Paper-3 Generalised LP-Sasakian Manifolds

6
International Journal of Computational Intelligence and Information Security, October 2014 Vol. 5, No. 7 ISSN: 1837-7823 Generalised LP-Sasakian Manifolds L K Pandey D S Institute of Technology & Management, Ghaziabad, U.P. - 201007 [email protected] Abstract In 1989, K. Matsumoto [1] introduced the notion of manifolds with Lorentzian paracontact metric structure similar to the almost paracontact metric structure which is defined by I. Sato [4], [5]. Also in 1988, K. Matsumoto and I. Mihai [2] discussed on a certain transformation in a Lorentzian Para-Sasakian manifold. T. Suguri and S. Nakayama [6] considered D-conformal deformations on almost contact metric structure. In this paper generalised Lorentzian Para-Sasakian manifold [3], generalised nearly LP-Sasakian manifolds and generalised almost LP-Sasakian manifolds have been discussed and some of their properties have been established. The purpose of this paper is to introduce a generalised D-conformal transformation in a generalised LP- Contact manifold. Keywords: Generalised nearly and almost LP-Sasakian manifolds, generalised LP-Co-symplectic manifolds, generalised D-conformal transformation. 1. Introduction An n-dimensional differentiable manifold , on which there are defined a tensor field of type (1, 1), two contravariant vector fields 1 and 2 , two covariant vector fields 1 and 2 and a Lorentzian metric g, satisfying for arbitrary vector fields , , ,… (1.1) = + 1 () 1 + 2 () 2 , 1 = 0, 2 = 0, 1 ( 1 )= βˆ’1, 2 ( 2 )= βˆ’1, ≝ , 1 ( ) = 0, 2 ( ) = 0, rank = n-2 (1.2) g ( , ) = g (, )+ 1 () 1 ()+ 2 () 2 (), where 1 ()= (, 1 ), 2 ()= (, 2 ) `(, ) ≝ οΏ½ , οΏ½ =`(, ), Then is called a generalised Lorentzian Para-Contact manifold (a generalised LP-Contact manifold). Let D be a Riemannian connection on , then we have (1.3) (a) ( `)οΏ½ , οΏ½ +( `)οΏ½, οΏ½βˆ’ 1 ()( 1 )() βˆ’ 2 ()( 2 )() βˆ’ 1 ()( 1 )() βˆ’ 2 ()( 2 )()=0 (b) ( `)οΏ½ , οΏ½ +( `)(, ) βˆ’ 1 ()( 1 )οΏ½ οΏ½βˆ’ 2 ()( 2 )οΏ½ οΏ½βˆ’ 1 ()( 1 )οΏ½ οΏ½βˆ’ 2 ()( 2 )οΏ½ οΏ½ =0 (1.4) (a) ( `) οΏ½ , οΏ½ + ( `) οΏ½ , οΏ½ =0 (b) ( `) οΏ½ , οΏ½ +( `)οΏ½ , οΏ½ =0 A generalised LP-Contact manifold is called a generalised Lorentzian Para-Sasakian manifold (a generalised LP- Sasakian manifold) if 20

description

Generalised nearly and almost LP-Sasakian manifolds, generalised LP-Co-symplectic manifolds, generalised D-conformal transformation.

Transcript of Paper-3 Generalised LP-Sasakian Manifolds

Page 1: Paper-3 Generalised LP-Sasakian Manifolds

International Journal of Computational Intelligence and Information Security, October 2014 Vol. 5, No. 7 ISSN: 1837-7823

Generalised LP-Sasakian Manifolds

L K Pandey D S Institute of Technology & Management, Ghaziabad, U.P. - 201007

[email protected]

Abstract

In 1989, K. Matsumoto [1] introduced the notion of manifolds with Lorentzian paracontact metric structure similar to the almost paracontact metric structure which is defined by I. Sato [4], [5]. Also in 1988, K. Matsumoto and I. Mihai [2] discussed on a certain transformation in a Lorentzian Para-Sasakian manifold. T. Suguri and S. Nakayama [6] considered D-conformal deformations on almost contact metric structure. In this paper generalised Lorentzian Para-Sasakian manifold [3], generalised nearly LP-Sasakian manifolds and generalised almost LP-Sasakian manifolds have been discussed and some of their properties have been established. The purpose of this paper is to introduce a generalised D-conformal transformation in a generalised LP-Contact manifold. Keywords: Generalised nearly and almost LP-Sasakian manifolds, generalised LP-Co-symplectic manifolds, generalised D-conformal transformation.

1. Introduction

An n-dimensional differentiable manifold 𝑀𝑛, on which there are defined a tensor field 𝐹of type (1, 1), two contravariant vector fields 𝑇1and 𝑇2 , two covariant vector fields 𝐴1and 𝐴2 and a Lorentzian metric g, satisfying for arbitrary vector fields 𝑋,π‘Œ,𝑍, …

(1.1) 𝑋 = 𝑋 + 𝐴1(𝑋)𝑇1 + 𝐴2(𝑋)𝑇2, 𝑇1 = 0, 𝑇2 = 0, 𝐴1(𝑇1) = βˆ’1, 𝐴2(𝑇2) = βˆ’1, 𝑋 ≝ 𝐹𝑋, 𝐴1(𝑋) = 0, 𝐴2(𝑋) = 0, rank 𝐹= n-2

(1.2) g (𝑋,π‘Œ) = g (𝑋,π‘Œ) + 𝐴1(𝑋)𝐴1(π‘Œ) + 𝐴2(𝑋)𝐴2(π‘Œ), where 𝐴1(𝑋) = 𝑔(𝑋,𝑇1), 𝐴2(𝑋) = 𝑔(𝑋,𝑇2)

`𝐹(𝑋,π‘Œ) ≝ 𝑔� 𝑋, π‘ŒοΏ½ = `𝐹(π‘Œ,𝑋),

Then 𝑀𝑛 is called a generalised Lorentzian Para-Contact manifold (a generalised LP-Contact manifold).

