Panel Design

8
Panel Design & Calculate Size of Bus bar August 5, 2014 20 Comments Example: Calculate Size of Bus bar having Following Details Bus bar Current Details: Rated Voltage = 415V,50Hz , Desire Maximum Current Rating of Bus bar =630Amp. Fault Current (Isc)= 50KA ,Fault Duration (t) =1sec. Bus bar Temperature details: Operating Temperature of Bus bar (θ)=85°C. Final Temperature of Bus bar during Fault(θ1)=185°C. Temperature rise of Bus Bar Bar during Fault (θt=θ1- θ)=100°C. Ambient Temperature (θn) =50°C. Maximum Bus Bar Temperature Rise=55°C. Enclosure Details: Installation of Panel= Indoors (well Ventilated) Altitude of Panel Installation on Site= 2000 Meter Panel Length= 1200 mm ,Panel width= 600 mm, Panel Height= 2400 mm Bus bar Details: Bus bar Material= Copper Bus bar Strip Arrangements= Vertical Current Density of Bus Bar Material=1.6 Temperature Co efficient of Material Resistance at 20°c(α20)= 0.00403 Material Constant(K)= 1.166 Bus bar Material Permissible Strength=1200 kg/cm2 Bus bar Insulating Material= Bare Bus bar Position= Edge-mounted bars Bus bar Installation Media= Non-ventilated ducting Bus bar Artificial Ventilation Scheme= without artificial ventilation Bus bar Size Details: Bus bar Width(e)= 75 mm

Transcript of Panel Design

Panel Design & Calculate Size of BusbarAugust 5, 2014 20 Comments Example: Calculate Size of Bus bar having Following Details Bus bar Current Details: Rated Voltage = 415V,50Hz , Desire Maximum Current Rating of Bus bar =630Amp. Fault Current (Isc)= 50KA ,Fault Duration (t) =1sec. Bus bar Temperature details: Operating Temperature of Bus bar ()=85C. Final Temperature of Bus bar during Fault(1)=185C. Temperature rise of Bus Bar Bar during Fault (t=1-)=100C. Ambient Temperature (n) =50C. Maximum Bus Bar Temperature Rise=55C. Enclosure Details: Installation of Panel= Indoors (well Ventilated) Altitude of Panel Installation on Site= 2000 Meter Panel Length= 1200 mm ,Panel width= 600 mm, Panel Height= 2400 mm Bus bar Details: Bus bar Material= Copper Bus bar Strip Arrangements= Vertical Current Density of Bus Bar Material=1.6 Temperature Co efficient of Material Resistance at 20c(20)= 0.00403 Material Constant(K)= 1.166 Bus bar Material Permissible Strength=1200 kg/cm2 Bus bar Insulating Material= Bare Bus bar Position= Edge-mounted bars Bus bar Installation Media= Non-ventilated ducting Bus bar Artificial Ventilation Scheme= without artificial ventilation Bus bar Size Details: Bus bar Width(e)= 75 mm Bus bar Thickness(s)= 10 mm Number of Bus Bar per Phase(n)= 2 No Bus bar Length per Phase(a)= 500 mm Distance between Two Bus Strip per Phase(e)= 75 mm Bus bar Phase Spacing (p)= 400 mm Total No of Circuit= 3 No. Bus bar Support Insulator Detail: Distance between insulators on Same Phase(l)= 500 mm Insulator Height (H)= 100 mm Distance from the head of the insulator to the bus bar center of gravity (h)= 5 mm Permissible Strength of Insulator (F)=1000 Kg/cm2Calculation:(1) De rating Factors for Bus bar: (1) Per Phase Bus Strip De rating Factor (K1): Bus bar Width(e) is 75mm and Bus bar Length per Phase(a) is 500mm so e/a is 75/500=0.15 No of Bus bar per phase is 2 Nos. From following table value of de rating factor is 1.83Number of Bus Bar Strip per Phase (K1)

e/aNo of Bus Bar per Phase

123

0.0511.632.4

0.0611.732.45

0.0811.762.5

0.111.82.55

0.1211.832.6

0.1411.852.63

0.1611.872.65

0.1811.892.68

0.211.912.7

(2) Bus bar Insulating Material De rating Factor (K2) Bus bar having No insulating material. It is Bare so following Table De rating Factor is 1.Bus Bar Insulating Material (K2):De rating Factor

