Part 2

27
Part 2

description

Part 2. Vegetation effects on climate. Rt – r(a) = l E + C + G. Vegetation can affect components of surface energy balance. 1. Rt is total solar radiation reaching Earth 2. r is reflected radiation, a function of albedo (a) 3. l E is latent heat transfer, driven by evapotranspiration - PowerPoint PPT Presentation

Transcript of Part 2

Page 1: Part 2

Part 2

Page 2: Part 2

Rt – r(a) = lE + C + G

1. Rt is total solar radiation reaching Earth2. r is reflected radiation, a function of albedo (a)3. lE is latent heat transfer, driven by evapotranspiration4. C is convective heat transfer (sometimes called sensible

heat flux)5. G is storage

Vegetation effects on climate

Vegetation can affect components of surfaceenergy balance

Page 3: Part 2

Vegetation can alter albedo

• Leaf color– Land-use change:

Grazing, exposes soil, increases albedo, reducing net radiation, decreasing latent heat flux (less evapotrans)

Over large enough scales, such changes can alter regional precipitation

Similar phenomenon for deforestation

Tree migration into tundraTundra is snow-covered in winter, very high albedo With warming, trees could advance, decreasing winter albedo dramaticallyPotentially, creates a positive feedback to warming

Page 4: Part 2

II. Changes in climate

A. Seasonal (see I.B.)B. Yearly (interannual)C. Millenial scalesD. Human impacts

- Is global warming for real? - How do we know that it isn’t just a natural fluctuation in temperature? - What are some of the forces that lead to natural climate variability?

Page 5: Part 2

- The Pacific Ocean strongly influences the global climate system because it is the largest ocean basin- Normal ocean current and wind direction in central Pacific is easterly

II.B. Interannual Variation – El Niño Southern Oscillation

2.9

Page 6: Part 2

ENSO events result from weakening of tropical Pacific atmospheric and oceanic circulation

Climatic connections carry these climate effects throughoutthe globe (e.g., El Niño creates warm winters in AK and lots of rain in Calif)

2.19

Page 7: Part 2

Changes in orbit cause long-term variations in solar input to Earth

Angle of tilt(41,000 yrs)

Wobble of tilt(23,000 yrs)

Shape of orbit(100,000 yrs)

2.14

Page 8: Part 2

Eccentricity: The Earth's orbit around the sun is an ellipse. The shape of the elliptical orbit, which is measured by its eccentricity, varies through time.The eccentricity affects the difference in the amounts of radiation the Earth's surface receives at aphelion and at perihelion.

When the orbit is highly elliptical, one hemisphere will have hot summers and cold winters; the other hemisphere will have warm summers and cool winters.

When the orbit is nearly circular (now), both hemispheres will have similar seasonal contrasts in temperature.

Page 9: Part 2

Rotation axis executes a slow precession with a period of 23,000 years (see following figure)

Pole Stars are Transient

Wobble inthe tilt

Page 10: Part 2

Precession: Present and past orbital locations of the Earth during the N Hemisphere winter

Page 11: Part 2

Milankovitch cycles• The interactive effects of Earth’s orbital variation on timing

and distribution of total solar input.• Strong effect on glacial/interglacial cycles

http://en.wikipedia.org/wiki/Image:Vostok_420ky_4curves_insolation.jpg

Page 12: Part 2

D. Human effects

• Global warming

Page 13: Part 2

Timescales

• Geological time (big changes globally)• Glacial-interglacial cycles (really recent time) –

associated with shifting land masses and effects on ocean circulation

• Human time (anthropocene) – relationship to geological forces– Rates of change– Timescales of movement of material and energy– Evolution versus extirpation versus extinction– Human-induced rates of change versus rates of natural self-

regulation

Page 14: Part 2

The Earth’s Energy Balance

A budgeting exercise

Page 15: Part 2

Over Time• Origin of earth (4.6 bybp)

– Dating of extra-terrestrial material• Hadean & Archaen (4.6 – 2.5

bybp)– unidirectional change in

organization of material/planetary evolution; driven by energy from radioactive decay

• Proterozoic & Phanerozoic (2.5 bybp to present)– Solar energy more

important/recycling of materials

Page 16: Part 2

Major points

• How do the various components of earth system move energy and matter on the earth’s surface?

• Over long time scales the planet must be in steady state (input = output)

• In the present system, energy balance at the earth’s surface is driven by solar radiation

Page 17: Part 2
Page 18: Part 2

Basic physics

• Electromagnetic (EM) radiation if generally propagated as a wave

• But EM can often behave more like a particle - photon

Page 19: Part 2

c = ln

Fig. 3-2

Wave number (n) = 1/l(cycles/cm or cm-1)

(cm/cycle or cm)

Waves defined by their speed (c), wavelength l, and frequency nFrequency and wavelength are inversely related

n = c/l

Page 20: Part 2

Fig. 3-3

Electromagnetic spectrum

E = hn = hc/l

At times, EM radiation behaves more like a particle - photon

High energy/high frequency/low l Low energy/low frequency/high l

Page 21: Part 2

EM

• High energy photons (low l/high frequency) – e.g., UV – can break molecular bonds and initiate chemical reactions

• Low energy photons (high l/low frequency) interact with molecules affecting their rotation of vibration

Page 22: Part 2

Flux

• How energy (or any material) passes through a unit surface area per unit time– Can think of energy as a particle– Units: some mass per unit area per unit time• mg/m2/hr (= mg m-2 h-1) • mmol quanta/ m2/hr

Page 23: Part 2

Which passes through a larger unit area?Which has the higher flux?

Page 24: Part 2

Think about how that affects energyflux with latitude on earth.

Page 25: Part 2

Back to energy• Energy is expressed as Joules (J) – measures heat,

electricity and mechanical work– 1 J = 0.239 calories– 1 J = 2.7778 ×10−7 kilowatt hour

• Power (the rate at which work is done or energy is moved) is expressed in Watts (W)– 1 W = 1 J/second– W/m2 then is a unit of energy flux

• =J/m2/s

• Energy flux is important for global climate• Polar regions cooler due to lower energy flux (mass

per unit area per unit time)

Page 26: Part 2

Flux also depends on distance of an object or observer from the object emitting the radiant energy

• Flux of solar energy decreases with distance from the sun.

• Relationship is an inverse-square law

• Double distance from the sun and intensity of radiation (or energy flux) decreases by a factor of ¼.

Page 27: Part 2

Temperature

• Measure of internal heat energy• Rate of motion of molecules in a substance• Faster movement = higher temperature