Let D be a Riemannian connection on 𝑀𝑛, then we have

(1.3) (a) (𝐷𝑋`𝐹)οΏ½ π‘Œ, 𝑍� + (𝐷𝑋`𝐹)οΏ½π‘Œ,𝑍� βˆ’ 𝐴1(π‘Œ)(𝐷𝑋𝐴1)(𝑍) βˆ’ 𝐴2(π‘Œ)(𝐷𝑋𝐴2)(𝑍) βˆ’ 𝐴1(𝑍)(𝐷𝑋𝐴1)(π‘Œ) βˆ’ 𝐴2(𝑍)(𝐷𝑋𝐴2)(π‘Œ) = 0

(b) (𝐷𝑋`𝐹)οΏ½ π‘Œ, 𝑍� + (𝐷𝑋`𝐹)(π‘Œ,𝑍) βˆ’ 𝐴1(π‘Œ)(𝐷𝑋𝐴1)�𝑍� βˆ’ 𝐴2(π‘Œ)(𝐷𝑋𝐴2)�𝑍� βˆ’ 𝐴1(𝑍)(𝐷𝑋𝐴1)οΏ½π‘ŒοΏ½ βˆ’ 𝐴2(𝑍)(𝐷𝑋𝐴2)οΏ½π‘ŒοΏ½ = 0

(1.4) (a) (𝐷𝑋`𝐹) οΏ½ π‘Œ, 𝑍� + (𝐷𝑋`𝐹) οΏ½π‘Œ ,𝑍� = 0

(b) (𝐷𝑋`𝐹) οΏ½ π‘Œ, 𝑍 οΏ½ + (𝐷𝑋`𝐹)οΏ½ π‘Œ, 𝑍 οΏ½ = 0

A generalised LP-Contact manifold is called a generalised Lorentzian Para-Sasakian manifold (a generalised LP-Sasakian manifold) if

20

Page 2: Paper-3 Generalised LP-Sasakian Manifolds

International Journal of Computational Intelligence and Information Security, October 2014 Vol. 5, No. 7 ISSN: 1837-7823

(1.5) (a) 2(𝐷𝑋𝐹)(π‘Œ) βˆ’ {𝐴1(π‘Œ) + 𝐴2(π‘Œ)} 𝑋 βˆ’ 𝑔� 𝑋 ,π‘ŒοΏ½(𝑇1 + 𝑇2) = 0 ⇔

(b) 2(𝐷𝑋`𝐹)(π‘Œ,𝑍) βˆ’ {𝐴1(π‘Œ) + 𝐴2(π‘Œ)} 𝑔� 𝑋 ,𝑍� βˆ’ {𝐴1(𝑍) + 𝐴2(𝑍)}𝑔� 𝑋 ,π‘ŒοΏ½ = 0 ⇔

(c) 𝐷𝑋𝑇1 = 𝑋 βˆ’ 𝑇2, 𝐷𝑋𝑇2 = 𝑋 βˆ’ 𝑇1

On this manifold, we have

(1.6) (a) (𝐷𝑋𝐴1)οΏ½ π‘ŒοΏ½ = (𝐷𝑋𝐴2)οΏ½ π‘ŒοΏ½ = 𝑔� 𝑋, π‘ŒοΏ½ ⇔

(b) (𝐷𝑋𝐴1)( π‘Œ) + 𝐴2(π‘Œ) = (𝐷𝑋𝐴2)( π‘Œ) + 𝐴1(π‘Œ) = `𝐹(𝑋,π‘Œ) ⇔ (c) 𝐷𝑋𝑇1 = 𝑋 βˆ’ 𝑇2, 𝐷𝑋𝑇2 = 𝑋 βˆ’ 𝑇1

From (1.5) (b), the equation of a generalised LP-Sasakian manifold can be written as

(1.7) (a) 2(𝐷𝑋`𝐹)οΏ½π‘Œ,𝑍� = {𝐴1(𝑍) + 𝐴2(𝑍)}`𝐹(𝑋,π‘Œ)

(b) 2(𝐷𝑋`𝐹) οΏ½π‘Œ,𝑍� = {𝐴1(𝑍) + 𝐴2(𝑍)}𝑔� 𝑋 ,π‘ŒοΏ½

(c) 2(𝐷𝑋`𝐹)(π‘Œ,𝑍) = 𝐴1(π‘Œ)(𝐷𝑋𝐴1)( 𝑍 ) + 𝐴2(π‘Œ)(𝐷𝑋𝐴2)( 𝑍 ) + {𝐴1(𝑍) + 𝐴2(𝑍)}𝑔� 𝑋 ,π‘ŒοΏ½

