g*

2,700 Db yw 41’ m 431; 2E \’ 129

WNI 6?-?. ‘295 f 187 ,’ i34 i ., . ,. 3 ., , i 202 l125.’ -85

i

,‘.:.T\;\I +I2 ‘,

:.;* ! 37’N _- TWNI *,!j82- 279 ; 178 j 126 1 I_. 4

..’ ‘,: ( = .’ 9 .(,_ .i.“:.: _,__.

0.5 0.6 0.7 ‘-

1’9 + .12 t 7 39 I 30 18 11 ‘37, 28 II

0.5 0.6 ‘I 4,

67 52 100 79 ,59 ’ 43 93 .’ 71

0.5 0.6

23 7

TO .:.

0.7’ - ;

39 63 31

?” 53

0.7

18 11 6 39 30 22 17 l! 6 37 27 20

0.5 n

28 51 ‘. 26^ 48 CI

0.6 0.7 0.8

20 i : 39

18 36

0..5

r ;6\ 48 24’ 46

c

0.6

IL; ,30’ 11 ; 27

0.7

18 37.

’ 16

. 34,

12 ’ 29

6 25

0.5 0 0.6 ‘0.7 0.8 . - 0.9 o

194 151 265 - 209, 165” 238

_, 123 J :183

0.5 0.6 F

1-1.7. - 88 ~ ‘* ,60 165 ’ 127 . 90

$1 66 - 44 i40 104 71 .-

.m

or7 0.8: 0.9 >

- . 639. 28 - . 18

63 48. 34 - ‘31 22 - 13

’ .54 40 27 . )’

* e 89 52 _ 103 80

60. 44 94 -’ * 72 7

.

0.8

17

14

0.9 i

11

9.

6.8 0.9

28 48 21’ 1 39

0.8

_ -18 34_ i3 27 _ ,

6.9

16

14

8 23

7 19

O+ +.. i ‘,

8 21

.

Page 351: Passive Solar Energy Book (1)

I

i< I

/

\

: 0. .

Appendix 1 c

0.2 0.3 0.4 0.5 '0.6 0.7 0.8

171' 108 ;6 251 159 115 171 1067 71

;V? \\ 152 108 -. 1\h 62 \ 6.3 0.4 ,

- 57 : 87

.50 ~ 81

43 32 -23 69 54 41 36 26 18 61 46 3q

184 11‘5 - 82 267 169 121 182" 1 13 ” 76 253 161\ 115

k ‘;,

0.2

0.6 u

4.j 73

39 65

0.7 -0.8 0.9

35 57' 48 49

r-25 44 19

.36

0.6 '0.7 0.8

"253 1355

m66 98

@ 54 87

50 78- :

. 40 2 66

-37 60 28 49

0.2

;79 332

d4 129

: 0.6 0.7 ,, *

'"48 f I

33 i ,)$-23

84 60 50 33 82 58

‘!JS 2.z 43

0.5 .

-16 10 ,p 35 27 15 9 32 24

0.8 I. ,i '. I. 5-

20 5

i7

0.2 0.3 0.4 0.6 ' '- 0.7 0.8 '

0.9

L

14 29

,. 10 23

16 31 12 ._

.24 .-_ ._

0.9 :

24. Q 4? ,

-18 33 '

0.9 -

19, 4

17 1

10. 3, ^ 27

9

i24 0

,

Fort Worth, , T&.

SHF .- 10

* 2,405 DO

1 33"N

n Midland, Tex. I

* WWNI Tip TWNI

SHF p

-q. 1

366' 526 “: 344 _. 503

. -0.1’ -

ww

i 2,591 DD WWNI TW

' TWNI -5 ’ I

:385 548 362 527

San Antonio, i SHF f/. . , Texf

ww 1,546 DD WWNI . -

:* I ; -j , 30"N . ;:NI

r. 1 Flaming Gorge, SHF

Utah . ‘i .

6,429.DD ,_ WiJv. : .WWNl” TW

41”N TWNI . .

-salt Lake Ci;, SHF * ,Utah

.: .’ .P” .’

6,052 DO .: %W WWNI . .

‘c :, _. Y’ ‘, - y-w

41“N%L * .: TWNl ‘. .,s *

\.

0.1

547 t 762' 501 722

0.1

170 . 277 173 . . . 27.2

LJO.l’

192 308 * 190 299

m o ‘. BuurlingtorS, ;. SHF yt. a *

8,$69 DD J .li

WWNI TW

44'N fi ., TWNI.

Pullman,.. _ ,., . SHF “’ ‘Wash. ..

0.1

aq, ' 17kl

94 .. 172

0.1

178 291 li5 282 -

.c .v '5,342 QD . %NI ‘W’ _ .-. :+. .$#

* ' 47'N ' '* N'; .* .

1 t*

86 143

91 i40

0.2. =

,52 '35 90. 63 54 34

87 " 60

0.3* 0.4

,309 75 41 77, -.s --

0.2"

15 46 31 21 11 46 31

0.3 0.4

78 44 27 134 -'82 ..56

81 46 28 130 P9 - 53

i

" 24 .16 . 46 s/ 35

23 44.

I',\ 1 5 ,32

0.5 ';0.6 47 '~ 0.8 . .

5

-12 8 \ i

23- - 1 x ,,. : r

22 I 16',

0.5 .\ .,,0.6

/

11 .7

0.7 0.S I

17 9 40 -- 29 * 21 14 18 y lo I 37 27 1 19 13

.a en = :/

r

Page 352: Passive Solar Energy Book (1)

,A;( .,.. 4.“.1....1.“1_.....- ..,.._” ,_._..- fl /I I, ‘%he Pa$ve.S&r Energy Book ~ -

., a ..I]:,. - 4

_ !4 ~

Richland, .+ . SHF ’ -011 -Wash.'. - '. '

, 0.2 s ,a.3 .

_ . ww

d .5,941 DD

-x. o 47'N i;

,I:.

WWNI ’ TW ’ TWNI ,,,

17-s_, PT. 293 ' 133 1.76‘ SO 285 I 130

43 0 81

,45 78 :

0.4 0.5 0.6: "0.7 7

25 . 15 7 54 38 27. 27 d6 9' 52 36' 26

,, 19

18,‘

0.8 r .

0

13

' 12

0.5 -d

20 44

"?&$o

'.41

0.6 0.7 o-4

-11 31 12 29 *

22 6

20 .

. b.7

15

7 ,: *

, 7h* .,

0.9 . I ., “,, '9 l..

13 ”

0.4 0.5 9.6 0.9

10 33

13 7 32

23 6

22

17'

- 0.8

11

16 10 5

0:s 0.6 0.7 043 0.9 ~

1 7 y &

- 28 21 16 i 10 27 20 14. ._...., ._..-C...'. - _

z 0.5 0.6 0.7 L

11

.I@.'

^ (I.8

6 _

6

0.9 *

a:.- 22 15 !9 44. . 34 ' 26

?' 14 9 41 31 23

\

19 4

16

ci.4. 0.5 L 0.6 0.7

31 22 15 9‘ 10' " 56 43 33 26 31 21 14 9

55 1 41 30 '23> ,

.0.4 ?, 0.5*, ,$x6 ;" b.7 _

0.8

12 ;

10

4:;

19 '4 16

/

13

0.8

I

4,

5

10 !

0.9

31 20 0. i 13 8.

31b

. -20 14 .9 c

0.3

52.. 93 54 89

c 34>. 70 38 68

0,3

_ -

0.4

32' 62 33 59

20 47 22

<.fls

0.4

14 38 /7 d 38

d.4

$2

58 -32 -56

F I SattIe,’

Wpsh. /’ I 4 ‘. . i

4;424 DO

SHF = I -1

wiv WWNI TW . TWNI

‘= 0.1 _ 0.2 L.

219 93 346 ; 154

,211 S? 333 14+

SHF ’ 0.1 0.2

48"N *.

Spokane, ,-, ‘+h. : .

. .

OWi.DD . ww

WWNI TWX

* TWN,I

149 ' 63 255 116

, 151 68 '251 114

\ 0.1 .(. 6.2

, -. .\,- WN I -:A \ .-

Madison,. SHF Wis.

‘C WW 7,063 DD W’+Nl

TW " ,43'N TWNI

. .-

Lander, SH; ’ WYO.

7,870 DD -/ -’ &ww

WWNI .;

4&l : I TW. I -hVNI

Laramie, ” : wya.

’ SHF I i

* ” ww 7,381 DO0 WWNl

* ,TW +l”N TWNI

.108 44 # ?4

206 92 .&.,*

56 k %19 53 29

'204 92 56.

0.1 0.2 0.3' _

‘163 -* 7g. .-.--- G ._._-__

80

.0.3

-i ’ Eamonton, SHF

44 ; :

79 47‘ 73

0.3 ~ Albe$a 1

I,&268 DD D WWNI T.w

'54"N i l%VNl’

267 1\29 168 . ‘81 264 126

* 0.1 0.2

15; .

?I2 263 124 i64$ -79 259 122

6.1 0.2 c “-5 _'.

93c .3? ,184 83

102 42

18q 83.

48 20 48

: ‘

.

2340. r y _

. . .

n

. .

h

i _. ,’

‘A,

,‘.’ 02 ,. ,’ ,. (.‘.“., :,,. .., \ i I .._ _ . ..F.

0

c.

Page 353: Passive Solar Energy Book (1)

*

- -,7iOBax?tm..~ S?HF 0.1 0.2 - 6.3 Ontarib. e ,;, j5

l-7 7;-8;js” DJ3--- ,- WWNi - s35” 81 142

o J-W c ” ‘103 *a 2j 1 ,45”ti .TwNI -,,.. 189 , ‘” 82”. 49

0 / E 4;

I - Tordntb, SHF 0.1 0.2 0.3

Ontario’ ” 0 . ww 103 42 .6,!27 DD ’

23; WWNI 198 a9 , 55

m I b. m.,‘ .- -p/+“. 114 51 28 ,$4”N .’ a TWNI 197 ‘a9 a 55 ^

- 7--- 33

‘? 13 33+

: -0.4

14 6 .’ 38 27

16 9 37 27

24

24 i*

0.5.

-1, 4 i d ~C

c> (i $3

i .Winnipeg, . SHF: 0.1 0.2 - Q.3 &04 ‘“‘0.5 . * Manitoba

. \ ww : .‘ 74 - 27. ’ ;_ ::

.10,679 DD WV’JNI. -162 ,, ,,73

TW ‘a8 44 .;. ?9 ” - 20

37 18 2’ 7 ‘)

sow 44 29 20 . . _-~~ _- .--: TWNi” ’ -iii4 _.- - I . . . . 74 * r * __---a ----;-- , 3

. . ‘..P, F.,’ p \‘,

s :p .?~

’ .

:‘) ,

* ~_ ;- & O”.

. . . .

6. 1) i

‘,Ap@endix 1 . , ;*

gg. : . * -’ 0.6 0.7 ;‘, 0.8 0.9

‘b.., +?sr .-a , _- -

4 17

B 0.6 *

P 3 21

12 .8 4 . . _.

12”” 88 4 I ‘.$; -.

0.7 - 0.8 0.9

15 10 --’ 6

-19 :

0.6

0

i4 9, 5’ lo c

0.7 0.8 ,Q 0.4 .’

II

‘1

Deternihihg Cost Effectiveness* ” I

14

14

.

9 5 .

9. 51 .

%

2’ ” ,.* ?( : I ., I’ l.., * The i,mb&ant .econ.omic‘ consideration Lwhen designing a passive solar heated ..:. : ,.’ ..; 8.7 - build’ing is .the trade-off between the cost of extra thermal,- mass and movable

,“. I insulation (less the installed costof the’conventional construction it replaces) and the ,, f S ,’ futukcost of the--fuel saved by the system over its lifetime. Operating and ’

Jh maintenance cost must also be included; however, for most passive systems this cost g ” i is negligible. The-cost of .&I& heat .can be estimated by the folk&ing formula:

. I ,’ Lb,- :

annual 6perating’ - . . + and maintenance

cost of solar heat A .‘) . . cost

“.&.. _ . - annual solar heating contributiv (Q, mar1 __~__ ~---

=’ \ . .

.F .2 -__--- ___- ---- g, . . . ‘.

~i~-~ --~- --7,; I

I ‘.. A---y ? :-. . -- ; ~.

.- // P ‘.

*Adapted from Los_Al~~~i;iclaboratory, P acjfic Regjonal 5o~ar__Heating.Handt~. ERDA&n . . “b .’ . ,Qy&xqGi@&nia, d 976;

. ~ _.,. ,i__- .-- \. ,I -‘. ;\ -. ‘.. l mL __..-. I_- *.. 19 0

$* .

-d--.--- . :

: ;; .4 1

‘..” ‘V

t .: * L -..

..‘.,. 0 P

’ 341 ,. ., ..I’, ‘. ‘%:* : ? (, ,\.- ‘,&’ ;, :A?, . .,,’ : . i .,. “p---z . 4. ., m I 7. -” .-.- .. ,’ ‘,/ (’ /: ,, , , ; g, ;’ o - 4.. ,

Page 354: Passive Solar Energy Book (1)

I

,i

I I / -” T

.

,;‘k, “. ; ,,i, -. ,”

The Passive Solar Epergy Book* I r “_

w I D ”

1 ,

’ r “.

- I

,

._ J.

\ .‘. /. - f

1: .I

- The gapit~l recovery factor is determined ‘from bankers’ tables or, foqntjlas.. It ‘is’* &fined as-the-whe.ef-capita~~divhhal. It may be th,e interest rate that your _ ” ,, ---I-- - .-$

‘* “~moneywould earn if you invested it, or the annuai’cost of a~loan made to finance the .

1extr.a cost of the passive system: For example, the’capital recovery factor of ;b 10% \ D

_,,.. ’ 30-year loan is 01106. * t - f a%l ! :b \. , ‘1; 8

To illustra e the use’of-the formula, ‘if we assume, for” example, that \

f.

co . ‘\ ” \ \T- --I . . 4-z:. ;\ :f i .,..

e ,:.\ ; 9

-th,e pas “ve solar heating system costs $5,000 above installed-conventional o

.’ i) constructi ii costs,

.%’

7

-the capital ‘r covery {actor is 0.106 for a 30-year loan 0at 10% interest, ’ * E .

.,

cost*for the system is $55 a year, and i--- -_

,- I

: ” is 100 million Btu%, _ 1_ ,./ .- “’ \ ” . .

:, . _-_,.. ..~._.. I‘ .~, , d u ‘. ,_ ,._ . ._, .( )’ * I I e

.v ‘@ L’. ; *

.. _. : I, :

‘, ;‘- . : 0 ‘,:.r, : 8 Cd CI 7.. ,y .I . _- ._ ., ‘- . : I u ’ i 7 ----.

_ t 3’42 \. ’ ,I- . 1 8.: (( o ..- .I, ,.I 5. . !

, ’ : , ,, *, 7.

..: .I ‘. 6 -.,‘r:

.’ -f I

,“.‘....,’ ;’ ‘. I; ; *. ‘. :,,, : ,,,“’ _L_ - _ & >..‘, --- . . . .._..___. . . . _, 5 -I,‘,, ,, ,, .” . . .’ . .I ?----A,‘,.~

“:, _

Page 355: Passive Solar Energy Book (1)

..I

1 0 2 10 , 15 20,

iEARS TO BREAK EVEN 3

BEQIN

.

c, ANi&&INCFJEABE IN

3 ENEMY COST, PERCENT

i..

‘I .\ * ‘I

\ . -

Appendix 1

n I

$ 1. Begin with installed total solar system cost, a. expressed in terms of $/sq ft of collector.

g (Example: $6/sq ft) g 2. Intersect line representing estimated average

3 . annual increase in cost of alternate fuels. --

d (Example: 10% ) ? o 3. Intersect line representing the amount of collected

’ solar energy which is utilized in the building,

, expressed ‘in Btu/sq ft of collector/year. (Example: 200,000)

b . ..e

4. Intersect line representing the cost of alternate~fueJ]s expressed in cents/kwh. (Example: Gas at 1 .O cen;kwh)

..,5. Read the number of years to break even on the initial irivestment.

.- - ~-1

(Example: ,S years) _-- 7 L

/ Based on 8% interest, 1% maintenance/year. a J .,

I

; -g& ‘-

I

Fig. I-9: Solar system cost nom&graph. . 1 ,-

* . Source: Adapted from- GSA, “Energy Conservation Design Gdideiines

for New’ Office Buildings,” ‘as quoted by P.D. Maycock in ;I

- -.-~- - L’$)lar &eFgy: Th Q&J& fOFe&bm tion of Solar Heating and Cooling,” ERDA; $

.*

,j. * 343

” I 1 ; _ -’ L

Page 356: Passive Solar Energy Book (1)

.., .~‘; *m ‘: . ,. “~. LI ” , --\. ., ;_ .: . --- e_

# : _ 7,

:)I ’ “- ” CI I

,t ‘3’. T, 0 .. 4 . . -

@ *’ \ --I ,, c - ..,? I I

. \ ‘- _ _ . . . I ! ’ Table 1-4 Cap&d Recovery Factors -

3. ,I

Years 1 Interest Rate --- 1

S’h%~ 0 6% 7% ? ai 10% :’ 12% , “15% 8 .

1" ?05500 JO60 00 1.070 00 1.080 00 1.100 00 1.12000 l-.150 00 _ 2 0.541 62 0.545 44 0.553 09 0.560 77 0.576 19 .0,591 TO 0.615 12

' 3, 0.37065' 0.374 11. 0.381 ! 05 0.388 03 0.402 11 q.416 35 0.437 98 4 * 0 0.285 29 0.288 59 0.29s 23 '- 0.301

." 92 0.315 h7 0.329 23 0.350 27 ~

5 0.234 18 0.237 40 0.243 89 .‘,0.250 46 0.263 80 6.277 41 .- 0.298 32

16? 47' ., 0.174 01 0.187 44 0.2Ql 30

12 O..l 1 6 03 0.119 28 _ 0.125 90 13 0.1'09 68 0.112.96 .,

\\ U.119'65

i, ---

'. ----IT7------.0.092 04 * Go95 44 " 0.102.43

0.093 68 0.110 17 .m 0.127 50

J.+ 0.264 24 0.240 36

.0.222 85 0.2‘09 57 ;I- 0.7 99 25

0.191 07 ' 0.184 48 ,, 0.h I I 0.17.9 69 o.i7i 02

--- --. I

0.167 95 0.165~37 ' : 0.163 19 0.161 34 0.159 76

0.15842 =. '0.;157 27

0.156 28' 0.15543 0.154 70

: $154 07 .: -'

28f .@Ci7Q*81 .Q.P74 59 . .e-;os234----~;e9s-r9---~~~*-----...-0- -175 2~; n I ,,.,~d,------ 0.15353

215; 0.069 77 cd.073 58 0.081 45 0.089 62‘ 0.106 73 0.124 - 66 0.152 65 F~ e I .,:bo O.d68,81 0.072 65. - 0.080 59 0.106 08 O.-l24 %

'1 ,~ -i dI.O88,83 14 'k52 30

r * ~,I 31 II ' 0;067 0.071 92'. 79 ‘0.079~ 80 00881; y“'-01055tj 1.123 69 Of152 00

' 'u, '! . ,3,2 ', 0.0$7'10 0.071, 00 ' 0.079 07 oh7 k.,o:l 9; 45 04 0.123 -. 28 .O.l (I.070 27, 0.078 41 . 0$86 85 $pp&--().j22 *-- (yj .-

0.069 60 ':C$p7j'80 ,,0.08$ 3Q 0.104 07 0.1'22 60 ,o.i5i 3i

0.068 97? , 0.0!7 23 "0.085 80- 0.103 69 0.122 . .z 32 ., ,0.151 j3

.J.'

. . '_ ,

r. 3, . . . --

Page 357: Passive Solar Energy Book (1)

,

%

1

“1 ’

.

. J

.

A.pp&b&x,,: 1,’ ,

Percentage of Solar Radiatidn Absorbed by - * Various Suifaces 1

-.I .

(Figures *are expressed as the percentage of the, intensity of solar radiation striking the surface.) . r

Reflective iurfaces r? ......................................... .: .. 0.20

For white, smooth surfaces ................................. : ... 0.25 to 0148

For grey-td’dark grey .......................................... 0.40 to 0.50 0.50 to 0.70.

,

For green, red apd brown ...... For dark brown to blue \

........ :. ..................... ......... ................................ 0.70 to 0.80

For dark blue to black .................................... . ....... 0.80 to 0.90

b

v

il ’

Page 358: Passive Solar Energy Book (1)

-‘I I ,,.l ’ -- .T P

;/

/’ /”

,’

3 ? < --A

Appendix ,’

(j Avem& Daily Sol&r Radiation +l . Avc$&e Daily Radiation on a Horizontal Surface for Various Locations in North America (in Mu/day-sq ft)

* r _ .ej+; .. j“anuary _ February March April May ,

Albuquerque, N. Mex. 1150.9 1453.9 1925.4 2343.5 2560.9 2 -Lat. 35”Oj’N i .

- . cc,. 7 Annette Is., Alas&.-- “.’ -236.2 , 428.4 883.4 Lat. 55”02’N -’

1 3 57.z1 :, .._1,7~:;;~63~..~~.,,,,.,.,,,,, ,;;,:, ’ I

“. n

“’ Apalachicgla, Fla. ’ u-07 -1 37-8.i -..l-654.2 2040.9 : 2268.6 Lat. 29”45’N ’

.*,f$ 1’ 4 ./ TJ

Astorizi, Oreg: /

338.4 601 1008.5 1401.5 1838.7 Lat. 46”Jz’N I /’

,’ I \ i

Atlanta, Ga. --~ - 840 1080.1 1426.9 180x; * 2618.1 Lat. 33”39’N ,

\ 1.

P \

,

5.

’ I

Barrow, Alaska 13.3 143.2 - 713.3 t+71”2b’N

,w<\, 1883

f *x’ /’ I’-

\

Bethel, Alaska , 142.4 u 404.&i'- ----%52.4 T/ , v 1662.3 1711.8 . Lat. 60”47’N ’

_- . . _ I I -I __ ---- ; ‘\,

Bismarck, N. Dik. 587.4 954.3. 1328.4 1668.2 2056.1 '_ Lit. 46”47’N - -_ ,’

‘.+pd -L’

Blue Hill, Mass. Lat. 42”13’N

555.3 o 797 1143.9. 1438, 1776.4 r ,I

Boise, Idaho Lat. 43”34’N

._

&ston, Mass. ‘Lat. 42;22’N’

518.8 .i 884.9 '7 . 12gd.4' 1814.4 2.T89.3 I ,/

, .” f’ r;

505.5 738 8*z '1067.1 1355. 1769 --- _. r ,./-

.

_ .._~ ___ . . . . ~l~&ww&te--propertv -zTM&T& -far S&IF Satrng anCI%mesfrc HCH Wa’iei, Nkional Bureau of Standards,

Washing&, D.C. /--- ,- 8

'346. ) 1 ,'

i. / 0 r, .I _. .- ?$? ' c Y .:.

.A' ! . L

Page 359: Passive Solar Energy Book (1)

Appendix 3 .,>",,, : L,

,/ ' ,A. .,'.

o,fi _ '. .9: ._ ; -* 6 ', .\_ "T ' '?'

-‘- (. ,&- ..*- +i d _ : - '9 ,,. : L:

>-, '_- .% \ , .‘ G

.- _-

2387.8 -‘ 2120.3

.d - .

Oetokr - Niwember December

1639.8 ' 12.2 1051.6' - / * -. P

1638.7 16?++1>

'%x-e 1269.4 -,

962 ft59.9" . /22w

152 @$ 6:

“ 0 \-

,y

d

.“:I 1

> I -*-

- :

. = 2195.9 I 97a.k~ 1912.9 t703.3 I( 1544.6 1.243.2 > $82.3 _,__ 's '%r _ ,. = G

_, j .,\ .',.

1753,5. 2007.7 '1721 1322.5 41$.6 - 295.2 ,~ iI * ,, i i 1 \ ' c 0 “.

,!OCi2.6" .2002.9 .:‘ '1 1898.1 15'?$ , 1290.8 q, 751.6 -.i ,(

~ "-\ ~--,.

_--E ~~ +E .S' ,:. I '.' 1

'2055.3 v. .1602.2 953.5 4b8.4 ' , 152.4 22-9 .T .~. /

1, 5 0 0 /' . . . ; $

_ " -~--_-_

1698.1 1401.8 938.7 '-7 43.0.6 164.9. ' ,83 .- . -Jr,

I

2i73,a I 2305.5 1929.1 1441.3 .lola.l 600.4 464.2 '1

1' 0 t.. 1943.9 r .la#r.\5 -... 1622.1 1314 941 . &.2 _. . . -.. : 482.3

* . \ - . i)

‘, m .” h

2376.7 ,r 2500.3 - 2140.4 -/ 1'717.7 li28.4 $78.6 456.8 ___ _ m- I .' -~~- -- - .._ -.. .._- _ '. i -~- ---- -- -i._ .__ _-

1864 1860.5 ~--* --- , 570*',--

126Z---m6.7 '. ,: .,535.8

Page 360: Passive Solar Energy Book (1)

.-- ; .-J -’ / .‘\

r . . The.Passive Solar Energy Book, . ‘_

). ,.’ l

.

L i. _L. January Februqry , March April ? May

' Brownsville, Tea. 1 1105.9 : u -1262.7 1 1505.9 . . ..'1714 2092.2 o I- -La< 25”55’N , - * , 0

8

497 '861.6 4360.1 1495.9 1779.7 ,

/ .

Charlest&: S. C.’ 7

,," J” 946.j . 1152.8-m---1$52.4 1918.8 2063.4 ,' " ’ Lat.‘32”54’M . ,1.’ 1

I /’ -

‘/ __- - m

.. ejevela’nd, Oh’ *

\Y:O

466;8.,, - 681.9 l 12oc 1443.9 " 1928.4. ' .

I ') c \ .

. &$umbia, MO’.’ 651.3 Lat.>%.58’N

941.3 $ 1315.8 lk31:3 1999.6 :

_ r*

Colu,mbus,.Cj in__, ->

‘..

. . 486.3 746.5 ' '1112.5 Lat. 40YIO’N ]’ ““-::.+ ,,_, + -

3 ' 480.8 ‘-.. ‘k

' 1839.1' '

ii, . *. ‘, i k-x..

Davis, Calif. ‘A. - ‘.._ +,99.2 945 1504 1959 2368.6 -7

Lat.‘38”33’N 6 in - ‘.,‘

-‘..\ ’ ‘._ )s J

-.

Dodge City,- Kans.: g;,* ,

Lat.’ 3+46’N .

s :“‘j-m;3\- - .

. 1'365.7 1975.6' 2126.5 +. --- .~ __ . “\ . i -L

\ ,-East ‘La&&g, M/oh. ’ " 425.8 '. 1249.8 1732.8

, 739.!. o 1086

;J 4 I n n

504.4' ,~. 762.4 1132.1 1392.6 1704,8 "'

/ * 331 ..7 652.4 1165.3 - i541.7 19FQ.4 n

- -D c s . \ 0

' 124'7.6 ‘.1612.9 2048.7 2447.2 2673 ~ 1. ,

_ 7

Ely, Nev. ‘\

i

,’ . ’ 1744.8 2103.3 2322.1 Lat. 39”17’N \ * v

: +‘187,m6\ ! 1i5’5 ,.,‘I - %-. : --

-$ .. 2’ &d .

+ Fairbaiks, Al .;L%t.. 6@49’N;....-

>: '. .

I , / .I :i ..

66 si83.4 \ * @0:5 ?1,481.2 1806.2 ."

\ . ,I ' 1 - (\ . ,' 1 -.

0 ,, ' *- . .> LI .

Page 361: Passive Solar Energy Book (1)

)

L

Appendix 3 _..--L3 *. " L P - 4 L, $18 ‘.?i

- .

I.. IUW July August September October November / ,, ,;;l+L,

B J

m 2288.5. 2345 21 24" 1774.9 1536.5 dld4.8 ! 982,.3 ,-

a /I . . .? i.. 0 . . i 1254.6 793 415.5 i

', . 779.7, 1898.1 1675;6 398.9 --. - :

D +. . ?I

1: 2iP$,3 '4 1649.4 1933:6 1557.2 1332.1 1073.8 952.'

*: 2102.6 2'094.4 1840.6 1410.3 . 997 526,6 427.3 ' ;, 1 *,

8 - \

--. \ 21'29.1 2148.7 1953.1 1689.6. 1202.6 590.4 - .,

0 -j .G', I 8371~5

‘ I (0, .,

" '. - 2111,-' 2041;3 lt72.7 1189.3 919.5 479 430.2 .-

\.\. >, I \.

xX 261.g*2 ~. _..~. -- 2565,6 2287.b i856.8 -.-.- 1288.5 795.6 550.5 * .'\ I 1 Q . '4 k

I ii 2400.7 = "- O2459.8 2210.7 1841.7 1421 1065.3 873.8 :.:, .' n - "1 . a. .- s

x 1914 j\:;-1884.5 1627.7 1303.3 c 891.5- .' . I, 473.1 379.7

.,-. . . a

i * .= 7‘ 1958.-3 1873.8 -1607.4 1363.8 0 9ny6.7 636.2 h II I. ' I ,-* -

I 19i4.4 1964.9 152.8 '- 1113.3 i 704.4 413.6 245

P I i I 1 -. . '1 '?

273$. ,', .kiF

' 1 ,239l.l 2350.5 2077.5 1704.8 1324.7 .1051.6 , I I .

.a t

* d 2649 . 2417 : , 2307.7 "1935

D .1473 1078:6 814.8

' I

I .- d70.8 1702.9' 1.247.6 699.6 323.6 .$D 104.1 20.3 .T--~ '... :. *

1 I b -1 P 1)

1 1 b ./ -,

,349 _

/I’

J” ,, “W--I

(- -_ -

;1;-/ _, ; .I’ t .:.

0 . . . . . . .~ C& F - I - -._. --__ I! --. 0’

Page 362: Passive Solar Energy Book (1)

a

4 J* “_

*’ ‘d

i i \

\it, mw -ry March A& MY 0, D \ ^_

Fort worth, Tex.> Lat. 32”SO’N , ’

\ 936.2 1829.1 1.

2105.1 1

Fjy$l$$if. ;71L.9 1116.6> l,,z.S 2049.4 .2409.2*

\ , I , i I Gainesville, Fla. h' i 036.9 1324.7 . 1635 ' 19565.4 1934.7 Lat. 29”39’N

*r 1 I

I i

Glasgow, hont. ' Lat. 48”13’k

572:7 965.7 1437.6 1741.3 - 2127.3 I .‘I

Grand Junction, Colo. a. .- "848 12JO.T .' 1622.8 1 2002:2 2300.3 Lat: 39”07’N L .” i/o -

Lat. 40”1S1’N * I 1

Great Fails, Mont,. 1 ,

524 869.4 - l-369.7 16i1.4 d 1.970.8 ' : Lat. 4P29’N

. + -; Ii ‘.

Gkensboro, N. C. * ..o

' 7431.9' 1031.7 -' VJ232 ' 1755.3 19088.5 * Lat. 36’%5’N .d

P , n

I ---~-~ -~--x5 ., b

$ATinj C$. .,

,,+ ”

. 889.6 a-ll3$.8 ". 145019 '. 19d3:6 - ,'2163.1~ Lat. 33”lS’N ’ 1-

$ ; . ’ I f -

c / Hatier+, Ni C. L

) . $91.9 ' 1184.1- 1590.4 / ' 2128 - '2376.4. ’ I

i; ;, “I -lat. 35Y 3’N ‘8, < ’ I

2 P I ‘., c

Indi&apolis, Jnd. * *-&at. 39’44’.N

@ ,$ 6, b

52'6.2 *.. 797.4 - 11sa.1 1481.2 '1828 8. ” \

. J’,j

; ‘-

-., --

lpyokb, C,alif: -7 - 1148.7. . 1554.2 2136.9‘ - 2594.8 2925.4 0

‘. Liit. 35”39’N ..a .-

\ . . si \l

! Ifhuca, kY.. 1 434.3' 755 r 1074.9 .. 1322.9 1779.3' Lat. kZ”27’N i .‘..- . ::

La& Cka@s, La. J

Fffb.2 _~ :1145.7 ' !487.4- i801.8 2080.4 '- .e Lat. 30”13’N

.- m r

1, : I _-

s. f >.- . .‘.

: L %., *

$1 .;54 ‘:

,_- $3

: -..-- :, ,- - 1 ,a -

r;; ./ _.

/ ,‘,: .‘: ” ,. ” .; I’ ,, _(“,, c : : -. 3 ‘-- _ : c : \.

Page 363: Passive Solar Energy Book (1)

: / :.v ‘-

-’ . I 0 -

. ’ P

“r

, i f

p /j Appe’ndix 3 X i .’ i ,~ ” ,;’ I . \., (1

. ,_A&st ’ September : ’ October I , Li- ‘6

2216:6 1880.8 1476

November December

,1147.6 ~ 913.6

4 1: _ I *

B *

*: -__ a 7

f , ' -264.J.7 : i 2512.2,' ? 300.7 1897.8 14lZ 906.61 - 616.6 I I "

1 ' , *- ' I I B )L , I'

. I I ~.

* 1960.9 t 1895..6 1873.8 161 5.1 1312.2 '. 1169.7 s 919.5 a

7;-‘-- Ir, P . /

I h-Y

2261.6 .;531 * ' 9$7 ,574.g i 428.4 c

, _. ,

‘ZE -251F7 \

61(” 2645.4 1 e157.2 1957.5 1394.8 969.7 793.4 _ * - ;I . n

m ,, ‘) 8. 4 9 ’

..ajg,; ‘) 2103.3 i 1708.5, --.I. 1715..8 *,, 1212.2 _ 775.6 660.5

,A . ; :! -_ .

; T1,’ *,

2179.3 984.9 420.7 : 1 - i-., ,

2383 - ~ ' '. Ti86.3 1,>36.5 -572.3 O _ _ L .b

1. .,

.&'I" ia

j8j'b.3 .D:

2033.9 1517.3 1202.6! ‘908.T > I' > 6,?0.8

73 ."_ I I

~176 '1 " -1 1961.2 i 1'605.4 * ,,';::' -

'. 064.9 1352.4 . 107318 781.5 < ,- .-

- l .* ..v . .

; -2438 '- 2334.3 iiI85.6 .1758.3 , 11337.6 * ,1053.5 *t98.1, 1 t 1

* 0 ,.. D i 1

. @~,",~"&2020~~"~,. lo ~$0391; o 1832.1 ' 1513.3 w lb9414 ' 662.4 I$! '$ ,.