Bare1

PVC Sleeving1.2

Painted1.5

(3) Bus bar Position De rating Factor (K3) Bus bar Position is Edge-mounted bars so following Table De rating Factor is 1Bus Bar Position(K3):De rating Factor

Edge-mounted bars1

1 bar base-mounted0.95

several base-mounted bars0.75

(4) Bus bar Installation Media De rating Factor (K4) Bus bar Installation Media is Non-ventilated ducting so following Table De rating Factor is 0.8Bus Bar Installation Media(K4):De rating Factor

Calm indoor atmosphere1

Calm outdoor atmosphere1.2

Non-ventilated ducting0.8

(5) Bus bar Artificial Ventilation De rating Factor (K5) Bus bar Installation Media is Non-ventilated ducting so following Table De rating Factor is 0.9Bus Bar Artificial Ventilation Scheme (K5):De rating Factor

without artificial ventilation0.9

with artificial ventilation1

(6) Enclosure & Ventilation De rating Factor (K6) Bus bar Area per Phase = Bus width X Bus Thickness X Length of Bus X No of Bus bar per Phase Bus bar Area per Phase = 75x10xX500X2= 750000mm Total Bus bar Area for Enclosure= No of Circuit X( No of Phase + Neutral )X Bus bar Area per Phase Here we used Size of Neutral Bus is equal to Size of Phase Bus Total Bus bar Area for Enclosure=3X(3+1)X750000mm Total Bus bar Area for Enclosure=9000000 Sq.mm Total Enclosure Area= width X Height X Length Total Enclosure Area=1200x600x2400=1728000000 Sq.mm Total Bus bar Area for Enclosure / Total Enclosure Area =9000000/1728000000 Total Bus bar Area for Enclosure / Total Enclosure Area=0.53% Bus bar Artificial Ventilation Scheme is without artificial ventilation so following Table De rating Factor is 0.95Volume of Enclosure & Ventilation De rating Factor (K6)

cross Section area of Bus bar/Total Bus Bar AreaIndoors ( Panel is well Ventilated)Indoors ( Panel is Poorly Ventilated)Outdoor

0%0.950.850.65

1%0.950.850.65

5%0.90.70.6

10%0.850.650.5

(7) Proxy Effect De rating Factor (K7) Bus bar Phase Spacing (p) is 400mm. Bus bar Width (e) is 75mm and Space between each bus of Phase is 75mm so Total Bus length of Phase with spacing (w) =75+75+75+75+75=225mm Bus bar Phase Spacing (p) / Total Bus length of Phase with spacing (w) = 400 / 225 =2 From following Table De rating factor is 0.82Proxy Effect (K7):De rating Factor

10.82

20.82

30.82

40.89

50.95

60.99

71

(8) Altitude of Bus Bar installation De rating Factor (K8) Altitude of Panel Installation on Site is 2000 meter so following Table De rating Factor is 0.88Altitude of installation site (Meter) (K8)De rating Factor