Nijenhuis tensor in a generalised LP-Contact manifold is given by

(1.8) `𝑁(𝑋,π‘Œ,𝑍) = �𝐷𝑋`𝐹�(π‘Œ,𝑍) βˆ’ οΏ½π·π‘Œ`𝐹�(𝑋,𝑍) βˆ’ (𝐷𝑋`𝐹)οΏ½π‘Œ,𝑍� + (π·π‘Œ`𝐹)(𝑋,𝑍)

Where `𝑁(𝑋,π‘Œ,𝑍) ≝ 𝑔(𝑁( 𝑋,π‘Œ),𝑍)

2. Generalised nearly and almost Lorentzian Para-Sasakian manifold

A generalised LP-contact manifold will be called a generalised nearly Lorentzian Para-Sasakian manifold (a generalised nearly LP-Sasakian manifold) if

(2.1) 2(𝐷𝑋`𝐹)(π‘Œ,𝑍) βˆ’ {𝐴1(π‘Œ) + 𝐴2(π‘Œ)} 𝑔� 𝑋 ,𝑍� βˆ’ {𝐴1(𝑍) + 𝐴2(𝑍)} 𝑔� 𝑋 ,π‘ŒοΏ½

= 2(π·π‘Œ`𝐹)(𝑍,𝑋) βˆ’ {𝐴1(𝑍) + 𝐴2(𝑍)} 𝑔� 𝑋 ,π‘ŒοΏ½ βˆ’ {𝐴1(𝑋) + 𝐴2(𝑋)} 𝑔� π‘Œ ,𝑍�

= 2(𝐷𝑍`𝐹)(𝑋,π‘Œ) βˆ’ {𝐴1(𝑋) + 𝐴2(𝑋)} 𝑔� π‘Œ ,𝑍� βˆ’ {𝐴1(π‘Œ) + 𝐴2(π‘Œ)} 𝑔� 𝑋 ,𝑍�

The equation of a generalised nearly LP-Sasakian manifold can be modified as

(2.2) (a) 2(𝐷𝑋𝐹)π‘Œ βˆ’ 2(π·π‘ŒπΉ)𝑋 βˆ’ {𝐴1(π‘Œ) + 𝐴2(π‘Œ)}𝑋 + {𝐴1(𝑋) + 𝐴2(𝑋)}π‘Œ = 0 ⇔

(b) 2(𝐷𝑋`𝐹)(π‘Œ,𝑍) βˆ’ 2(π·π‘Œ`𝐹)(𝑋,𝑍) βˆ’ {𝐴1(π‘Œ) + 𝐴2(π‘Œ)} 𝑔� 𝑋 ,𝑍� + {𝐴1(𝑋) + 𝐴2(𝑋)} 𝑔� π‘Œ ,𝑍� = 0

These equations can be written as

(2.3) (a) 2(𝐷𝑋𝐹)π‘Œ βˆ’ 2(π·π‘ŒπΉ)𝑋 + {𝐴1(𝑋) + 𝐴2(𝑋)}π‘Œ = 0 ⇔

(b) 2(𝐷𝑋`𝐹)οΏ½π‘Œ,𝑍� βˆ’ 2οΏ½π·π‘Œ`𝐹�(𝑍,𝑋) + {𝐴1(𝑋) + 𝐴2(𝑋)} `𝐹(π‘Œ,𝑍) = 0

(2.4) (a) 2(𝐷𝑋𝐹)π‘Œ βˆ’ 2(π·π‘ŒπΉ)𝑋 + {𝐴1(𝑋) + 𝐴2(𝑋)}π‘Œ = 0 ⇔

(b) 2(𝐷𝑋`𝐹) οΏ½ π‘Œ,𝑍� βˆ’ 2 οΏ½π·π‘Œ

`𝐹� (𝑍,𝑋) + {𝐴1(𝑋) + 𝐴2(𝑋)}𝑔� π‘Œ ,𝑍� = 0

21

Page 3: Paper-3 Generalised LP-Sasakian Manifolds

International Journal of Computational Intelligence and Information Security, October 2014 Vol. 5, No. 7 ISSN: 1837-7823

(2.5) (a) 2(𝐷𝑋𝐹)π‘Œ βˆ’ 2(π·π‘ŒπΉ)𝑋 βˆ’ 𝐴1(π‘Œ){𝐷𝑋𝑇1 + (𝐷𝑇1𝐹)𝑋} βˆ’ 𝐴2(π‘Œ){𝐷𝑋𝑇2 + (𝐷𝑇2𝐹)𝑋} + 𝐴1(𝑋){π·π‘Œπ‘‡1 + (𝐷𝑇1𝐹)π‘Œ} + 𝐴2(𝑋){π·π‘Œπ‘‡2 + (𝐷𝑇2𝐹)π‘Œ} = 0 ⇔