.,,491.1 -' ._ ,

1: I I -.d . .

...m310d.8 -_- 2908.8 - ,

a759.+ 2409.2 .* '1819.2 3170.1 " '- 1094.4: ! .-

b 0 I -1 1 8 & --. ,'

-2025.8 - .' ?031'.? 1 i736.9 1320.3, 4

-P 918.4 I 486.4" 370.8 z _' I 9 r . -.. ,

0

- 2213.3! 19i8.6 fl :

1410.3 I

I 1'628;2 . ,J505:5 !1122%1 ~, . 875.6

‘ I -* . = : c- v.

I _. /. _. ..- . SF . : I L .'.i'. 7

$1 r 2 .' i

- d i 3_51. 9 1. -,, )

i., 1 I( I_ <' .; I '

_( “.y,,, ; '/ ', _ - '5 ,A ? '0 ? @

Ij j.7' , / ', ._ L' .* i

Page 364: Passive Solar Energy Book (1)

” (r I

;* ‘$ \ ’ , ” . 0 >

b . ., . , .: .’

.’ ‘.. -.,-. ,i.

‘% .-

. . . *&

‘I

’ t The ‘Passhe Solar E&y Book a i

/ 1 a.6 c ! : L . January . Februqry March.. +!J April Ma{ -

c ,/Land&, Wyo. 786.3 * 1146.7 ' 1638 ; v 1988.5 2114

11 Lat. 42”4,8’N .

L1 I I ’ .

* Las Vegas, Nev. I

i Lat. 36”OS’N I _ o 1035.8 a 1438 1926.5:' I 2321.8 2629.5 . ,

: 4

.I’ Lembnt, III. ’ e .., , 590 879 1255.;). ‘148'1.5 L l

a_ ‘

18& -, . Lat. 41”40’.N, -_ -: L :. i.

B 1 + .r ~~ L. ‘, , R _ .

Lexingtiin, Ky. 1 a * - - i834.7 = 2171.2 , _ .Latw ~3BEm'y+ _ -z --'--- -~;- : _ ;; .\

',-, ,

--.iL’incol’n, Nebr. ’ -.-? -

q 712.5 955.7 \ 1299.6 \ .

1587.8‘- _I 1856.16 $ Lat. ,40”51 ‘N

. >,

1 . \ 4

/ ~Little Rock, Ark. I a

.- -7b4.-4 974.2 's %35.8 1669.4 . 1960.1 .* .r’-- Lit: 34O44’N _ ;:- ’ *. ’ \ . ,

\\ I.” ‘,.

,/ LOB Angels, C&/if. (LZ/BAS) i; 93i.~6 :l 284.1 i1729.5 1948 2196.7 '

t Lat. 3336’N .. * \J : -x, .-> I..’ b : I

Los Angeles, C&if. &VBO) ’ 911;8 1223.6 _ 1640.9 1866.8 iat. 34003 ‘N ’ ! ‘? ,

-..z 2061 .2,x, 9 0 ‘. ‘\ ‘\ , / Y. ‘-- ‘, -.. /. 1

-Madis&, Ws.’ ’ A

564.6 8.1 2.2 up3IJ.1 . 1455.3 1745.4 1: .*

4 .Lai. 43’08!N . 1 ‘.;_i:. ,., ’ ,‘) . *...’ 3, I I * ; _’

‘> Mataq&ka, Alaska- ’

1 jll9.i 34'4 - . 1327.6 " 1628.4 _-a

; ..- --Lat;.6+3d',,, 6 '1 * Jo- -_ I - _*

*. -I -? 1 .. 1

i:.: ’ Medford,~‘O%rbg. l&07.> ” ’

cI j435.4 - :'.y -&4.4 1239.8 2216.2.. _ a--,- Lat. 42”23’N

\ i 2 -_ ._ _. .- '-- , , _ I. -- ; n -- -- - .i' c _.) ._ _- ,I .ri .

* fiiami, Fla. .+k . j 1 * D G : li292.2 ~ p 1554.6 r 182b.8 I ' i2020.6

,. ; ,La;. 25”47’N !) / i 2068.6. - .-.

:. : *. ~; .p

I ., Mid&d, Tex.. Lat. 31”56’N . . : _ * ‘,

1345.7 lJ&8 ; ' 2301.1 -, ,$

2036,.1 '1 . . 7

: i ” i

Nashville, Ten’n. I .

, ” / c / 1 I

1244.8' I .Lat. j6007W .L , , F ,

166&j 7 ,

\ - > c I , .i. .* , I// _

4 1 I I_ : I L' _-~+---- ---i ~._ - . f

' . I: I

- .A- 1 _ *,( 7. t 4 i

I

352 . ‘\.,\ , : - “-2 .-, 1 -I - 6 ! .. ,” -f.

.- ,,. 1 .,, ;

\ -i .*,

,- ,. ‘, : a . \’ \ -p- ,’ __ ” * ,;; ,

, ”

.j ., ,, ,;;

\ ‘I i ,’

k n

I ..: ” ,, : ‘..,

,_., \

;’

Page 365: Passive Solar Energy Book (1)

0 ;.

f.

t

i:’

_’ , J:“,

, ’ .:

,

1

/ ‘,

: / .

,

Appendix 3 \ '

I- @ &,

June MY , August Septembei October November , December x’ .y- ‘.

' ’ .2492.2 2438.4 2120..6 171i.9 1301.8 837.3". ., 694.8 ~ . - . __ . _ _,- .,, . .,.,. . . . . .

.-.a' Ir

- ,-- 2799.2. 2524 2342 2Q62 ' _ qfj~-j-.g ' 1190 964.2 ' 3 _-' , z - -- ,- 1.. .._--. -q-

.2041;7 1990.8, -/,. 1-836:9sz-' 1469.4 1015.5 639 531. 'I . , _c-. ___-- - I I . __--* _ .,- .__-.--

.\ :, ,_-F -

--' --- CL -A+ 224h5- 2064.9 --177-5.&-.-- -- l-315.8 (--- -:';81 .5 ,~

@IO.6 2011.4 . 1902.6 1543.5 1215.8 -773.4 L..64$.2

2091,s 2081.2 1938.7.. 1640.6 1282.6 * 913.6 701.1'* B i

_.. s 7, -

* '2272.3 t 2413.6 2155.3 1898.1 i372.7 1082.3, 901.1

22.59; 2428.4 2198.9 1891.5 4362.3 1053.1; ' 877.8 - . . * b

.y / ai

I 203'l.7T"d '. 2046.5 1 y~~--/pp@jg . 993 555.7 495.9 _ /' , i /' 7 I --.--,-- . -_ _ I

'- '1727.6 .--- 1526.9 '1169> * 737.3 373.8 142.t/! ' , 56.4, II

;. I /

-2440.5 2607.4 - 2261.6 1672.3 -1043.5 55q7 346.5

v . . i I. ---_ .I

,1991.5 1992.'6 " ,,l 890.8 Lm --m--+646.8 1436.5 13?i 1183.4

.____._-.. - -_ i'

2317.7' 2301.8 2193 '- 1921.8 _. .-.,l470.8 12b.3. ' 1023.2 /

/ : i

.

2149.4, : . '2079.7: 1600.7. 1223.6 '; 614.4 ,,? c‘ il.- _-_. '. ..

.I i - -..j - r .._/ .L.ll .,:, _ 0 . < .

\. *. _-- -----

_~.-- .- . i 0 n _ - --

\ .__ . eJ

1‘. ._: ,.

'1 _.- -- es' i /

353 . ,, -, < r ,, ', -b- ._ .- -2' .',. -' ! k i --.-

Page 366: Passive Solar Energy Book (1)

,.. _/-

A-.‘.

3 D

; ,.A’ .- I

‘.

.._ __. ..---------- -

___--- _ .e -~

c The Passive Solar Energy Book 9 <

‘January February March April &Y

‘- Newport, R. I. , 565.7 ii. 856.4 1231.7 ~ 1484.8 1849 ~ Lat. 41”29’N

New York, N. Y;

-Lat. 4do46’N -

:. 539.5 790.8 1180.4 1.426.2 1738.4

i

)' 9

-f- --i

, r Oak Ridge, Tenn. 604 895.2 1241.7 1689.6 1942.8

a Lat. 36”Ol ‘N

a I ,

’ Oklshoma .City, Okla, ~-.~ ’ 938 lal92.6 1534:3 * 1849.4 I . 2005.1 Lat. 35”24’N

Ottawa, Ontario - 539.1 .852.4 1250.5 1506.6 18j7.2

Lat. 4?20’N , 0 *

. Phoenix, Ariz, ’ 1126.6 1514.7 196F.l -2388.2 2709.6 ; . I Lat. 33”26’N 4 .

- Portland, Maine 565:z 874.5 1329.5 1528.4 1923.2

Lat. 43”39’N _ 4 _l_

‘\.\~ \\ '- 687.8 1032.5 * 1503.;7 1807 2028 \. Rtipjd City; S. dak. .

I\ j Lat. 44”09’N a . ‘.. -L

$i~ersid& Calif. u 999.6 .1335. 1750.5 1943.2 2282.3 _..< -, -~ ~~ ‘Lat. j3’57’N *

*v

; + 632.8 976.7 1383 1598.1 1859.4 :I St. Minn. . Cloud, . - Lat. 45”35’N ’ 0

j .,.

. . &_ Salt Lake City, Utah

Lat. 40’46’N

‘,_

D

a

622.1 986 9 1301.1 1813.3 : - P

* t d

1045 1299.2 li60.1 i664.6 2024.7" ., , .j

* y2.:.- -. iat..31$!i+!K- ’

,). *’ Sault St?. ,Marie, Mich. Lat. 46”ZWN , ‘.

I , ‘_ _i -: + -- .. !:; ‘. ._ __ :;i,,“.. -., ; 354 i!:, / .~., '8,

983.8 .- 1296.3 .u 1805.9 .2067.9 2375.6 I 4

-.. I-

488.6'. 843.9 - 1336;s _ 1559.4 . 1962.3 . . \

.’ ,. --

Page 367: Passive Solar Energy Book (1)

June lub . August -September G octokJer NCW&bM kember +

2019.2 1942.8 1687.1 1411.4 1035.4 656.1 r 527.7 , P n b *_.

1994.1 i 9;'8.7 1605.9 1349.4 977.8 598.1 476 . "

2666.4 1972.3 1795.6 -1559.8 _ 1194.8 ' 796.3 610

.I 2355 . 2273.8 2211 1819.2 1409.6 -3085:6 897.4 . I

2084.5 2045.4 1752.4 1326.6 826.9 458,7 408.5 " "

2781.5 2450.5 229'9.6 2131.3 . 1688.9 = 1290 1040.9

2017.3 .2095.6 1799.2 - 1428.8 1,035 591.5 507.7 : _

2193.7 * 2235~.-8 2019.9 :

1628 1179.3 763.1 590,4

I

\

2492.6 2443.5 ’ . 22.63-8. J ,.:,; '...‘.-1955.3 1509.6 1169 979.7 .

I /

I a

h 2003.3 . 2087,d 1828.4 1369.4 ,'

890.4 545.4 463.1 .' .__---

,’ , - J- S&j- t 1689.3 1250.2 - 552.8 .;-

/" _

814.8 - /' i364.2 i/

2185.2 1844.6 ' 1487.4 1104.4 954,6 . - .' L. " __ _

i _-.-~ . ---r-I

2599.6 2540.6 p293.3 '1965.7 %66.4-. 1169

. ,$$Li 2. -.-

\ 944.9 7 .' ': I

I j ,

ii . . .

064.2 2149.4 1‘767.9 1207 . 809.2 392.2 ./'

/' 359.8

,( iv-- \

I .< .; +--

m-+ w, h 0 ___--- '.

k-.- . ~ . .< “'~g- . 355

\ * ,>I ;

,LS ‘.' _ i. _. -- ,- I'-$ ; \

Page 368: Passive Solar Energy Book (1)

/’ -. Y. 2 >p

,l .: .’ . ,.

:

s&e Solar Energy Boqk f4 #. ’ @ . .-

n +.?f January F&a&, C t%karch .

Sayville; N. Y. ” *’ 602.9, .q . 936.2, 1259.4 Lat. 40”30’hj I

,/

:S&&ectBdy, ‘N.. ‘Y.. - ’ 488.2 753.5 " 1026.6 Lat. 42”50’N :

i %

1 April &Y

w

1560.5 1857.2

1272.3 iEk1 os , , L -_

.

!%abro&, -Nf(’ _ _ r; 59-i .9 854.2 1195.6 1518.8 1800.7 I Lat.. 39”3oiN ”

*

Q LI3 *

-Sea;+, MlaZh. I..

-282:6 ,520.6 .992.2 J1507 1881.5 _ ,La!. 47”27’N a * ”

. 3 s *

‘a Seatile, .wash.

\’ I 252 471.6 917.3

1;. 4P36’N

., 1375.6 1664.9. , - L ’ - ” l

, : .

k _A

- Spokanq$XVZ%lii’. 446.1 837.6 - 'n 1.200 y Lat. 4PdO’N

.- . 18,64.6 2104.4

~ ‘n 1. .

Stare College, Pa: j.II. 501.8 749,1 .. 1 106.6 '-' "k,,l 399.2 . 1754.6 Lat. 40’40’N “a ‘->

.i .,

StiHwater, OkIs. F763.8 1081.5 ' 1463.8 1702.6 1873.3 .-- : Lai.’ 36’09’N ‘1; %- A- *

:> ’ .’ -9

‘*’ P -- T&$&, ,Fla, ;‘ .:: .gg6n5'N. .*._ ; 't . '

1223,6 1461.2 sm 1771.9 + 2016.2 '. $28 _.. -..-" --- - . I'.,,,' -' ', * . . - 1

IToronto, Ont&io ‘[ 451.3,' :+ -674.5 -," .1388.2 1785.2' ,b Lat. 43’41 ‘N ?r .

L 'I p88.9

>” ” 5’ ,.:..,

: Tucsgn, &ii, . *, 11;l.g .‘1‘ : ‘:‘li$yJ;J- <.i -. -- 2434.7 'lo ., D . . Lat. 32”07”N ) I : 0

&$on,‘N: Y. tat: 40’52 ’ N

583 .. : 872~7 . 1,28,$4 D J609.9 ;mpm1891.5 2 ,.. .

-‘. I. -- .-. - _ :: _ ._ -. - .-~__ ~_ -. ‘CWashington, D. C. (IkkO) 632.4

‘-5 - lip @l..? -.'"I,255 D 1600.4 1846.8 .

f :

.:Lat.‘38”5J’N :. m

l

:. ,

.-( ~ ,’ : .

' ‘. Winnipeg, Man. - 48b.2 1 . ‘, _, .,, ”

\,? 835.4 1354.2 1641.3 1904.4 L@t. 49”54’N. ,:* s - ., ’ I L

_, ‘. _‘- F 1 , , .- .-

Page 369: Passive Solar Energy Book (1)

Appendix 3 * P

June ’

&l23:2

MY ’ August

,204o.g '1734.7

September

1446.8

October f$ovember

1087.4" 697.X '

December

533.9 -y-y.,

.

: -----. I’ 3 .-.-_

a <' 16'87.8 : ‘1662.3 1494.8 1124.7 820.6 In 436.2' 356.8 L

1949.8 1715 jo7j.9 \ 721,.8 522.5 83

-63 1 c ‘1

. ? I) 61

.- j-ggj , 1 2110.7 1688.5 1211.8 702.2 .._ ,386.3

0 23g*5- I __j " ;A

_ k.> .- ,_ '1724 ’

1129.1 638 o 325.5 *. /

218.1

--. ‘_

- ___ -.-

2226.5 2479.7 2076 1511. 844.6 q _ 486.3 t '279

-- \ a

' 2027.6 1968.2 's 1690 - ' 1336.1' 1017 ( s80.1 44319 , 'J

-22T-S& . .:- .I

2224.3 im39.1 '783. _~ 1724.3 1314 ,d' ? , 1.

.s~991.>

Y 7 I .I * . .

1, '_' .., l&5.4 lfk31.9 '1687.8 1493.3 ~1328.4 1119.5 *a

- : . ,- ,' i, :/, 7. ;. '1941:'7{ n' -.. 1968.6' 1622.5 $84.1 ‘835 . . 458.3 352.8 : .,>y'. . "' I 4 ' I 1 I .i

. . A,

e

\

2601.4 4 2292.2 '7

2179.7 X22:5 o' I 1640.9 2 2

1322.1 1132.1 .c = ‘Y _- i. “,.i D . . ‘ ._

,

2iS9 : 2044.6 '. !1789:6 147-2.7 1 jO2e.6 ..:

686.7 ~ 551.3 .., I _ 6 D

0 a3 ._ _ - . . __~- .L

: 2080.8 ., 1929.9 1712.2 ~ 1446.1 ' o 1083.4 763.5 594.1 * 1 . . L .' . 3

1962 .* 2123.6 : -1761.2 wl190.4 767!5 444:6 345 0 .- I- ", I. '. -- -. i O -.; _: .- .~- T-----I ^-~.- -'- '. ; I a. _

r* .~. : * w n '. . . .$~~ ,: . . ;-.- ,--- 357 ..* _-- ' : , -. ,

.,...; ,/ '. , : '.

Page 370: Passive Solar Energy Book (1)

I .; c

1 + \

*

I

._.._- .._.... --.--

;he l&&e Solar Energy Book -’

2. Horizontal to )/ertical ConvtGon

‘Average sol.ar radiation values generally available in tables and maps-are measured .

on a horizontal surface; however, the values required for passive solar calculations ’

_- are the. actual solar energy transmitted through vertical south-facing glass. ‘The 3

follo,wing formula can be used to convert .horizontal incident solar energy to the \

amount of energy transmitted through two sheets of vertical south-facing glass: \

r, solar energy fransmitted solar energy incident on

2 LFx.

through south double glass ; a horizontal surface - ,

e where: F = conversion factor from the follo,&ing graph: .

t 69

GRAPH OF CONVERSION FACTOR (F) ’ MONTH

1 I /qDEc.

i’j.& JAN. 1.1

1.4

I_ I’ i ’ . %’ i .i i

MAY JULY

358; ’ LATITUDE, DEGREES ‘; I

/ . 1 & *

Y

n

il

-. .

.

Page 371: Passive Solar Energy Book (1)

:I .,, .

__ F I I. *

_o .7 . .

:.- ,

.I *

*

,’ .

-------I-‘---- ’ 3 Appendix 3

‘X. .--. 0

The coirtversien -factor (F) isthe ratio -of-the ‘monthly solar radiation transmitted through vertical south-facing double glazing to the month1.y total horizontal solar radiation. For vertical single glazing use 1.213 (F) and for vertical triple glazing use 01825 (F).

-A 0 ,

: * .* I ;

, -For &a&g @he-n- vertical or atorientations different-than true south, a correction . .._ -

to the-v&e calculated inust be made. It is recommended that the clear-day radiation _ = tables in Appendix 6 be used. To establish a Correction Factor (CF), use the fotlowing ’

m - formula:

: k

, kuxlay transmitted radiation for .-- !.

tilt and orientation of glazing- CF- _

- clear-day transmitted radiation for vertical, south glazing

.\ 4

’ Next, riiultiply the,average solar radialion value transmJtted through vertical glazing by the Correction Factor. I c i

.- Q

. 1 . . . u..,, . .I.... ” SOURCE: Adapted from J. D. Balcbmband RI 0. McFarland, “A Simple Empirical Method for Estimatingthe

h & *

d Pegfortince of a Pakive Solar Heated Bu’ilding of the Fheqnat Storage %all Type,” +xedings of the Second Nationql Passive Solar Conference, Philadelphia, tiarch lfS-18, 1978 Washihg- ton D.C.: U.S. Energy Revarch and Developinent Admi&tration, 1978). *

‘4. I I *

. b

._

\ . ;;

Page 372: Passive Solar Energy Book (1)

Appendix ‘\, Average Daily Temperatures

‘(OF) in NQrth America \ \ ’ ,. .b ~~ _;L.-- ,...^.... a ‘1 ‘3, -- \ January FebrQary

i ‘3 \, AIbuouerciue,-N_.. IV&X 37.3 ----._~-.. 43.3

\Lat. 35”03’N 6 El. 5314‘ft ,

Annette Is., Alaska 35.8 37.5

Ldt. 55”02’N l El. 110 f-t

.~ -

March 9 April M-v

59.6 69.4 50.1

‘0

39.7 a .44.4 51.0 ,:

Apalachicola, Fla. 57.3 59.0 62.T---- 69.5 76.4

Lat. 29”45’N l El. 35 ft I

41.3 44.7 46.9 51-3 55.0 & Astoria, Oreg.

Lat. 46”12’N l El. 8 ft

. Atlanta, Ga. : 47.2 49.6 55.9 65.0 73.2 , Lat. 33”39’ti l El.-976 ft e

-. Barrow, Alaska -13.2 -15.9 -12.7 2.1 20.5

Lat. 71”20’N l El. 22 ft I

- Bethel, Alaska 9.2 11.6 14.2 29.4 42.7 . , Lat..60’47’N l EL. 125 ft .L &

Ii

' Bismarck, N. Dak. . 12.4 15.9 = 2$:7-- / 46.6 58.6

: * Lat.%46”47’N l El. 1660 ft

Blue Hill, Mass. ’ 28.3 -28.3 36.9 46.9 58.5

Lat. 42”13’N l El. 629 ft d 61

Boise, Idaho- 29.5 36.5 45.0 ' 53.5 62.1

Lat. 43”34’N l El. 2844 ft \

Boston, Mass. j Lat:42”22’N l El. 29 ft

_ 31.4 . 31.4 * 39.9 '" .49.5 " 60.4

r)

s SOURCF: lkermediate Property Standards for Solar /-/eating and Domestic Hot Wfter, National Bureau of Standards, _ Washington, D.C.

.' .360 :I 4' . .

ryb . i

Page 373: Passive Solar Energy Book (1)

, -

., :.

. June

0

“-

.i

j\

4

7

0

I --,I/.“’

Appendix 4

Augu$t” -September~ ,. : Oct&+ hhyernljer December 1 s

79.10 nj x. ” 82.8 80.6 73.6 J62.1 47.8 a , 39.4 . ;

-. I <. .’ . ,

-., : 5a.+-.:- 5q.a -J’- 54.8 r 56.2 . 48.2 41.9 # 37.4 I .

\ .~-.- 3 - r ., I 1

‘~-~ .-fJl.-s ~~ -I _- -.f.~ [email protected] t- 83.I (‘ 80.6 p T3.2 -0 I-_ 63.7 5a$ r __- -:--- 4. ,.

i., .J ,.

:, ’

>’

.:., ‘.

I’

,i I

62.6 59.3 63.6 62.2 55.7 48.5 I’ i

43.9 ; \ c D - ,

.Q 80.9 82.4

B

ai .6 77.4 ’ 66.5 -,-- 47.7 j

‘i4

‘I, is .4 1 @+41.6 0 ’ 4oro h(.fl .

-_ 31.7 . I

18.6 . 2.6 QJ - 8.6

c 4 .~ .:_ Cl

,

a ’

q5.5 56.9 54.8 - 47.4 33.7,, 19.0 - “9.t) I -O a. . / i ‘9 E

______ .___ __ ~_. -._.-_.

. . .

; ..,

'1 :.' ) I. --

i ;;.~,,y---‘!:

5' L CL " a '.

P Lb ;

ii ._.. -_ L-.--1:... I .+ 0 L .'

<- b. L

2. k * ,!

; i p .. .

: ',_. 8, ', : .I. ; i*

: . . . . ,,.’ ‘\\ 7 361, :.~ ’

,I. SC’ ,; ’ 7 9. ,’ ‘. #% _I -3. P \s ‘. . ‘\ \ ltl ‘- %

Page 374: Passive Solar Energy Book (1)

16 P ‘. ! h

!. , _. *

” ’

>’ i

I >

Tk Passive Solar hergy Book o ___.. 1

-, .<. v i ,” P ; -

January s February March --. April ’ n May.. -L -t

F Ikmmsvilk, Tex, '63.3 66.7 70.7 76.2 * ' 81.4 .! imst. 2!+55’N ‘d El. 70 ft.

*

Caiibou, Maipe ’ :, 11.5 12.8 24.4 j7.3 51ia Lat 46”52’N l El.,628 ft * _ . . . . . i

1, -- ~~~ ChtirleSt&, SF C.‘--- ,’ 53.6 55.2 60:6 ", -- 67.8 ' 74.8

-lat. 32”S4’? l EE/C 46 ft , - ‘, 2: . -

,.-z-A - ” * -~

Clevelah, Ohio .. -~ 30.5 50.2' - 62.4~ ---iat.- 6/

g 30-8 - - P24’N l ;I. ‘805 ft

39.4 ” 0 j’ ’

-‘&u&&ia;-/&; --- - ----- .__-. .~ ~. ~.

.La;..38”58’N l El. 7&‘ft “’

3i.5 3G.5 ‘ * ' 45.9 57.7 . 66.7" n* ,' _1 /'

--

’ ., ““c Cblurribus, ORio 32.;' a

33;7 42.7 53.5 v =64.4 n ‘Lat. 40”b’N 0 El. 833 ft - ’ ’ c

i , -, d : ‘ Davis’, ,Calif. I 47.6 52.1 '. 56.8 :, 63.1" 69:6 Y '- -_

Lat. 38933’N t El. 51 ft , i ..I v

* 5 ,, , I , : : Dodge City, Katis. * 33.X +I . 46% ( i7.7. -

,. .D ,. ” Lat.‘37”46’N .e El: 2592 ft

.' 38<7- 66.7 D .’

B 4

‘- @as! l$&in& Mich. 26.0 ' 26.4 35.7 .' 2”44’i+i ,f’E,l. 856 it

4$4 . 59.8 - ’ i

‘. , :

ah&a& Mass. 32.2 31.6 . 39.0 '48.3 ' 58.9' * j -- ! ‘Lat, W46’N. l El. 1.8 ft

: .L, ‘. . ” , ----:I

_r ” .’ Ed&o&&~ Alberta i -10.4 , 14 ;F 26.3 42.9 - '.55.4 ', ‘

:; ;! +$it. 53:35’N’. El...s2219 ft Q ‘,,: -,: “, . . . *

. \ Y $Y”:n . .’ ,“ ( &. : :* ;Lr.Z : i El -Pasoi%tzx, 47.1 : 53.1: * 5tj:7 ,pb7.3 75.7 . . . “llJ

-‘pt. 31’$I!N . . El. 3916 ft’ :*4 P ‘fi & :.. A 1, , ix ,111 lo

., “.,.‘ 1 ‘, .,

f&. : E'Y, NeVi '. ' ' ,3 27.3 ,32.1 _ 39.5 _1 48.3 .57.0 .,_ ' '. ~ Lai.:39”1 7’N 0 El. 6262 ft .i <., .I - . t

,’ ., .r% \ ,. c ‘_ e.. ~ es.’ . n’ . . ‘,. .a; - iairbhks; Alaska .:’ : ” _ 7-0 -. -0.3 , 13.0 + 32.2 . 50.5 '

\ +iit. 64”49’,N . El: 436 fi , ; :I’ “7%

, .: 9 --- ,

’ -,

P ,? ..” ” -.,, 2~ _ _.. _-.-

. Y., l ’

; ‘1, ,,, /; I, i ’ >?;

. ~ !. ‘Q--~--- -_ - -

Page 375: Passive Solar Energy Book (1)

., \

+ I: f; ,

,u;v I ’

-I- --zs- August

* P D **

* LI Appendix 4 1 I

ieptem&Y October November . Decfsnber ’ _ I

86:s 86.9 84.1 78.9

^p

I

.

' 61.6 ' 67.2 65.0 56.2 t44.7 31.3 16.8 -- d

--- ., _" .- - ~. .~. -~ ~. _ I. . --~ ,. _ .- ~. _ .- m.9, :,.,:Q.9 I '82.3 ,79;1 69.8 $9.8 .- , 54.0 a

' ' . . I c - . . - ,' Q"

72.7 7

- _ 77.0 7cl 68.5 57.4 a 44.0 . . t+ 32.8 .

1 :' ,j e-w-i

B

. ' ' 75.9 ; 81.1 ' w 79.4 71.9 61.4 46.1' ,' 3.5.8 ._ j

<' ! I +g, _

L: c

* -' 74.2 y I

78 -75.9 . * = 70.1 58 44.5 ?

7.9.4 76.7 67.8 . 57 - 48.7 , :

- .

li \ L

77.i ,+ - 83.8 .; .' 82.4 . .+3.7 61.7 . 46.5 36.8 23 : 4 Q*&':$ I.

* 0 ‘\ : : __ . _* '4

. ..'f 70.3 74.5 ; 72.4 65.0 53.5 . 46.0 ' .A ‘ 2$j * 1. _j' .' < ,' * o- . 6' '. !I ? '* ,. .

' _-._ '. * -. ., 67,s !;: " ' 74.1 ' , ,,, 3S.8 ,- _' 65.9 '-: 56 i 46,.

, &jg$ :. ,/ -1,:

'i , .i d', : - c ., 4. _,. ." ,p~-" " be. i

54.2-y ' i&.1 26.7 l

‘_ '6i:3 c. 66.6 6'3.2 . .* 14:O , ', fi ijr r. 32 *

e 0 r . I ,. 3 ..-;y@ _ i I 0 ' _, I

'04.2 * I

84.9 - 83:4 78.5 69.0 ; 56.0 ' 48.5 -- .c- ! c

o- .- * ‘a '" 1

._ _ I is;& : <~ :' !4.5.- c - -.72.3 ' 63.7 -' --$J t ' 39.9 ' . 31.1, .T _. -

F : I -

- .“2;$ ;’ $3 4 58.3 ' 47.1 29.6 5.3 --- 6.6! ,s’

\ z/! t

c ’ .3:

i L 0 ‘i <

w+ 1 -_

8, “ )

; _ _ ,’

c

;; 1 ~ 0

.- 7. 363 'r- 'I-

v ",

2. A.,. 'Al!! c

il, *. 0 ~. .‘a L- A- ..--

Page 376: Passive Solar Energy Book (1)

s. I

: n 6 ‘i.

I’ :. 1 .- *

i

J

/

‘VI .

I1 / //* ;-. 1.’ _ -,&I -/*n ” - *

- i, II ,: d . . *-a The Passive Solar f&r& Book j

. !‘l. ,- 1 ’ - ,+ * / ,’ wu c ~ .’ * Janyary I February rch :,$,~I -- May .L _ , . .

---“__ t

-Fi&W&j*jex. La- R

” I. /, 48.1 1 52.3 "' /59.8 68.8 -. 75.9

r; * Lat: 32”50’N-i. ;4aa ‘- .._.- \, ’ ..‘L !

I . . ‘. \ --- 1 . .

Ft-es&, DC&i’f.l ’ 4y.3 -- --.

-533 -. ._ . _ 59.1 e65.6 ' 73.5 \

Lab: &“46’N l ‘EI. 331 ft \ e ._

. .Gafbeghlle, Fla. c '62.1. 63.1 67.5 : !'I i 72.8 ----- --..-..- -.-.JF-r4 j+ '- Lat. 2Y39’N.m El.‘165 ft .

--.___ - --.___ 1 I ---.._.__-

,.. I -=\-

Glasgo’w, Mont. : . _ . w 13.3 17.3 3 1 .l &.- -f- ---47.8"' -----:.-';',g., -.

Lat:48”13’N i El. 2277% “-., ,’ ,\ -. 1’. r.. b % 1

- I -‘Grand JA-Aion, Cola.- k:a:., 35.0

I 44.6 : $5.8 .66.3 -

Lat. 39”07’N *‘;I. 4849 ft “ ; . .

! (’ : p

Grand SLake, Colo. ‘ 18.5 23:l 28.5 39.1 '48.7 1 ,

G ,Lat. 4ndl 5’NUl:d389 ft ” a A ” a

.I

;Gi$at. Fails, Mont., 25.40. $7.6 ,m 35.6 47.7O I 57.5 ’ La;: 47+9!N,o El. 3664 ft.

, i

L.... * . *

-. \,

: ’ Greehsboroi N, C. ‘*.- -42.0 ; 4412 < 51.7 60.8 _.~ -69.9 ’ ’ i

,4at, 36”OS’N l El: 891 j? ’ ” . I

‘, . n I ‘1 \ ! L 0 4:

‘/I, Griffin, &:- ‘( 48.9 51i 59.1? . 66.7 74:6

“i Lat; 33”Jg’N *‘El. 98dft _ n D 0 \ 1’ . 0

I ~“iattkm, N: C. 49.9 .* ’ 49.5 54.7 ~ 61.5 b 69.9 ' i

&5”13’N .I% 7 ft ‘,, ’ ’ . ’ m

, ‘3 -.1.. ‘i \

,’ ,:s, i ., Indignapolis, Ind. 1 31 .a. - - 33.9 43.0 54.1 64.9 a

0

4. -1-3 _---

70.9 e1 77.4

.,, .. I' : D ',,- >

0. 364’ 1.1 I * bt; i , 1 I’ 0 :igr. ,’ .:, . ,, ; ’ in : . i ‘. a

Page 377: Passive Solar Energy Book (1)

‘I\

” ‘B-,‘- , ---

c

c ,’ ‘.

*. ’

Appendix\ 4 . d

June ’ July : -: ‘-;Qug&t ’ , Septtim 8_y/ -y!Pf’/ November Decembk . ‘. _

84-p ' '; ' 87.7 . 88.6' (31 z-3'-'. 'Jl,.S : 58.8;; 50.8 ' 7 ". *-~~ , ,, ^I I

. : '3 . t n c .

8d.7 i7.5, .O' s4.; ~

1 F 7fG , , 68.7 (' .57:3 .l. '5.48.9 , ,,.?

r ,' _, c I%&&

w 83.4 R ^ . 83.8 - 84.1 , 812. 75.7 67.2 * : 62.4 -,

c2 . .P L P I

67.3, '.I 76 73.2 . .

6112 '492 . ,31.0 - 18.6 .‘ r 1. \ ,i ,'

I 1 T Ia ._ , i

f&:7\ 82.5 ' *- 79.6 i-,l*4 ',, 58*3 ‘-‘$2*o~ ‘. .” ‘.j,“, :

,; / \

l\\> ".5'6.&' ---.....

