page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr...

38
Petr Hlinˇ en´ y, ACO 25, 2017 1 / 10 Euler–Poincar´ e Formula A Short Proof of A Short Proof of Euler–Poincar´ e Formula Euler–Poincar´ e Formula Petr Hlinˇ en´ y Petr Hlinˇ en´ y Faculty of Informatics, Masaryk University Brno, Czech Republic

Transcript of page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr...

Page 1: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 1 / 10 Euler–Poincare Formula

A Short Proof ofA Short Proof of

Euler–Poincare FormulaEuler–Poincare Formula

Petr HlinenyPetr Hlineny

Faculty of Informatics, Masaryk University

Brno, Czech Republic

Page 2: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 2 / 10 Euler–Poincare Formula

1 Euler–Poincare Polyhedral Formula1 Euler–Poincare Polyhedral Formula

“V − E + F = 2 ”

Page 3: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 2 / 10 Euler–Poincare Formula

1 Euler–Poincare Polyhedral Formula1 Euler–Poincare Polyhedral Formula

“V − E + F = 2 ”

• The first landmark in the theory of polytopes.

Page 4: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 2 / 10 Euler–Poincare Formula

1 Euler–Poincare Polyhedral Formula1 Euler–Poincare Polyhedral Formula

“V − E + F = 2 ”

• The first landmark in the theory of polytopes.

• Known already to Descartes. First full proof by Legendre in 1794.

• See also David Eppstein: Twenty Proofs of Euler’s Formula.The Geometry Junkyard http://www.ics.uci.edu/~eppstein/junkyard/euler.

Page 5: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 3 / 10 Euler–Poincare Formula

2 Schlafli: Higher Dimensions2 Schlafli: Higher Dimensions

Theorem. Let P be a convex polytope in Rd, and denote by f c, c ∈{0, 1, . . . , d}, the numbers of faces of P of dimension c. Then

f0 − f1 + f2 − · · · + (−1)d−1fd−1 + (−1)dfd = 1

Page 6: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 3 / 10 Euler–Poincare Formula

2 Schlafli: Higher Dimensions2 Schlafli: Higher Dimensions

Theorem. Let P be a convex polytope in Rd, and denote by f c, c ∈{0, 1, . . . , d}, the numbers of faces of P of dimension c. Then

f0 − f1 + f2 − · · · + (−1)d−1fd−1 + (−1)dfd = 1

• Discovered by Schlafli 1852 (published 1902).

Page 7: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 3 / 10 Euler–Poincare Formula

2 Schlafli: Higher Dimensions2 Schlafli: Higher Dimensions

Theorem. Let P be a convex polytope in Rd, and denote by f c, c ∈{0, 1, . . . , d}, the numbers of faces of P of dimension c. Then

f0 − f1 + f2 − · · · + (−1)d−1fd−1 + (−1)dfd = 1

• Discovered by Schlafli 1852 (published 1902).

• Rediscoveries in late 19th century, all proofs assuming shellability.

Page 8: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 3 / 10 Euler–Poincare Formula

2 Schlafli: Higher Dimensions2 Schlafli: Higher Dimensions

Theorem. Let P be a convex polytope in Rd, and denote by f c, c ∈{0, 1, . . . , d}, the numbers of faces of P of dimension c. Then

f0 − f1 + f2 − · · · + (−1)d−1fd−1 + (−1)dfd = 1

• Discovered by Schlafli 1852 (published 1902).

• Rediscoveries in late 19th century, all proofs assuming shellability.

• Shellability established only in 1971 by Bruggesser and Mani.

Page 9: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 4 / 10 Euler–Poincare Formula

3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.

Page 10: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 4 / 10 Euler–Poincare Formula

3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.

• P an arbitrary convex polytope in dim. Rk+1.

Page 11: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 4 / 10 Euler–Poincare Formula

3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.

• P an arbitrary convex polytope in dim. Rk+1.

• R := the Schlegl diagram of P (a complex in Rk),

having the facets R1, . . . , Rt where t := fk − 1,and R0 being the “outer” facet of the diagram.

Page 12: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 4 / 10 Euler–Poincare Formula

3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.

• P an arbitrary convex polytope in dim. Rk+1.

• R := the Schlegl diagram of P (a complex in Rk),

having the facets R1, . . . , Rt where t := fk − 1,and R0 being the “outer” facet of the diagram.

Let f ci be the number of faces of Ri of dimension c.