(b) 2(𝐷𝑋`𝐹)(π‘Œ,𝑍) βˆ’ 2(π·π‘Œ`𝐹)(𝑋,𝑍) βˆ’ 𝐴1(π‘Œ)οΏ½(𝐷𝑋𝐴1)οΏ½ 𝑍� + (𝐷𝑇1`𝐹)( 𝑍,𝑋)οΏ½ βˆ’ 𝐴2(π‘Œ)οΏ½(𝐷𝑋𝐴2)οΏ½ 𝑍� + (𝐷𝑇2`𝐹)( 𝑍,𝑋)οΏ½ + 𝐴1(𝑋)οΏ½(π·π‘Œπ΄1)οΏ½ 𝑍� + (𝐷𝑇1`𝐹)( 𝑍,π‘Œ)οΏ½ + 𝐴2(𝑋)οΏ½(π·π‘Œπ΄2)οΏ½ 𝑍� + (𝐷𝑇2`𝐹)( 𝑍,π‘Œ)οΏ½ = 0

A generalised LP-Contact manifold will be called a generalised almost Lorentzian Para-Sasakian manifold (a generalised almost LP-Sasakian manifold) if

(2.6) (𝐷𝑋`𝐹)(π‘Œ,𝑍) + (π·π‘Œ`𝐹)(𝑍,𝑋) + (𝐷𝑍`𝐹)(𝑋,π‘Œ)

βˆ’{𝐴1(𝑋) + 𝐴2(𝑋)}𝑔� π‘Œ ,𝑍� βˆ’ {𝐴1(π‘Œ) + 𝐴2(π‘Œ)} 𝑔� 𝑋 ,𝑍� βˆ’ {𝐴1(𝑍) + 𝐴2(𝑍)} 𝑔� 𝑋 ,π‘ŒοΏ½ = 0

3. Generalised Lorentzian Para-Co-symplectic manifold

A generalised LP-Contact manifold will be called a generalised Lorentzian Para-Co-symplectic manifold (a generalised LP-Co-symplectic manifold) if

(3.1) (a) 2(𝐷𝑋𝐹)π‘Œ βˆ’ 𝐴1(π‘Œ)𝐷𝑋𝑇1 βˆ’ 𝐴2(π‘Œ)𝐷𝑋𝑇2 βˆ’ (𝐷𝑋𝐴1)οΏ½ π‘ŒοΏ½π‘‡1 βˆ’ (𝐷𝑋𝐴2)οΏ½ π‘ŒοΏ½π‘‡2 = 0 ⇔

(b) 2(𝐷𝑋`𝐹)(π‘Œ,𝑍) βˆ’ 𝐴1(π‘Œ)(𝐷𝑋𝐴1)�𝑍� βˆ’ 𝐴2(π‘Œ)(𝐷𝑋𝐴2)�𝑍� βˆ’ 𝐴1(𝑍)(𝐷𝑋𝐴1)οΏ½π‘ŒοΏ½ βˆ’ 𝐴2(𝑍)(𝐷𝑋𝐴2)οΏ½π‘ŒοΏ½ = 0

Therefore a generalised LP-Co-symplectic manifold is a generalised LP-Sasakian manifold if

(3.2) (a) (𝐷𝑋𝐴1)οΏ½ π‘ŒοΏ½ = (𝐷𝑋𝐴2)οΏ½ π‘ŒοΏ½ = 𝑔� 𝑋, π‘ŒοΏ½ ⇔

(b) (𝐷𝑋𝐴1)( π‘Œ) + 𝐴2(π‘Œ) = (𝐷𝑋𝐴2)( π‘Œ) + 𝐴1(π‘Œ) = `𝐹(𝑋,π‘Œ) ⇔ (c) 𝐷𝑋𝑇1 = 𝑋 βˆ’ 𝑇2, 𝐷𝑋𝑇2 = 𝑋 βˆ’ 𝑇1

A generalised LP-Contact manifold will be called a generalised nearly Lorentzian Para-Co-symplectic manifold (a generalised nearly LP-Co-symplectic manifold) if

(3.3) 2(𝐷𝑋`𝐹)(π‘Œ,𝑍) βˆ’ 𝐴1(π‘Œ)(𝐷𝑋𝐴1)οΏ½ 𝑍� βˆ’ 𝐴2(π‘Œ)(𝐷𝑋𝐴2)οΏ½ 𝑍� βˆ’ 𝐴1(𝑍)(𝐷𝑋𝐴1)οΏ½ π‘ŒοΏ½ βˆ’ 𝐴2(𝑍)(𝐷𝑋𝐴2)οΏ½ π‘ŒοΏ½

= 2(π·π‘Œ`𝐹)(𝑍,𝑋) βˆ’ 𝐴1(𝑍)(π·π‘Œπ΄1)οΏ½ 𝑋� βˆ’ 𝐴2(𝑍)(π·π‘Œπ΄2)οΏ½ 𝑋� βˆ’ 𝐴1(𝑋)(π·π‘Œπ΄1)οΏ½ 𝑍� βˆ’ 𝐴2(𝑋)(π·π‘Œπ΄2)οΏ½ 𝑍�

= 2(𝐷𝑍`𝐹)(𝑋,π‘Œ) βˆ’ 𝐴1(𝑋)(𝐷𝑍𝐴1)οΏ½ π‘ŒοΏ½ βˆ’ 𝐴2(𝑋)(𝐷𝑍𝐴2)οΏ½ π‘ŒοΏ½ βˆ’ 𝐴1(π‘Œ)(𝐷𝑍𝐴1)οΏ½ 𝑋� βˆ’ 𝐴2(π‘Œ)(𝐷𝑍𝐴2)οΏ½ 𝑋�

It is clear that a generalised nearly LP-Sasakian manifold is a generalised nearly LP-Co-symplectic manifold, in which

(3.4) (a) (𝐷𝑋𝐴1)οΏ½ π‘ŒοΏ½ = (𝐷𝑋𝐴2)οΏ½ π‘ŒοΏ½ = 𝑔� 𝑋, π‘ŒοΏ½ ⇔

(b) (𝐷𝑋𝐴1)( π‘Œ) + 𝐴2(π‘Œ) = (𝐷𝑋𝐴2)( π‘Œ) + 𝐴1(π‘Œ) = `𝐹(𝑋,π‘Œ) ⇔ (c) 𝐷𝑋𝑇1 = 𝑋 βˆ’ 𝑇2, 𝐷𝑋𝑇2 = 𝑋 βˆ’ 𝑇1

A generalised LP-Contact manifold will be called a generalised almost LP-Co-symplectic manifold if

(3.5) 2(𝐷𝑋`𝐹)(π‘Œ,𝑍) + 2(π·π‘Œ`𝐹)(𝑍,𝑋) + 2(𝐷𝑍`𝐹)(𝑋,π‘Œ) βˆ’ 𝐴1(𝑋)οΏ½(π·π‘Œπ΄1)οΏ½ 𝑍� + (𝐷𝑍𝐴1)οΏ½ π‘ŒοΏ½οΏ½ βˆ’

𝐴2(𝑋)οΏ½(π·π‘Œπ΄2)οΏ½ 𝑍� + (𝐷𝑍𝐴2)οΏ½ π‘ŒοΏ½οΏ½ βˆ’ 𝐴1(π‘Œ)οΏ½(𝐷𝑋𝐴1)οΏ½ 𝑍� + (𝐷𝑍𝐴1)οΏ½ 𝑋�� βˆ’ 𝐴2(π‘Œ){(𝐷𝑋𝐴2)οΏ½ 𝑍� +

(𝐷𝑍𝐴2)οΏ½ 𝑋�} βˆ’ 𝐴1(𝑍)οΏ½(𝐷𝑋𝐴1)οΏ½ π‘ŒοΏ½ + (π·π‘Œπ΄1)οΏ½ 𝑋�� βˆ’ 𝐴2(𝑍)οΏ½(𝐷𝑋𝐴2)οΏ½ π‘ŒοΏ½ + (π·π‘Œπ΄2)οΏ½ 𝑋�� = 0

22

Page 4: Paper-3 Generalised LP-Sasakian Manifolds

International Journal of Computational Intelligence and Information Security, October 2014 Vol. 5, No. 7 ISSN: 1837-7823

Therefore, A generalised almost LP-Co-symplectic manifold is a generalised almost LP-Sasakian manifold if

(3.6) (a) (𝐷𝑋𝐴1)οΏ½ π‘ŒοΏ½ = (𝐷𝑋𝐴2)οΏ½ π‘ŒοΏ½ = 𝑔� 𝑋, π‘ŒοΏ½ ⇔

(b) (𝐷𝑋𝐴1)( π‘Œ) + 𝐴2(π‘Œ) = (𝐷𝑋𝐴2)( π‘Œ) + 𝐴1(π‘Œ) = `𝐹(𝑋,π‘Œ) ⇔ (c) 𝐷𝑋𝑇1 = 𝑋 –𝑇2, 𝐷𝑋𝑇2 = 𝑋 –𝑇1

4. Completely Integrable manifolds

Barring 𝑋,π‘Œ,𝑍 in (1.8) and using equations (2.1), (1.4) (a), we get `𝑁( 𝑋, π‘Œ, 𝑍 ) = 0,which implies that a

generalised nearly LP-Sasakian manifold is completely integrable.

Barring X, Y, Z in (1.8) and using equations (2.6), (1.4) (a), we see that a generalised almost LP-Sasakian manifold

is completely integrable if

(4.1) (𝐷𝑋`𝐹)(π‘Œ ,𝑍) + (π·π‘Œ`𝐹)(𝑍 ,𝑋) = (𝐷𝑍`𝐹)(𝑋 ,π‘Œ)

5. Generalised D- Conformal transformation.

Let the corresponding Jacobian map B of the transformation b transforms the structure (𝐹,𝑇1,𝑇2,𝐴1, 𝐴2,𝑔 )

to the structure (𝐹,𝑉1,𝑉2, 𝜐1, 𝜐2, β„Ž ) such that

(5.1) (a) 𝐡𝑍 = 𝐡𝑍 (b) β„Ž( 𝐡𝑋,π΅π‘Œ)π‘œπ‘ = π‘’πœŽ g �𝑋,π‘ŒοΏ½ βˆ’ 𝑒2𝜎 𝐴1(𝑋)𝐴1(π‘Œ) βˆ’ 𝑒2𝜎 𝐴2(𝑋)𝐴2(π‘Œ)

(c) 𝑉1 = π‘’βˆ’πœŽ 𝐡𝑇1, 𝑉2 = π‘’βˆ’πœŽ 𝐡𝑇2 (d) 𝜐1( 𝐡𝑋 )π‘œπ‘ = π‘’πœŽ 𝐴1(𝑋), 𝜐2( 𝐡𝑋 )π‘œπ‘ = π‘’πœŽ 𝐴2(𝑋)

Where 𝜎 is a differentiable function on 𝑀𝑛 , then the transformation is said to be generalised D-conformal

transformation. If 𝜎 is a constant, the transformation is known as D-homothetic.