62.8 “‘.. [email protected] _ I : 5i.5. ', 452, c .30.3 ,, ,22.6 “““.>..~ I‘

B '.._ I . D ---.__._ 8 .L. . . " +4:3. ' .d "73.8

I --y..,_ 71.3 i 60.6 \‘O 51.4 .D' .38.0 -s 29.1

.i 1 P .i- ., t I r I? I..

e q.0 .’ i 80.2 <I " -78.9 . 73.9 62.7..' il.5 . ti43.2 -. D -

B1 . I Ih I 3 8, :< : "81 ,2 83.0 82m.2: ',yj.p. : -6 ~ '68 $7.3 .- . 49.4

,T * d . ” r+’ ” .=

0 -3 ,_

,, / si /

77.2 80.0 I 79.8 76.3 ' "2 .;,@67.9 59.Y "";-. , p.3: I .s F ati -.* : .- 1; 0 J J, 'k

74.8, 79.6 - 77.4 ,y s 7O.b ' b

I 59.3. .: . I 44.2 r 35.4 . _ L <

,d ' ; m ‘ ', _

B0807h,$.---87+ .- .' \' '84.gmo ' 78.6. _. .68.7 b ,57<Y : i8.9, * I * . e .._

3i L , - . , I : - 'i - --- : ..; ‘ .

*. :: i - . 68.9 L\ 73.9 71.9 ' 64.2 53.6 ' ..; 4i.s s29.6' - "- j .

.'

f’ !y

I’ * l ;. . .

f _’ ,’ ._.

I

” 0 I. . ., . ” .- . . . .

“. c

I : .,

73.8. ' .i i : 62.6 ,! .’

.

84.8 .: 0 85.0' 0 I

p.5 ii' 1 .% .

i; ' . 56.9' " 'i I ~ :. I , - _. - $5 -1 . c _ . ,f -

1 I ,;. ., _ q:

!iC *I ,* j.

! ? ./* ‘. , .m '. * 1 I j .- , ;. / : ' . . 1_

-3; ., .-' ‘v 'L . E... .' . . .,' 365

j c '- < '

,- .&+ F l' B ,, -. - : ',,, .). :,,; ,:?; ., .: i ,I '\ ,, J

--.. -' . .:/ .* -. > 7-- / + , .- " I '. ,: - ,- , i. .' ,., '. /. A ,(- . e _ ~* ..'. ': ." rf. ,,.. I

Page 378: Passive Solar Energy Book (1)

; .-;*; . . -. .;, _; .:x: * .--- .__ ‘L I / . $

2;; ,..,y2.,?.-- d, L +:- b

t

m

( ,i L.. r 4 v -.

; . I( , _- +g + !’ &ja~ve klar Erie,, B&k ”

:’ / -- / , /- i \

:. _- I /, : - : January February .kch April May ._ ; ,‘G

, .-

Land&, Gio. ‘: 20.2 \\

26.3 / 34.7 ’ 45.5 56.0 \ Lat. 42P48’N 0 El. 5370 ft , “/.I” _’ i

I d c

53.9 60.3 69.5 78.3 _, I I,.

’ . z

.- Lemont, Ill. ” * 28.9 30.3 _ 39.5 49.7 59.2 ’

1 Lat. 41*40’ti . El. 597 ft

. _I .

., 9

/ Lexington KY.

’ :

36.5 * 38.8 *’ / 47.4 57.8 ’ b.5 Lat. 38”02’N) b, El.- 979 ft i ‘. l

‘7

;‘. ‘,’

Lit-&l& Nebr. ,. z”’ .

27.8 32.1 . . 42.:4 55.8 * 65.8 ? !G ” --:- li&,~40°51”bi ,* El. ),1&J f-i

-r I* ^ ’

9” .,: , _ :. ,’

.. s,2_. 0 . .

. Littjp Roc.K/Ark. 4?.6 4 48.5 56.0 65.8 7’311

’ ” Lat. ‘Kjyd$ 0 El. 265 ft 0 % . I % ,‘* .-

,, ,, ,- I. 3 I. ‘., .i’,,,,J?& Aiig&h&s: Calif. .(WBA’S)

_- 56.2 56.4 a 59.2 q .i . 61.4 __ 64.2

.I / ’ Lit. 33”56!N . El.;99 ft “

I ,z.. _ /D ”

1.’ 1, *

b .I’ L&h An&$les~ Calif.‘.{WBO) 57.9 59.2 ” 61.Q 611.3 67.6 ”

. Lat. 34’03’N . il. 99 ft ‘\ = . ’ ~ .&

. i i : .P I’

:_ r .I e ! \ D

,f ,,P Madis 5, Wis. i

. . 21.8. ” 24.6 . I*.^ 4g*i I * -

Lat!. 43”. 4% l El. 866 ft :\ 0 . I ^/ . \ \ 7,. .

- . l&t &ka, A.laska

,f

\,’ 1 “’ 13.‘$ 2ld, _ 27.4 1, ;8.6 ’

L.‘ _ La,& rQ30’N b:El. 1 a() fi . “\ ‘I. i \ . . .- . ’ c 4 1( j.

1, , ,-

‘- ! M&@ord, ,(&$$+,’ b31j.4 T 50.8 ’ e.2 45.4 . L&.I4$23m .t:~j. 1’32g:fi + It’ _ y ‘>\ ,“y:’ n

..’ *’ /’ I . / I . . ,’

-’

‘Q @hi, Fla. ‘, A’ \

71..6 72.0 ’ '73.8 ; ’ 77.0 . r 79.91’/ i ;_-I \ I . . : Lat. &‘47:w’ ..El. g’fj ” .I J‘ ” -I

0 s

.;47.9’ . ‘.52!% + 77.2

~

,‘, . .

. ..2.

Page 379: Passive Solar Energy Book (1)

/’ ”

‘1

y._ , I :

Appendix 4

-_+&: ._- August ’ !$ptember bctobei November t%yember r.

-+&d>:.., --7j.6 - -~ ~.. ~.~ -.-- -_ D--~nHr,svr%ey .I .d...

72.5 _ -61.4 --- 48.3 33.4 - 23.8 ;

-. 1. ---. I

\ 88-i <'m4gf$

--k -92.9 85.4' ' 71.7 i 57,PJ ‘ 50.2 :'-

.- . _ , ,’ -_ I

_ .-

- TO.8 ,I 7 74.3 -I ' . - 67.2.‘ .57.6 ,_ . as. '- 43.0. 30.6 c -.

. 76.2 74x8 78.2 72.8 ', 61.2 47.6 38.5 _* 1 ,.

c _' f / -.__ ' .76.0 8;2:6. /. --' 80:2' 71.5 .% 59.9.' ,.,/ 43.2 31.8 .---

:, _. * II @, */*- /' ‘-

$5:1 ' 76-7 " . , 84.6 78.3 67.9" 54.7' 46.7 _ '1 111 / E * I' / \

L. / 66.7 4 _ $9.6 70.2 ,; .69-'i~.~~' 66.1 ‘, 62.6 58.7 , ,__-'- es-3 -"---

k” i ,%.- > r ‘, _ ‘-Y

_ , -’ -.

?/ ,” *-i” /“>

I, T , ”

'i 70.7 ', : -5 ,;

'7 - 75,r8'.

f & " '.> .74.2 'I 1' .i. 69.6 * -r’

65.4' '- 60.2 a&. < *. ., .' . \ \ \ 0 .,,- .' ? y. r - ~ . L I’

.,\ I ,5. . /

.p l\,’ _’

.‘* c- :74.4 *

I\ ’

.: \\ 70:9 ) 76~.8 65.6. ,I' 53.7 &i I \ . .

;' 37-3;,*!- ..-'.,,,>. 25;$ ,- -- ., ,I * : .' -. .r' , 6

, 0 &i--'-~~~\<~e 58.1; ", jg.9 s 37,7 , *s2 ;g

.----._.- - SW>/

L f -- ! ---. a

:Iq\ - ', : : - -_ s.4 , A' " .I 1 ,,‘,+jg.4” i 76.4

-‘-;-..A 76.9, l

,q . ,.a ___ *' /.& .- 58.7 fw $3&;. 'ia. .

,1_, a . . , /r. \ ‘&;$ B \ ,-

/>?$I yp4.1 ;, '

<'-:+,' ./' ,E. ; ;F . . I~ / .,,,;; '

$4*5 : :‘f "Y ! 83.3 *,/A ;

,./--- .

.~ 80.;; ;-: =.. 75.6 i --. 72.6 ~ . . -

/:- 1,' ,, -. 'a 83.9 .85.7 .I- is.0 '," 78.9%. " ,~ 76.3 - 56.6 . . La,,t,49.1 ; 1< -

'r ,, -- 0 .-. 0. , P '9'\, b

'Z\, ijo.1' '\*, 83.2 \ $j .;.':. 81.9 76.6 65.4 := ,_ 52.3 4413 , "

‘\, * \, J- )?I i ‘e..' . . -c, I ' 4 .' b /

\ '_ ( __ 4 p , ,// . . #.L . \

1 \ 0,

m i B _.,, , .' 0 /,

. .

367 '

,/

. . CL ' I *i \ -,' / ". - .i I., ,. ‘.\

. . c I ‘. ,. D

( j+ . iq ,. _. d

/ %.I *. i .-, : ‘, _I I.(

I_. - ., ! “, . % - .

: /

Page 380: Passive Solar Energy Book (1)

\

Y

” \

\ . _-- - ti

. b ,

The Passive Solar ipergy Book I, I’ .-

I

l)lewport, R. I: Lat. 4129’N . El. 60 ft

beti Y&, ii .CY. Lat. 40”46’N l Ei. 52 ft

Januiiry February * March April May L 8

29.5 a:. 32.6 --3\9< 48.2 - 58.6 --_ . -_ ” ,.:F.

9 i

% 3-5.0 34.9 43.1. 52.3, 6313 ‘k

Oak Ridge, T$n.’ Lat. 36”Ol ‘N 0 El. 905 ft

. 41.9 44.2 51.7 '61.4 o $9.8 . n

' 40.1 45.0 -.. ‘Oklahoma City, Okla.‘ 53.2 63.6 712 I* - .‘.

i

Lat. . . 35”24’y El. y304 -

0 ft 3 1

c L :,

:_ Ottawa, X+taricl--:-Y 14.6 15.6 ' ~ 27.7 __-- Lat. 45”20’N ? El.. 339 ft- w - -~..

1- by. , l

c

I *

e

- _---I-- ---~~ ~- ” -.~

f$Warid, Maine ,23.7 ' 24.51 ' ,I 34.4 ' 44.8 .' 55.4 &- tqK.^43”3 9%l.-~-El. 63 it

,! . t ‘. % 1..

i -s

,’ ’ n I

Rapid City, 5. Dak. 24.7~- r- 27.4:' 34.7. 48.2 58.3 , ; 4at&+wH.32-l:8,~~~ .

1 i

\ ', :.

-. , Riverside, Ca’lif,.;,’ ~ * - i 55.3 . 57.0 60.6 65.0 “y.. '69.4

.‘-

Lat. 33’57’N ‘0 !d 1020 it ;

I I

/ . . si’ St. ClFud;“Minn.

I “1 16.9. 9

I c - 13.6 * 29.8: 46.2 -- "I 58.8 '- --

0 c‘ .Y Lai 45y&l . il. 1034 ft

.’ . ,‘- ! 1 n / 5, ,

- s+tf -&g&j -(-jtq; ut&- -t

/

29.4 36.2 at.‘40”46’N 0 El. i227 it

44G4.1 'I 53.9 i. -B 63.1 .- \

-

/ -San Aritonio, T&i. ! : * Lat. 29”3TN l El. 794 ff ’

1. .

.A I

53..7 58.4 65.0 ' 72.2. ii 79-e ~.~~ ~~-~ ;

i - e :

- ;Sa$a~b&ria, Calif. ! -7.

Lat. 34”54’tj l El. J.3.8k. “.’ ‘-’

'54.1 ' "'. - .. #.‘I:. .‘y

- 55.3 ~" 59.5 61.2 , 9&. Q .- ,_

’ Sautt Ste; Marie,,>,Mich. ..‘. 16.3 1‘6.2 a , 25.6; 49.5 L,at. v28’N. El., 724 itt 1

,, /. * 1 I 7 < (

368‘ .: , 4

-. (. ..~ - __ II ‘,.

;rq 1 _ .w -, $$ . ! . .? :&> ‘E

D ,, :,

. .: ; * - :- . ,.

Page 381: Passive Solar Energy Book (1)

w I .

- . AppendS’x ,4 .-

IUW Juk , August September &tobbr ! Noyember ___--- December

67,O 73-J -~ - f2;3-- - 66.7 56.2 46.5 34.4 - .I I ' .

I' 72.2 7&&I ' $5.3 69.5 'I o 59.3 48.3 37.7 \’

.’ __._-. f. I i _. _- .- ~- .= II.

= ~.S -- $8 *: 74.5 62.7 ', . sop- 42.5

:i 2, . ri / . _

--. -80.6 - ' 85.5- 85.4 77.4 66.5 52.2 43.1 / 8

:

19.6 ,,

. ,+-. y; 7J.7 81.3 . . 79.0 68.7 ' 57.0 .42.5 34.0 j

l I.,.

. ,

m

85&I . 87.4 * \

87,8 v; '82.6 j4.7 .' - 63.3 1.

',; j6.5 -4 "6

9 s \ ; .j @' >' i /'

63.5 65.3 65.7 ,:\..

65.9, / 9 64.1 %O..B : 56.1. ,. '.'_. _' \, !

f .1 '."' _"... . * ,. .'

/>

6l..6 "67.3 66.0 )1 '. 57.9' (' '. ,'. _

46.8'~). ‘i

: 33.4 ,\ I -21.9 . I$

,;; \ -. i ,' e 4' *,z \

, '$ 1 II \

i e '-. a . \ . ."' . I 2 1.6 - I \

\\, - 1 \ ! '. ->- +

I ‘i :*

'1, i \,,'.‘ a '369 : ,> :>. . . . . -;- ..;y-, _ \ ,_. ; ;.. '! ', \, - . , D

._

Page 382: Passive Solar Energy Book (1)

--?zEz-: .--

I . .

a ’

s

.,

4

./ .G

-ll$te Pa&ye Solar c<nergy B&k \

Q -‘rT.. A&*.* a I

, 1 January February March

+E: - : April-’ May -

. j

- Sayville, ;N. Y. 35 34.9 '43.1 52.3 63.3 . Lat. 40”30’N l El. 20 ft

'c I +’ .I 4 \ 1 , ‘. :-

Sche&ctady, N. Y. -*% 24.7 1 24.6 - * 34.9 - Lit. 42”50”N . . El. ;I 7 ft

48:3 61.7 -, ‘t _ -

Seabr&, N. J. ‘\

-- e’“3g.5 "i. 37.6 '- / 43.9 654.7 64.9 c Lat. 394O’;N l El. 100 ft i

3’ I .)

; Sea&, Wash. \ ,

42.1 45.0 48..9 x d54.1 59.8 1 Lat..47’27.‘b l El. 386 ft * i ,>’

Seattle, vqsh. 38.9: 42.9 - 46.9 51.9 . 58.1. v I9 Lat,‘q‘IQ@N 0 E.l, 14 ft ’ - I ,

CT ?.

I

Sdokane, in/ash. ,+, , 26.5 -. 31.7 40.5, 49.2 57.4 Lat. 47”4O!Nj l El. 1968 ft --- . , .

, , ,’ e, Pa. ! ’ -3i.3 y .31.4., ; 39 8. mL. ; 1 . 3 -: --. 63.4 -

‘L&t. 40”4@‘N /. El. 1175 ft,i’.d ;: :. ” .) 5

* D

Stillwatdr,~~,kla. 1: . 41 . % ,E2 4i.6 5Si \' 64.2 Lat. 36”Oi’N i El.’ 910

71.6 ft . 9 I

. 26.5 q.26.0 34.2 'I > -463 * 58 1 - ---_-- A-- -.-e _.. . : -- rc e j 1

" .A I

2” _

/ \

T&m, Ari. . I+

‘, 53.7 kit. .32”07’N(

9 57.3 + ,* 62.3 ,. 69-.7 , of 78.0 : .I.. 2556 ft

m I , c , . 9 1 a .

4 :\

Upton; ‘N. .- ,;‘. ’ ’ 35.0 34.9 n ; .' b

i 43.1 c 'I 52.3 <;

L’ai. 40”52’i i Et. 75 ft .

y ,L63,.3 "

9 i- - 7; u i - ,r i

._1

Washin’gton, D.;C.‘(i@BdO) 38.4' :' 396 1 " F.48,,-~'p 6717' /. I

$Lat. 3&51 “N 0 \El’. 6’4 ft .‘, u

‘Lat. 49’54’h.m.El: 7.86 ft ,

..v \ rl /

$innip+, tian. * 3.;. brc' 7.1 51.3 - , 40.$\' 'I \ 55.9 ; '- , \ :: . .

I '. .I , "\ I ,'

Page 383: Passive Solar Energy Book (1)

,;4

. .I . Appendix 4

NCWember kcmber

6444 68.4 67.9 63:3 56.3 48.4 44.4 ' d ; ';.

/ 62.8 k7.2' ' 66.7 61.6 54.0 45.T 41.5 B: 7 :* ..- . n

- 64.6' 9- 7j.4 71.7 62.7 51.5 o 37.4 - 30.5

.,. e 0 I>

71.8 ' :: “75.8 * < . 73.4 66.1 55.6 -43.2 32.6 "$h$ % ,I :i,,. .; i c

, t

81.1 ,I; 85".< ., ,>.t;: 85.9 7i.5 67.6 52.6 43.0 . '? *, t

* , , I ,I. * !-

- 83.0 84.0- 84-4 82.9 77.2 69.6 -. 65.5

. i

' * i-

_ I 0 , ,

. 68.4 73.8 64:3 52.6 ^ 40.9 30.2 /; br

71.8 ' : ? 0 I * ! a ,

' 87.0 _ 9b.l 87.4. 84.0 73.9 62.5 I 56.1 = ,

~ I

.72.2 -'e 1 76.9 ';'75.3 69.5 59.3 48.3- 3T.7 A - I # I I !

e

,768 * ’ ‘; 79.b . 77.9 ‘1 72.2 $0.9 50.2 , 40.2 2 d 0 . i P

I r ,

,’ “/ 65.3 71.9 69.4 _I : 58.6 ' 45.6 , 25.2: I -1O.i f I i !: s

, I 1. %

?‘j, . . f P L I- 1 , *

1. ‘I :--, i .I 37'1 '> ,. j \ 4*/G, :‘, i . LI

Page 384: Passive Solar Energy Book (1)

$7 * - aJ/

’ 1? Norrn~~ l?egree-D s by Month for Cities in tlk United States

f ‘.

CIA the tables, A indicate airport weather s~atFon; C Indicates ccty oifcce 5tatron.j 0 -\

~ I ’ 0 “II”. ‘1. -

city ! ) juiy ’ August .,, September Octqber Novgmber ,/

j ALABAMA , 2,. . I

, * .I

/

Anniston-A , 0 .o 17 - 1') 8 _/ 438 ” Birming am-A

Hun&vi : le ,. ,’ ’ /’

; ! “0 0 12 1 2,3 396 : 0 0, 12 727 ” ~426, -%

‘a ‘MobiIelC - 0 .,’ 0” 10 23 198 ’ rr

Montgobery-C ,‘i.

I I I I 0 0 0’ I 55 1267 ;:

Annette Is. , Barrow

_ . ,P , Barter $. h +’ 3 Bethelf

Cdld- Bay ::I , Cordova

‘A \ Fairbanks 1 *’ Galena

*. Gambell,

(, .I ’ ‘, Jutieau-C

! ti King Salmon Kotze’bue McGrath

‘11 Nome

,- -239 291 510 899 262 217 357 561

1 784 g7’35..

825 1032. 1485 0' '~1929 - 775 987 ’ 1482

j,“’ 1 944

326 I? 381 59i 1029 ,):' 1440 4

c 474 425 525 i 7Z2 918 3,63 360 510 750 1017

P ’ - *

j . T49’ 296 612 1

? ; '\I ! 1 l,,fb

7 ‘“1 64 h

311 /'624 ’ IA-75 1 ; 598 747 c :I ;/4 04.2, 1

’ “279 282 426 . ?

)/’ ‘651 &313 322

, 1'5p3 1: 908 1

e 1384 443' 723 /“I 1225' 1 725 (-

1 '206 357 2 634) ,/“” 1159 1785 .* '. ‘. 1 , 477 ,493 1 , 69.0/l’ a 1085

Northway I @J “‘o

;186 35I) 67/j 2Oltj -- : ‘- 1’ St. Paul Is.-A . . 592 523 ~' $1 1 g&y .

SOURCE: Values in’this chart we@ bathe&d primarily from Handbook o/(Air Condit@ning, !-/e

,p

Clifford Strock and Richard L. Koral’(New York: Industrial Prqsi, 1965), 2d &diti‘o;n., ting, and Ventilating, ed.

1 . 1

I ;i .

ALASKA ;, ” !

Page 385: Passive Solar Energy Book (1)

;-., s

J’ d ir

<I ’ I 0 .

’ .- !

c

.- r, . ,

S * i / ii J,.

-2g=&$-.-.: -y----s- -, -- --Fc= --fy-Ys++- y,:-;‘.

De&llkr January Februaq March’ * p April May .;--., - ;

,. June CW~ da1 e ‘F k , 9 . ,’ .\ . \ I i ! ‘r

k > :. .;.*a..

,. I Y\W . : -f

i... 6'!4 ' " .'61.4 - -485 381 1;8 25 .o 0 -;:, : ~2&4:%

" 548 i 623", 491e .,378 ' i28. .^ '30, 0 ! k! 278 j

663 , ,694" 557 : 434 ._ 138 .,;i9 357 : * 412 *' 290 209, o ' m; PO 0" :

; 0 :- 307p"',;r&

&j :- ‘: 0 ;o 1529 - '$

483 . .ztijJ I- 0 ** 1 954 0 +.,

,458 , 265 c. ~$;&v,q / n ..i \I",

0 ' ^ a $\. I I : ~ 0 1.

a I '. . ,,t\ 1 0

1587 " '1612 _- 1.229 - 1'246 '. '8th = 598 ' 339 - i.0789 _ '. 6 896 " ! 942 ' -809, i 384 BP 672‘ 496.;,( .,,i 32./p-m X' b iO';)6 -1

2237: c 2483 V

.r?q ,, 247% ' ,956 mu'.' 1432j , 933 i A; 1'4994 . -

62337, .' 2536 2369 ' 2477 - .,,A923 1373 i.1: .p2‘4 1~' i986z (, 1!9;2 1804 'I'~ 1565 1 659 /'"': 1 146 ' 775 272 1 12980,. *

?‘12? 1, 1153 . . f 1036 '- 1 p12" 951, ;- 791 591 988.0 '11'90 ' 1240 'c>, IQ89 .+ 1082 ' 858 *

; j '1736 ,j. '108?j <." 685 471 961'5 ' O

'!. 2297 n :,2319; * 1907 546 - 193 -14158 = " iq35 -',! 2303 1'887 ji 1894 1224 .> 6x0 226 ,

165sr A354 0 ' 1135 4 1,4538. 1 .'*

1767 1845 1'425 810 1'44p4 \I.066 ,I lcf, 983 -_ 949 ' 73f3:,

,141l '. ia- &= 315 * ..~$,.&l87- - ,

1606 ls'ij@ n, 1333 966* D 673 2130 l- 22Yo ,',

2285 ,!. 1952 : - 2@65 153.6 .* 'JO97.

408 " 11343 ( *. 65-P "' ' i.6151 ". .',

:, ?241',' 1809 1789 li70. 676, 283 ; -.:- ;',443'gf'J ';.>',* : 4

1776' -1841'. i660 1752 ' lCp0 97 576 ? yl4()86 .p o

2474 2545 '2083 1801 1176\ v 62 1

312 '_ 15506, .“A. 1107" ' lJ97 1154, 1256. 1947 ~ 1 Lc 924 . . 705

. 6, e\ ', 'Y IKf I

1.083'9; : '

, 1 j : '* 7:x _" ,_ \ ,.%~

1 J E I-

.F, 6 , */ ' ,. h 'I .:

!A - \

; $ -, ', ,, ' " I" - &?

. 37;' .' .f 'Y$ .,

* 8. 't ,a z

.i , . , .- q.'. . * 4 \ 9 : 1'

,- -: -I '!, =: 0 0 ,'. ! - \ ', ' * ,‘h' , .

.* ; ., ) .I : // y- .y .,., - _ ' ._ ,:: . . ,i('. _ ..I..

ii>.., _ ,. , b.. f.-‘ y.1'*,y ..,",. I,' ‘L .'.I 1' [ ,, 1 .I_-, ' * '_. I . &- :. '$. '

$8 .'

Appendix 5 8

.’ .

Page 386: Passive Solar Energy Book (1)

;

\ -_

0 i. 'i'-- '* ,

I i * \

r " 1

* *

. ~ ::

The Passive Sdar Energy Boo ,, a ..i I I 1 ’ i I c -2 /

‘,Ci@ ;I-‘, d ,“,J August s&ember i . .

October November

Sh,emy’a Is. * 577 ‘. 4”75 ’ 501 I 784 876 ’ ” Yakuta;‘.\ 381 , 378 - -49.8 722 939* il ‘h j 0 .

ARlZoNk ’ \ I i b I ..3- . i t . I .-

c Flagstaff-A’ 49 78 243 I 586 ’ 876 G‘.‘> . D

Phoen+‘S<-C ’ ’ 0 I,.-0. i oi, 13 182 ; i i ,,’ Prescott-A

ii

1 .o 0 F 34,i b‘ 261 582 I T&on-A ‘0 ‘0 01 24 222 ’ v .Winsloti-A ’ ~ ’ ’ 0 0, 201 a 274: 663 I Yuma-A 0; o-; 0 0 J,OS

I i 0 t,

,,AR&NSAS ’ e 0

(i .s ; 2’ d

: f 4 -f FoflSmith-A’ < x:rm ~-Op r 01. ’ - -1 xl!_ ~~-~ 435

- Little Rock-A, .o. 110 -~-- ~~ p(yy -~~ -~ _~ __

Texarkapa-A ‘.. ‘,,) _ \ . “+, 0 ,O:.,,.l /

.o I.. - 6% 317 s =. /. \ ’ ‘x

3 CA;,~~~N,A ‘, . 1 .

. L t .: .” “, -~ ;p

: P. f3’;k&eld-A

4 a ;’ c-j!. n () I”.,,.’ O..:

Jr 41 I 273 &aumo&$f : a ’ 9 - + 0 .O’ ,a ‘., 103, 298

I I / ~sish~&A’~kj~- en, ,.l 0 0 253 564 .,i 9 -Blue Q+-@A

.-* B&&rIl&~-., r’ti ,‘y

/. s * c I- ” E,$& f , : j

F,rqsno-A ., ‘) ,l,ong Beach \ ‘Los”Angel&+ )

&. ,LQS An&Jes-C ”

/ .bb,upt Shrista-C’ - i @aklafid-‘A D ’ ; Point Arguello ’ i

36 :. -41" o

P 0 -0

4 '267 ’ 248 ‘- .,, ‘0 0 -0 ) t ’ 0 “0 *

>31 P

'~22 ( 0 09 37. 0 46

"84 77

369 . . 633 *I

59 ’

186 335 411 I *

;’ 86 345 . 1 40 { 1 5’6 I 87

\

1 200 ‘c ” ,;. I 41 140

434 705 w 157 ' , 336

Red ,Bluff-A Sactatiento-C

; Sqnd,b&rg-G San -tX)go~A L

, !JY,,‘E San Fr,an&co-C h!, &a ’ San Jos~X ’

Ill s-P 7 ’ ’ !89’ 177 1

7 ,,~ li *’

16' h ” \ 6 ‘:

205 291 5? 319

'7 75 *.’ 321 ) ’ 6. 211 * NJ5

4 52 ?I47 3 128’ 237 El ‘97 -5 2 70 ’ , .,f 4. ‘, 77. 1688, \

Page 387: Passive Solar Energy Book (1)

r Appkdix 5 ’ \

I

&cemb& January February March April ‘May a June Total

" 1042 1045 958 1011 885 837 696 9687 1153 1194 1036 .1060 855 673 ' -. 465 9354 c_

_-,j -1135 1231. 687 -1014 .., 949 _~~~ -3!i5 mm.p21L.p -.--' 753c;

.,I '%O 425 275 1175 62 0 0 1492 * '843 '? 921 717 626 ' 368 16

to3 P 17 4533

403 474 330 239 84 ' * , 0 1776 / 946.. 1001 706 605 335 ' $4 'gn 470i

' .\, 259 * 318 _ 167' 14 .i' 0 0 -951, " 88 l s

\ ,’ j

\ i j ! \

\

\, -- ‘”

I r ” :

‘.

418 127 24 - 0 1 3188 401. 122 i 18 '0~ .:. 2982

441 - 324 84 ..iJ .o 0 2X+ * 2

---_ " b----- - . - . c _. ---_ *.

4 *-. . -----

50 :, . 561 .350 574 ) ..I

259 r ,'. 105 21 6-: ,, F

2115

487: . ' 473 .- 437 ;286 146 18 T840.

803 840 " 664 m 546 9 319 Ol40 809 ' ,

-,38' 4222 -1 822 ' , 893

324 ' ' i96 8.1 5.. . . . . . . . . . .,:--,--e_S97 3 97 - 202 :*_,_ j -5719

308 " 265 -152 \ ,$j8" ;. 552 465 ~ '. 493 (.,

400 :.,,&I4 432"

3e;., 1 ,g- ,, . !

1808 . 4632

. b98O :,: 629

'$. 145 .*,43 0 2532 . ',.., ' 288% .I" 375J 297 ‘-267 1.68 ~ 90 . is

301 \ .+ 378 ": ~ 371l<

305 -. 273 ';,, 185 I 121 I

_ 68 ;56'- -20;15

253 328 244 212 129 ,I "1 9

; 939* 998. ,787 s .-722 0 549 ,, 357 174 1451. , 5913

SOS ,552 400 *. '360' i282 212 c 119 3163

1 400 ': ?'474 " 392, r 403,. 339 298, 2'43 3595 a 5'64 ,617 423~ .I 336 (_ - 177 - 51 - 0 i546

\ l 50, * 614“ 403 ,. ,*'h7 '196 85'. ii‘. 2600

" ,,. 701 781 . '/ 678. 629 " '435 'i ,261 ' 56 4243 'iL 255 ,.'317' ,e 247.,B' 223 151 97 -43" 1574,

;466 : 462 336 t3i7u,p .248

.'O j ;;y ,, $ ._ ;..g; . ' ;g 137 .i 46' I/

._ .:p 'i 285 7

. I' j : , -‘; * i

so : 1 . . I I

: . ,g-:, .p

' (-, . b . I; '../ ',; * ~ *' '.,:_. d

, -' ; ". . ;:

'~ - .o

,~

I ! -I : ~ - 1‘ .)

8 a I' .' :. . ., 4

,\,s: A;, ' . ' lj .? n

,. :_,t " I ! . . I_ \{ , ,, :'

I \ * '_ _

Page 388: Passive Solar Energy Book (1)

-_2_ I B

1’ . . _ rp&ec

I i 0. . xi ,,.o,- i .

,’ , *i, ,..,T i :

The Passi+@blar Energy Book ‘* : .**

” I 1 ,

‘% & ,’ July Aug,ust September October November <’ , ‘. Saqnta Maria-A 98 94 111 '. o 157 ' 262 ‘, ..j’

c .

1 COLORADO. ‘. I 1 i

-? 8 .J /

Alamosa-A' , ' .' 64' 12T 309 648 1665 r .

i v.m&mm-fp. 4.. m~p3+--m,-x _ *a ~~~ .._ 422 ’ , p77 ,

,, .I,' Denver-C 0, 'j85 /7$1.' -: / Grand Junctioq-A Ilj .o’

3 I -103" * 0 - 36 333 $7’92:

5. "* Pueblo7A o 1, 0 v 0 "74 -j;: . ?

383 -.771 n 4: :i: i .,

CON6jECTlCili : ’ . , . .

f -

Bridgeport-A _ .o, 2 -,,o Hartford-A ’ . 0’ I, 14

*New Haven-4 ) “‘1 0 + i8 1 I .

DELIdARE- . ‘I

.’ I

66. 334' 2 645 101 384 . rl 694

93 363 *- 663 ' .

‘h 6 . I

P

.DlSTRICT OF CO11 7.y-.--- - - ---

. ‘.. Silver’ hill Ohs. , Washing&-A Washington-C

- 1

-?,” kpalachkola-C ,’ Daytona Beach

_ ’ ,/ L Fort,Myeti$ %:, ,~ - : jacksofibille-C

e Key ,WqtX ; “! L ? * Lakeland-C

i .-. ~$murne-A

_ 1 /, a ;9;;~;each

Orlando-PI’ q . Penqxcola$

I - I;:, Talla . ‘. .,

+. ; ” _ /

. ‘, ..

‘,.$ ‘( 376 .‘I \ ‘1 I c’ ‘,

_: 0: “0 47 “‘ g&z- I 585 9 6 :

* I w,

I

j .,!o .-J ‘0

~ a,-.*.! ’ 0 .3 .e I ; ‘1: .._ ’ :o

. 0 ,/I 0

.‘I ,I b : 5: 0 I. j 2 ‘0, I ’ 0 ‘., t-3 . . ’ 0.b 0 0 .

j’ 2,

. 1

0 ..;o- 171 ,, 0 0 0 0: 0 ._ 0 ' 0 0 ’ a : 11

’ 0. 0 0 ,‘J b OP.0 yo 0 L 0 :o . 0 ,. 0 - .o* 0 0 0

1 0 ,J

,o 1 ;

, oy;< .;

e . ‘. 1. 6’ I P

. . . . 6 I “- 1 .

154 ' 83

'25 1 *129

0

Page 389: Passive Solar Energy Book (1)

t . ?i

I

i i a’

.- 4 .’

!J f

* - .

. c

,’ .

Appendix 5 f a ”

. December _ f- Janwry February March April ” May -5 . June Total ’ (i,

391 1 ,453 - '370 *341 - ,276 t 229 %152 2934 , '& 1

~.<%f r ;' '

I *h 1 . .,; s

ai?% ^ ." ' I.

0

B .-

. 1 jilf 1491 :: .:,l"' 1 1 76 1029 6'99' - 440 203 8659 '. 1039 -i 1 1122 "' ,i 930 - -El?4 ' 555, -p207A _ 75 ~ 6254 _ '-.- .

958' i ,1042 854 7cj7 _ .

492 266 .68"----- .' 5673 , '; 1'271 - 1132 924 7-38 'i402 * 145' 23 5796 t ri .