22000.88

24000.87

25000.86

27000.85

29000.84

30000.83

33000.82

35000.81

40000.78

45000.76

50000.74

Total De rating Factor= K1XK2XK3Xk4Xk5Xk6Xk7Xk8 Total De rating Factor =1.83x1x1x0.80.90.950.820.88 Total De rating Factor =0.90(2) Bus bar Size Calculation: Desire Current Rating of Bus bar (I2) =630 Amp Current Rating of Bus bar after De rating Factor (I1)= I2 X De rating Factor or I2 / De rating Factor Current Rating of Bus bar after De rating Factor (I1)=6300.9 Current Rating of Bus bar after De rating Factor (I1)=697Amp Bus bar Cross Section Area as per Current= Current Rating of Bus bar / Current Density of Material Bus bar Cross Section Area as per Current= 697 / 1.6 Bus bar Cross Section Area as per Current= 436 Sq.mm Bus bar Cross Section Area as per Short Circuit= Isc X ((K/( tx100)x(1+ 20x) xt Bus bar Cross Section Area as per Short Circuit= 50000X ((1.166/( 100100)x(1+ 0.0040385) x1 Bus bar Cross Section Area as per Short Circuit=626 Sq.mm Select Higher Size for Bus bar Cross section area between 436 Sq.mm and 626 Sq.mm Final Calculated Bus Bar Cross Section Area =626 Sq.mm Actual Selected Bus bar size is 7510=750 Sq.mm We have select 2 Nos of Bus bar per Phase hence. Actual Bus bar cross section Area per Phase =7502= 1500 Sq.mm Actual Cross Section Area of Bus bar =1500 Sq.mm Actual Bus bar Size is Less than calculated Bus bar size.(3) Forces generated on Bus Bar due to Short Circuit Current Peak electro-magnetic forces between phase conductors (F1) = 2X(l/d)X(2.5xIsc)2/100000000 Total width of Bus bar per Phase(w)=75+75+75=225mm =2.25cm Bus bar Phase to Phase Distance (d)=400+225=625mm=6.25cm Peak electro-magnetic forces between phase conductors (F1) =2x(50/63)x(2.550000)2/100000000 Peak electro-magnetic forces between phase conductors (F1)=250 Kg /cm2 Peak electro-magnetic forces between phase conductors (F1)=2.5 Kg /mm2 Actual Forces at the head of the Supports or Bus Bar (F)=F1X(H+h/H) Actual Forces at the head of the Supports or Bus Bar (F)=2.5x(100+5/100) Actual Forces at the head of the Supports or Bus Bar (F)= 3 Kg /mm2 Permissible Strength of Insulator (F) is 10 Kg/mm2 Actual Forces at the head of the Supports or Bus Bar is less than Permissible Strength Forces on Insulation is in within Limits(4) Mechanical strength of the bus bars Mechanical strength of the bus bars=(F1X i /12)x(1/ Modulus of inertia of a bus bar )Value of Modulus of inertia of a bus bar or of a set of bus bars (i/v)

No of Bus Strip per PhaseVertical Bus Bar (cm3)Horizontal Bus Bar (cm3)

11.6616.66

214.4533.33

33350

From above table Value of Modulus of inertia of a bus bar=14.45 Mechanical strength of the bus bars=(25050/12)X(1/14.45) Mechanical strength of the bus bars= 72 Kg/cm2 Mechanical strength of the bus bars= 0.72 Kg/mm2 Permissible Bus bar Strength is 12 Kg/mm2 Actual Mechanical Strength is less than Permissible Strength Mechanical strength of Bus bar is in within Limit(5) Temperature Rise Calculation Specified Maximum Temperature Rise (T1) is 35c Calculated Maximum Temperature Rise (T2)=T/(log(I1/I2)1.64) Calculated Maximum Temperature Rise (T2)=35/(Log(697/630)1.64) Calculated Maximum Temperature Rise (T2)= 30c Calculated Bus bar Temperature rise is less than Specified Max Temperature rise Temperature Rise is in within LimitResults: Size of Bus bar = 2Nos 75x10mm per Phase. Total No of Feeder =3 Nos Total Nos of Bus bar = 6 Nos 75x10mm for Phase and 1Nos 75x10mm for Neutral. Forces at the head of the Supports or Bus Bar (F)= 3kg/mm2 Mechanical strength of the bus bars= 0.7 Kg/mm2 Maximum Temperature Rise=30c