Page 13: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 4 / 10 Euler–Poincare Formula

3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.

• P an arbitrary convex polytope in dim. Rk+1.

• R := the Schlegl diagram of P (a complex in Rk),

having the facets R1, . . . , Rt where t := fk − 1,and R0 being the “outer” facet of the diagram.

Let f ci be the number of faces of Ri of dimension c.

• Choose a general direction (vector) α in Rk, i.e., one not parallel toany proper face in the complex R.

Page 14: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 4 / 10 Euler–Poincare Formula

3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.

• P an arbitrary convex polytope in dim. Rk+1.

• R := the Schlegl diagram of P (a complex in Rk),

having the facets R1, . . . , Rt where t := fk − 1,and R0 being the “outer” facet of the diagram.

Let f ci be the number of faces of Ri of dimension c.

• Choose a general direction (vector) α in Rk, i.e., one not parallel toany proper face in the complex R.

• Assign two flags to each face of dim.< k, one as α and one as −α.

Formally, the flags are εα and −εα for small ε > 0, starting both ina point in the relative interior of this face.

Page 15: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 5 / 10 Euler–Poincare Formula

New Proof: counting flagsNew Proof: counting flags

Recall the setup:

• f 0 − f 1 + · · ·+ (−1)d−1fd−1 = 1 + (−1)d−1, for d ≤ k,

• P in dimension d := k + 1, R := Schlegl diagram of P ,

• two opposite flags at each face of dim. 0, 1, . . . , k − 1 in R.

Flag signs (values)

Page 16: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 5 / 10 Euler–Poincare Formula

New Proof: counting flagsNew Proof: counting flags

Recall the setup:

• f 0 − f 1 + · · ·+ (−1)d−1fd−1 = 1 + (−1)d−1, for d ≤ k,

• P in dimension d := k + 1, R := Schlegl diagram of P ,

• two opposite flags at each face of dim. 0, 1, . . . , k − 1 in R.

Flag signs (values)

• (−1)c for each flag at a face of dim. c ≤ k − 1.

Page 17: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 5 / 10 Euler–Poincare Formula

New Proof: counting flagsNew Proof: counting flags

Recall the setup:

• f 0 − f 1 + · · ·+ (−1)d−1fd−1 = 1 + (−1)d−1, for d ≤ k,

• P in dimension d := k + 1, R := Schlegl diagram of P ,

• two opposite flags at each face of dim. 0, 1, . . . , k − 1 in R.

Flag signs (values)

• (−1)c for each flag at a face of dim. c ≤ k − 1.

Summing the flags

Page 18: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 5 / 10 Euler–Poincare Formula

New Proof: counting flagsNew Proof: counting flags

Recall the setup:

• f 0 − f 1 + · · ·+ (−1)d−1fd−1 = 1 + (−1)d−1, for d ≤ k,

• P in dimension d := k + 1, R := Schlegl diagram of P ,

• two opposite flags at each face of dim. 0, 1, . . . , k − 1 in R.

Flag signs (values)

• (−1)c for each flag at a face of dim. c ≤ k − 1.

Summing the flags

• Globally – all flag values together: (cf. Schlafli!)

2(f 0 − f 1 + · · ·+ (−1)k−1fk−1

)= 2

k−1∑c=0

(−1)cf c

Page 19: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 5 / 10 Euler–Poincare Formula

New Proof: counting flagsNew Proof: counting flags

Recall the setup:

• f 0 − f 1 + · · ·+ (−1)d−1fd−1 = 1 + (−1)d−1, for d ≤ k,

• P in dimension d := k + 1, R := Schlegl diagram of P ,

• two opposite flags at each face of dim. 0, 1, . . . , k − 1 in R.

Flag signs (values)

• (−1)c for each flag at a face of dim. c ≤ k − 1.

Summing the flags

• Globally – all flag values together: (cf. Schlafli!)

2(f 0 − f 1 + · · ·+ (−1)k−1fk−1

)= 2

k−1∑c=0

(−1)cf c

• Locally – every flag “belongs” to precis. one of the facets in R. . .(flags pointing out of R belong to outer R0)

Page 20: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 6 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum

“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”.

Page 21: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 6 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum

“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”.

Local count at Ri (1 ≤ i ≤ t)

Page 22: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 6 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum

“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”.

Local count at Ri (1 ≤ i ≤ t)

• Out of each pair of flags of face F , at most one in Ri (by convexity),

Page 23: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 6 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum

“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”.