1051 * 1104 865 7?5 - 456 203 '27 , 5709 _ -, ..-

0 b 7 0 . I :

. ioi4' 1110 . 1008 "871 561 249 38 5896%' P' IQ82 1178 1050 .

i 871 528 * 201 31 61.39 86'i " 1.026 1113 1005 567 261 1 "52 v 6026 ;

0

‘( ,,

,.

927,. ! 983O 8j6 %98 396 110 P f6 ,- .' 4910@ . '

* 9

6 _ . ‘. i ’ 1 _ 7 I

' ,01 865 >;, ' 918+ 798 ! 632. 347 ' 107 .o 4539 , _,

_'. ,837 893 781 , 619' 323 87 0 4333 \ , 831 ' 884- 770 .,606. 314 80.' 0 .4258 , ,_,

----_ L L .a a24 0 .: -~-- ~-.- - _ _ _~_

'4 ----___ .

--- ' - -~ ---.~i. ~_ -r' -i.- ----.- - i , "184 ,I 33 j-o- 304 , 352.] 263

205 24.5 ' 187 137' '3 11 .. + 0 '. 0 868 I *'-0

d 60. 0 .'O 405 1'. .L

c 101, I 124 ,J 95 .?76 .Q303 + 226

1 18,‘ 28 24 a e t 142 'l.6j.r lb5

' . 127 ). 169 1 2 !,,,:' .- ; -:.i'c. 48 5 5.7‘ .-' :" . ,P $3

.v- ,+37 . 1 43 44 ' ,161 - ,188 ,' 146

~ 334 * 383 ; 275 o 366' ' , :,~ '385 .-:287 %* 4 - . 1

. ' I -'.,O, -p

95 i $) 76' $0" 15 0

9 0 j 92 \+ 0 -i

.,i, , <, 203'; ' ; '45. Q

203 38; -- * i+- ._ -

f' 0 _- ;. . I .

, . .

‘.A ’ ,. ,;,,i’ ” * /

,', , : j. ., '\ I

; - ‘. , . . ’ ! 9 .’

RS .’ _‘: ,_ (8 . . _

; , I

’ . 5 :. , .. 1. .: . I 8

“0 _

0 4 0 .I--

0 :,

;-f I

0’

* J

I.

, .

0 ; , _ 123 :' 0 a ,659 0

'0 : 1435 1519 i *

_ I

. . ,3si h .I .I I

' _I : Y

Page 390: Passive Solar Energy Book (1)

: .@ a 0

\ 15.._ ,

a /’ ., ._.

i ; f

? ..’ . i-

i. ; # a

I E aThe pass& Solai En”ergy BadI

s City Jdy . Augu$t ; September iktober Novembkr

!a”’ Tampa-A 0 -; o- -0,. 0 60 W. Palm Beach-A ’ 0’ 0 /- 0 0 - 7’ L I I

EORCI-i ; ” ’ 8 I 7 ;*

” F

I’ i Jr *-

. i ’ I i ~ * I I i

*Y-A __ :

n (-yl _- __ 2J> --‘- _c

Athens-A ’ LAtlanta-C ! ’ , ’

0 Oi” ;Jj ~~-~- ~a:

5 100 3po 0 0 -~ :- ~.l~-

8. ”

^ 107 387 3 Augusta;A 0 i 59 282

q&tibus-A ‘.i * c . 0 ’ 0 0 ? l 78 326 I,

1 : .:*: Ma&-A-“ t i+ "0 0 Rome-A * 0 1‘ ‘0 = :: ’

'0. ,i3 SE

63 280 140 435 '- -4

Savant&h-A , / > 0‘ : 0,

Thomasville ” ’ ’ 0 , 0 38 225

j 5. 0 -0 ,25 Waldosta--A I I, , 1 I ’ 0 0 '. .o " L . 32'

‘198 \ 203 -

. ( 1 9 * r 0 ,

IDAH,O r. I Y J ^ ’ !’ t . Ir ‘.( *

13,s'. D ,

Boise-A ,I 1 ‘_. ‘, 0 762 Idaho Falls 46W

o.u *

\

,: 16 34 2768, ' ,389 'I 623.' 1056

'i; s Idaho Falls 42rw, .

\ J6. 40. 282 648 ilo7

,,Lewiston-4 . !, < O 0 133 406 747 .

) a+' P~ateilo~A' I'*

d .'I' L \ 0'

w.):i i ,f 22 OF .' 183 487‘ T 873

9,'. T Salmon : d 55 * 2.92. 59i ' 996 _' " ..' I -. , l, '

j i *' ,* .7

ILLINOl+ B a . >

'_ ,1 ,' ., o _ . > I'

.L' Li ,. ', , e Calrok ., ‘0 0 28 161 n 492'

Chic&o-A 9, 9 , ._ I 0 350, 765,s ' - 0 . . 0 j-01 @-A 0

T-=------y&@+- ---i, - ) .:_. --_ ~_; 0 , j; .’ l;i 396 i 79’ ’

5 -c 363 . ! , > ' Peoria,Aq ’ ’ 1 ,?, .

--()- .~ ..~ .’ ~~ F;. \ g ’ . $59 ,78. ",

759 @A 04 I Rockford’ a 6 '/ 9-- 1'14 -~ -~~ ~~ --I -~ --&-jo -~ -&g-m ~~.~ ~_~ ,~~ ~~_ ~-

1‘ a + 1 + : :

-A

$ringfieldX _. " * s 0 1' i- 0 . ,56 259 666 ,, 0

u,

2.

0 ,-‘-o \‘* 59 .21'S '. "570 1 F , -._D " ,o, 'I 17

, Indiakp&is-C !i, I ,‘), _ _ c* o + Q I 4

1 o7 ' -1 -- .;3-27'~~ wry

0 ,* _ 59 ’ .? ,c= . I I i ! .ID ~ 247 iI 642 2 \

I ( . -- 0 . 8 f , &.

I

r

:

0 .

hi . ,

.,‘.

.> ” 0 ‘,

:: “? : - .’

’ ,.,’

i

L / ‘1’

, 1

Page 391: Passive Solar Energy Book (1)

‘: DwYI&&~ ~~-Ja+ary, g kbmary March April May , June .’ Total ._. 9’. i

. 163 148 l‘b2 ! - ,201 .> Q 0 0 - '1 674 v 62. .‘r 85 -$ 61' "33 - .' 0 0 0 0 '1, 248 '

-.! , .h * .i

1 +-

,., :i: , 5. _ / .~ ~--- ,. : ‘. '. . .a 1 --p., -

'* ; ..,r

- i- . , 427 &I -

: '/ ; 446,,-,L,' 629 i:

'- A-- -,-- ~~ __. +I5 333 ;. ':' 404.' 236

-- -do-- _ j--.~~ _~

41 3 632 515' 3%j2 o 135'

15 0 o '. 0 0 .p63 280Q ~ ---- 128 40

.' .d . ,‘24 0

'

2811 494 521 412. '.,3@3 62 ,O :' 10 2i38, 547 563 .' 437 348 9.7 De 6; .o. j .>' 2396 481 ' 497. 391 275 62 0 0 2049 " , 673 '700 560 v 436 159 27 0 3138 \. 412 424.. - 330 238 . 43 1710- '

' 366 " ,394 ' a 'M6'" iv-I+ ,,.ty6

305 208 33 0 I 0 0 0

Lpo 210. .- 1229 1

. '0 ' "o -0m ..o.. ,1 38 1525 . -L . : 0 .* Y -I

Ii - '., ,

' 2 . .' , , , 'G, .o i "7 1% 9, ,, I a .'l.,", L/ ,

= .1054 1169' ' " ' '- I' " 453 249 9.2 ;890 +.&8. 719 84O75 1538 1085 651

:a 1370: ?91 192

. 1,432 - 1600 * pb9

'-fi t l%l d 1107‘ ' '653 388 .192 8760

961 1'060 815 : 663 408 I: '!

22? 68 5483 0.' 1184 1333 . 1022 880 561 . 317 136. 6976 6 1380 i;p '. 1513 ,, ,1103 ! 905 561' 1 334' 169 7922 ,

. . 7 1 I I ‘. _.

I %

1 __ _____.- ..-..--

i 784 4, .- 856 683 1147', : 'y+243& 1053 1.190 '

-_< - ID,7 1084“ 1181 12k * .YO75

-1 I-28 1240 1028 1221 -9a1333 ".~ 1137

m1;oj-7 -'.' .;. 1116 ,' 907

523 182

868 597 SY3 ' 519

' 'I -. 862 453 .828 @435 961,i 516 9.

1 ' -? 713 -. 350

47 0 3756 ' 229 58 6310'

233 ,' 64.r. 6578 199 1 $5 6364 i

' 192 41. 6087 236 60 .. 6830 127 14 -SE25

_-\ 1 I

‘1 I I i‘ d / <

’ -6 ‘, J- \ I b ’ I 1 . . . d . . . I!- ,

'8'71 - .939"' =770 589 -e. 551-” @ 90 ;” . 6 ’ I 4360 - .,: 1122 " 1200 1036 874 ':y - 516 226 1 53 --"

i'O5t ; -6287

:'986 /

- 1.725 140 16 * : 5134 , ,893. I 1,375'

, ‘I .“.<, v \

j I .

.‘* t) ,. 13

: \ ' 379 ") ; ~ .,

c * I ' i f 1 / i

' ( I! _,, I 4 .i_ .,n . <' ' : ./ . ', ., ~, z',. .I ' =*. .L!. . 1 , it% . ,._ L ! ir-*! .I. ' _~ *' I L ',_ D .' ;-

Page 392: Passive Solar Energy Book (1)

s

. . - .s 2. 7. ;;s

,> .I n n e_

I? %

L -’ _ .

v, i, f?assive~S&ar The Energy

n Book _ ’ . P c3

@y-- - .* jillY.~ A”~~~~i;q~ySeptem~r Octkr =. --~ ’ * November 71 .-. 1

‘.iouth B&d-A “I -* *

’ : I*’

5 13 101 381 - 789 ~’ Terre Haute-4 0 5 -*77 . 295 .% 681 I

c L ‘IOWA * 2

A _ 9’ , 0 .c

‘L .

i Burlington-A ; 0: a- ,83 336” ’ ‘-765. ^ .- Charles City-C + c 17 30. i 54 444 %912 .

mavenport- - . 0 ’ 7 - 79 ’ 320 ’ 756 .~

, Des Moines-C 0 -6 S9’ 346 779 _’ .._ -.. Deubtique-A 8 28 149 444 882 :

Sio’ux City-A, (., 128 405 ,885 * -. ‘_ ‘Water106 138 428 - 909

\’ I g

- r

_ KANSAS Q ,,A / ‘FIi_ *

““& ’ ’ Ccmcordia-C .O 0 - .‘55 277 j. 687 ,,

. a ” , .. Dodge City-A ,, 0 :y ‘O- 40 262 ) ‘<, _,. m-t 6fg

Goodland-A O. ‘.O ,.i_ 95: 4,3:.:: 825 ~ Topeka-C ’ ” - ” 0 0 ,, 42. 242 630

-+-_. :. ,~,

---> . . - 0, 0 3,2, 219 “5gj : ’

- h- K., KhTUCKi

---.- __ * -._’ *.,. s’ 0 -

:‘.. ;. , m 1

Bowling Green-A . 0 0 47 ” . 215 558 CovirigtG -. . ., .o 0 ,291 669 n ‘,/75

.O 0 259 ?’ 636 Lexing&h-A 56 a.* Louisville-C ., 0 . 0 41 206 549 I

, .o 22 218 New Orleaps-C 141 _ 0 5 .O Shreveport-A 0 l 53 305

MAINE. A -. i ,I : 1

. I? :.. I I . , . :

1 i h 85 133 354 I .f>

Qiib&.A -710 . (1074 . - I _ ., . h

a. 0 r ati , . e ,

380 I >

%ka, ._ ” I:a\ , 1 _ ‘/

‘do T ., . -<., (/_ ’ “,L 9 h I-

Page 393: Passive Solar Energy Book (1)

‘i .- 2

. c’.=; 4

nc -<- 2 & p

i ..’ ;’

!, 0 c

, ‘. . c

, s

’ i - ‘e 5’

.J. *.

R I n .’ m Q . -

0: _’ Appendix 5 ’ -3’~ -l-L--1 -.. - -~ _ -m---p-

‘t

.( “-2, -LIT- ->. ._~. ~- --~ is ‘i&edw

K----- -- -- . /- January February March - April May June

Fair-- ~--

$1 ‘.< ,_,

.x $ 1153 '1081 908 * 531 && .-.m.---&&- --..- ~~ ~.~ .-- c lij5.2 6524

.' . 1023 ' 1107 . 913 725 ., 371 145 24 5366 ?*, - :

. . . -

1 19 r s , BP -ii ,

.c! :‘ I i

-i . .” 11&Y 1271 . . 1036 822 .'i< 42i' 179 34 :- --+Jm-b:t'm

1.352 1494 . "1240 iooj 537" 256 74 7504 1147 a 1262 - " 1044 834 432‘ 175 &‘ 35 ' 6091

. . .~- 5-L - ---

1178. 1308 1072 n- '-849. 425 ‘1 83 ' 41 6274 1290 -@ 1414- i 1187 983 i43 267 76 * 7271

:'.*,., 1 290 .I= __. 1170 936 --, 1423 -1 228 474 is 54 . . 701'2. "': 1296 .*- ,lU6Cj 1221 --l-O23 531 229__ 54 " 7320 ~_ / --- _ . i (s 1 . W'd I

---. -: 'a

102i‘ -1144 ' '899 -0 7i5 .y 146 341' 20 . 5323 g-l> '< " 980 1076

- li28.

840 694 -. -347 135 15 0. ,.5058 '-. /I215 - 974 -884

.~~ 534, 241 '58 6367

_' 977 ' 1088. '85 1 I' ', 669 295. ,112 4919 ,. -.915 ~~ 1023 778 +619 280 io1 ~-.A;. _. -:4571 --%

F - co c *. - /

i340 \)--I ~CKi :' --739_- 601 ' '

. ( 5 ,42?9' _ _ 983 ,1035. 893 -756

~.~_~ 2.86 --.-,g --.39;(r-,

~24----

] , 933 -1: .--. 1 008 f

,- Aj2fj5 ~---~

'- k &4 710 849 911 1 762 R =I 665

368 140 15 4979 270 .‘& 86 a 0 - 4279. .? b +

,,, * I '-J, _ '

s .z. .

: $;x, _- 471 "361 260 ,439 ,O' , 0 1921

424 293 215 48 1 0' ‘3oY

Y 0 1.595: ‘a 227, i o- ,226 169. " 2‘9 0 ':O ,- 1033" '

(2 '35% ,,~

* 416 284 mu; '2JO l ~ -223 1.63 40 0 $83 0 1.543 '9 34i'

'.~ ,+.$.

c 19 0.

'

0 11'75 ,_ O

,386 ““‘, 272 0 211z i), -, 490 ; -j350 .61 -o" .

- . D I P ,: L I

x. .di

1562: 1 ?45 -'-' .‘i 1342 909' 201 10173 .-- I . . - Y 1546 5#72

s h /

h ,< ,, " 3 t "1

-- -' ; . <' .- -381 4. ' %'

I... -- ._. _ . .-.. ._. _, - .. .x-- -1 0

.,i; _ . D --. i ,.&, ,iy "

,, .: I':.:",., :,, ;, 1. *,' - I.' I _1 " n. 1

Page 394: Passive Solar Energy Book (1)

‘. ‘p- 3 ‘:. L. +? j&-, ,’ - -

. s

. *

% ‘,*,

, .r~P;;;

0 *’ r...

‘2 ‘_ .*

, I .,- ’ * . -I .a< . .

I :r I j. - , 8 I

n ; -‘-, ; 4

c ._ -

1, Th&j%ssiv& Skar En@& Book - .f+ \ +

. D o iv< 1 . . * ^ -L ~~~Y.lM!K- 'Xptember October. November ~--__ . . .u. f .

,Eastport-C -. I'. : T -4 dg. 136 -261, ‘. ,521 * ?98 ’ . .

, .:Portland+ _“, . z Ak : “;i;$ 56 A 199;..;, -515 > 825 ., c ., .y ,: '_ , :

Tbt~ftpiND D, " I,.

"1 il..- ~/ .,. I i "' - I .Y.. - ,_

0 . . ,: 1 o

0 . Baltirnbre-C “d ” a.. 1,; s

‘489 -, ,_ Freaeri$-A ” 0” - j+fq& ua ;; 588 - .* ~ (:. $; n ‘;

I . 0 .

.( ; _ ~SSA~HUSETJ-S ~------~--~-~~--~--,--.

' .o I .i n. ^ -

T. i' , Blue Hill*ObS;;..! ,., .+ D II -,b . . . Boston-A - ‘. .$*c;$::: A* o -‘&g,., -0 :;- _ 7 , 77 * 315, 618

NantticJ&$ ‘r! -22 ~ 34, 111 . -372 .-? 615

/a . .c '. '.. .,* P$tsfield~~ti$?. .$ ,,,, .,_,

c, .= "I . -.-. -.~ _ _ _ ~. ~--~&f&y& -. ___ .--.-.- --

, 0 0 @ c *' ' ., 1 ,:",;.:,. i .% J. . 0: b : .- ..J.Y‘%$ .h*& ,, ,,%

_-.. :+! L'- ,- : ‘$y.Pena-C 8' 50 i. : 85 ,?. . 215 ‘w 530 864 ., :;, .~~~'~.$'&tr~it-A , 0 ;', .8 .+ ; ;,,+ -'&,96 . ?8i "d747

~j -~ -1 ri . p~mEscanaba;C :,A 62 rv <24? ,,:i55 L.nb -933 Flint .“* ,,...,: :. ::~fqq? ; .;-!g '465 0 843‘

( ,.,,-y ,.. ,. , -:'o '.,, :- i$pgIf&~,;,: ;.g " . _ &W~ .3 94

_ 75$$? *+, e

, +..+;;; 455 __, 813 . . : ~ 543. 933 " . .~ .-~Msh,+ ~--~ ; ~.~ ,'--.-= :----

~. -152 ; 46i, 795 -

:

--~-__ a

‘-

I

‘_

Sailt S&.%4ari&A 3 _ '

: :q,“+~;: loa 126 .-kc 2% 63’9 J ' #loo5 IF. ,s&c.y ..,$.%:, *, W(,.O .;g 0 I

i'? . .. MI@IESOTi

'. T&z '"f ' 6' -* i '- -: .~ ,, $:. 'C . t / ,-.,!?-z

. . . *. . -:. . &:, ,C' --h. -

- - ~~ Du!~t_hrC 614 yog2

_ .' tnternationai Falls-A -’ ~a-. ’

. [email protected] ;\,- *-. ol ’

70 i #$& &. . -2776-m 7, --a ,356 .716 ..~~. -...- :--..- ~

Mi~-~p&,A c .~ 8 17 --~ 157 Rochester-A -~. -- .; . _??

4w: 38 -. 499

yy Saint Cloud-A 32 1. 182 a:

-'5-j <~f~++~ _ 225 :;,J& Saint Paul-A-"',' - ~~ o 12 21 ”

J 57(x .154 j -, '459

1230 960 975 -

u&8 ii ., 951 -

MlSSlSSlPPl '

Jack$m-A ~~- 0 Meridian-A . ^Y 0 -. <.- 0 .-,. Vicksburg-C ’ .O T

0 69 310 0 .!30 338

I 51. -" 268% 0 ,jo ,’

F

L L -‘\ 382 “’ .J,”

- 0 --q& gr- +;” (‘I D

“,’ I$ I _, i !,s:.. ; / 8 I / ,,’ ,-. _‘S ‘. ,. ,

Page 395: Passive Solar Energy Book (1)

I. m .

_ ‘. *,

,.. ; : .i_ . -

I2

. 5, ,p

z “‘.4!

:;R - -.

,‘Appendix 5

,I:: December January .: k&#gL~L -.-L *---. L_ .: _

Febkafi ” March a April -/. r

kjay june ’ Tota!

‘%,$2@j 1333 *;,@;j@l -= --- ~~ ~---

? I'

1323 -*;. 1063

; ---f,3. --F-$4m ~. __

Y237" -3 8' * 1039 .p.3 394 * ;g- 1. ', t .ji- Y .; l t / Q .: ;<. 7 .

.- .

622's' 7!$.* 611 326 73,s /o 4203

.' 673 ,, 368 106 O 4854 (1

c, (’

b i B :

___ ' ~~ -1085-

_ .+-7R-' ~-~ --~,:lo&3> 2, ' -I;wb ~-- L-p-------- 579 r 267 69 6368

- -- 998 -3z-

.,lfl3 1002 " 8% . 534 236 " 42 '1. 5791 7 ' 'T--- -

;; +. 1246‘ c ? 'a 1628----. --34~- 880 ' 642 394 139 6102

al=- ) 1212 ----_ ,

m ------fit@ 336 a 105 ' 7694 i. - I~-- ~_ "U " -----___

-.-. "r_--.m-m ., # --- '- - _ -~_A _ -. =~ .- $q.- _ ii

,I ;= * ,“ .

.,.i21~ ,. ( * 1359 ' 12i3 .,

.=. -3 1156 /* 7*62 __ : 437 & 35

. I. 8073 ._

'.s .I. J.,p 1.' - 1203 I= ib72 . 92.7. ~~~ m558m ~~ 251 --,i-..m -.~-_ ~._ 6484_ ‘I:32 1 "q.z. .I$ 1

.,.._ ',1"212 "i:' - '- 1

- 473 -3 7 ,1327 1203., 804 471 *, 166

- - 330 g& '1 1 gg .* 1066 y ‘639 215' '

319 -m-;m--9&- 1086 _ 9y--- mdy -/Ee --=--------=2-g 58

~- ~- - 277 -~~ '- ?.-,,&p$~- _ 986 591 287 70 435 ..ixj ~gjS -. nc 1 l&l,; 789 477 189 243 11.34 %%i. * ,'.I442 /

, 1011 64i ,j_ 846 -3302

J-' ,, i (."

.~ ‘:6474 - * 6982

8529. 7089 9475 ' ,~~

- ,,. _,

i’ c

.: _. -*

. ‘: * d . . ..fi ,$,4 z

.‘i.550 2: <,‘I’ 1,696 - - ' ' 1448 801 487 200 9574,, .- .- 1,.73c __ .- ..il$zL

,.-.- 1252 .!i .

-1414 - ': 562

B

---x618 I'. .' -9'395 J34 437 .'

171 * 1oqoo .1310. 1057 ~- I .5'70 259 80 7853 "' ~

' '. 1426 -,_ 1 72 1$16 * .1073 600 8095 1555 ,, '1690 1439 6L, 3181 - 663

A qq., 3.31 q‘106 8893

I 14q1, 1553 '1.305 ; 1051 ." 564 256 ,77 .7804 .

7 7

_, -- -

:,,. ,- .. : 1

:

<;. 299 CL 503' i $35 - . 405 ---&- '- ou 0 _ -2202 _. - --- _~_ 413 . 0 /! -z!i_. , Do, 7 a ” 561 ,309 I ,~. 85 t 9

456 "5 -gy' * o 374 $333

s 2000 : ' ',> w.- I.>. "

- -'2!3 :I 71 . - ! 0, 0 -- w <

q : . *- ----.. _ -~ ._ . 5 . ~

:,a I ,' . - . h i. -. . ^ -.e : I . 1-o. .' ,383' < . ' !',i P L..,,' % a, .._- ., 'i ~-- .._,_,,: . 8. ,".,-_.. * '. , : 1,

1 ,,__' . . ~. _' ' ;:* ';... ", a >- ___ --

il -7

Page 396: Passive Solar Energy Book (1)

“:

(,>,,f -+ h

,/ -1 5 )_

2- *i

$,

./

.

1 m : * - @ . . .

,11 I The Passive Solar Energy Book . - -\

B 0 city. ,’ . IUlY hP$ September October = November

~L--M.L~SOURI - _‘_...____ e,,i .___ -. .: . .: I __ _-.. - . _.... ~__ 1

._ ~~~~. .~.

:. .I._, a i .I Columkha-A , ‘” -’ i 6' * 62' ' ' 262

v .-..L 654 1 _ _. _' ,- B 8 Kansas City-A 6 ~.. 0 . . 44 240 621

:Saint J&eph.-A _

- Saint jhuis-CI ‘__ ?

0 ..B5 L -49 265 681 ,ksL, .'. 0. *I3 38 -i) 202 ) 570

’ . . Springfield-A . 0 8. 61 249 615 -E.--- , -A

a e h

7 MONTANA c ,= - D

‘BiIlingaF---;~-- - - ~. 8 20 P34, - 497 I 876‘ Butte-&? 115 174. m450p-m ~-~~ 744

, C;lasgok& ’ ” 1104. .

r. ,: 14 30 6. 244 574 -f -‘-" 10.86 *

,_. ? Great Fa!;fs-A 24 50 - 273 524 894 ' ,' ‘Havre-C ! 20 38 =- 270' ,564 1023. t.<

?-- -- Helerfa-C -1 . -51 78 a 359 598 969 *- Kal$xll-A -T * ; 47 83 326 639 o 990 c

;'----~-r'.~~_ci_ty-A;,' . .---------6- y- 1-1~. ,187 I 525 966 t. ,.' "-~~s~ula-Ai~~,',-----~---~ ------'. 22 ~

‘” a? ‘. -_~ _

L.. : - 84 h 69' 822 I‘

,:. ~ - '79 % 310 *. , 741 "1. .; 122 " 422. 903 '~ :-

,_ T 120 425 ' 846 0 I.\. 5 88 . . ' 331: 783

'. 137 456 .' 867 '-

145 // 461 891.; ‘\ : I : 1'

', .\ . . .

,., ~

'".. ._- I __-- k .. .I. :I “,&o-A '

Ely-A.1 . e .- 6 ‘“‘28 4 229 915

$2: .

‘5 * ” -, 22 _,

44 .>. ; 228, e )

- .'. 546

Las. l&gas-C ;.. @fio-A * ' ' +

0 .' 4 24:

'

0 0 \ 561 - --i ‘894

. . 61 \;

3

44 a.'

61 165 443 '44 ‘

7- Tbnopah - < . 0 ', 5 96 - 422 723 0 .- Winnhnucca-A -L ,’

: > ,o-' 17 180 508 - 822

/ -. a . . 1

',: . ,- .Y- L i ’ c - . . A . . , j -.___._ ._ L ‘. D D ?I ,Ei‘ *

,/’ ‘j . . ..I

,: 384 4 ._ . _. :, \ ^. e 2. ;, .: '-\ '. - : ':. ,:,--. ,' : ‘ ,L, .,', :; 1 p

I :. _ - --

Page 397: Passive Solar Energy Book (1)

I’/ ‘_ 1 m

---_ .--- -ad-. ~--~ -.-__.. ._.~. -_--~ --.-___

*cl .

. .h i

P -

/, /

/’ -. 2.

/ \

\ ,rDM& /January ‘3 I Fekary March &I ‘May JUfW “TO&d, \\ </ . . a - .-.. ---- q A... ._ -. ;--- ----T-

1. ___ _.. ___ --- -.... -.--- 0 r . ’

q fi’ *. k . .: ..I. ,,

e 989. . ..’

.I-0.9 1 876 698 ' 326 135 " -n 14 5113. .- \ 970 '., 1085- 85-L+ 666 B2 n .ll,l ?' 8 .cp888. -

,-.. ?F\O48 -1175 930 , 716'~ 326 J2Z 'l& 5336 ti93- 1. " \9$3 "* 792 620 270 * "94 ^ 7 'b "7 4469% I

' 908 1001 796 - ' 63'2 295 - ( 5 118 n e

.I6 -’ d 4693-“.

“I

9 . .

Y- ‘-. ~-It172- _. 1305, . '1089 .a958

."_- - ~64 2 304 2-119 ~- 7106 -

‘c .' 1442 1575. w 1294 lf72',' + 804. 561 .. 325“ 9760 113 -.-. ~.- 1yo , LJ683 . 1408 '.‘ ~ ' .111.9. ,- ;5,97 ~ * 312 , 8690 c

1194 :--xaL.- :y31 1513 ---

1008 621 359 166 7555 -',. 1383 1291- - 313 1 25" .. ._^ j215 ?I438

8713 l..J 14

.--IO76 : -~ 597._ _ m. 427 , .992' 660 ~ . ~- 225 J3U6 a

i; -.*12,49 % l&g- ii2w 970 639 ". *391 -'. : ."2 1 5 8055 1373 1516, 1229 JO48, a 570' 285 '106 7822

" . 12F3 .- 1414 7100 3 * -939 609 . 365 176 =' 7873 _) $1 i 0 D a3 ? -1 < _ ,.-. aJ ' ,A.

.c :* ; . .._ -117i) :, 1302 ' 1044 849 ) 423. - 195 3 9 'I 6311;

'1113 . .?.I . 1240 794 377 172. 32‘. ; '. ., 1000 .' 5865c.g

<\ 1280, 1417‘ - '1 1 59 ,'.:-*- 933 501 251. 60 'on y~065~"

-,w72 127lr ' ,1016-, 887 489 ,243 ,; >59 B 65146 ~

1166 :*. -~._-

--13p-: 1058 ,;"' 83 1 . .-:: 389 175 3.2 : 6.160 1178

i 1 fj.12 ‘i

1287 ,I036 * - 933 &i67 305 81 8841 ). '

-,L. 1 1.3-y 1lOG ' yo.. *543 288 83 7075 " .-- <p ..__ . . .I _ 0 . , o " ', f .~ . d -i

I . 2 d : D a' 6 2 "

9 i --._ a

, 1181' ..:, - 1336 do25 * ~ 896 _r 612 378‘. -- 183 7i35 i181 4 '1'~ ,I-302 fO33 d _- ,921 639 418 200 7443

,', .'. ..;y ',,' . . $64) . . "'h53

986 ' .I 423. - ": “288 92 0 ‘o- '2425

: ." 1048 \ 804 756 ;19 3~18 165 6036 . 99.5 . JO82 ( , 860 A ..763 : ,504 '272 y ' 91 5813. . .i#', .

I 1085 _ 1153, 794 546 .299 $1 1 6369 c

'y, _854 d Y 11 . , a

I~ .r ._-. _~~ . j,

. .I. 0

_ *

:I, ,, . -,

,: 2. .

s

ip

. .

B

0.

385 0. *1

Page 398: Passive Solar Energy Book (1)

: ,: o ; .J ; * L_ ;;. WC, ,-I ,, G ir ‘a

_....-- ~-- ‘.‘& A .

!, /,.-,. ,A \zz ‘- *\ .

“‘“2 ‘-‘“‘,“o . 4. ,“_.. -,

-~-~~ ~-__ _.__.. .; -,k -. . ..~ _ TV -~. .2.~---

_- ‘, ,* a a,, ; / 7 ; _/--- - I _

The Passive Solar’ Energy &ok w---

0 ._ -c_1___J w-- ----- * d . L. “z. #

l “1 ‘>.- ‘--G-6 0

. . I _’ . _ b dity MY ( August sept&lher October TNovefhk * .( I 4

*. 1 0 -. o ti;W HAMl+lRE

cr 4 . . t ..‘. . . A . . -*b ,

?. c .I :/_ ‘- ,’ : Concord-A .r’ I 11, 57 '.. ,192 .$ . 527 849

\ Mt. Wash. dbs. , 493 536 * 720 1057 1341 Q \ _ ,A+

. * -NEW JERSEY 7

” i” 6 II

Atlanti? City-C ) O' I_ ‘0 0 : 29. 230 507 Newark-A * ’ 0 05 I 37 301 *

I-.--- Trefflon-C -~- 0 ou . 55 '. 285 I '_l

Y “NEW’ MEXICO ’ I.8 -

I ’ ,?

Albuqu&qlte-A- * 0” 10 218 i 630. Claytdn-A * *. ; ;.(-J 68 318 *c 67’8

10 Raton-A _ - r. 148. D -431.a 798 _ .,.

i Roswell-A . : -h -

1.; I$~ -. 3; @ .a ,*+a ".10.

r * i?sh:,~. o ; ;

156 501 3. ' \ i ' F -2 .

NEW YORK, “y - 0” u . * _.~ ~~~~ -0 : 0. ’ -r : .C

Albany-C 1 “0 ,-

0 , f, ,.‘~, - o -.. e 98’ :, 388 708

: ,,,.: ’ ', -Bear.Moun;ain-C i ‘0 25 119 *,409. I.. .: .753 ~~--- ,.'. .z. ’ -, 16 63 192 -834 I. Binghamton-A ij I- 518; ;;. ,,.1 _ ;,c' * eBinghamton-C ' . 0 36 141 428 735'.

’ .BuffaID-A

’ 16

30 - ,122 '

;: ,,

* 433 ;&?.., 753 . Few York:JFK I&l-A '2'48 '

), 1, 8,". ,",,L , 0 ,/

(I 564. 36.$ _ A' JAew, York-C 39 263 561

. I- . ..., 139 430 ?38.", '. .; D _ Ostiego-C - :, :' Rot hester-4 133 .' 449 759

.G I /' .-k Schenectady-C . 1437 456 792 - 1’ Syracuse-A 0 - , 29 .- h z 117 ;,, 398, 714q

I ;’ ., ,. ’ NtlR I :.

TH CAROLINA L -. ‘. .,’ i-4 .

$ _’ ~ !/. ,.isfi,eiiI 1e-C ’ ,;;S 0 262 %. d 552 "' 0 ;;',

'I-- ".' .C,harlotte-A ’ 0.’ i -. 50 -, ,

w.0 ’ Q 7 1 147 .A"

.' ., ,.Greensboro-A .. . ’ ? 0. ] 0 ,’ ‘29. ’ 202 43"$ .;: 510 .-

, _' Hatteras-C . . 0. 63 244 ^. , u_. ,: )’ I._ I7 ,Raleigh-C, :

* ;y----&; . . ..I~~~ 387* :>. ‘, -.-~- L‘. * WiIinington~A _..--._ //$----- o 0. 73 .'-.' d -. 388 ,,-.’ . . ..-

2 $&ton-Sd&pA~~ --?I 0. ‘- o.- 182 49.2 i. .I _ $28 u' .,, ('c.,-"-

..'I. 1,' I %y $4. .'TT. I \ ,>r -* .

I.i. .:I i .? +J$i .:- :: a.

,& '*T '$ .- ' "2,;; !<, j. ' . *. 6;:

/:: ,. (.--c -I,, /,-'~ .' L .- . i,- .,' a-

Page 399: Passive Solar Energy Book (1)

/----- ---

, .-t-H * ED *,. >r--.---,

@

tr

h d@ *,r- r ” .; P --? . ,. :.