Theorem 5.1 The structure (𝐹,𝑉1,𝑉2, 𝜐1, 𝜐2, β„Ž ) is generalised Lorentzian Para-Contact.

Proof. Inconsequence of (1.1), (1.2), (5.1) (b) and (5.1) (d), we have

β„Ž(𝐡𝑋,π΅π‘Œ )π‘œπ‘ =π‘’πœŽ g �𝑋,π‘ŒοΏ½ = β„Ž( 𝐡𝑋,π΅π‘Œ)π‘œπ‘ + 𝑒2𝜎 𝐴1(𝑋)𝐴1(π‘Œ) + 𝑒2𝜎 𝐴2(𝑋)𝐴2(π‘Œ)

= β„Ž( 𝐡𝑋,π΅π‘Œ)π‘œπ‘ + {𝜐1( 𝐡𝑋 )π‘œπ‘}{𝜐1( π΅π‘Œ )π‘œπ‘} + {𝜐2( 𝐡𝑋 )π‘œπ‘}{𝜐2( π΅π‘Œ )π‘œπ‘}

This implies

(5.2) β„Ž(𝐡𝑋,π΅π‘Œ ) = β„Ž( 𝐡𝑋,π΅π‘Œ) + 𝜐1( 𝐡𝑋 ) 𝜐1( π΅π‘Œ ) + 𝜐2( 𝐡𝑋 ) 𝜐2( π΅π‘Œ )

Making the use of (1.1), (5.1) (a), (5.1) (c) and (5.1) (d), we get

(5.3) 𝐡𝑋 = 𝐡𝑋 = 𝐡𝑋 + 𝐴1(𝑋)𝐡𝑇1+𝐴2(𝑋)𝐡𝑇2 = 𝐡𝑋 + {𝜐1( 𝐡𝑋 )π‘œπ‘}𝑉1 + {𝜐2( 𝐡𝑋 )π‘œπ‘}𝑉2

Also

(5.4) 𝑉1 = π‘’βˆ’πœŽ 𝐡𝑇1 = 0, 𝑉2 = π‘’βˆ’πœŽ 𝐡𝑇2 = 0

Equations (5.2), (5.3) and (5.4) prove the statement.

Theorem 5.2 Let 𝐸 and 𝐷 be the Riemannian connections with respect to h and g such that

(5.5) (a) πΈπ΅π‘‹π΅π‘Œ = π΅π·π‘‹π‘Œ + 𝐡𝐻(𝑋,π‘Œ) (b) `𝐻(𝑋,π‘Œ,𝑍) ≝ 𝑔(𝐻( 𝑋,π‘Œ),𝑍)

Then

(5.6) 2πΈπ΅π‘‹π΅π‘Œ =

2π΅π·π‘‹π‘Œ βˆ’ 𝐡[2π‘’πœŽ {(XΟƒ) 𝐴1 (Y) 𝑇1+ (π‘‹πœŽ) 𝐴2 (Y) 𝑇2 + (YΟƒ) 𝐴1 (X) 𝑇1 + (YΟƒ) 𝐴2 (X) 𝑇2 βˆ’ (βˆ’1Gβˆ‡Οƒ) 𝐴1 (X) 𝐴1(π‘Œ)

βˆ’ (βˆ’1Gβˆ‡Οƒ) 𝐴2 (X) 𝐴2 (Y)}+(π‘’πœŽ βˆ’ 1)οΏ½(𝐷𝑋𝐴1)(π‘Œ) + (π·π‘Œπ΄1)(𝑋) βˆ’ 2𝐴1�𝐻(𝑋,π‘Œ)��𝑇1 + (π‘’πœŽ βˆ’ 1)οΏ½(𝐷𝑋𝐴2)(π‘Œ) +

23

Page 5: Paper-3 Generalised LP-Sasakian Manifolds

International Journal of Computational Intelligence and Information Security, October 2014 Vol. 5, No. 7 ISSN: 1837-7823

(π·π‘Œπ΄2)(𝑋) βˆ’ 2𝐴2�𝐻(𝑋,π‘Œ)��𝑇2 + (π‘’πœŽ βˆ’ 1){𝐴1(𝑋)(π·π‘Œπ‘‡1) + 𝐴2(𝑋)(π·π‘Œπ‘‡2) + 𝐴1(π‘Œ)(𝐷𝑋𝑇1)+𝐴2(π‘Œ)(𝐷𝑋𝑇2) βˆ’

𝐴1(𝑋)(βˆ’1πΊβˆ‡π΄1)(π‘Œ) βˆ’ 𝐴2(𝑋)(βˆ’1πΊβˆ‡π΄2)(π‘Œ) βˆ’ 𝐴1(π‘Œ)(βˆ’1πΊβˆ‡π΄1)(𝑋) βˆ’ 𝐴2(π‘Œ)(βˆ’1πΊβˆ‡π΄2)(𝑋)}]