‘. a / ;., ^ _i . Appendix15 **

I I 4

. f :_ - ’ 0 DeCember January : February March &il

at ~ kY ,, ..~

June ~7’Total I_ ’

c “d e c/ * 0’ -I# 0 e -

' " "' ., -1271 1392 182QQ

1226 - 1029 p q 660 316 82 7612 1742‘ 166!Lq 1652 1260 c 930 603 i ;' 13817 ; o P .

. n- ,. * ' . . >

ij. _

'I '. 831 905 829 729 * 468 -189 24. - ~ 4741

961 .1039 932 760. 4% 148 b

811 .s52 930 1o04mp : 904 735 429 133 11 506'8

. . s D _ =' . ,- 7 ., . - 0 . . ,' * c 1

. 9io 584. 209,- * - : _ 899 714 " _ y '^ 70 no 4389

. 927 995 795 ,729 * 420 184h 24"" 5138 ., 1104 12032 :-- ,924 ; l3K ~~~ 543- 292 ~~~~~. w ---e msm,

'750 .7ty 566 443 185 .28 '0' ,= 4424 d <. .

,_ . .I %.

P 4 . I

- . 3 - --~.~

*' 1'115 jlloa-

ii34 1103 531 -t i -6319 : ‘202 31

= 1212 1098 - .905 921 561 244 LIP‘ 5g l ,q ; 6511' .m 1228 1342 1215 105i. 672. 318 88 7537O

:' 44, '1 -- --- 1218 -. Ilo" .. -a-- _ L , 92? 570 240 48 6556 1225, - 1128 -- - .~ 992' 636 315 '72 6838 1

‘1 1’.1.6 ’ l . G33

. ' 908

. 1132 .'l i 1,141 1

-. J212 1

029 935 815-.‘ ,:- 480 --~- : 167 12 5219 -~ - 995 904 753 ' 456 is3 18 ; 5050

' 1134 :. 249 - 995 654. 355 90 6975 '. .

249 1148 992 615 289 54 6863 349 ' ?207 1008 ,597 233 40 7050 F , ,

1’) 1.3 “1 225. 1117 955.. _ ,. 570 247 37 a. 6520 I.

.; .--

?

/ .. C”

* D B’ r * . .

’ -. . 76.9 794 678 572 " '285 ,105 5' 4072 a ' ‘682

. r: :* 704.. 577 449 172 29 0 . 3205

772 806 672 '

528 '

241' e5o 0 3810 l 48:1 c: 527 l --. 487 394

577, 0; 171 '. * 25 'TO O I, 1 .T 651 : i 691 440 172 29 i Q.

'23t2 * 3075 I'

. " ,508 ," -' = . 533 463 "', 347 104 .'7 ..?+' (-J 2323 J/.56 ' .-! 79i 866 519 232 . -49, 0. 3721 II 6~ L . a

't l ~ ..‘” e 1 &

** ‘. ' I <a >I 387 I Lb

*,:: -_ i : .'i \ -- -j.-- T ____ ~~ _~. _ ._ .: n- ~ _-__ e ,I :

Page 400: Passive Solar Energy Book (1)

;. “& .o

H .,

ii

,‘- r 1 * _ 1

; G lil

.

;;% i ,“- , ‘I

1m

.’ . ‘34. ,I c The Pa&e Solar Eniigy %ok P

‘_ city

,< . I- MY August Fptember OctObef : r. November .

r /

NORTH,DAKOiA - , ) :*)?

I/,# *[

a- i I i .~ ~1 Bismarck-A 29 37' 227 " ‘598 '1 1098

Devi Is Lake-C 47 61 276 - " 654 .

\ 1197 @ ~ Fargo-A 25 215 r 586 \ 1122

. .I Williston-C ” -, 0. ;:I 261 _ 605 \ 1101 < '. c'

-.29., * , B

.a L J ", rn r. I, .

j' OH,O if . I.. ., -0

. --l ‘h Akron-CdFton-A * f 0 17 831i 378. 738 . . * Cincinnati-C 0 0 42 567 ’

Cleveland-C d @’ 2?2

0 9 i-> ko 311 636 i v Columb$-C 0” O’l

0 Da,yton-A0 0 /\ :4”:: ” $4’ 654

’ 693 x , Mansfield ~- ___ ~. 9 -~ ~~-~ ~22 ~~~ 114 ~--a~, 397 768 4 __ -- __

- _~~.. _ - 7. +- SanduskpC 0 0 ’ 66 327 684 , Toledo-A’ ’ 0 12 102 h 387 756

. YoungstownlA 0 ^ 19 83 355 732 ,( 1 .*

:' , .d .q.- -f@.@-JAP(A 1 ", .". ' -a . d . o

,,:__

Oklahoma dty-C s 0 : -0 1'2 149 . '" 459 Tulsa-A 0 0.. 452 462

L^' '4 lkf

.' ! *

i .4” i j.*

.o I OR&ON ,~ 1 -. j_

.

.:- * As&j&-A / 1.138 :' ,111 14-6: 338:. 537 i : .,. Baker-C I 25 _- 47 255 ". 9 518 852

- Burns-C 10 37 219 552 855 - c E@en&h : - - ~- ~. 33 34 144 381 '591 .- _ _ 3,. ;

I' Me&ham-A . 88 To2 294 605 903 * 1 .P Medford-A ‘0 0 77 '-326 '* 624 I

(’ ‘1\ Pendleton-A Y . ’ i

i;. 0.’ 0 '104 ~ 353 . :717 '0 *Portland-C ’ l ; ,’ \ : 103 14 85 * 280 534 ?

1 Roseburg-C '

1 i 14 0 q() 98 ,i88 531 _

* Salem-A. 21 ii3 . 23/ ,326 588 " * ‘! Sexton Sum.mit’ 88 ‘A.64 169 '~ 4'56 ' 714

* : Troutdal&A 33 31 131 - - 335 591

*

: ,‘i‘- r P P

t I .~ .‘, I

-5 a -e

,. ‘. ;’

‘” .% 0 b ! 388 I -.

. . " ’ ‘2.

^ ‘ , '5 i ' .I . .

_ ; 'i"." i 0. : 'I ; g:',, : '5,,, $\< ,, +,; '* ., I \ .- j - - . /

Page 401: Passive Solar Energy Book (1)

_T ,,P . la .n . )

.s by- /’ , I

i. B 4 c.

.‘! I,

t 4- : .- r

e D

. k n,

, 3 G’

/I i

I c Appendix s x ’ El d .A e---.. _ -

~pecenlbir January debruary March April Ma; % 1ne .!&A

.--. +@al /’ @ - / 2

p I I 0 . 4 .B

I

7 ! Ii535 1730 ii64. 657' 1'16

1668 - 186fL .15.76*

1187:;" ($55 9033 1" -<.' ' /, ‘1314 j 750 394 137 9940 ,'

1615 h' qJg5 - 1518 ., '1231 ; 687 338 101 9274 - '

1528 ""1iO5 !' ., 1442 1194 ~ ; 663 360 138, 9068 ! ~

-

I icj

.

,1u l

c 5

108; 1'16‘6 II 1033 4 884 537 235 50 6203 880 942 , 812 645 314 " 108 .

'.,_ 995 ho1

0 4532

977 846 '.I.,., 510. 223 49 5717‘

- '~~~.~.~.f?a3_ ~--~ * ~- 105 I- %' 907 741 406, 22 1 &Q-y..,, 1094

.?53 5277

*

,.

941 :781 * iO42-

445 179' 39 - 5597 .., . 1110 t <ii """+I,! 69 t\ 924 ( ,543 60 - 245 6403 .= F

1 ()py l.,i'22. \ ,2> !'- 997 .--853 ig,z,,

513' '217 . . :-"‘ill9 1 --

'& ' 5859- m 'I , ." . 1056

905 55s J 245, n -60 6394

1085 1163e 1030, 241 .-877 -534 , ._s3 6172

--yI

< <. I’ --T-_, , , , ,.,.,...I .,.,.._, . ,_,., ,(,.,.. , , ,

747b q43Y e 65 F) i ;,’ ” 47'; 169 " 38 0 'V 750 856 '. if. 485 173 + 44 .O & ., $A$

i' a I

a a .,,; !, ,I

?‘ \ ' *

._, 691 772 613 " i: 611 459 357 222

jFl38 1268 972 9 lf5'6 1274 ' 946 . (

756 83t.. ,624 i; I

' 8371 591 384 200 7087 4

809 552, 349 159 6918 '. a .I" 567 _ '423 ' 27OL _:- 4779

1'113 . . .._ 1243 ! ' 1 .2-5

1008 " 961 717 " 52,7,' 32-7 7888

822 862 627 552 381 2e 69 4547

92 1' .1066' 795 i L* 614 ' 1 386 197 51 5204 ' 701 791 594 '3 O515 .3f7 366 199 < 703: 694 4143 744 ..563 508 '

,,'

-223 83 4122

7440 823 622 564 408 249 91 4574

..877 905 801 747 - 621 450‘ 270 ' ~ '

621.7

766 874 6.64 ,i i 574 405 256 .* 115 4 4775 .

7 ‘ \

:r Y _, I ~.- -

,;

Page 402: Passive Solar Energy Book (1)

I _- L

-_ .

m_ 1

/ i'

‘,

" @ \

T () I. ,

‘ 0 i 0

ha-Passive Solar Energy Book $i - ,

City 4 / ::.

1. F ..*,.

L 1. ., July August Septembei October

, pEN&JS’yLV,&NI.A ‘;I ‘i

i.- t

' Allentown~~$ :,A, ,, i,

( 0 9 89 . 366 ,.-> Erie-C ~ :

%$ 0 17 76 , 352

HarrLiburgiA ,,

0 0 69 308 * Park Place-C p \ .- 14 57 173 484

Philadelphia-C Y 0 0 33 219 Pittskurgh-C 0 0 56 298

.o 5 57 285 0 I 18 115 389 .' .

0 16 -. 101, 377

6931

6g7

RHODP‘lSLqiND’ ’ _

Providence-A Providbnce-C _ 330' ' . ,'624\ J

SOUTHd&&?Fl,N,A z ‘i ‘. :h ,,:~ ; ‘_,,_( _,.., _( .,..,-I.. I-l-*-‘-‘-‘-’ _,_,_,,,~,.I*I.,-J*C-.-~-~.,.,,,,,. i 1..,_,~ .,_, *,.. .‘.:.

0 )i \ 0 ” 0 34 2 1 4 . . ."

0 0 -0 ,76 -a 308 0 .,O O.-U f 94 34-z d -- -~ ,-0. .I 10 131 411- _

\’ o- 0, 7 136 o 414 -

\ 5 L i I ‘F , ‘I 10 * 16 149 * 472 - II 975 X$

32 / 24 193 500 ' 891. 16 . a\! :s: 1 155 472 .,. . 984

I I

-TEtiNES$E r~ , ‘_- , . . , -

’ ‘. Bristol+j:,,<. ~ >:o .o II 58: : 239 / ,576 t ~..

0 %.O or BO R

24 169 -477

B 179 498 Memphis-C -+ . ~. 0 :

3'33 _ 0 /

Nashville-A .. :, . _ 0 0, ‘.I. 13 98 -392

. 22 ._ 154;

II Oak Ridge !- ’ g, ’ 0 39 L--.} . . . . i

,471 0

,92 53:yf - +..; a ".. c ..-, r..

..,..,.,1..I).,. .G . . . . . . . . . . . :< .,..,. I ,._,._,..,...._!..,..

.L-- ' 0 e ,, P *; ,,.,. 1, ..,,., (,.,,.,.. '. .,.,, .,.-) . ,. . . . ..'..1 ).I, i".,, . .J., _, _, . c I* _

,.,._ ~90 . . . . . . . '..

.c " - . . --. ."I

j .

Page 403: Passive Solar Energy Book (1)

December January

ci .-Appendix 5

February March ‘~* April May Jupe i

Total

1 ‘,

” 1.

'. * a 1051 1132 1019 840 ,495 164 25 '. .5880

1020 c 1128 1039 911 ' 573 273 - 55 6116 964 1051 921 750 423 128 L 14 5258 ,-

~_--- l-208 -L n77 1142 998 648 290'_ 85 7175 :,

856 : 933 * ~837~ .?,.667 369 93 _ 0“ 4523 924 992 879 735" 402 137 :

9% 101 7 >' 13 5048

..,902 - 725 411

:1&.

11 '. - 123, 0.

1057 1141

506p 859 516 196 35 6047

.yJQ57 i \ 1132 9. :1 005 828 477 18-k 5898' 25a i r i - :, . I

6 l ’ s c? 0

* 927 -. ----- 1026 955 ' ii65 33.F 96 5843 JO35

t 603

1125 1019 ' . 874 c 570 258 58 ST<- 61 2.5 '-

ci 986 , 1 076 c 972 809 507 197 31 '* 460& r * . *. 0 I' r .

_' 0 I LX c . I n

410 - ,445 " \ 363. -260 - ) 43 o+;o 17;9 *

524 538 p43 313 77 0 0. 2284 ' _ 574 '588 jk87 334 83 oy* 0 2507.-- - ~~~ __~~___._

648 673 552 442-. 161 32 0 ,@i?' ,'

306Q 670 549 436 1 E 152 26 0 7 .‘3044“.

.- I ; e

q407,-' I ,?{;.. 15$7

,

I 'i/ 1‘$6,

.i 327 1032" a 358 ' '". 279 80 7kI2 2 c1 1218 1151 1045 61 5.' 357 148 7535 il

1 1414 1575 1274 h 1023 n i\ 8598 ;276 80 7848 .

- . . 1 2 2

. ' : I a

o - 815 818 697 576 274 95 i 0 4148

710 725, 588 467 179 45 0 3384 * '?: ^ 744 760 630 500 196 50 0 3590

639 716 o 574 423 131 .20 0 3006

725 778 636 490 186 "43 . 0 3513

0 77; 778 0 669 , 552 228 56 OQ 3'81 7 ' -, L

Page 404: Passive Solar Energy Book (1)

.’ I c n -; .- .- . , :+ -

” n -

I..~ /‘ ’ +\,

0 .1 rl ..%

.I’; .

‘-, &,’

‘- ?

-. 0 \ .._

....= .\

,.’

- . :, -_ ’ I

-a s. 0 ,.

The Pa@;! Solar En&gy Book 0 .Y

.’ _1 I Q (2

‘.. . ” 6::: yw

July ’ Au&t ” September October ’ NOVember 1

BigSpriags-A _ .,’ 0 0

i Bro.wnsvilI-e-A, c.:. ,O 0 0 C&P.IJS Christi-A 0 .- 0

. ‘Dallas-A ._ * - .___ 0 0

Del @6%- \ 0 /, 0, . 0 1 -0 *

..O 0 0. 0 n

*’ ,Hou$ton$ ’ i. @ 0

‘I’,, Laredo-A ., ‘\ 0 0 . ‘.Lubbo&‘-A :

,I ; 0 * 0

Mi$land . p i . ‘0 0 I; _ .Palf+tine-C I 0. . 0 !’ I’. (_, .~ ‘- Port Arthur-C : il a > .ir 0 0

Safl Angelo-A (1 0 ” , San: Antonio-A ‘

0 ,‘k. * (‘, 0 0 0

Victor&A ’ / ’ 0, ,. 0’” ._ , -. \- Waco-A -. i -0 * ‘0 . 9

l Wichita Falls-A . a b 0 < / -3

UTAH “’ 0 . . .I a. 0

.5.

. ~

0

,: 0 0 0 -‘- 0 .--

-I?0 0

- 0 23

" c 0 6 0 0 0 ', 0 0 -aa 5

98 ' j., 350 240 ; 594

30 214 75 4 316 ' 1/ p. * 5B

. -0 113 . 53 299 ‘i .-\

26 188 -70 - 390 - 58 ,299 y

0 131 / i w 0 162 ,: \ ' 0. ' 91

.a173 492 ', "87 381 a c 45 260

8' 170 is

72 "ig&,

28(-j ‘," :

25 !A - 201 (j /* 131

44 @ ;;,251 115 '. * 4b4 -

. w

’ .” Bjanding 5 0 ~* 6 , 100 '.,F 409'. 792 d _ ._ ,_ I .'- __ --, .Milford-A 0

‘. 0 114 462 828 &

,: ,*: Salt Lake City-C . ;- 0.;’ . . 0 61 330 - 744

VE~RMONt .s - D I .- *-

‘, 2. _ Burl.ington-A 19 47 ., ,\ ,172 ~ 5 2ol ' =. ; 858

‘i .p *

VIRGINIA o ;; " \

D LY

,r Cape H&-qX-

,

0 0 .’ 0: 120 e Lcynthburg-A ’

366 O- 0 49 236 i3'1

Norfolk-C * ’ .- 3 . 0% 0” 5 118'~ 354 . ./ Richmond-C . . .o ....-.. 0 ',_ 31 181 ' 456 . . * -

Page 405: Passive Solar Energy Book (1)

3

Appendix 5

7..

85iI 42f 3, 402 4p4

619:. .21'9

330 60; 419, 6701 622:, 356 ;

-378 270

e 432 .235 445

L'446

252 u i = 518

371 ^ 626

. ,\> 533 /

' ., e?71 303

'/ Li- '. ' 3 0215

\ 756 * ' 0 812 "-. 592, sa 65.1 + ')

\ J \,8‘ \ 440 31.5 - ' 531 381 .

479 71 l- 322 454 106 192

247- 240

- 134 ,613 468 368 258 : 378 > 293 ' 333 ,,I' '

385' vb 5,$8

556 '0 --R 462

'2 352 , :--. $57 ,-I

' '~657' 756

344 ,li3 586 298 211 ,50- 314 lo>

74 0 '118 '6. -288 ,' Z5'

- 147 21 " 1'330' , 110 . . .308 .'i 90

176 .>o , i66' -027

71 481 ' 2oY 322 :: .g()

265 71

1‘81 27 257 62

0 9%‘

0 0

.o 0. 0

.O 0

..’ 0

5 :> 0 E

d 0

36 0 0 0 1 0

i

9

0 2657 0 4345 -..

* 0 1713

0 ii\ 0 6.17 - 0 1011 0 0 2272 0 1407 : Qz= .O 2641 a o-' 2361 0 1211 0 -. 1276 .~~~ 0 ', 781 ,o ' 3587 0 'w 2591 0 1980 __ 0 a 1340 c 0 2.107

0 = ~6 ‘1579 0 ) d;?.. a. '1126:

263 66 v ',O 2025 ' 394‘ -* 140 1 6 w ',. 0 "3025

t-

; * ,_ i

s 1 ‘c \ .L ‘2 _I :

\ ;\ii .‘\ ,

\. ,. /~. -.. i ‘, ‘*

y...i3 I“

.;” ‘4 .- /

..' 13&i _ i '\. , J,i60‘\, 1'107 '; '681 ,: '307 72 A, ,T.'..7865. ' r* n

'),,' '\\ \, * ;c+ 4 ' '. ?<

: FI , ;a : y$? ,T .: '+1;.. : I "‘..\ '\, I

648. ' - - ‘698 "(636 9307 -.“:, s 808 ‘i, ,&I6 ‘?’ e 722 + ’

$ijG- \

;*,A . 636 584 ..’

$6; :.‘:\( .’ ;cj - ,** ; 41 53 '0 i:;

, 679 ; 60? 4fk 220 41 ,* 3 :' T 31$19. _

c 9 750= ~ '.787

675~~ . . 529 “it,; 254 57 0 J A :3720 ;’ w--- ‘\ i i, ,,., A?;-. \ 1 ; _, .’ k\P / -2,. , __ I.+ .:*, ‘i

,, 1 : ‘.‘ + \I\\ ,/ 1 , ‘, : ,y”

b \i v. \ : \’ *.*./ / 39-j ‘. ,‘s,v s \ - ‘\ /” ,, >I . Y ,,.? ,/ , ,’ ’ I ’ i ‘c . I. \

” ..<.’ _ _’ -:? ’ ‘, -:._,

. ._ i 1:’ ’ -

Page 406: Passive Solar Energy Book (1)

. _

.--

, --

The Passive Solar Energy Book

-1 City July August . . September October November ,, (. 7

!*. ,’ Roanoke-A P 0 50 233' 543 ; .____..~~ -. / -, f 0

@‘ASHlrilGTON d

h J.--j.* .C !’ i. e.1, ..- -.- .

Ellensburg-A Kelso,-A ’

a ‘I, Nqrth head

r Ol;ympia-A Omak 1 . .P.oi-t Angeles-A

r: Seattle-‘C F c --- Spokane-A -

Stampede Pass Tacoma-C Tattoih Island-C v

._ Walla M/alla-C * . .=Ya16marA . . .

13 17 l-7b - 85 84 166

239 205 234 91 83 207

0 46 194 I

/;r' 233 226 ' 303 zg -s 134

\ 205 :251 260 4yt14

_ 66 62 Ty . ,295 . 288 3 1.5 "k,

0 0 D .93‘. 0 .7 150. '-

496 849\ 409 636 "341 : 486 434 645 533 921

3.. 45q 1- .Z' <, 6G3 ' '

,. 329 '540 ~508 707'

879 .; ,) 1002

375 579 406 528~ 308 c "-675 1, t

446 807 I I .

i

WES; VIRGIt&A _-.-

t) . \I i’ I 0 I _

- (?harleston’-A * l . 0 0 @ 25.0 - . O+, I a

JJkin&f

. 576.

* _ . g .3 1 122 - --- --- ..

412. 726 0 .Huntington-C I c ci 0 . 35 ,210 . 549

4 .. :Parkersburg-C 0 ‘0 .' 156~ -qetersQfg-C -

~ -~ ~ 27L 6M __- ~~ 0 05 72 308 ,654

. )

i

I

.

- ‘M;~~S~~‘NSI’N . c ,> . .4 : I

r Green Bay-A -32 58 j83 "'+ . 515 945

Lacrosse-A 0 11 20' 152 _/)

447 921 ; MadisonX .lO 30 137 864 *

Milwaukee-C* .l 1 24' . 112 -, 795 -,

B‘ WYOMING P _- 1

B

-. ‘CzisperrA. : i4 ‘577,‘ ., _ l 13 231 951~ "

CheyennezA - . 33 ,, ~

39 . -241 577 897 1 i , g: La&i-A 7. 23 2 4

* . . ,* “‘Rock Springs-4 20 - . 32 26 %

'63-2 105g_

648 ‘Sheridah-A D - 27

JO3:8 41 239 578 957 .

_

__; *- .

B .’

2 394- ’

i ,

L/ \ I \

s * .

Page 407: Passive Solar Energy Book (1)

.^. >. ‘7,.. , Appendix 5 . l

i . kernbe;\ ‘\/ January ! _>. -+ebruary March Le ,~- ‘_, April May Total ’

0 .,,‘. Jirne

* 0 -_ ‘. , _ CI

_.. L

h...,

_ * @06”‘. 84.Q T p 722," 588 28,9 "'81 0 4:152 . _' '.\ - n

-I' ..-; 6 -- 'i ..,,. F ‘L, I)

:1116 , +I 268 949. 753 504 296 -: 105 '6542

-'- -784. - 856 652-y 605 * 453 31$ .- 173 5239

585 : q-8 492 40&- . 285 5211 700 ; 660 . +498 , 338 183 "<. 5501

1061 ; ' 781 '453 222 59 +* D

a652 ' '; 645 519 ~,6834

. 422 n 297 .a 5850

,.,602 o 't 558 396 246/ .' 107 ., 4438, ..: 988 ,834 561 ‘330 ' 146, 6852

1064 1063 834 ',

" -436 43-8 9149 *",

636 595 435 282 d 143 4866 ',

610 . 629 525 ‘-437 330 5724

748 564 338 171 38 4848

862. 660 408 205' -4 53 5845 n

I

834 :' 4387 -".. 758 632 r- 310 110 8 44-17 @ * c>* -. -i._ ,995 1'OlP - 910 797 477, 4 224 53. 5773' .

,803.g 8371 **q 728 -eu b 251 85 .' .5 * 4073 896. 949- .~~~~ -L,, .~ ,826 672 -- 34f-

~~~ I-.-- y9 --I3 * 4750 &

942 96%; :... 820 '667 384- 133 14 4966 --.

.--c ---- .

.: P

e I

- - ' - i _ 1392 1516 ,_ l-336 t= ,1132 \

.696 347 107 8,259 - $52

"

1380 ‘15,?8 ~-. 1280 .1035 . ,, 250 ' 74 . 7650 - --

1287 -, 141.7

1207 1011 5z.3 266 .79 7. - ,. 1184. .I302 1117 c

73.00 \ 961 606 - ,3.35 -100 6944 ~-. . ./ _ ,

i .h 'P ,/ / :

1 .: ./' \

.' -, 0 4

-- '.y,'.T

1225)' : i324 112::

109P.I ‘( >'

1011 660 381 -196 . .

,+ 7638

13d3.

l.225. 1044 1029 .. 717'. 462 173 - 75'62

0 % 1494 1179 1045 1345

68J'~, . 396 j ,'163 $303 '1457 /' -1182 1110 "

1 735 442 "' 193 3 8473 . .

u ; 1271 I. 1392 lo! 70 "* 1035 645 "' ,161 .;> c, ,',..

387, 7903._ _~, B e,

0 -0 ,,i u., u 0

y t ,-'I;' c .395 : .I .,.-,>' - I. J &+' B

,’

., _/‘=

“. ‘$.’ - I

“‘_.: : .,‘” 1.; Q / D

Page 408: Passive Solar Energy Book (1)

,I ,’ ‘, . ~ *$g.

* -. **: 1. ._,--, . .

i .’ ‘. $ 1, :

. . --.

;i , -._

e

,

j *

-1. ,

1. , ‘; ,’

“- 4--

The Passive Solar En&y Bopk ..- .--.- ..--

. :. * m .’ .,i / ; 2..,Normal’ Degree-Days by Month fey Citi+ in C+n,ada

, ._. City ,’ j .“lY /’ ,i . Au& September

i. g. .I . ’ 2

;

October November

.

_.-1. 220-“. -450 c I Lethbridge , ,, I

McMurray ,,. ; : -/;” 120 220 -520 e 880 -: $5!$g ..

1 Fjoo ^ 2’0 50 300

:;i; ;:&...,,, 603 ,107o .-

‘7 -5 1 &T, ktedicine Hat ’ +. /‘:

/ , * . - .._.. / ,

BRI?!SH CC&JMBlA . ‘,,” o ’ I,

. ,. ..A’ ’

?&Iii / 5

- _* .358 360 ’ 560 . \ 870 1240 _

” Bull Harbour 270 “’ _,, 260 ’ a $46 490 .: 630 ) ’

c. Crescent Valley ‘I ‘.90 . 0 _ 120 t,. I 330 ,JO 680 ’ 990

--ye Estevan P-dint ’ -- F&j tie,&

270 /’ 240 ,310 O.” .~ 460 ’ ’ .p80 c 120 , 1 220 I ,‘460 920 -, :1680. Y,.

Kamloops 10 ,_ ..R

540 890 .v+=.. * P+i‘cton .A

Prince Geolge li .2-a: * 20

>?O I-. , .; ;g ^ . 20 520 820

200 260 46Q , 750 ’ 1110 .: ‘. D ‘Princk George City

.a ,i LI_ 770 ,+- 220 430 ,740 1 100,. ‘y ., ,;*,- .. - frinqq Rupeti .,. .,I. 240

~---~ 4 .;.‘270

/

340 p 510 ’ 680 ” __-_- ---~ --7 Vancouvyr.,; 70 : 70 220 440 650

* . : . ‘* ~Van.c,ouy&’ City 70 D 70 2oq. ;.:i 430 * ,650

Victpria ‘(Pat. .Bay) ,/’ 130 : 130 260 470 660-. ’ .*

“’ 150 j. I,, Victo&‘&ty ..I ,’ ” ‘.: 160 230 4 i I 2 9’ CT pg\. 6003 ..*? 1

&NIT& ,r d. n v ‘-...

r_ .-- > -- -; -, .: -

I

., 0 I’, :: ; ’ .q

pm/ ’ l _ \ ‘/. ‘_ * B&$-j /n.,

Churc, ill ..r/ P

” 60” ,- 1’00 “i 350 d .J 3 ‘730 1290 ,‘ii3 360 390 710 y---v. _ 1ljO i 660

i. 90 320 670 ’ ,

Dpuph’in. . _ ‘CT ’ -a 50 The Pd+ ;+’ .-------L~--~:. . -8_Cj _: _ .160 5440 )-

;.‘I 250

-..--_ ,840’ .* e l-480 ‘-. _ --.‘~Wi?t$&g - -37 ‘75 : ~3-31 i 686 1255

- \ ’ . ’ --------- __ __~ :

NEW &IJN$&IG 1 >- I ., , . 1 ‘3 4 _ :.+$’ ..i

,!. ’ 0 ,I,

i. ’ ,: ” -gathljrst I ., “1 /

310 - 3 dlS _,_.----- - :o- :’ L ,‘. “.._, “Chatham“. ,,

- +j ‘, $ o\g()

46 2 7-o.: /6‘ 640 ,.g -- : . .

,,: ‘lZp .!.+>‘:

.’ 0 <a ,’

. Frederiqon. ,I’: ’ I- po’

50’. . 70 _‘.’ 2.50 yo-

>i ‘. .. : -$.&OQ!g*” .*;g ‘!+m ..is;r”Ti ./,..*y

,‘, .’ ., ’ ? . .~ ~$,..‘?$~.I~ “’ \I ; SOURCk Rkprintbd w$ p&m&ion from Handbobk of Ah Cqn~~~ioniog.“Hea~in’g,‘and Ventilating.

* * s ’ ; . ’

pi .e -. q&.. ,J! ;.*c : .L /?’ , ,. .

.,396” -. i ,: ’ . . :. .:,,. : ; ::).;j;:d; :..: / : .’ ..: i I

i. 1:. )-. ,.:>..;‘y. *-....,a L/ ,, .i- L ~ , .< ‘,‘$?“:,” ..“,o, ., .::<- %! .;

c- ./,_, .L :_ 1 ._ ‘:. ;.., j .,.* iv 0 ‘/, j. ., 9; .‘: , .’ ,<,y, .* L . .I

.,/_ I(‘* . )- \< -. -”

.: (‘, -),, _,

I . . .- _ 4.’

_:,, ;,“ ,,‘::. 1; l ./ .‘_

I~,_ .

I. ,.- ; _ ~’ .>.- - ,,. ._ i

Page 409: Passive Solar Energy Book (1)

‘. . . . v _ r

Appendix 5 1

1 s

,C

lJecem&r . ~._-c- - January _--- ~- -’ . . - < _

..T : i< .>. 1‘

.February March _, 1 April ‘,- May June Total 0 1

1 ’ “.

w

?pi

a t .

1.; - 1430 ' 1530 I.350 1200 z 770 460 270 '6' 9520 1660 - ..' 1780 --i..m" , 1 5 20 1290.. '760 410 220 10320 1750: I 1820 1600 1380 - 830 460 250 1101.0: 0 LO I ,145o. 1290

&o '": . . 1120 400 210 8650 ~_ ',.,690

-.- 2210 *182Q-' 8 1640 '920. . 500 270 ', 0

12570 ,144o 1590 1380 1130 <, @Q- 130 O" 8650 ,,. '~ .-.. . .JF:.:> rvp3*o I. 7.. -&e-&e ~. --~ ,_- ..- -. . ----- ---

-_ F

CL ‘_ I 3.. ~--x+.@ -‘- . c ._ .’ _---- . -___

0 //-g&j~~‘-.

_..__ -.-.-. __ - --_ -- _

i790 1‘. 1540 1370 " 670 410 11710. /'-"Q <,sdO

770 820 710 c r. 69Q 580 4;7o R' 3.40 6370 ,^. * 122y3! l - 1360 1080 " 940 :61? / 400 220'. 8040 ,-se

,710"' 760, . 1 670 ,-700 580 470 340 ' 6090 :a :

_- -2190 2200. ' 1870 , 11460 4.60 220 ,,. 890 12690 " * 1170 1320 0 1050 780 '--9.- 450 Z?lb i 80 673p

:=* *1‘()5o J190 960 ' .- 260 100 64'fO .780 490 :;,;440 -"; 1570 -1320 1110 . 740 480 28'0 9720 a

1450$ .c -- -. " - . 1540 1290 l-070 730 470 ?50 9460 - ' -. j360 910 8 1.0 790 650 D soa 350 . 69'110. '. . 0 :: ia. 81 0 . ' . 890 740 680 480 o _~ .32@, 150.. 55io

. : F 8,-K) ’ 880 720 650 470 ' 140 . a 3.00 ‘,;5396, ! -:, 870 .; 690 a 520 370 220 5830 i..; "_ 7~~:~. 720, )

-. 73q<. 800 *" 660 - 470 330 230 5410 '</620 4 1.” .( .h%’ j

:. Z>:.’ .. ._ . . . . ; .J .z, ‘j: ‘I .*, .:- _ _

) ,4,$>.’ . RP .’ - @lo

; &

* .:z.-. 1 % D 1.810 ',I-- .. .i ._ ~"~~0, . . ~~ 1730 14.40 820 - . 420 170 10930 '. 2240 :, : : -25go'- 2320 215.0 ,I580 1130 6.70 . 16910

, 174b by 1940 16701 ,‘ 1430 830 - D 420 150 . 10560 1980" *, o- 4;~'~:& _. 1.850” n 1620 '1OlT) ' 550 L: ,250

', 17.78 - = "-i,?_993 1 71‘4 ,. 12460

1-44-l '810 . 411 147.; 30658 ' 0 *_._ - =. _ , -1 Y ,. I * '0 -i -iG 1. -*' o*

d " : I< ' -. ~,

li80. . "

' l-690 880 n 520 180 9670

.P c '1450 1620 :,s 850 490 l-80.. .:; \I.,., 9290 " ,; I.410 lS!O I 33-j ’ .‘; A2Q' '150 j I- 8830

" , .~ -. ‘ \ K ." . . .D ,'\ - ' .:i,Q I ~ o- n b

: . . . ,(.' I . c . ..* 'a_. .j:. $ -' 0 *-.

0 _'

Page 410: Passive Solar Energy Book (1)

The Passive Solar Energy Book .

b City JUIY-’ August September’ October November

‘^ Grand Fqjls 100 n 120 -,330 660 JO00 oncton , 50 80 260 590 910 '

W-.-m 100 280 590 : IfI SFint John 2:~~ ii 1.1 0 110 ‘ ; 250 . 'I

___A. * . 530 ‘. ,830

/ / \ - NEWFfbUNDlAND .o

r -1.p.. :Lf& - ..--2-6aeml-

- Coqt$BFdok 90 140 320 ---- I e-e- : .-- r.m.L--.-s--640 -~-

430--------l-m ~ - \- 320 660 . 920 130 220 440 840 1220

St- John's (T0rba-y) ' 1.q _... .~__. -_ -- 170 '_j ~. 3.?0 ~6! 0 820 _ , _ **-

'\\ MIRTHWEST TERRITORIES ------- -1 ‘. \ I

1 . \- . “Aklavik 280 '460 800 1400 2040 Fort ‘Norman 170 7OOd 1220 1940 \ Frobisher

’ - .;jso --_ , ', ., . 600 " 650\ a 880 1280 ' 1580

\ Re&olute 780 860 1240 1810 2-&j L ‘. _

.;‘I, wlotiknif& 160 2% 580 ' 1060' .1740 "'*A. \ a

' NO& SCOilA --.-. _~--~~-~-. ~. -TV .-a---____- --

v -

l-$ ifax (Dartmouth) 80 90 230 . * 510 -790 .z HalZaG CiJy 55 58 190 469 , 745 i o Sydney g -. 60 80 220 z 510, 780

Yarmouth 110 120: 230 - 480 720 6' - * f

‘1 ONTAR&

*r * Fort William 90 '140 370 + ,:740 .I ( *

1170 ..a Hamilton 20 30 ,140 '. 470 -800

a .' * Kapuskasing 3 110 . J80 420 790 1280 Kenora 40 80 . -' '0 . . 320 710 i270

” Kingston City 30' r 4& 160 o *-. 500 i 820 Kitchener City 30 40 170 <20 .860

- ,Landon’ 20 -'. 40 150 5 ,490 840 ma j,- "* North Bay _1 70' 120 :a 320 e 670 1080 i. -.

Nbrth Bay City ' 40 = 90 270 1000, .,s 622)

Ottawa (Uplands) 60% 2QCI , 28&I 970 :I 9-G

--- 540 890 Peterboroqgh City ;; I 1 2& \

:40 Sault Ste. .Marie

qo ' \ 160 7340 ~c .so ;_ 1010 T '

.-_., .<O ~ ! *+ . " . . f -.

'.I - 398. ' .-i :. . "' I ~ ,-- _ i , ~ ... - _ ' '. ' ., 5 :I e 0 ; ,v : '- _

: '. I I /

Page 411: Passive Solar Energy Book (1)

Decembgr January

B

R

) ‘I Appendix 5 0

Fekruary March April May June ’ , Total . i

~1540 1.750 1570 1340 870 1480 ,'190' ' 9950 -1340 1520 1380 1190 830 480 + 200 8830

' - -1300 1440 s 1310 1160 830 510. '. 260 ' 8740 _ 1250 1400 1270 1100 7&o ( 500 250. 8380 ; , "

0 1

.f ., R . .

d ip .

. _ 1080 1240 1170 1150 950 78'0 560 9290. - A------ -_- ______ ,-.--.- ~. ~. _---__. 1200 - 1410 _ 1360 ', 1240 400 .640. 350 \ 9180

.L....~123Q-.? _I_._____ 1430 _ ' 1320-e .-~ j, 1220 ..--970 --~ ----A50 380 .9440 P 1740 ., 2020 1710 1530. 1101 770 a 410 12140 -.

.1130 -'1270- 1180 1170 .920 700 '460 8940 1 0 *

;i -: r- .

‘3

i

1

" $;-C ' 233Q - 2.580 z310,- 2290 pi90 1050 ‘R: 4io 17'910

2460'\.,; * 2550 * 2190 2040* 1390 730 :I 280 16020 -. 2120 " I ;3*, , 2560 2280 2230 1250 ,800 17920 .

2660 2&&-j'

;,;u 1690

.2890-i, * . 2720 2170. 1550 970 - 22600 " ~ ',' i ;iiQ ,"":i' ( 22 2020 14io 790 370 15640 ,

\$ I-_ __- ~

,’ ! -“- + __~__ ~~~ - ___~- - : -- --

_- = ~~.~, ( ; --( --- : . ' _

1160! Tx86) 1 1

1220L ' JO90 9 8Oti 530 250 8030 I 11091 1262 h80 1042 765 484 ?'226 l 7585

11301 1310 -1280 , 1168 850 570 270' 8220 104'a 1180 ;, 1100 1010 750 510 270 7520

‘.. .I

._ ~ . . ’ . ,

240' $1350 l.240 -., r

f! 1200 1 '1320 ~ 1210 1550 1710 % T530 1510' 1690 a90

1 1 1 1

1460' 1640 1450 /--J 1320 j470-4 1 1 . _ 150.0 1310 820 470 . . . . . . . . . .._ . . . 4-T@- _,,._.,_ 1590- . ._ . .__. . . . . _ ._.-. ~.-.~ z

: 1

F 7 . .*. "0 .::

080 680 330 040 . 650 330 350 840 470 280 810 ' 420 _ _ ~-.~ ~+2(--/-----~r---- 330

130 690 I'* 330

--& 68j.. 15 1830 1260 1580 1i1.90 - q ',1380 1020 89Q 670 330 540 .

770. ~~ 2030 ',,I"50 1550 1030 '. 600 1670 800' * I.)- 1980 1420 860 '430

2.50 1420 1290 1110 710. 380 .

' 230 "10640 70. 7150

240 160 1175 ! 107,o 100 , " 7q10

80 7620 "90 .. *: 7380‘

-170 +98~80 1‘20 ' 93,40 _

70 8740 96 - 8040

210 959.0. _.-... 1 .? -

I 399 a .'>. -' a 4

* , >, -

Page 412: Passive Solar Energy Book (1)

i* I - ,-

.” m 0 . * n

\ (‘i ,P ‘,

/ .

-- ,$ ,I’

, ..u;a . ,,.

The Passive Solar Energy Book

1

k I. ,”

.

City. July August Septembe; ’ October November

‘I Sioux Lookout Southampton Sud.bury Timmins Toronto (tialton) Toronto City Trenton .~ :.

White River Windsor

70 '70 60 "

-1 10 30 ,

8

L -- :20 J 60 -.<

10 :,

120 390 780 90 190 500

-140 310 680 170 410 78o<

40 180 540 29 154 . 46,5 30 1 6.0 * 470

230 ,440 820 10 120 410

'1310 830

1100 J&270

a40 777 * 840

1270 ( .

780

PRINCE EDWARD ISLAND :

,. CharloGetown .’ .iO ’ ^

i 240 550 850

QU,EBEc. . - c 2 : ;< . . r /, , il

. . . Jiagotille 80 i : '?~:,A.....-,..~-~. 386

120 370 >, j+-y . 1160 ,G&~fi Chime ,..,...,. _ _ .

>,. 45(r- 700 . 1040 1440 - 3 /‘Fort George 350 ,380 550 890 1‘270

j/ Knob Lake 300 410 670 1080 1500 Megantic 80 140 330 660 ,'lOOO

’ .Mont Joli 70 120 310 660 I 103-O - yontreal- (Dorval) .lO 40 190 550. (910

; .‘Monfr&al ‘C$y 10 ,40 _ . 180 530 b - 890

270 590 - 970 1430 : ‘31 tcbeq*uon Port M&.rrjson

_. 320

f.‘j VueDec (An. Lorette) 560 570 730 _ 1050 1430

40 190 290 650 ,103o Quebec City 20 70 250 ’ 610 93Q

.\ Sherbrooke City 7 - 20 .:iO 246 590 920 . ., -Three Rivers @iiyL + 20 r60 - 250 Q 610 -

1 ’ I -’ r -;;i-;. .a 980 ~

’ -- SASKATtiHEM@f I’\! ! ” ,

- ,._ ” L-A .- L ! ;& __----

North UBattlkfdrti ---

_ 60-/--my---‘-- 380 750 * 1350 prihde All-&~ I---- 70$ 140 410 780 1350

'I .Keging I, ‘it 70 110 370 '750 1290 ?jaskato& 60,,< 110 * 380 760 i320' ii

yufloN TERRITORY , ‘0 t-

I -~ .\ . * ha I

Dawson - I’ 170 :. 320 -660 1170, < 1890 -- 1. . Whitehorse.:. ..i .,,._ ,..._,._ ._ ._ ._ ._.., .,.._ .d!1.280 ._.._. ?. :.. .: .., 3.50 . ._... . ..gfJ. _ .g40: .':;,1. .,.151(-j ..: . . _.....

c _ ..i'. i

c .,' '40d - ‘

x ! % - .‘I ,, a* l

@ .t ‘I __- -

Pi

D

->---- --

I ;/----

Page 413: Passive Solar Energy Book (1)

WI ‘/ _’ - -

Appendix’ 5 .. ---_1__ &c&ber

J! ‘-January - February March April hY June Total - .

-------~- _ 1850 1 2()&g-J ~-_ - ~--1-?5Q~_m__ 15 ?Tl 1950 520

-~ 220 11530- __~ ~- 1200 1350 1270 fTi$ff -=-~a----.~ pg - 450 17D 8020 .lSOcr- -' 1720 1456 1340, ~ 870. ~~-~~~~-- g+ -~ 1740 199'0 -~-_lgp. 9870 . 1680 1530 1010 I 550 240 ~~~ ~~ ~~~ -l-l+&& ~~_~~_ 1220 1360: 1260 1090 700 370 100 7730 1126 1249 1018 * 646 : 316 73 7008 1280 1400

;.;g 1080 670 330 70 7630 e 1770 1990 1740 1554 1010 590; 280 11850 11,30

. 1220'b 1100 950 580 270 70 665b/ F' ~_ c L

- +.e . ( . \ “I

1216 1460' - 1370 e 1220 870 560 250 f ' .

'@q()] "

n * 5.

j

_)

P i

,.

~ i .,

1730' - 1950" 1710 / L _ i450 940 I . 570 ,220 11040 2010 .., .2410--m 2170 . ~I 1920. 1460 1016 610 1’88;O \. ‘<;...

_ 15600 2340 2090 1950. ,',f .- 13.30 ,920 530 14480

I

-2010 ' i ‘2410 2040 1480 " \ 1640. 1490 4440 1656. 1470 I Q90 " i370

\ 1590 1430 :. \, 1540 1370

.', 2050 \ 2340 201q

810.. - 13'00 910 a450 14890 290 870 500 190 . 9670, 310 9io ' 550 230 9750 180p 730 u 270 60 8350

. 150 \ 700 300 5b 8130' 820 1310 910 490 14510 _

2050 2470 2290 '1690

2190 1610 1140 790 16880 / -. 1530. .I..

\r 1510, i300 8bO . 430 130 9540

_ ' 1470 , .,640 1460 1.250 810 -' 400 .lOO 9070 i400 1560 . 1410 !190 75cY --m---

1490 l&30 $c- ~~--.Jzo~-----IM)--~

-'- 770 370 '80. 9060 $ u -, ^ I 0 '& - . . . , d -' 2

\ I . '. 53 1 'z ; A! 0 . .

. p - ~.. .171o ._ mm-j820. 1990 1.440 - 11000 .1870 2960 1750 1500

ii‘ 8QO.. 400 190 '. 850b ' 440 210 11430

* , 1740 ., 1940 1680 1420 790 420 190 107>0 ' 1790 . . 1790 17PO 1440 800 420 180 9 10960 ' -0 ,. ?

...I L '- 7-i -, -4 F . 0

.--_ _. 2410 z ': 2510 2.1.&j 1 a30 1100 L 570 250 15040*

. ._ .j.~t+@ .‘ ._ . . . . . . . ...) 8.5O.v. . . . . . . . . ..l.&&..-.!,.,. ;! i

'J.350 1 .l.ooo.i : 600 ‘310, =12300 ' -t

* ;:

‘L B

. .L_.

401.

c

Page 414: Passive Solar Energy Book (1)

,? .

“-/...

, I: -. --i) .-: _ i*

+Cle~r_l&y’3olar l&at .Cain throkgh ‘jjij - ,

Orieritat,ions (in Btu/sq ft -

(The heat gains listed in,the following tables account only for reflection losses from the surface of the glass. < To accourit for absorption losses, reduce the values listed by 696.) L *

!

9 ” 8” North Latitude 32” North Latitude +- --

january

February ‘.?

March

{ April

June

MY 2.

August

$5 Septembe

t October

Novembe

December

0 5

NE, E, SE, ’ N NW W SW s* RORIZ

16G A92 634 1772 1558 1454

206 310e 816 1191 1350 1832 *

248 464 923 lOF4 912 2184

893 - 306, 658 989 492 2428

_~OL8B~~-lWS--75&~ m-36TmE76 La. I

464 861 1019 4% 360 2~10 &

416 808 1006 741 ~272 2494

324 656 961 862 482. 2386 . I

'884 ' 260 4B ,883 1029 2110 \ _ -R

214 311 .788 1143 1296 1796

1 90 194 625 1151 .1526 1444

152 162 564 1151 1586 1306

-

NE, E, SE, -N NW .W SW s HORIZ

___ I 4

1 5 2 1 66 574 .1146 1560 1288 .

192 278 l 772 1200 1424 '1688

' 240 433 904 1116 1034 2084

302 636 ,997 955 600 2390

__ ---- 396 789 1040 823 ~ 422 2582 '

450 841 1038 758 .390 2634

408 789 1024' 803 ,420 2558

320 636 968 920 582 2352

250 426 864 1067 al000 2014.

5 200 280 746 1151 1364 1654

154 168 567 1125 1528 1280

136 144 518 1.128 '1574 1136 ,'^

SOURCE: Taken from computer stu?iies by M. Steven Baker, University of Oregon, Eugene, Oregon, 1977.

402 \

,. 1 . . , . \

Page 415: Passive Solar Energy Book (1)

b

36” North Latitbde

.$arch j 1 230‘ 404 882 1153 1146 1974

. . 298 615 1002 1016- 720 2338

'2 I May’ 390 769 1054 888 500 2574

I I I ’

1 June I 442 822 1056 823, 446 2644

IUlY I 402 7/68 1037 867 492.2552

August I 318 616 973 978 6'94 2304 ', . .

Septembe 1 '242 399 842 1100 1102 1906

t, . .I October 1. 186 250 697 1147 1410 1506

r ‘, I I I - i

. .

.-a. 1 ’

_ .

I

Appendix 6

40” Norih Latitude

NE, E, SE, N NW W SW 5 HOI&J? -

120 12'8 474 1079 1506- 948

164 &l5 666 1180 1502 1374 .

220 376 858 1183 1244 1852

294 593 1002 1075 838 2274

384 747 1063 952 596 2552

446 816 1083 894 528 .2648 J

398 749 ,1048 931 5.86 2534

312 595 975 1034 806 2244

230 370 '816 1126 1190 1796 i

176 218 642 1129 1436 13$8 . i

- 122 130 466 1056 1472 *9i2

102 1.05 393 *JO07 1434 782

._ r

-*z " 403

Page 416: Passive Solar Energy Book (1)

= TheJ&ive Solar Energy Book

. 44” North Latitude

NE, Et SE, N NW W SW s HORIZ

F January 102 107 405 1004 1420 772:',

_I c

< February 148 i83 603 l@lb 1506 1208

‘March 208 347 829 1206 -; 3&?1 j20 -%,*_ --* _i c .k;- -.-

_ April5 288 572 1000 1128 954 2196

M?Y I 386 .738 1081~~>1021 710 2522

48” North Latitude

NE, E, SE, N NW W SW s HORIZ

I ~ 82 :&r&G4 320 894 1284 598

I Se 1'30 153 540 1106 1486 1040

/. 394 736 1105 1091 828 2482

_/' June 4<8 619 1116= 968 628 - 4542 468 820 1144.,1042 740 2626

..+ : * 9

JUlY 400 741 1067 999 694 2508 408 741 1992 1068 806 2474,'

> August 308 575 ,972 1085 916 21,72 ); 300 ;53 965 1131 1018 2088

.

. September 218 343 : 787 ' ;

1 144 1262 1660 '(; - -206 31 5 753 1151. 1318 1522 *' .

, October 154 187 582 1098 1438 1186 138 159 523 1056 1414' 102.2

.

Novembe; 104 109 '399 983 1388 768 86 87 317 875 1252' 596

Decembhr 82 83 3,q? 895 1292 608 66 66 i3;/ 777 1130 446 . / I I

Page 417: Passive Solar Energy Book (1)

Appendix 6

zv

,. .’ ”

‘!’

’ .,

B+3

.

52” North Latitude! _-.

-- s NE, E, SE,

-a N I’JW W SW s HORIZ -,

11148 1352 1374

466 1005 1368 856

0 0 a

56” Nokh Latitud;

NE, E, SE, N NW W SW s HORIZ

46 46 170 620 900 282

96 .109 420 982 135,8 700

166 261 714 1207 1452 1268 I,

260 506 970 '1254 1240 1892

qO6 735 1144 1221 1052 2374

494 830 '1199 1183 972. 2562

420 ,739 1130 1195 81026 2372

-280 .511 943 1204 1188 ~1884

176 258 670 -1130 1364 1220

102 113 403. 930 1282 688

48 .48 168 603 876 284

--. . 24 24 .86 428 '622 156

405 405

Page 418: Passive Solar Energy Book (1)

c

7 @’

, Appendix J 0

Percentage. of Enhancement of Solar Heat Gain with Specular Reflectors for

’ Vertical South-Facing Glazing (reflectance 0.8) ‘b \. 7

.

i -Y

I

: , .’

, reflector length (I) = 1

glazing height (h) ’

o

‘>

P ar;;

406

Page 419: Passive Solar Energy Book (1)

c. .r 5

.li;

f I

: <

3 0

,’

c,

” c

7

.

0

I’

Y

.< ”

P .-

? . . . ‘_

I. I I I ‘.c-. I ; >’ I 32" : 1 36" 1 40" 1. 4+ iI- c 4+ -1 '520 1 56" latitude I 28; 1,

1. . I 1

* Rdectod cdlector 90” 95” 90” 95” 90” $9 90” 95" 95” i ” 100, 95” 100” \ Tilt Angle

100” 105" 1 OfY 105"

u I r 1 28 33 29 ;3 25* 30

‘- , .

48 49 ~42 1 466 1 37 1 p2- 1 31 '1 37.4 132 1 37 ,I .

February 62 48 58 50 51 50 4 5 38 41 37 38 33 36* . I 1. 1 I I 1 I I I Y

March’ -68; 37 6 I <Ii' I 11 I I I I I

67 49 51 34 -; i 42 46 66- 53 38 r 41 26 44 30 I 0 n

i 21.- 73' 29 72: 36 42 14 1. 1 46 21 27 8 32 13 : April ,- -44 ./' . -a

-12 $4

May /' /

76 0 76 2 a$' 9 75 -17 26 “2 ,I,. .33 6 11 ",, %‘18 2 I

0

/ June "lR/ = 78 '0 77 0 76' 2 76 8 1 5 0 ; ii‘. 0 ,/

17 0 ! I 25= .-

* ,J& 77 0 76 0 76 5 ‘ 75 , 12 21 ,-O i I 29 3 8 *, 0 14 1

' 4 /I August I, 75 '5: ' - 75 !3 74 21 73 29 36 8; i 42 14 21 '14 '27 8 _, ' , ,._.

September 30' -37 /

71 0 70 70 42 69 46 49 2y 52 $2 38 20 41 25 _.- I 5 w 2%

. October d t4 ‘:46 63 48 59 50 51 51 48 ."'41 43 43. 41 35 37 38 _I'

52 AL --- -..'-- _..~ .__~_

- J’dovembei 49 45 48 40 .44 3,4 39 ,"3a--m39~':- -:30 - 35 3lV- 35 27 32m . .,

.( t fi Qeceti$er ‘“44 48 39 43 3.3 38 28 34 29 34 -25,~ 31 27 3;2 , 1 23 ~1 28'

“‘: .q

c B :’ L

;. *- $&>; ‘.$ .i -‘;‘: f..L! , -’ , 0 3;*. - .blJRCd Taken&from computer studies by M. Steven Baker; University of Oregon, Eugene, Ore&%, 1977. t

.---- - , ,.. .a..

n s 407, B

.& ‘E 1 *

I :

Q .=%a. ,> -. I

., -c

._ t ~_ m..,pr ._‘. =Y-.

Page 420: Passive Solar Energy Book (1)

-(, _,. . “, .;-~

*r hO.

,;

.‘Q

.

\ .,

i -@ e , * \

L .I! 6” 0

opt A”~plenClix ’ : .I

_. ; .-_- _..~ / !,

i .c4’ .. Ccglversion Gbles

< . .3@., ,..

c3

t I :.

. . ?

?T 2 Y:

1. Eonvedion Factors *_ b - F. ‘) / _

\ P -

‘To tqnvert From To Multiply By

Btu

7 Btu ,’ __I”

.,._’

-i- - -----&J&L.-- 2. -2.

r. Btu ’ b ‘_

, a-, ,*Btu

“ Btu a. -

Btu

* Btukquare foot z 1

Btu/hour/square foot/“F

Cubic foot atmospheres

Cubic @et of water

. 1 .Cubic &et of water .’

Foot- pounds

Gallon$of water

Gal tons: of water

Gram calories \%

Hors&power ,. ‘. Horsepower

Horsepower j

Horsepower

Horsepower -

Horsepower hours.

c

\

1

T

Gram calories

Kilo&ra.mcalories 1

251.9958 L . ! ?- 1 .00397

.--Cukeent&eters atmospheres

Cubic foot atmospheres

Foot pounds l

--H,orsepower hours

Kilowatt hours

Langleys I

Watts/CM2/“C 1

Btu * e

Gallons _

Pounds -‘: ’ 0

10405,.6 ’

Btu

Cubic feet &.

Pounds m 5

Btu ’ c

Foot po&ds/hour .A

Foot pounds/minute ‘.. 0 t

Foot pounds/second \ K i,Jowatts I..

wzittd

Btu r-

--

.36747

,

-.

F. 1

77z.649

a003927 i

i .00029287 ^

*2/T,’ ’

5.6820?$’ :. , 2.7;2f‘, =- : .:

7.4805

62.3& .a

.001285

0.13:368

8.3453

a0397

1,980,OdO.

33,000.

550. *

.7457 _~ c’

745.7 i

2546.14 l

0

Page 421: Passive Solar Energy Book (1)

“, \

. h i 70

_~ . . - ._,

b - -_. \, -- _.

B

? T--~-~

*

. . Appendix 8

. , P 1 . ! 8 *. o ’ ,

--?kv. ToConvert From ’ ” To \

* ‘(.S ..d ii&fly By

, l 1

Horsepower years Btu c 22,304,186.4 cc :

~ ._, Kilogram calories Btu +‘, ’ 3.97

Kiliwatts ” ~ I ~., L ..,.,

,- Horsepower 1.34102

Kilowatt hours n

Btu b . 3414.43

B LanJeys Btukquare foot I_ ” 9

_ ’ 3.69

Lumen; ‘(at 5,559 A) -~ 1

Watts 0.0014706

Months (mean calendar) Hours \r 730.1 , Pint; (U.S., liq) Cubic centimeters \ .’ i 473.18.

-- --Pink .-_- -.. ._~._ ~:----__,. Cubic. i&&s 28.075

‘Poundsof water y Cubic feet of water 0.01~602

* 1: Pounds 91 water -.. ’ ’ Gallons (U.S., liq) O.li98 .

_ Watts I Btu/hour 3.4144 ’ ’

? Watts Btu/minute 3 0 \ ..- 0.05691 * i

2 . . ,----Vat& ’

1,’ ._. Calories/minutk 14.34 ’ I*

/ 1 ‘Watts t Horsepower ‘.. 8.00134 1

Watts/square centimeter Btukquare feet/hour , 3,;‘12. ’

Watt-hours Btu 3.4144 -. E Watt-hours’ - Calories 4 --o&L *+’ c- i -.:___

Watt-hours’ : * I Horsepower hours ’ ,_1

0.001341

j -. .-c_ ,,; -- . ,.: P ,-

* * : .,; .,.,-’ /’ :

_’ - ‘1 j 2. Fahrenheit-Centigrade C.on~ersion,~Table - ‘Ix ::. n / i .I’ 0 :,- __

. ’ /’ .

Thq,kumbers in the cent& column, in ’ aface type, ret& to the temperature in either. .- ‘.

Fahrenheit or Centigra$e degrees; t is’ desired td convert .from Fahrenheit to Centigra& dbg$es, &%GdeF’&e cent ,. co.lumn as a, ble of Fahrenheit temperatiires’ 9 -and read the’correspondin’g Centigrade tem/jeiatur in the column at,t+he left. If‘it is.-?

,% desired. .to- cbnvert from Ceqtigrade to Fahrerih It degrees, consider the center column as d 2,bl.e of Centigrade value!, and reBd .the corresponding Fahrenheit ,N .‘*

,‘I ,

kmpkratu’re.pn the-fight. .’ :. /../. -“-

l . _; ,... 7 . ; L

-\’

_

/V” . .^. . .._._ _

_. _

r->z yz;,

: - Ei SOU&X: Clifford Strock and Richard L.’ j(oral, eds., Handbok of,Air Conditioning, Heatihg, and

_.-- -v

Ve@&pg, 2d ed. (New York: mdustrial P&s, i.b65).‘ i __ i

f / ” _., / _ -

1. , u * . , i - ,- 409 z _-

ir‘

: I ‘F --.’ : ,. - :

: . ,; : . . 0 -) ..I 0 ;. , 0 .

Page 422: Passive Solar Energy Book (1)

- . . - ., r

n . ~.

I ;- f

__ .~_ ti

- 2-2

- or +nversioni. rkZco<ered-in%e table, ihe-followingformqlas are used: ,.s. ;‘: - -. F F 1.8C + 32 C = (F - 32) + 1.8

. . <,’ J I’ : _ - m 4.. -

_.‘I ” - 1 .I ‘. B a -

I -.. oeglc _ , .- -\ DegF . DesC Des F. e \

‘46 :

:~_ -L$& _

.a -34; . _,

-29

:. -23 -17.8 ( 9’ ;T

’ -1712 ,. .I ,I -i 6.j‘ ,, .; ,\I,

- 50 -40.

- 30 CA - 20 - 16 L

0’

” :-58 8.9 0.

! -4(-J 9.4 - 22 P ', l.d.0. - 4 10.6,.

14 11.1 . 32- 11.7

..,. _. 33.8 ,‘-; .Jz.s:

- ‘. 48 ., q9 ..-’

s.d

-1 k-1 .~ '115.6.

-15:o

0 -14.4

.n -1j.9 = -13.3

35.6 37.4

<I 39.2 , 41.0

42.8

12.8 13.3 13,9

:~q4.4

L 51 .’

52" ,- n 53“ .

54. . . . . . 55

56 s 57 58 59

.* -12:a

” “:J:,.:jO ““.fs’l ,”

,- -12.2 ,‘-., 1 D *

-11.7

,l~ 2' 3 4 a

‘> 5 6

'7 8 9

10 11 ca

-,‘I :1 s - -- -30.6 -

‘,j.p.f? -+p *- ,

I - 8.9’ --.-- - a.3 ”

,+ 7.8. 2

i-z.72 -.

_ &.7 ” 1:’

- 6.1 -, 5.6 - 5.0

62, 63 64 .- 65 66

” 67 ’ 68

69 70 71

e ,a ! - 4.4 ,,

-.

C",

.

: - 2:a

I - 2.2 I_ \ . --"1.7 i’ - 1.1

- 0.6 ‘o-

0.6 . \ 1.1

'. i.7 2.2 J‘

‘2 .'7 ” ” .fl, </, ., . h,.“.LW”.”

3.3a L1 r

^,

-.-

_ 12-

'3 14 15 n 16 -17‘

‘8 19

.20. 21

0 22 c 23. 24

I -25 26 27 28 29 30 31 32

- ,33 34 35 ’ 36

.._ .sj .:

. 38

39 j 40

41 42 \&-

44 45 46 47

_, n 44.6 46.4 48.2 0 50.0 51.8 53-.6 55.4

.i 57.2 \ ‘59.0 ’ .60.8 ".'62.6

64.4 66.2 68.0 69.8 ;. 71.6 - 73.4 75.i 77.0

I 78.8 86.6 82.4 F4.2 ‘ 86.0 t

! 87.8 - .d . I!. 89.6 _

91.4 ,932 i 95.0 96.8

P -^ 15.0 15.6 '+ 16.1

<16..; 17.2 17.8

,18.3 18.9 19.4 20.0 20.6 21.1 21.7 22.2 22.8 23.3 2,3.9 24.4 25.0 25.6 26.1 26:f 27.2 27.8 28.3 .a+.9 29.4

' 30.0 .30.6 31.1 0

.31.7 " 32.2 .'

_ “., 72 o 73

* , 74 75 76 19

~- .77-- - -

78 79

1 @O‘ 81 82 83 ,’ 84 85 86 87

. 3.9‘ 3

y-- .~ -.A4 - -..-.~- 5.0

.- -_ 5,x_ -*. ___ ‘.

100,4--k 32 8 . . 102.2 104.0*

QJ3.3 zi3.9

. 88 89 90 91

91

6.1 6:7 7.2

c :, 7.8

105.8 34.4 107.6

'109.4 35.0.s 35.6 -

111.2‘ 36.1 113.0 35.7 ' .

114.8 37.2 116.6 . I 37.8 _ \

0 . 9i

96 e

w 97 n D n98

I 99 100

y:4 -tPO.2

-. 122.0 123.8 125-.6 ’

127.4 ’

f29.2 131.0. 132.8

r 134.6 136.4 138.2 140.0 141.8 143.6 * 145.4 % 147.2 I _

149.0 .150.8

.:e;.l 52.6 T

154.4 )' 156.2

158.0< i 159.8. .161.6' .

163.4 165.2

'. 167.0 168.8 170.6 172.4 174.2 a "

' 176.0 177.8, 179.6 181.4 : 183.2 1.85.0 l86.8 188.6 190.4 .lcj2.2 194.0 195.8 0 197.6

'199.4 201.2- _ 203.0 204.8 $’

.206.6 ’

208.4 210.2 s

212.0 J G> a.3

/ .L

m . . . . .

?l-., .Ij-

‘: ., _’ -410 * . .I ‘\ ^‘: .’ __>_._-> I

y-i ‘; *,,I --‘+ . I_ ” _

‘: .’ . i. J . ,,i ‘. _ Y. t -_ i.

Page 423: Passive Solar Energy Book (1)

-_-... --~. I - & L -_ . . L-- _~ .I ‘.,

p1 , m .

#

c

-ii*. .

0

.:

b. !

, n ; I

‘; n

c . rr

*‘I

. u ‘.

,’ c D I

1

<:*,.

1” Glossary* - ,- .I -C’ \ * .&!a%-- 0 . _. . . _ a. j 1) ., ., ,, ,Ij . .,..,_. ,. .~...~ .,,*. ,.,. e , ,~ ., ,, .; ,, I .I : . L . .L .

k ..:’

c. r’ e ratio of the radiation absorbed by a s&ace and the total>@hergy

,&+r&&eih

1 ;& c falling 6n that surface mebsured. as a percentage. * 0 L

. .” = . ~ 0 , .r/

n A active, solar eneigy sy?tem-

%! ; a system which requires the importation of energy.#rob .a:

; L autjde of&% rmmediate environment: e.g., energy to operate fans’and .’ - @umps. .- - 3’ >

..+ . . . . ado&a sun-dri&&tinburned brick of clay (earth) and 5traw used in construction.

. primarily in the Southwest.’

as3&empera&r$ ardund a house. & ,.,, .’

;z,:, ” .” . : iF$ ‘, \I 0” : .

.- an le of‘incidence-the -angle that the iun”s rays make with a line per- ‘/~- --

=.. ,+ / 4 pendicular ‘to a surface. The mgle of,,,,)&cidence determines the percent-

. 6.. 1

age .of direct sunshine intercept66 by”3 surface. The sun’s rays that a’re * D perpendicular@ a surface are said to be “normaj” to that su&ce;See table * b

-6 --... II-1 in chapter 2 for the percentage of poss<ble sunshine interc$ted _by a i .

,> -- I. - surface for ?/arious angles_ofincidence. Y . 1 I ,_ ----.-- _ -_ -- __-.- -~ _- - - o* e ,, ;‘!

0 _’ P / _ Y;

\ auhary system-a suppiementary heating unit to provide heai to a space wher?its

,-CT:.,.. ??a? primary unit cannot do so. This li‘suafly occurs during periods of cloudiness ; /, ‘. ;?v or interise cold, when a solar heating system cannot.provide enough heat to.

-. ” nieet the needs of the tpace. 8. f =, . . --

th-the angular distance betwee? true south and the point on the horizon . 0% directly below the sun. .I:, .I” .,f ^

p sy&erri--see auxiliary iystem. i’ o/ ..c.;

, ’ j .( ‘r j . . 3 e 5

a’ form of m&able‘; ins&a?ionz developed by David” Harrison of ,, Zomeworks Corp., 1212 iEdith Blvd. NE, Albuquerque, ;NM 87102. The system employs- tiny poly$tyrene beads blown into the&pace between the

’ \ two yheeti of glass (or p&ma double-glazed wi$&w or skylight. I- 5

_. 0 .” ) < .

. - . : *

*berm--a man-inade hound or small hill of earth. ,’ Z’

‘- *Compil d by Bob YOU%; ;: _ ^ ! --A+-- _I_- . . 1, j ’ r .a

~-‘-~--.-..t _ .

i --_. . . k,

L - I 0 - a 4

s “411 ~ I o .

Page 424: Passive Solar Energy Book (1)

_,_. _. ’

.“’

i

-t- *

* ,.

.

i‘ _

.i

L

,, ‘:’

c@l+or, focusing--a collector that has a parabolic or other reflector. wh .- focuses sunlight onto a small area..for collection. A reflector’of .this type

greatly intensifies the heat at the point of collection allowing the storage system to obtain higher temperatures. T,h<s type of collector will only work with direct beam sunlight. ’ ta.a1: >\ ,, j 1

0 cdlector, solar-a device for,capturing solar energy, ‘$nging from ordinary windows -1 .: _.... . .

. to complex mechanical devices. .__ -’ 5 c

i -8 * conductance (C)-the*qu%-rtity of heat (Btu’s) which Will flow through one square

-. _ _...-

. 4 .

t

: :*y! ”

The Passive Solar’ Energy Book 0

,’

bl&ck bod+-a theoretically perfect absorber of incident radiation with also the highest possible emittance. ,_

‘)

Btu (British thermal unit)-a unit&used to measure quantity of heat; technically, the

. . quantity of heat required to raise the temperature of one pound of water 1°F. One Btu k 252 calories. One Btu.is approximately equal to the amount of

’ .heat given off by burning one kitchen match. I

calorie-a unit of heat (metric measure);‘the amount-of energy equivalent to that needed to raise the temperature of one gram of water 1°C. One calorie is approximately equal; to 4 Btu’s. . .

6 I caulking-making an airtight seal by filling in cracl$ around windows and doors.

5 I -1

clerestory-a window that is pL&ed vertically (or near;;‘ertical) in a wall above on&S ‘. line of vision-to provide natural light into, a bqllding..

.*

collector, flat..plate-an assembly containing a’lpanel of metal or other suitable material, usually a flat black color on its sun side,,‘,that absorbs sunlight and converts it into heat. This panel is usually in an insulated box, covered with

x glass or plasticon the sun side to retard heat loss. In the collector, this heat

.- *,! . transfers to a circulating liquid or gas, such aTair, water, oil or antifreeze, in

which it is trgnsfered to where it is used immediately or stored for later use. later use.

I .:,

(I

;‘:

. foot of material- in one 1°F temperature difference

. given for a specific thick- between ,both surfaces. II rii% of material’, not per ness. For homogeneous materials, such

-- as concrete, dividing by its thickness (X) gives the conductance (C). P

,.

conduction-the process by which heat energy is transferred through materials. ~_. __..-

w ;. .+(solid,s, liquids oAgases)-by molecular excit&ion of adjacentmolec&C-- _>I ‘\ __ _. .’ - ,. --- _

\ _--- __-~~ _~ ~- _ A \ ‘\ , I. . __~ -~--=;- ---- B

;a~-- .- 412 _. ~-- . ..~ _~ __ , .-’

-- ---. ~-- ---- ‘\ * ~.__ .-.- -.- -_ ___- ‘\ ,,---- , \ . T

Page 425: Passive Solar Energy Book (1)

I

.a

2

. g-, .

-..

> ’

. _,__ ,. . . I

0 ,

. .

c’ . ,.

~.- ~..

.

-.

-.

.

d 1

,,

0.

Glossary ep- : . .

- 1 conducti& (k)--tKe &aptity of heat (Btu’s) that will flow thrdugh or&square foot of

material,‘one inch thick, in one hour’: when there is a tempeiature difference . . _ of 1 “F &tti&en ‘its surftices. ./ .._. I’ _

e-

convectimhe transfer-of he&be&n a moving fluid medium (liquid or gas)and ’ a surface, or the transfer of he& within a fluid by inovgments wiihin the fluid.

K

d&d air space (sk air space)-a confined;Space ofiir-.“A dead air space tends to I I

ieduce both conduction and cynvection of heat. This fact is utilized in \,+ ki$a!,li/ ‘all insulating materials and systems, such as double ~glaiing, ’

“il Beadwall, fibegglass batts, rigid f&m panels, fur and hair, and* loose-fill .

insulatioAs like putiice; v.er@iculite, rock wool and goose down. s *

degree-day ‘( DD) cookg -see degre&day for hkating, except that the base tempera- . “r ?:- turt is established at 75”F, and cooling degree-days are mea&red above that V

b?se. . . . . * I, I . I

degree-day (DD) heating ,ari expression of a climatic heating .requirement ex- . , *pressed by the difference in,degree.F below the average outdoor teTperature for each day and an established indoor temperature base of 65”F,, (The .

l assumption behind selecting this base is that average construction will provide interior comfort when the exterior temperature is 65°F.) .The total number of degree-days over the heating season indicates the relative &verity of the winter in that area. (

/

_ dm:ity (p)--the mass,of a substance which is ‘expressed in pounds per cubic fob;. . . . .

diffuse radiation-radiation that has traveled an indirect-path from the sin &caus”e ’ ’ .

it has been sea ered by particles in the atmosphere,, such as air molecules,

P

I

dust and waceri vapor. Indirect sunlight comes frym.the entire skydbme. V , \ . j\

direct radiation-light that has traveled a.st;aight path from the sun, ,as opposea.to --diffuse s.ky radiation. ‘\

\ . - \

/\\ __----. efficiency--in solar applications, this meqtire pertains to the percenta.ge of the solar

\. “\, -

energy ir&i.dent on the face.of the tiq.Jlector (glazing); that is used for space \ : ‘heating. - , \ . -. .,. ,

emissivity- the pr$erty yf emitting .he’at radiation; possessed by all materials to a _ ,,

varying extent. “Emittance”. is the numerical value of this pfoperty, ex- ‘~ i

pressed as a decimal fraction,&r a.p?rticu.lar material. Normal. em$ance is u . _ the value me&u&d at 90 cjeg$ei tb the‘plane of the sample and hemispher- i:

. . r’ ! . R

413 “’ . 1 ~ . de ._

Page 426: Passive Solar Energy Book (1)

.‘,... _: ‘.‘;;, ,; ..L..L_.,L..L .- - 0 m -

.< ,A - ,a t’

‘. i’ .’

:* . . . .I

* The Passive Solar Ener& Book ,/ r -’ . I ‘a. n ‘.._. I’ : * . ?

..~ .----.. - .-_----.. -... ...i ---- _ _- _..__ --.~.-~

’ / -+ lcal emlttance is the total amount emitted in al@i%tions. We are generaily 1 iinterested in hemispherical, rather than.normal, emittance. Emittance values D ..‘ t . _ ‘.-” I . ._~

. ‘x range from-0~~5-forb-rightly,potish~d’ metals.!2 9:96 for. flat black pairit. M%J n&metals have high values of. emit&?&.-) m

~--- ._ .- Example: Glauber’s salts. The melt-freeze temperatures. vary‘with differentZ / _-. - _. salts and some OCCUP at, convenient temperatures for thermal storage such as

in the range ,of 80” RO 120°F. l I

,I .,

_ I

gl+ng-a coveiin.g-bf <transparent qr transl&ent%aterial (glass or plasticj used’ for b--

1; admitting I,&ht. Glazin’g retards heat ‘ibssedfro’m reradiation and c.onvection. Examblej: wjndohs, skylights, greenhouse &d ,collector Goverings.

‘. 0 . . ;, L .

glking, double-a sandwich of two separafed l&.rs‘&g;ass or plastic enclosing, air 0 to create-a-n’ insulating barrier. s . i

: e&inox-either’of tihe two times during a year when the sun crosses the celestial equator and when Jhe length of day and night are approximately equal.

. These are the qutumnal equinox on or about September 22 and the vernal equinox which ‘[soon or about March 22.

0 * ‘\

’ eutectic’ salts-+&s used f6r storing’ heat. At a given temperature,, salts melt, .-

absorbing large amounts o( heat which will be reIFased as the salts freeze. i

greerkou$&z effect-refers to the characteiistic tend& of Some Jransparent mate- rials’-su-<h as glass to transmit radiation shorter than about 2.5 microns and block ra+tion of longer.walelengths. ’ ’

I , heat capacity (volumet=ric)---the number.bf Btu’s d,cubic fiat of material can store

+,&&a soneldegree increase in its tem’perattir;e. b $4 ‘?p ? ii

0 1 c-

‘heat $ .

in -an in&ease in ‘tke amount of heat contained in7-A space,-reiulting .f’;orn

. ” direct s&tar radiatign, and thee heat @en ‘off by people, Iights,‘equipment,

’ 1 ‘machinery and other sourc&. --, m P I . a L>