Proof. Inconsequence of (5.1) (b), we have

π΅π‘‹οΏ½β„Ž( π΅π‘Œ,𝐡𝑍)οΏ½π‘œπ‘ = π‘‹οΏ½π‘’πœŽ g οΏ½π‘Œ,𝑍� βˆ’ 𝑒2𝜎 𝐴1(π‘Œ)𝐴1(𝑍) βˆ’ 𝑒2𝜎 𝐴2(π‘Œ)𝐴2(𝑍)οΏ½

Consequently

(5.7) β„Ž(πΈπ΅π‘‹π΅π‘Œ,𝐡𝑍)π‘œπ‘ + β„Ž(π΅π‘Œ,𝐸𝐡𝑋𝐡𝑍)π‘œπ‘ =

(π‘‹πœŽ)π‘’πœŽ g οΏ½π‘Œ,𝑍� + π‘’πœŽ g οΏ½π·π‘‹π‘Œ,𝑍� + π‘’πœŽ g οΏ½π‘Œ,𝐷𝑋𝑍� βˆ’ 2(π‘‹πœŽ)𝑒2𝜎 𝐴1(π‘Œ)𝐴1(𝑍) βˆ’ 𝑒2𝜎 (𝐷𝑋𝐴1)(π‘Œ)𝐴1(𝑍)

βˆ’ 𝑒2𝜎 (𝐷𝑋𝐴1)(𝑍)𝐴1(π‘Œ) βˆ’ 𝑒2𝜎 𝐴1(π·π‘‹π‘Œ)𝐴1(𝑍) βˆ’ 𝑒2𝜎 𝐴1(𝐷𝑋𝑍)𝐴1(π‘Œ)

βˆ’ 2(π‘‹πœŽ)𝑒2𝜎 𝐴2(π‘Œ)𝐴1 (𝑍) βˆ’ 𝑒2𝜎 (𝐷𝑋𝐴2)(π‘Œ)𝐴2(𝑍) βˆ’ 𝑒2𝜎 (𝐷𝑋𝐴2)(𝑍)𝐴2(π‘Œ)

βˆ’ 𝑒2𝜎 𝐴2(π·π‘‹π‘Œ)𝐴2(𝑍) βˆ’ 𝑒2𝜎 𝐴2(𝐷𝑋𝑍)𝐴2(π‘Œ)

Also

(5.8) β„Ž(πΈπ΅π‘‹π΅π‘Œ,𝐡𝑍)π‘œπ‘ + β„Ž(π΅π‘Œ,𝐸𝐡𝑋𝐡𝑍)π‘œπ‘ = π‘’πœŽ g οΏ½π·π‘‹π‘Œ,𝑍� βˆ’ 𝑒2𝜎 𝐴1(π·π‘‹π‘Œ)𝐴1(𝑍) βˆ’ 𝑒2𝜎 𝐴2(π·π‘‹π‘Œ)𝐴2(𝑍) +

π‘’πœŽ g �𝐻(𝑋,π‘Œ),𝑍� βˆ’ 𝑒2𝜎 𝐴1�𝐻(𝑋,π‘Œ)�𝐴1(𝑍) βˆ’ 𝑒2𝜎 𝐴2�𝐻(𝑋,π‘Œ)�𝐴2(𝑍) + π‘’πœŽ g οΏ½π‘Œ,𝐻(𝑋,𝑍�

βˆ’ 𝑒2𝜎 𝐴1(π‘Œ)𝐴1�𝐻(𝑋,𝑍)οΏ½ βˆ’ 𝑒2𝜎 𝐴2(π‘Œ)𝐴2�𝐻(𝑋,𝑍)οΏ½ + π‘’πœŽ g οΏ½π‘Œ,𝐷𝑋𝑍� βˆ’ 𝑒2𝜎 𝐴1(𝐷𝑋𝑍)𝐴1(π‘Œ) βˆ’

𝑒2𝜎 𝐴2(𝐷𝑋𝑍)𝐴2(π‘Œ)

Equations (1.3) (a), (5.7) and (5.8) imply

(5.9) (π‘‹πœŽ)g οΏ½π‘Œ,𝑍� βˆ’ 2(π‘‹πœŽ)π‘’πœŽ 𝐴1(π‘Œ)𝐴1(𝑍) βˆ’ 2(π‘‹πœŽ)π‘’πœŽ 𝐴2(π‘Œ)𝐴2(𝑍) βˆ’ (π‘’πœŽ βˆ’ 1){(𝐷𝑋𝐴1)(π‘Œ)𝐴1(𝑍) +

(𝐷𝑋𝐴2)(π‘Œ)𝐴2(𝑍) + (𝐷𝑋𝐴1)(𝑍)𝐴1(π‘Œ) + (𝐷𝑋𝐴2)(𝑍)𝐴2(π‘Œ)} = `𝐻(𝑋,π‘Œ,𝑍) + `𝐻(𝑋,𝑍,π‘Œ)

βˆ’(π‘’πœŽ βˆ’ 1) {𝐴1�𝐻(𝑋,π‘Œ)�𝐴1(𝑍) + 𝐴2�𝐻(𝑋,π‘Œ)�𝐴2(𝑍) + 𝐴1�𝐻(𝑋,𝑍)�𝐴1(π‘Œ) + 𝐴2�𝐻(𝑋,𝑍)�𝐴2(π‘Œ)}

Writing two other equations by cyclic permutation of 𝑋,π‘Œ,𝑍 and subtracting the third equation from the sum of the

first two equations and using symmetry of `𝐻 in the first two slots, we get

(5.10)