3

” I(

:, b,s heat Ic/ss-a decrease’in t&amount of heat Contained ?n a gpace, rejulting from he& _ _ . .-

‘flow through wAitIs, window&&d other buildirig. envelope comp& 61. ’ nen&., / 9 ’ * I 0 * ‘. ‘. . 1 , * I’ ‘. . . b \a . -. i, -- ‘ w ~

Ji. .I . . ‘, .infiltraii,or;-the,uncsnt~~lled ,mo~$,men&~outdpor ai,r into the interior of a building . i through cracks a$und windqws dr&d&& or-in walls, ropfs--and’~~~~;si’~hi~~~

1.. . . 4. ? < . i fi”:

:,*. y.. titi work by co& ..air leaking in during, the winter, or the rever\se in the- ;-’ summer. if ., -, L. -: .*

0

I i

-~ t . .

I- ( , ,

.B _.. I

3 i

B; -. . . .* I ,. . .

.I *

1 ,.I’

_

,” _,I .

I

b ”

Page 427: Passive Solar Energy Book (1)

’ ‘_ ii I, .::

c

‘.\

/

,,+ .,.,_,_,_. ,,.. .>_

7 <I

. . . ,. ._. .,

.

*, = ‘_

:.$

.- _

*. :

-~

! c

4 i

. ;: \<, _ _ ? ,. . ,t,. ..,.,,.,.,.. . . . . . . .

i .

-insolat&+he total amount oh? solar ‘-. striking a surf&e exposkd to

\ “.

.I, , ’ Glossary R * 4

.

radiation-direct,- diffuse and- reflected- the sky: This incident solar radiation is

..“.^.. . . ..measured.lin.I~~ngleys per.$.t-+, or, b’s per square +t .per h,qq or per day.;

insulation-materials or systems ‘used to prevent loss d; gain bf heat, usually ’ employing very s,mall dead air spaces to limibconduction and/or convection.

0 + .

radia&m-the direct transport of energy th&gh space by means-of elec!romagnetic waves, \

. c

kadiatibn, infr&ed--electromagnetic radiation, whether from the sun or a warm --- body, that has wavelength-s briger than &e red end of the visible spe&rum

(greater than 0.75 micro&). We experience infrare’hradiation as heat; 4% of the rqdiation emitted by the sun is in the Ynfrared band. , / ._ s d

refkzfancG--the ratio or percentage of the amount of light reflected by a surface to, the amount incident. The remainder that is not reflected is either absorb&d by/the material or transmitted through it. ‘Go:pd light reflectors are not necess;?rily good heak reflectors.

a I 4

resistance (&R.is the reciprocal of conductivity or X/k. .: .;

(X = thickness of the material D

- pi in i’nches.) -3%

retrofitting-installing solar solar heating or.cooling systems in existing buildings for the purpose.. .

‘1 R-factii<La unit,, of thermal resistance used foi comparing, insulating values of

different’materials; the reciprocal of the conductivity; the higher the R-fa<For ,of a m$eiial, the greate: itj insulating,pr@pettles. See resistance (R). -

1 .

,, _; &dome (s:ky vault)--tbs -visible hemisphere o f sky, above the hoiiz$kn, in all

>-. *. dir&tions. *T\~ ..\\ t I ,, .._ - -_ . . I -\ B h

skylight-a clear orGtransjucent panel set into a.roof.‘tci Qdmit S&light into a b?ldin:B ) :, ., t,

CL.

.’ form of movable insulation and a roof pond system-devel’oped Hay. The system involves motor-driven sl.iding ihsulation panels.

0 _. .

\, ___- .- _... -...*. - - -v- -- -. _ _.__ --- ---- -_. .._ -~.~ -- -... - a- - - solar altitude-%he’angl6 of the sun above the horizon

--

_D 1 . measured In a vet-tlcal plane.

.

,

9

i

_ .---

’ ,

,

1 ,.‘.I - :,;.. 2 .

‘. c .’ ‘, 415 ‘* * 1 7 .

_(“. * :. l’s ’ 0 - L cr,, I. .- y, .:‘ 1 ., \ .i ’

Page 428: Passive Solar Energy Book (1)

._. . . * . D “,.” ‘\

B L

,d $, I

‘kc

3, .

- --^ 1 t f

The Passive Solar Energy, Book ’ - 9 5 . \ .! ‘i z :

. .._ -.~ solar-constant-the- amount of radiation or heat-.enkrgy that -reaches the outside of the eatth’,s atmosphere. ! o c ’ .

, ! . ! ..’ . _. ,. .^ . . _ I. sora~;P~di~tidii~.lect~~~~~~~~~~..r~diation emitted by the sun. I r I ,

solar window-openings that are designed or placed,primaril.y to admit solar energy’ $ ./ into a space. ’

- *

specific he+1 (Cp),---the number of Btu’s required,to raise the temperature of one + a c .pound of a substance 1°F in temperature. i . .

” ,

thermal mass--the amount of &tential heat storage capacity available in a given assemtrly or syst&ii Drum Walls, concrete floors and adobe” walls are examples”of~therniaf mass. . * ‘ @iI

2 thermocirculatiw&the convective circulation af fluid which occurs when warm * , -- fluid rises and is displaced by denser, cooler fluid in the same system.

A 1 time la&--the period of,time between the absorption of solar radiation by a material

‘\ and& release ,jnto a space. Time 1agr.e an,important consideration in sizing - ,i i

a’thermal storage wall .or Tcombe waL 0 *\. ~~ ,~~ - -.‘.- -~ ~~ -~

--~ ti%ducq+-the quality of trans ‘itting light %ut, causing sufficient diffusion to -0

eliminate perception of di’s- ‘net images.

< ” ;: ” _ 1

4 \

i /

transmittance-the ratio of the radi&-tt energy transmjtted’through a substance to the i,

7 total radiant energy incident bn its surface. In solar tpzhnology, it is alwalys (

p, affected by the thickness ‘and composition of’the @ass cover plates on a collector, and to a major extent by,the angle of incidence betw”een the Sun’s ,= _. k( *- rays and “a line normA to the surface.

: 3’ ,:,,.c \\ r

‘5 . ,v

U vbyz (coefficient of heat transfer&--the number of’ Btu’s that flow throughsone *

,I .’ i & square foot elf roof,’ wall or flooi, i.n one hour,’ when there is a 1°F

.

“, difference in temperature b&een the~inside and Gutside air, under steady ‘, - ’ state conditions’. The U va’t;le is the reciprocal of the resistance or R-factor.,

\ * d - - vabr barrier-a component of construction which iscimpervious to the flow of ‘..

moisture and ai’r and &used. to 6revent condensation--‘in walls and other *

locations of insulation. \ i

\

\.,‘. *:,, i .. a <-

k--- ’

1 \

i -,-_ _ ~. .._ -__. .--. -. -- _- . . _ .- -. _ -~

----7----p AA._.. __.-- _I_..

.._ t < _I b -

. .‘- c

. 1 8 0

4@ ‘b a

.I I . 1- 4;

Page 429: Passive Solar Energy Book (1)

; /’

%:j

Glossary

.,

,

-- ,.

wat$r wallian interior tiall ofwa(er,fitkd cbntainers constituting a one-step heating system @hi& combines cotiectiqn and storage. a

. . . _ J weather stripping-narrow or jamb-width sections of thin metal or other material t

prevent infikration of air and moisture ground windows and doors. ’ I

a ,.p

t- ’ .

a di ‘, f 8

-A r_ &.’

.m V‘ * ,3‘. :

:. . I . .‘

1 \

.

“\ .-----.. --- -----.._.i-..... ..___ _,..

r’l I

.r *

, .

0

-

k417

Page 430: Passive Solar Energy Book (1)

*’

f$.,, ,

1.

: !

_.

I \ \/^

9

m.-

A __.-- -..--.- --

-H-F-

. s

,_,,

,,,’ ,*

.

B

_ ”

‘? “0

” _ .,

:, ‘, ::

/, ::‘” $ :.,, ‘., . - ,:::r’ . ’

I’ \

,.+

..,

.,

,.

D

%

;/- ,;

c a :* American Society of Heating, Redrigerating and Aircondjtioning Engineers.‘

1972. ASHeAE handbook of -fundamentals.. New York: ASHRAE, i 51.; *

Baer, S.=f975. Sunspots. Albuquerque: ZoImetiorks Corp. @ O. . (4

B,rinkworth, 8. J, 1974’. Solar $&rgy for mp. New York: John Wiley 9( Sons. ’ I .

D dhffie, J: A., and Beckman, W: A. .1974;;-Solar energy thermal processes, New

York: Johti ‘Wiley‘8; Sons. - %a c 1. ” ,.

Mather, J. .R. 1974. Climatology: fundamentals and applications. 6’ *I’

a McGraw-Hill Book+Co. N.ey York:

‘*, - ,‘-I .b .

-&yay, V. V. 1963. Design with climate. Princetdn: Princeton Un .\ ;”

‘iv. Press. z ? “,

Portola Institute. 1974. Energy primer: solar, &a{,@f, wind and bioi he/s. Menlo .. Park; Calif. 3 * ~---7 -~ - . . . .

<. --.... :. I. n

1 Scientifi@ American Editors,: ed. 1971. Energy and power. San Francisco: I y W. H. Freeman & Co. \

‘. I. ; / . ! .- I . 2

~qhapter’ ‘111 ’ I, B

AIA Rese&h Corp. 1976. Solar, dwelling design concepts. U.S. Government ~- ‘..._ Printing Office, Washington, ‘DC 20402, >stock no. 023-OOO-O0334-1.

-I *

i’,; ,. L ~

.?’ * AIA Research Corp. 1978. ‘A ;hrvey of passive,so/br hi/din&. U.S. Govern-

^. . . - ment Printing Office, Wf:hington, DC 20402, stock no. 02+OOO-OO437-2. , , .,

* . ‘Anderson, ,;B.. Ed. by Riordan, M., and Goodman,. L. 1976. The solar home

I : , book:; heating, cooling, and designing with the sun. Harrisville, N.H.: * . i L’ . Chestiire Books. I ,$ 2 I> P L. I . . ‘7, . a

I ; :, L ’

.Hay, H. k. et al. 1975.-Research eya/uatian,of a system of’natural air-&ndi- : :: \

.’ . tioning. San Luis 0’b)spo: California. Polytechnic State University. ‘?:L .-+ “:

’ . ‘. \ I “, \ i

*: 0 I 418 > ,I “, , _c.lc

i ’ _>r .

,, :, _ . ,’ ’ - “C..’ ” ‘I * - -. , ,.s.I/ :’ _ .I . + %& . ’ ,. ., 1, a. .I ‘.. ; --, : ‘5 ‘.

Page 431: Passive Solar Energy Book (1)

f

, , Bibliography

” d

Rabei, B. F., and“Hutchins0.n; F. W. 1947. Panel heating and cooling analysis. New York: john Wiley & Sons. :

Stromberg, R. P., and ~Woo’dall, S. 0. 1977: Passive solar buildings: a co&pi/a- tion of data and results. National Technical Information Service, Spring- field, VA 22161, order no. SAND 77-1204.

U.S. Energy Research ,and Development Administration. 1977. Proceedings 5 oj the Passives War Heating and Cooling Gonference.m’ Albuqwque,

1976. Washington, D.C. D P , L. m

,MM -- \

Chapter IV i..

Alexander, C. et al. 1976. A-pattern language: towns, buildings, construct.&. New York; Oxford Uni-v. Press. ‘

Baker, S.; McDan&ls, D.;i and Kaehn, E. 1977. “Time ‘integrated calculation D of the insolation collected by---a -r&lectorLcQUecztor system.” Eugene: _-

-~~!ZGirEnergy Center,,University of Oregon. 1

G /’

Callender, \. H. 1966. Time-saver stan,dards: a handbook of architectural de- 0 *sign. 4th ed. New York: McGraw-HilIdBook Co.’

_

,. .

. c Calth&pe, P. 1977. Prelimiiary comparison study of 8&r solar space he&ng c,

systems. Farallones Institute, Occidental, ,Calif. I

Clark, G.; Lo.xsom, F.; and Niles, P. 1977. Roof pond cooling vs. active solar ‘cooling in a subtropic marine climate. Presented at the Heljoscience Institute Internat-ional Conference, Palm Springs, Calif., May 1977.

Duffie, J. A:, and Beckman,‘W. A. 1924. So/x energy thermal proysses. New . 0 ‘York: John Wiley & Sons.

. : , General Services Administration. 1975. ‘Energy conservation design guidelines .

for new office buildings. 2d ed. Wash.(ngton, D.C.: &A Business Service _ _’ .‘..

P Center. b, ’ : “\ _~~ ~~~ ~~ ~~ -- -- --- ‘% / _.~- II

s Haggard, K. 1977. The architecture of a passive ‘shern of diurnal radiation heating and cooling. Solar energy, vol. 19, no. 4. ’ *

\ = ,*; .-

.

. .

Page 432: Passive Solar Energy Book (1)

.,9 \ R ‘- ,

8’: D i

\ ‘I

d * ‘1.

, \;‘;, ‘1 3

, * . --

----A-. ” .- 0 j I \ The Passive Sohyr Ewrgy Boqk . rj I r ‘) -, 0 CA

Haggard, K., and Niles, P. Re&arch evaluation ?f a systeti of ‘natural air n

conditioning. National Technical Information Service, Springfie‘l.d, VA j . L 22161, order no. PB-243498. ,i ‘.I .* _. . t’r

,3 .Haggard, K.; Hay, H.; and Niles, P.“l976, Nodtu-rna-I cooling and solar heating ’

,* /“ - .~with water ponds and moveable insulatlo ’ $;. ASHRAE Transact?ons, Lol.

82,,pt. 1.

,

. . I. ,- ‘, Kegel, R. A. 1975. The energy intensitf/ of”building materials. Heating, piping, .* -4air conditioniqj, Ju’rik 1975, pp: 371-40, 7 : 0 0 e... a d

..;: Lawand, T. A. et al. 1977. A *greZenhouse for northern climates. Solar age,

D ‘T. ..: 1 Octobe$1977, pp. ,x&13. . .’ : , +2 II ?

‘3 ,> - - J ‘* . . i .\\ , ‘.,_ ” “‘.,; kos- Aldmos Scientific Laboratory. 1974. Pacific regional &jar heating hanci-

1. = book. 2d ed. U.S. CoyqxYte&+rihting Office? Washington, PC 20402;

g’ ‘i 7----

g. _ 1; r ?-,;r&;~&~~24-~.~

1 . @CuIla‘gq. C. 11978. The solar greenhouse.ijook. Emmaus, Pa.: Roiale P&s,

‘. 1.. 1” 7

,’ MacKillop, A. 19?2~ow energy housing. Eco(ogist, December 1972, pp. &IO,. \ e =-

‘\ F, . -_. Makkijani, A. B., and Tchtenberg, IA. J. q97.2. Enzgy and well-being. Environ- -l!

ment,tiol. 14, no. 5: 1.1-18: ~.

I Naz’ria,. E. 1;97i. A design and ‘sizing prbcedure’ for direct gain, thermal

. sfqrage wall., attached greenhouse and ‘roof” pond systems. ,Proceedin&“’ I ( . vi _ of the Second National Qassive.. Sol& donfer’ence, *Philadelphia, 1978.

Washington, D.C.; tion, ” ‘_

lJ.S- -$&ergy ~ Re’harch and Development Administra- “.’ o ” , 7; 3

. I’- L

d Mazria, E.; Baker, OM. S.; and Wessling, F. C. 1977. An analytical model for

‘. pagsive solar heated buildings.. Proce,@ngs of the- 1977 Annual Meeting .I of the American Section of the /SE$ vol., 1. .Orlando, ~la.~,J.une 1977. r - 0 .~ r .

Mazria, -El et .al. ?977-, Noti’ -solar greenhouse -pertormanci and anqlysis. , - Center for Environmental Research, University of’ Oregon, Eugenb, OR

*q d 9+03: !’ a . ,

.‘. s ,\ i O‘lgyay,‘V. V. 19.63. Design with climate.. Princeton: Prim&ton Uviv. Press. j

Page 433: Passive Solar Energy Book (1)

_r 3 -..

0

-a

liMiography,

u

Olgiay, V. V., and Olgyay, A. 1957. Solar corttrof and’ shading device,s. *‘-” ‘-

I/, Princeton: Princeton Univ. Press. _ _ ’ 9 . .i . .’ *

, a Raber, B. F., and Hutchinson, F. ‘W. 1947...‘??ape/ heating qnd cooling anal ’ . I .

.jl D -~

New York: lohn Wiley &.Sons. ’ ‘i+T.Z . h s. > +

.* l :, r”,. 0 3

c . 2

n 3

Robmette, G. -0. 1972. Plants; pGop/e andienvjronmenta/ quality. U.S. Gov- 0 I ‘e&mentPrinting,C%fice, Washington, DC 20402, stock no. 2405-0479. ,~

i . . 0 c 3; .- ?c United flati’ons. 19%. Climate and hoyse design, ‘vol. 1,. Department. of

1

\_” rw. mic and Social ARairs, New York. . . ‘. ,L * - 1 -. Lt .’ .

^, U.S.” Ene?iy Research an*d Development Administration: 1977. Pr&eedi.ti@ of thr?fassive Solar Hea?i¶g ‘arid, Cooling’ Cbnference. ,Albuquerque,r, ,> -1: 1976., Washington., * D.C. : ‘.

q 6 r rj _- Y Le _ II P . o 51 D -

Watson, D. 1977. .bes@ing ani buil,di,ng a $ar ho-use. Charlotte, VtPi.‘Garden._ = ,Way&bli,shipgq.e: ’ _. .‘*:~_ * ;o--:-_-~ _* _’

_ ‘. 0 7”

‘, WAls, /VI. B. 1977. I@dergroyndOdesi&s. [email protected] Well5,rBox 1149, Brewster, ’ - 0 I -‘MA02631. ,I 0 .’ ‘,I

. . . ‘\ ;tiqi 1 ,D i n 0 - * Tp .- \ .,f: Ij

ips m _.. w < s Yanda; B.‘, and. Fisher, RI 1976. The fodd andheat ijroducing solar grekihouse. - 1,

)oh”n MC uir Publications, h.0. Box 613; Santa. ‘Fe, NM ~?5.01. 0

;f 0 1 I ’ ,. .F _ ‘& 7 ” . .

Chapter V- ,@, ~ , ‘I .6 0 u 0 _ . ., ” 0 c. I ‘. __ ” ; ; ‘i -.- . ,’ , n 1. .i .‘;

wj-a, E., and’ winitiky, D. 1!$76:.. Solar:guide and cat$fator.. Cent&r-“%r. :“- &$@nmental., Research, Un”lye.rsity o,f Qregor\r,‘E.r$&fie,L~$R 1;$2!,3..

. .Ly ’ ?

, b.:. ] T.- .^ *. c -. _ .dc’* . . ” - I

r Picific N~rh-w&t bu%!i,~g~~~ (3$& for ’ . s!ity,&&Oregon, Eugene, OR 97&I3.’ a __a ;~r :

:: <!,A&. ‘i , - if A- ,: i.

p .

a

Page 434: Passive Solar Energy Book (1)

n

‘\ *. ?t

\‘ ~\ 0

,t ’ 0 .

n , -

A.-& ! . s-

*;- _.’

‘__ <.’ . I

.d,

ir 5 .,~ c 0

,/y-G .

I

,,/’ 4

1. _

* .\, . \

& \ ,- __I’

” Photograph -A\knowledgnq& * _I 7”; -,..

I Ill-2 ~j

Maxamilliank-restaurant, Albuquerque, New’Mexico. ” .

’ . . i. ! -. Edwatd Mazri.aj designer! Robert Strell, desi+er. .._ . . ._

I I ’ ’ -‘I 2,

1 P - ,- ._ = .r,---~- -‘ Ill-4 r,. --- _.. -..! ,+- Karen/ Terry house, Santa Fe, New Mexico me’ - ~--~ ~--‘-~~~~---T~

---- ~.-i ‘,

.“- ..-. ~-.~d’~vi~.~~~glit,~arch.~c~;-~~~~~~r-~~~~~~.

, -.. b . - ‘. 5’. ~,. ” I I l-8 Att;ached greenhouse, Bethlehem, Pennsylvania. 8 .

_-~~ dhzirl.& Klein, architect. 1 ” : ~~. r ,

III-11 i- Bus shelter, Snowmass, Colorado. b, L

‘_ . I b IV-la , Fitzgerald residence, Santa Fe, NeBw Mexico. - ; -#

- I:

. . David Wright, architegtb’Karen Terry, builder. * .‘i f

-...-..-:..------ .-J,!& ___.__._.... Lasar’residence ---. -- ..--. L- F-k , Stephen Lasar, in -

a,, ._* (1 : :’ .u ,’ ) ,‘_ : . . . _ . :.

/ IV72c : .i.

i Lasar residence; .New Milford, Connecticut.’ -

3 .a II

‘- --.*^ .. Stephen Lasar, architect. _- _,’ -’ , ’ ~ : .a I __ % ‘-- *.

/’ . -Iv:& , ‘, 5- . Fitzgerald residence, Santa Fe; New Mexico. m

a / 7 David Wright, architect; Karen Terry, builder. ,

I ,. W-+. \

, . . .*.:&asar residence, New klford,,: : 2

.._ ~ /.s ‘. 1 zI -St.gphen Lasar, architect. 0 =’

- ,_ 7 r

;.-; IV-5a , ” . 4 a i

. . _ : L4 ( * : -:‘: - -9, . * -_ f. . :.

6$khols residence, SantaI+, New Mexico. l 0 . ‘5

‘1,’ 8. . I. Wayne andSusan Nichols, builders. A. b G. n

:. . @: “L @l a-. : . -a 7 I. ‘3 * n.

c,,, . “9 IVGa. .

‘,.

Residence;Aspen~Coloradp. e a. - 3 *

’ I .s .I

Peter Dobrovolhy, architect. ) 1

y ’ .

P

._ ail

3 I!¶-@ Attached Greenhouse yste’m, Occidental, California. . -” 1 s Peter Caljthorpe, designer; ~

: _ ,a. ~ . -:

; 1 ,I -L ‘Roof Pond System, Wjntek, California.

^ * ’ T& E

.s John Ha~mmond~clesij$tier. -: ,’ ,

w ._ p ._ * D ’ I 3 I .! ._ .*

,_ t ;T ,y+--“‘, ThermalStorage-Wall System, France. - -Z > ‘\. . ‘lacques Michel, architect. - -

‘, I I. , ‘y . .

3.’ -. :e .-..--.-,- ..-.- - ._....I ___...-_ _ - 8. ’ ,~- : T ), ;ro . . _ t

0 ~ ~ ,’ ;, ..-

* :_ -8 , @

2-/-~~-~’ / -. . ,;

Page 435: Passive Solar Energy Book (1)

h -. _ . .. / F

-. 1 _

i >

,P(

< m :-----.-_- ~ +

~ ___.. ': '3 Cr. ' .:

.z . . -- 1

d

-_ ,- ' , c

.z.. .~-~-.. ~~ _ -- P A, ,

.:

Photograph Acknc&led&nents. \

, : * I 4 -

.

IV-pa ’ Lasar residence, New Milford, Connecticut. - _ Stephen Lasar, architect. c’

1 -*

I IV-IOa Strell residence, Albuquerque, New Mexico. ,* I Robest Strell, dezgner; Edward Mazria, solar consultant.

! ,’ *

’ lv-lob I(-

Aspen Airpo’rt, ,Aspen, Colorado. Copland, Finholm, Hagm”ann and Yaw, architects)

II StepHen Cc. Baer and*Ron.ald Shore, solar consultants. - _ _’ ‘\ /’ , \

IV-IOC Maxamillian’s resiaurant, Albuqugrque, New Mexico. Edward Mazria, designer;Robert’Stre,!l, designer. .

<: ~ 0 IV-lla- ** : Stephen C. Baer residence, Corrales, New Mexico. n

Z Stephen C. Baer, de,sign&r. / ‘a

IV-I 2a Longview School, Davis, California;-~- .--i- ‘.,” . . ___ John Hammond, solar consultant. . ’ n 1.’

l,V-12 b .*Residence, Davis, California. =-_ .t x.. . John Hammond, solar consultant. .’ ,

‘1, -._

?. . . !

;.’ *

I ”

. .

.\ .

n 1

.- .r ’ IV-l%3 . Lasar residence! ,New Alford, Connecticut. I

’ P .’ P Stephen Lasar, a:rchitec?

. ;I : .- I ,

: i* .: ,,.,,. \. - --~ --- - - 4’ . .: * “V.,, . . . . . . . . ,. ; . Longview School, Davis, California: ‘

_- -” ,:..,,,, .i*‘,. * John Hammond, solar consultant. . 1

,.- I :‘c$ . .,<- .

;. \ . .c\li I IV-14b - ‘Wolf residence, Durango: Colorado. .

. Brian -Kesner, architect. ’ >. : ‘;- -% R‘ e I 0 . . ,.L_ :z ,a’

‘. I * ;>, ’ ’ I / . ‘, - .I ( .a \ F. Y

IVy19a 0

‘5 \

” ” , _r- i-----

’ IV-15b,.,. __-”

Wessling*attach‘e’d greenhouse, Albuquerque, New Mexico. i .,- , /"

Edward Mazria, designer; Fran&s W&sling, mechanical eng~neer:~~,~i .. @

‘t I. P _/- _/’ Z i _,. /” \

-I/--15c D Balcbmb r&jdence, Santa Fe, New Mexico. /‘* - i \ /-’

..a> \ 7.. 4. 5 . William. Lumpkirjs, architect;.Wayne andSu<an%.&hol,s, builders. -_t ----. i&g -. . , T /A ,A-

-.: ’ ; I . /A. : . : . - 5 ’ _ \

K” *I,

0.

_’

:. ,.,.‘ ,.,. ,’ Y t

,,---,-,, ‘v -’

;,,. . ‘m ,I’

.I .

., ,.,./ ,. r .._.. -.;-. I_ __,_,, 7 ..‘.

5.. i . . . .:

‘iTl 1..;;-‘, .yi ,> ,.

/.aL ‘-- -y;--, /- f ‘~‘-~ ,__- _,

.--

; j, , - ,-. _ I

Page 436: Passive Solar Energy Book (1)

.

--‘- ._ ilk. Pa!&

Iv-lsd-

IV-16a’

\: ’

d,

9 .

I-V-204 . d

iv-jot

3,

‘- IV-2qd

424 ~

/ ‘.i ; ‘,

IV-l ia

--\\\;-

1 z¶ 2

IV-18y

L

W-1 8b \ - .

” 7.

. ,.

. IV-$a

.;_ Iq49c

_ 1’

* t

c- e ,.>. --

+--. -z

IA . * ‘. : b ,

I .

fdgr .pergy Boik ” 0

’ L c

Holdridge farmhouse, Hinesburg, Vermont. Douglas Taff, Parallax, Hinesburg, Vermont. ’ II _/ ,

-Lasar residence, New Milford, Connecti&t. 1.: .

Stephen Lasar, architect. ,. “..

Experimental residence, Atascadero, Califor:ia. Kenneth Haggard, architect; Harold Hay, solar system

engineering. . a..

Farallones Institute, Occ.idental, California. a

Peter Calth.orpe,-designer. \ , ’ ,, ,P” . -

Roof Pond Sytem, Winters, California. John Hammond, designer. *

. .

’ Experimental residence, Atascadero, Californi’a. ’ architect; Harold)Hay, solar system

* . I L I..

_ Faralloneslnstitute, Occidental, Calif-ornia. I _,

Peter Calthorpe, designer. - $%’ . -,

Greenho se, Seattle, Washington. E

0’ .

,’ Ecotope, :’ roup,.d,esigner. ‘. I .\ ‘P

Crei$fiouse, Seattle,Washington. ,. -4 - C.. i . :

Tim M?Gee, design&. . . I .,

Greenhouse, Noii,.Oregop. ’ $3.. ’ f . .

Jim Bourquin,.John Hermansson and Andrew Laidlaw, designers; Ech;Lard Maiila and, Steven”Baker,s&r consultants. ‘-,‘-

--

Greenhouse, Seattle, Washington. s ‘. , g ..

Tim McGee, designer. ._ ,’ I *.

, j 2 :

Greenhouse, Noti, Oregon. - L ]irn--&.rquin, john Hermansson and Andrc$ Laidlaw, designers; 1 ‘- -

Edward Mazria and Steven Baker, solar consultants. .: o 3

Page 437: Passive Solar Energy Book (1)

I Photogr@h Acknowledginents

. i

IV-21 a Wolf residence, Duygo, Colorado. Brian Kesner, architect.

: ’ IV-23a Holdridge‘farmhouse, Hinesburg, Vermont. ,

” I Douglas Taff, Parallax, Hinesburg, Vermont. 0

.,iV-24b ’ Dickinson residence, Chico, California. . John Hammond, solar cansultant.~ :‘N

_... ~_ . . . . . -?I ‘. I ’ IV-25a Dickinson rpidence, Chico, C‘aI’ifornia.

John-Hammond, solar consultant. \

A .

--~~~25b ; Ike Williams Community Center, Trenton, New Jersey. John P..Clark, Fred Travisano and’Doug Kelbaugh, architects. b

’ .

Q

* 1 IV-125~ .Hammohd residence,‘*Winters, California. ‘,. John Hammond, designer. T - .

,i

Iv-;-25d Wolf residence, Durango, Colorado. / d

2 Brian Kesner, architect. .I : ‘M&-shall Hunt residence, Davis, Californ;a.

_ __-l

.,

-IV-26a ,

% -

John Hammond, solar consultz$

%’ First Village, Santa Fe,.New Mexico. -’ Way- and Susan Nichols,’ builders.

\

7,.

. .

. ~_

.._

i - i

I -4 .

> _

. c

. . i 1 ti

1, .

Page 438: Passive Solar Energy Book (1)

Photograph Credits s- .L.

.p

Tom Getting ’ i’

ii

“‘~ IIL2; 111-2, 6, 8; IV-2a, 2c, 3b, 7a, 9a, IOa, IOc,” IOd, 12a, 12b, 13a, ljb, 14a, ISa, ISd, 16a, 17b, 20&, 20e, 22a, 23a, 23b, 23~, 24a, 25b, 75d. ::

3 & ,*J

IV-la, 3a, 7a, lob, 13a, l!ic, 2Sa, 26a.‘; TL J “;lep

I I I-9;“lV-1 Ba, 18b.

L k- ,.

” - L .’ *

:* III-S, IV-7a. . I

_ Kenneth Haggard

Jacques Micf-&l

Marc Schiff ‘t-

“Robert Gray Ill-1 0

ljpbert Perrdh ’ 111-6.

II-I. ,.$ 1

-IV-9b. * 4’ . BraPeResearch Institute ’ - *

Peter 0. Whiteley, Sunset magazine .: IV-23~.

SW.% B ?. k .I *

-__. __

,. -. +,

5 .‘.

426 . ” .I. i a

‘, .c- ,(, , P,

m , ‘; i

.,__ .. ; 0

Page 439: Passive Solar Energy Book (1)

’ ; index /. ,

__. . -8,‘. -_ :

A@rption ., 8. - - Y. of heat by thermal mass, 28,

~ of solar radiation; i%; 1.6-20 :

; by thert$al storage wall,, 44-45 .

- 9, of thermal radiation by glass, ; r 6 I .: ., > _ &&I5 ,___ ” * t ’ s

. , ’ -Actives&Fllating systems, 28 f A .‘- I “in attached greenhouse;- 53,179, u e D .1&3-85 J. -1,

,_ Adobe. ‘See a/so M.asonry thermal _I*

mass *

..’ . for cjirect gain systems,.34,.42- ~:Ad,abe fireplace,?as,back-up heatjng

system, 43 a

4 ’ ‘Air lock, asentry, 97 ’ a..

‘. ~, Air loop rock storage system, 60-62 * Albedq; of the eabh, 81.9 m I” a, r?. ._

,G ~. _. qlexalder,~h~r~tapher;on the uses .A._Ai_ - ~, : ; \ * D of open spa.ce, 75-77 :. ,a

.-.a. .; ‘r:

-lo ” :r \ ‘:’ Altitude; See Solarpaltitude

n %’ *’ Angle, of sun’srays, 13-14 . .

Back-up heating systems, 31 adobe fireplace as, 43 .- -!, , ‘for freesianding green-house, .

598~ ;

wdo,$ stove as, 40, 52

-

1

Ir

‘Bearing angle. See Solar azimuth Berming, of earth, on north side, 86,

87-88 i . I 0

Black body, 24 Sody heat, 64 ’ .

supplementing heat systems ;

wiPh,31,35 ,Brick. See also Masonry thermal’

!I

mass 1/

for direct gain systems, 34,42 * I -3

C‘ - w 0

7 i

-Carbon cfioxi.de, absorption of solar _ radiation by, 1.0

Carpeting, 134,143 ~

Caulking, of doors, 97 . Clerestories, 84; 125-31 * 2

in direct gain systems, 34-35, 38 angled, 42

AD vented for cooting,,37 ? -

Climate ’ ’ affecting sizing of thermal

,: ,-.-: i 5 Angle of inci’dence, 14,15,18, ,.. ,. ’ 9 Anticorrosive, in water wail, 42 ’ ;

h.. Appliances; suppiying of interior

\- heat by, 35;. ; 1 8%. . . Architectute, new attitude -to.yard,

c. 3-2 . ” 1 Y---L _ . ‘. Atascadero residende, as example of Y m-D indirect gain system, 56’ .

j-2- _’ .

1 ,_ _ 1_ Climate,cloudy -b,.- ..__ ‘,-: P.’ : design allowances for,’ 228,229. r- greenhouse wall angles f&r, 204 reflectors,,and;243 ’

. storage wall; 154 as-design factor for architecture,

Page 440: Passive Solar Energy Book (1)

\ ‘. .’ ‘*, ’

The Passive Solar Energy hck *

Climate, cold 1 ,, * ’ ’ ‘directgain system in, 38-41 % .I

, sizing greenhouse for, 173~77 - sizing solar windo& for,*j19’ ’ sizing-thermal storage tia!fs for,

* . 153,155-g y. ’ -

klimate; tempelatk % sizing greenhouse’for, 173-75 sizing solag w.indows. for, 119 sizing thermal storage wdls for, *

,153,155-57’. . * ( ’ ‘* .

1

, .

c

Closets, lo&on of, 90-91 *

b

.f” : ’ Clouds, absorption of sola&adi tion

by,10 /, , ‘5 Cloudy day s&rage, 226-49

Cotlectors, 15 0 .’ in acfive,solar heating system

28 .”

in dire&&n systems, 29 flat pIat&, 54-62 _

,

d’

c

for-summer cooling, 264 : of thermal sto-rage ~111, ‘166

_ of w.ater ,wall, ?45,Z,1491-5~ ’ ‘Combinati,on solar he@ng systems,.

220-124 direct gain and therm

.wall, 50-51,52 ’

-_c_- _-_e--- -

428‘.; *’

P

8. .A’,. ..

Comfort, of passive solar h,eating, 64-65

Concrete. See also tiasonry thermal mass d

as the?mal mass in direct gain system, 3'1 -. 1

Concrete block. See’a/so Masonry ,” thermal mass ? ’

for direct gain system, 40, 42, ’ ”

Conduction, 20,121 ,-..J .

I ~ he-at loss by, 232 ,, r .-;‘ ’ **in masonry thermal~wall, 44, J

4 161,162 ‘. ( o

C$du<tivity, 21. See a&o ’ * U Conduction

affecting of heat. sto’rage by, 27*

Conuection, 21,-23 ’ r’ in attached greenhouse, 53, . ‘inmasonry therma- storage L

rn-indirect,gain systems, .; 50,56

stippleinented with* ‘- 24-i-48 -

Color ,affecting reflection of solar 1 radiation, 24 affecting r&lection.of thermal

radiatiom, 24 &!y <

of clerestory t&Ii@, 129 ’ = _ thermal mass, 134, I

b

wql[, 44-4$, 50 ’ * . ~ in ,roof p,onds, 56’ B in water thermal storage wall,

5O,f47., L’ ’ _

Convective fl&,,‘in convective toop, ._* ,J$-J ? .’ ‘ ,,. 1,. -; I , ‘;’

Convectiveloop, 5942. 3

Cooling~~~i~h so$r+owe,r; 26, 262-66. ,;.” ’ “, “, , -1.

in direct+gam’systems, 31,37-38 in indirect gain systemesr55-56

with roof ponds,-?89 , .I-

Corridors, location of, W-91, ’ * Corrosion, prevention of, in water

-walls, 42 .

cost

I c

. . . *

I ., ‘t

.

of passive’solar system, 62 :

. . . . . al storage of t$ansportation of buil

materiati ___._ m--L .__-._ .-__------ ___ --- --- - I

~, s.

Page 441: Passive Solar Energy Book (1)

.‘.,’ m.

. .

I _ Index li , i . .

= ! L 1

8

Curtains . - 4 , II E, 0 ,.

. to control-thermal storage wall, q , * ” “-4 .>I,236 - -, -, Earth, solar radiation affected by tilt

_. exterior,for.shade,.255-57 _ -‘-’ ‘androtation-of, 11-J-2 ___ _ _ _ _ __ ‘/

Cyllndrical’sun chart, 267-92 i 0’ ‘..

: ‘; ,IJ:s- ,.. L D- i..

..g:. I

Dai’lyshn paths, ‘274 ‘., Y

- ‘* .a ,Dam~ers,Io prevent reverse 2. th,ermocirculation, 50,159,166-68 G

Davis house, as exa.mple of isolated, -- w’ gain system, 6662 . ’ .~_

.‘ Density, of construc.tio.n materials ”

affecting heat capacity,‘26 ’ - I _ .- .

: affecting thermal, radiation, 24 ’ Depth, of;coom,-determining of; 84

+ . Diffuse neflection,,l5-1’6 _ /

: - ,Diffusion; of solar radiation by -

. - atmoiphere, 9-l-2 .-, . .’ -.,

. Direct gain systems, 29-43,168-51 , Cr.. assessing of, 107-9

.o I’ ’ t

clerestories in; 34-35 _ , i . cooling w,ith, 31.

G’ :. . examples of, 3.1-43 .. .., 1 _ masonry heat storage for, - ”

; i? - l A- .,

1: .’ f ~ -:--- 134-43 a

n

Earth herming, on north side! 86, 87-188 ,v

‘Eiectromagrwtic radiation, 5~6. See

~~ atjDSotaf~fadi&n _ ~~

Emi,siivity, of a Surfa’ce, 23-24

Emittanie, of a material, 24

Energy. See also Heat-; Thermal

energy. B

output of the sdn, 5-7

Energy density, 13

E&ra~ce location, 94-99 Equation of time, 288 ~_ EvAporation, of roof ponds for .

cooling, 189

‘, I

skylights and clerestories for,’ US-32

. solar windows for, 119-23 . : =. L _ .thermal ma.ss and heat storage

a ., . - in., 29-31. water wall for, 145-51 . . .

, I F

FL in attached greenhouse, 53

, for ventilation, 121

Fence, as,windbreak, 97 cibergIa.ss tanks, for roof*ponds, ;b7,,-

’ Fireplace, adotie, as back-up heating system, 43. , +

, Flat plate collector, in isolated gain .I

system, 59-62 s.

Floor, as thermal mass * ‘_ i

(a in- direct gain system, 40 . insulation of, 259,261

: _. ‘, Distribution. See Transportation S Q 4 j. -. (” Doors. See Entrance location .:

Downdraft, caused by convection, I ,; : *m$indining comfort of* 65 .y<.‘. 21, ; . . :, < .., : : ,,: ,~ ,-,:, Fir&d &y&$ion,2&~$,. - 1. &&j ,.pL&;. . : B B

, I ,Drums, 55’-gallon, for water wall,’ 7 , -, : - Foy+.;.9& 97 ’ ’ 7. ., * “42,Sl . .- - FL, - m

,,Dust, absorption of solar radjation Freq.ueneies, of solar wavelengths; 7 rzr~flll~hlitieC of solar wavelengths; 7’

j. :c... I - , rt-rmr\mllpl~~t- fllcinn . . _.. ” . , . ,!k - by,>; IO * -i , -.J Fusion. See Thermonuclear fusion l

2”. ---- ---4 .--.-, .i._ ~~ .~~~~ =

7 I - . .,

Lo, . . ,.. c .” *

-1 ’ ,-’

429 .ti: / i j

.;, ! : ,,

G..,, 1.“. - ,, \ ‘\

:T’:; :, 1 t : . . ’

_ _s ”

*

i * ,.--’

c

:*:, ;-, ,f’ , I

\

,-

! ,;. . . ..,. , /’ L

.Y. .

;; ;,‘; ‘.I :,‘; \ * I_ >

*

“i.: “,v,‘; 8 ,, ,.

.., / I)<

,. ;..

,: ; ,_, .’ .!’ ; s

!,.:.*c,‘i;~ ,..,, ‘; ; ,m,\:-i,. _, ~ ~., .., ;-. .*,.*i”. . /’ ., < * / f^.. :; (‘j 1 , ,’ 1 1. _’

Page 442: Passive Solar Energy Book (1)

The Passive Solar Energy Book

Garage, location of, 90-91 i I. Glare, 125,~127

” Glass. See also Glazing absorption of thermal radiation

by, 24-25 as collector in passive systems,

28,29. transmitting of solar radiation

-. by, 17-19,242s Glazing.. See&o Glass

double, IN, 104, ‘122 for roof ponds, 1-91-92

greenhouse effect and, 25 insulated, 232-33

‘Tilted for greenhouse, 204 * transmission characteristics of,

j7-19 ti -. ” +~Gravitational contraction, of ! hydroilen, 5 -___ -’ I

I -___ Greenhouse effect;‘%---25 - ,,,, “,,111,.,,

. . GreenhouSe, attached T’ ; _ ., assessing of, 111-12

Heat, 20 . from iqterior lights, 31

*I loss of;94,97,101 from people, 31 9 .t storage of,‘95-27

':,I -

_ ’ transfer of, 20-25 Heat capacity, 26’

,’ *

Horizontal overhang, shading mask for, 305-6

:;

Hydrogen, in the sun, 5

@

Indirect gain systems, 29,43-58 - assessing.of, l-69-14 attached greenhouses in, 48,

152-55 n roof ponds in, 55-58 ’ thermal storage wall in, 43-51, ’

53,55-56 .I sizing of, 153-57

, -._ .-- _-- ,~ .jcom._mon thermal wall in, _, ~ _ .yl81-85- .e__,*. .-. .,

,_ .-- _d’ 4 ) ,... ~.>:,4:‘r.. . .:. in indirect gain systems, 48, s .A-- 52-55

’ ,

. *, retrofitting to wbod frame _/ -/-*’ m

.buildi.ng, 178-79 , Sizing of, 173_79 . I thermal mass in,.1 74,177”

Greenhouse, freestanding, 20%i.8

Indoor spaces, location.of, 9(F-92 lnfrared radiation, 7,lO I’nsulation, e$erior, 259-61 Insulation, movable, 231-39

hand operated, 236 motor driven, 236,239 for roof pond, 56,189,194-95,

197-99 W thermdly sens‘itive; 236

for thermal storage yall,‘Sl, 156 Intensity, of soJ,ar radiation, 13-15 .. Jron, in-glass, 18-19. Isolated gain systems, 2$59-62

3 L *’

active Lock storage system”for, 210,213-16. ,’ .

i ,,- , .;‘. --- 2 -~ Am +- ---- _~ I --. ‘: K,; i2;’ d 6 ./ ;,

‘2% ,d -- i Waterwa,lI for, 2Q9;‘213 b$gh house, as example of

indJect gain system, 48-50

_ ’ g--- -.- mT~_;--Le.m. ._ F i

+ j ,.t ,i “I, . . ;

_, :- ,/’ # . ‘:. “, ;, ,(S,_ ,. ( . . . -. : ,.” ,_ \ D

Page 443: Passive Solar Energy Book (1)

._ .

:I ..r L _ i ,_;. ” D : . .

._ ,”

. Y -

._ ,c

.. - Q .f 0

p .~ II

is . ------.--: -.

‘$1 i I L-r::; 0.2 cI/ 0 ” .

. . Latitude, affecting sizing of thermal 1 .I storage- wall, 154

Latitude variations, of sun’s path,‘277 Laundry room, location of, 9&91\

, Light <.I c -.

as parI of sunks~~;nergy, 7 speed of, 7

*. .-. Lighting, interior c heat supplied by, 31: 35 ,-

.” from solar radiation, 84 . , ~ Location, of-building, 72-77. See

e also Shape and orientation ’ ’ Louvers, 218,236

/ ! M

Magnetic \;ari&ions, of sun’s path; -. 277-78

Masonry thermal mass “..,“.*la’ .’ . ,‘_..,. p~‘~‘-“-’ compared to &ater wal.l~$7’O-71 *

,in dim gain system$‘“29-30, . 31,34+;.40; 42’

,+,,.specifiFations for, 134-43 . 0 .,./~ ,-.,,‘.“‘“fn indirect gaih, systebj 44-50

. ..y‘ * ",.l~~+l th,icknesses for, l59,161--63, .‘.‘. ,/- 1661,~ J

a Mater&s, for. building, 115-17

: +IaxamiIIian’s, as example of direct- gain system, 34-38 ( .I’L

Mean radiant temperature, 64 0T - r, : . Microns, definition of, 7 0 ~ Monthly-sun paths, 275 ,- ‘ .‘!.

1’. * .I o

- Index

North side, utilizing of,-8%89 Noti greenhouse, 215

.-

0

Obstructions to solar radiation, 73,74 to south wall, 125,127 d to wind, 88,97

Olgyay, Victor, on building shapes, /JO-82 0’ .

Outdoor spaces -. north side, 86-88

-south sideJ5x77 Overhangs, 250-57

adjustable, 253-54, 255-57 horizontal, 250-52

Overheating . .- caused by allowances for

cloudy days, 229 caused by improperly sized r)

storage wa11s,.153,159,162

_f caused by oversized windows, .119,120 .

Ozone, absocption of solar radiation by, 10

6

P -’

Patt d .r? ”

rns, for designing passive solar . . systems, 66-266 ‘\

attached greenhouse systems,‘:, .’ 172-85

._ -_

choosing the system,‘10614 direct gain systems, 118-51 entrance location, 94-99 :

‘I.. __

” I-’ , A 2

Natural. convec.tion, 21. See also *’ ocation’ of. building, 72-77 ocation of indoor spaces,

i /

i’. i i,

*

I .d /-

Convection .I I \

Natural-convective loop. See ‘Convective loop 0.

B .i 90-92;

I materials for, 115-17 -

::.; ‘. north side, of building; 85-89’ c

- : .

9 ~-I . , . ,‘. $? -- 5.

.^ .3 431 c .+: .- */ 0 ,‘,,\‘,,:, ,.,;.;.y ,_ ;; . ’ .,.’ *- ’

al :fl *

Page 444: Passive Solar Energy Book (1)

‘. .I

0’ .i

,:’

;’

I

! . : /

--.L.-, . ‘P-2 8 ’

- . . 3,T The Passive Solar Energy -@Book !

P

t Patterns (continued) ‘.

- >roof pond systems, I&-99. -_ -shape and -orientation of i

building, 78-84 thermal stor_age~waLls;l52-71 use of, 66-71 window location, 101-4

Photons, 6 Plastic,*as glazing for greenhouse

. effect; 25 Q.

Pollution. See Thermal pollution b Polyethylene, for roof ponds, 197

Polyvinyl chloride, for roof ponds, \~, 19-Y

.Ponds, roof. Se& Roof ponds Prevailing winter winds, 86,88,94,

97 0 * ?

-p, 3” R * = P *

‘( Radiation: See also Solar radiation;

Thermal radiation

: of heat,.23-24 . ‘, . Reflection-

of solar radiation, 15 ’ c 2 \ of thermal radiation, 2425

I . . : Reflectors, 51,241-48 . T-..’ .-_ ., v comparin.g finishes of, 248

,‘: .’ for interior su,rfaces, 246,248 for roof ponds, 189,191

*.

,- “, :

~ for skylights, 132,241,,245-+6 i . -.. ._.

tilt angle for, 241,242-43 f

I ’

i.

r9 4 e

/i/

’ I ,,..

9 0 (.

/

2;

,I’ \

.:. i Roof ponds, 55-58, 194-991 . ’ i

I

panels for, 394-95, ’ 1

temperature stratification in, 8’, 197

* waterproofing of, 196 . _

Rotation, of earth, affecting of so.lar m radiation by, 11-12

Rules of thumb:’ See Patterns :’ .’ e* ~- -~ Rust inhibitor. See Anticorrosive -

‘3 .

s >

-.-- St. George’s County Secondary ’ School, as ,ex&riple of direct gain system, 31-33

Sash construction, 122-23 S.awtooth clerestories, 34, 38,130 Schiff residence, as example of direct 3

gain system, 3q-41 ” Seasonal sun paths, 275 ’ , Seasons

~~~ ~~~ ~~- ~~~ -- -

cause of, 12 ‘.‘* I solar radiation during, 102-3

Shading calculator, 301-4 :plotting shading masks,with, -‘

.’ 305-8 ‘- Shading devices, 250-57,264 .

_. adjustable overhangs, 253-54,, . ‘255-57

u

for verti,cal glazing, 241

-

:

* ,d for east and west windows, 355 Retrofitting, of passive s&w ., --for interior, 254 I

109,110,.1J,1,11’3

i Re,verse thermqcircul&ion, 5~‘

. sizing of horizontal,overhangs, ” 250-52

. Ro&sf storing heat in, 60,62 Shiding masks, 3054” _. ,.-

for a$tached greenhouse, for horizontal overhang,.3056

.::.. .‘, ., 18L85 :..~I for freestanding greenhouse,

, for vertical fins, 306-8 Shape,and orientation, of building, ’ ‘~

210,213-16 ,, 78-84 ) . % 1

\; _j,P ),‘. 43;

;I &. ‘C

,:’ ,.I,/ / ’ _,, : : ,

/ ““( , . ’ i. ._ 1 >::- ,.,: .~. ) ;& /, ;: ,_‘: .~ ,:. ,,I :I ,.‘!.i_ -c:k _- :., . *, .- y i, -.-’

Page 445: Passive Solar Energy Book (1)

’ -. _,

-

I.

.,’ I

6 ./ ‘“’

_. I ‘.

.1 :.:

i ‘. ,

s ,

~(’ (~’

.:;

0 Shrubs -2 for shad\e, 255 . ,

as windbreak, 88,97 ’ Shutters, 236, 239 . ‘a

i Siding, for exterior, 260. S kydome, 272 “!S kyK&; 236

1 ~

Skylights,.84., 125, 132

” Skyl’ine, how to plot, 290-92 Sky~vau~tAeeSkydome .L 7 -~‘- Slate, as thermal* mass floor, 40. Solar altitude, 269, 270 q ’ ’

,: x Solar azimuth, 269,271 1

‘1. Solar collectors, S&e Collectors

h Solar Constant, 7 “. .,,., : Solar greenhouse. See,Greenhouse, Y attached;Creenhouse, -

freestanding @ ‘. ” Solar~heatingt j’

active systems, 28, 53, *I 79; a

183-85 1 ‘L _~m-m~m.--. 73 -1

: ~~- *a3-sjiiG, ~yqmsj-5~5 f

advantages of, 62-65

R. Index -

Solar.radiation, S-17. See also Heat absorption of, 18-20’

-a *affected by seasons,c102Y3 ’ _~ ;, earth’sJa~osgh.ere&rd, 8-12 . _ b’: intensity of, on’a surface, 13-75

‘-6 i . . . .

Solar radiation AciGlator 293-300 daily radiation totals’for, 296 hourly radiation totals for, .

295-96 Solar wind&s ’

for direct gain system,s, 119-23 a sizing of, 119-22

disadvantages of, 125 . ’ ’ . ‘F

location of; 1014 ~_~ ~~~~ ~~ ~~ ~~~ - ~~~ _ -~ ~~~~ Spa-ce-$?-tem@!t-ature, 64. See a/so

Ter#perature, fluctuatioris indoors Specific heat, 26; 0 ,~ .

-Specular reflection;lS-16 - b- Square houses, for passive solar ~ , *

systems, 80, 81 .

steel deck, for roof q,ond; 56,194, ” i i /

for attached greenhouse, 183-8-_~ -IY - ~~--

for freestanding greenhouse;.: B 210,213-16

‘. in isolated gain system, 60,. 62 ’ Stucco, for exterior,]2601 ” .

r, Sun. See also.Solar radistion (

.; ‘, calculating position of, 273 ’ daily path of, 274 1 ’ 0

. 0 declination of,-261

a .

3 position of, in relation to earth’s

J , orbit, 7 7. i ‘.... J Sun chart. See Cylindrical sun chart ‘;:Sundial, determining bud/ding . 0

location with, 75 cI

I -

. . J ‘i -i -

,‘$ 7’

1) .

reflection o,f, 15 q AS. * Sun time,- 73,277; 2&3-!2~ ’ ” L transmission of, 16-17 $,_. I, * a stan$dard time converted to, 290

i =’ -P \ : . -- * s 3 _’ .-

;- ” 0 1 i . 5 4.. j’,- :‘, ‘. /I!.< a;, : ) :.,I“ \, . , 1 .; --._ 6 ~ 2

‘;k... , ‘. , . ,.p33p -s z

-.- :9, ,1 \ _’ “,,,

_-,- __ _‘.- .-. F-- -.- I I I!.,.,. ; :,: e ‘* ,. . . . ...’ ,~ 1. : ,’

----- .--- c ./ 0 . . ___ _ /-‘-‘-

.---i--‘----.- ‘,,‘ : :,~,,; /, c. -, * ~;@“p,:~~ ,‘i’ b __

.--------;---- A I’ * I, , ,. - \ : :..- .~. . --T’;-qqq&! ’ ,‘, :.: I :’ .$J,~~.h .*:,* :,&*” ,,., ‘i”‘:.‘.? “_ .I(,, Ij. i ’ .... js I:, ,/, I,..-, -_I- ,__’ L*.i “, ,’ ; .,. f ;. -

Page 446: Passive Solar Energy Book (1)

. Q. .’ e. a r .-

:Q 6 .\

*-. , . ‘, . .

cl 3 ,,;.. /*-

‘a i, (’

.r- ” a- I

)?, “.

i

_.. r . . ..yf’ .,.a

,~ ,y- “_-. J 0 3 w

c

‘z “5 ” 0

3 f‘(

*’

.a 0 . ‘ni I ” s7;b ‘1 ; 4 6.. fi ‘. . ‘-

0 a- .

1~ c.l, ‘.e ?

; co @r n h. 1.’ ,F1.,,.,‘L’ ~

.- .Thje* Passiee $olar Energy Bdok d lq* i a. -, 4.

‘I ” _. - 0 _: * ; ” % ‘1 . *-)

. . , . . il. % * ’ && . , -ye. _ ,.

*i “. d su;facg colbr’of, 166 . I_ P e ij 7 1 . n 3s * . . . ~, ‘., thickness of, y1661-63, 16’6 ‘” *:y’<,: I a “* T>,. -” Technology, I II mm-:_ - -~ ’ e i I,% : . _ architecture, 1-2 i

ventsand darilpers in,0166-6’8,V’ .~ _

~ Temperature, 28: Sei@a/so Mean water, 50-52 0 -. , i li)

-. -

. . _, . . P

* , . r$dGiht temperature; Space a”ir Therinicirculation, 44. 5$e alsb I ; “’ ’

,~ te%-$erature ., mI_

Convectibn ‘I “, ’ . @;, 7 P I- _:

--contiolling amdunt of ‘tieat reverse, 50 ’ I _’ I , II i’. .

-$ -’ _:. - 1”” o’s

,,” . , i“ Thermocircul$ion veqts. See *;

9. radiated, 23. . .. jll .“, . , .Ve~~il~~io”~~~m i 2, \ ’ h flu&atio&indosrs ’ , ,. : ” a in a&&hed~green hbus 0 8

Ther’monuc-leat-fusion, 5-6 O’ ‘. L ‘- . .,. T _ 21 a ‘in~~irect,gain*~yst~ms; 31,35,‘.

ThermAsrphqning hotw8tei’heatery 60 ,= 0

-136~41’, 14? “- a w ” ~

. . = d. in freestandiq greg+ouse,’ ‘”

Thermo,s&.ts, for m&at& insula:on, . .- > 1

‘:“’ . a

c- 1 ‘, i007y2-@Z~;:$? 6.>-/ c ’ o 23-6 _ .- : ” . (. . T.,, ..

._ .I., , Q . . in indirect gain s)istems, 50, *., n.,_ .>.Illl - 9 3. F

’ ‘, (‘. ,(. a_ _ +Si, -56, -id ’ .Q-f qqrthj affecting sojar

_ I f-radiation, II-12 a ’ ‘- of reflectors, 247, 242-43’ ,’

of s&th tiall -ofsreenhouse, 204 P

Time lag,.265 Timers, auf,qmatic, for movable

., II igstilation, 236 ;. D I 1’ “-< ,; ‘- ” Translicent glazing

a _ a . .

.- ‘- _ 2~ -

c

:,L” :

. - .-

‘.. ”

._ ”

.- w.- , :

o-

Q1 x .

z . L

-. ~:\:i p j.. _ of I’oof pcJn&, 133 ’ ’ : bf th&j-r~/~st&,ge waII,.ik,. 168:

to-r cle.re@qries, 130’ . definitioil of, 17 i QS - ‘, ,I ,.

thermal energ+, %Xa?%e also He@ 1 ., si@ ~’ . . “. Thermal ma&, 28-29 T~- c

uied in’djiectgain’jystem, 3&- : _, ‘-F- 0 34-35 .-’ ’ 1 _ R . +*,

. I - c% ._’ iAdirectgain:syFtems, 29-31,; Transmissiijn *. ‘,.

.g ‘. 9

’ of solar. ra’diation,‘l.5,‘~~.-~7 + :. i ..1 , -’ f ” _ .& . . - of thermal radiation, 24425 ‘* OQ. *

- Transtiissivity. See Trans,mis;ipn ‘1. ‘-’ . , Thermal pollution., , 1 J~afisparent,,defirii1ion of, lr/ * : ,) --o$~:- ..:.. Y

; YY. ,I’- “$ Jransport”ation, ascost factor fi- ‘* ‘I ’ x \ ‘I Fc@nstructi&,,2, 115, I.17 1:‘: 3 . \ . . ..:

. 8 ,\

. Trees. s --“‘,? . i

shade from, 50; 73,255 : r i \., ’ . ,F. \ . ‘, ‘, A as windbreak, 88,97, -

I masonry, 44--S@.,, i-- \ ’ ‘\ .zY--“*: efficiency of, 45-:+..,,, b

._, ” 5 Trom+e’hotis&, as example of (

‘< s -sizing of, 153-57 ‘\ “1 -.. ‘_. indirect gain q&tern, 45-46 -,.2...

, _ .- , ,’ ._ ;-- . _’ ..; ,-e’w-l-.T--- ---- ‘- .- . : ,.’ ; , a ,‘, -, ., n !,.. :” ”

. _, “‘., 1 r

” . _ ~ ,, .; ; : ,..

. ,: ~, .-, ‘, ,~ -1 . s

I;‘,!‘.“, ,. ,. . . I I ‘, ~, ‘.$l; ., ; ;. . .’ ‘. ./ ,,z:,,;,,.J AL’ : ? $81 .(L 5” ,,l ; ,:., ,-;, 2; x:y’ -; i.. /I( ;, ‘:: y ,, :.f.’ . . )I ,’ ‘2; j ‘, L.’ .: ..2 , : ‘,; ‘,& _ -, ,;:

Page 447: Passive Solar Energy Book (1)

.‘;‘,.. i_

L?

’ I -s

‘. I,:- “. h- . ..I--. . - _

- .,. _> r

e -- ._ t_ .:““. ‘,

I r ,I -, D b.3

-+* Trom‘be wall, 166-67 True north, 277-78 4

d *True south, ?79

9

‘U

i Ultra-violet radiation, 7,1.0 -.-,

3. . 1

Vegetati@ . -e 3 - \ for shad.e, 254-55,263 I

for windbreak, 263 . ~ 1 “Ventilation 1

._. \ - of-d’irect gain syti&sJ20,121 1 \ * - of freestanding grqenhouse, 216

*. ., : 4 L ‘_

m for summix cooling, 262-66

-kE o‘f thqrmat storage walls, 159, 16&68 .

‘1 . r. .. Veitical fins, shading mask for, 3)66-8 ii(estibules, 94,97 Y‘

I 1 Y

.,..I ”

/ w , ,.i - 1.

!. I

*t c ‘Water. See also Roof ponds; Water ---., il .’ ; wall . - cqtvection in, 21-23

,as heat storage medium, 147 d *_ ‘I.. . ‘. .

,m , I

r a ” ---

,’

\

I’, ’ ‘2 ‘\ i

.:J

IQ.., ; ’ :

L

: ,.. ‘:

1. 4

“J-v “I,’

0 .

.D ,I ,, /- I

. ?? Index

* .’ d .

I

Waterproofing, below irade, 259, . 261 .

‘ “.t>/.*> ‘Tb=.\_, ,,, Water vapor, absorption of solar ~

-~~ radiation by; 10, I Water wall 1

b /

cofnpared to,mason+ wall; 17.671

’ corrosion -in, 42 in direct gain systems] 29, 30,

42,,145-51 in indirect @in systeh-rs, 50-52, - * ’ volume of, 745,148,162 e

Wavelengths, of solar radiition, 77 .

-i5-16 ’ I* ._.

Weather, seasonal variation’in, 12. See a/so Climate

/, o

,a * Weather stripping, of dbdrs, Width’, of bui!d,ing, how t

determine, 84 .

Wind. See Prevailing winter winds Windbieaks, &8,*97,263 : ’ Windows. ..Se& Solar wiildows >, * W.ing walls, as wi-ndbyeak, 97..% ’

?Wbod stoves, as back-up heating w system, 40, 52 ”

.f I. .

j .’

^ . .

/ 4

-.

. :

’ 4