2`𝐻(𝑋,π‘Œ,𝑍) = βˆ’2π‘’πœŽ οΏ½(π‘‹πœŽ)𝐴1(π‘Œ)𝐴1(𝑍) + (π‘‹πœŽ)𝐴2(π‘Œ)𝐴2(𝑍) + (π‘ŒπœŽ)𝐴1(𝑍)𝐴1(𝑋) + (π‘ŒπœŽ)𝐴2(𝑍)𝐴124242(𝑋) βˆ’

(π‘πœŽ)𝐴1(𝑋)𝐴1(π‘Œ) βˆ’ (π‘πœŽ)𝐴2(𝑋)𝐴2(π‘Œ)οΏ½ βˆ’ (π‘’πœŽ βˆ’ 1)�𝐴1(𝑍)οΏ½(𝐷𝑋𝐴1)(π‘Œ) + (π·π‘Œπ΄1)(𝑋) βˆ’ 2𝐴1�𝐻(𝑋,π‘Œ)οΏ½οΏ½ +

𝐴2(𝑍)οΏ½(𝐷𝑋𝐴2)(π‘Œ) + (π·π‘Œπ΄2)(𝑋) βˆ’ 2𝐴2�𝐻(𝑋,π‘Œ)οΏ½οΏ½ + 𝐴1(𝑋){(π·π‘Œπ΄1)(𝑍) βˆ’ (𝐷𝑍𝐴1)(π‘Œ)} + 𝐴2(𝑋){(π·π‘Œπ΄2)(𝑍) βˆ’

(𝐷𝑍𝐴2)(π‘Œ)} + 𝐴1(π‘Œ){(𝐷𝑋𝐴1)(𝑍) βˆ’ (𝐷𝑍𝐴1)(𝑋)} + 𝐴2(π‘Œ){(𝐷𝑋𝐴2)(𝑍) βˆ’ (𝐷𝑍𝐴2)(𝑋)}οΏ½

This gives

(5.11)

2𝐻(𝑋,π‘Œ) = βˆ’2π‘’πœŽ [(π‘‹πœŽ)𝐴1(π‘Œ)𝑇1 + (π‘‹πœŽ)𝐴2(π‘Œ) 𝑇2 + (π‘ŒπœŽ)𝐴1(𝑋)𝑇1 + (π‘ŒπœŽ)𝐴2(𝑋) 𝑇2 βˆ’ (βˆ’1πΊβˆ‡Οƒ)𝐴1(X)𝐴1(Y) βˆ’

(βˆ’1πΊβˆ‡Οƒ)𝐴2(X)𝐴2(Y)] βˆ’ (π‘’πœŽ βˆ’ 1)οΏ½οΏ½(𝐷𝑋𝐴1)(π‘Œ) + (π·π‘Œπ΄1)(𝑋) βˆ’ 2𝐴1�𝐻(𝑋,π‘Œ)��𝑇1 + οΏ½(𝐷𝑋𝐴2)(π‘Œ) + (π·π‘Œπ΄2)(𝑋) βˆ’

2𝐴2�𝐻(𝑋,π‘Œ)οΏ½οΏ½ 𝑇2 + 𝐴1(𝑋)(π·π‘Œπ‘‡1) + 𝐴2(𝑋)(π·π‘Œ 𝑇2) + 𝐴1(π‘Œ)(𝐷𝑋𝑇1) + 𝐴2(π‘Œ)(𝐷𝑋 𝑇2) βˆ’ 𝐴1(𝑋)(βˆ’1πΊβˆ‡π΄1οΏ½(Y) βˆ’

𝐴2(𝑋)(βˆ’1πΊβˆ‡π΄2)(Y) βˆ’ 𝐴1(Y)(βˆ’1πΊβˆ‡π΄1)(X) βˆ’ 𝐴2(Y)(βˆ’1πΊβˆ‡π΄2)(X)]

Substitution of (5.11) into (5.5) (a) gives (5.6).

24

Page 6: Paper-3 Generalised LP-Sasakian Manifolds

International Journal of Computational Intelligence and Information Security, October 2014 Vol. 5, No. 7 ISSN: 1837-7823

References

[1] Matsumoto, K. (1989) β€œOn Lorentzian Paracontact Manifolds”, Bull. Of Yamagata Univ.,Nat Sci.,Vol. 12, . No.2, pp. 151-156. [2] Matsumoto, K. and Mihai, I. (1988) β€œOn a certain transformation in a Lorentzian Para-Sasakian Manifold”, Tensor N. S., Vol. 47, pp. 189-197. [3] Nivas, R. and Bajpai, A. (2011) β€œStudy of Generalized Lorentzian Para-Sasakian Manifolds”, Journal of International Academy of Physical Sciences, Vol. 15 No.4, pp. 405-412. [4] Sato, I. (1976) β€œOn a structure similar to almost contact structure I”, Tensor N.S.,30, pp. 219-224. [5] Sato, I. (1977) β€œOn a structure similar to almost contact structure II”, Tensor N.S.,31, pp. 199-205. [6] Suguri, T. and Nakayama, S. (1974) β€œD-conformal deformation on almost contact metric structures”, Tensor N. S., 28, pp. 125-129.

25