Local count at Ri (1 ≤ i ≤ t)

• Out of each pair of flags of face F , at most one in Ri (by convexity),

• and one flag in Ri ⇐⇒ face F “disappears” in the orth. proj. by α:

Page 24: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 6 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum

“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”.

Local count at Ri (1 ≤ i ≤ t)

• Out of each pair of flags of face F , at most one in Ri (by convexity),

• and one flag in Ri ⇐⇒ face F “disappears” in the orth. proj. by α:

“∑

flags in Ri” =k−1∑c=0

(−1)cf ci −

k−2∑c=0

(−1)cgci

where Ri projects down to Si by α,and gc

i is the number of faces of Si of dimension c.

Page 25: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 6 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum

“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”.

Local count at Ri (1 ≤ i ≤ t)

• Out of each pair of flags of face F , at most one in Ri (by convexity),

• and one flag in Ri ⇐⇒ face F “disappears” in the orth. proj. by α:

“∑

flags in Ri” =k−1∑c=0

(−1)cf ci −

k−2∑c=0

(−1)cgci

where Ri projects down to Si by α,and gc

i is the number of faces of Si of dimension c.

Local count at R0 (the outer facet of R)

slightly different. . .

Page 26: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 7 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”

and the local sum at Ri, i > 0

“∑

flags in Ri” =k−1∑c=0

(−1)cf ci −

k−2∑c=0

(−1)cgci .

Page 27: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 7 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”

and the local sum at Ri, i > 0

“∑

flags in Ri” =k−1∑c=0

(−1)cf ci −

k−2∑c=0

(−1)cgci .

Local count at R0 (the outer facet of R)

• Same arguments, but counting complementary, flags “pointing out”:

“∑

flags in R0” =k−1∑c=0

(−1)cf c0 +

k−2∑c=0

(−1)cgc0.

Page 28: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 7 / 10 Euler–Poincare Formula

New Proof: counting locallyNew Proof: counting locally

Recall the global sum“∑

all flags” = 2k−1∑c=0

(−1)cf c = 2× “Schlafli”

and the local sum at Ri, i > 0

“∑

flags in Ri” =k−1∑c=0

(−1)cf ci −

k−2∑c=0

(−1)cgci .

Local count at R0 (the outer facet of R)

• Same arguments, but counting complementary, flags “pointing out”:

“∑

flags in R0” =k−1∑c=0

(−1)cf c0 +

k−2∑c=0

(−1)cgc0.

Towards the conclusion. . .

“∑

all flags” =t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”

Page 29: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 8 / 10 Euler–Poincare Formula

New Proof: wrapping upNew Proof: wrapping up

Recall “∑

all flags” = 2× “Schlafli” = 2k−1∑c=0

(−1)cf c

=t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”.

Page 30: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 8 / 10 Euler–Poincare Formula

New Proof: wrapping upNew Proof: wrapping up

Recall “∑

all flags” = 2× “Schlafli” = 2k−1∑c=0

(−1)cf c

=t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”.

Induction assumption

“∑

flags in Ri” =k−1∑c=0

(−1)cf ci −

k−2∑c=0

(−1)cgci

=

Page 31: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 8 / 10 Euler–Poincare Formula

New Proof: wrapping upNew Proof: wrapping up

Recall “∑

all flags” = 2× “Schlafli” = 2k−1∑c=0

(−1)cf c

=t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”.

Induction assumption

“∑

flags in Ri” =k−1∑c=0

(−1)cf ci −

k−2∑c=0

(−1)cgci

= 1 + (−1)k−1 −(1 + (−1)k−2

)= 2(−1)k−1

Page 32: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 8 / 10 Euler–Poincare Formula

New Proof: wrapping upNew Proof: wrapping up

Recall “∑

all flags” = 2× “Schlafli” = 2k−1∑c=0

(−1)cf c

=t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”.

Induction assumption

“∑

flags in Ri” =k−1∑c=0

(−1)cf ci −

k−2∑c=0

(−1)cgci

= 1 + (−1)k−1 −(1 + (−1)k−2

)= 2(−1)k−1

“∑

flags in R0” =k−1∑c=0

(−1)cf c0 +

k−2∑c=0

(−1)cgc0

= 1 + (−1)k−1 + 1 + (−1)k−2 = 2

Page 33: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 9 / 10 Euler–Poincare Formula

New Proof: wrapping upNew Proof: wrapping up

Recall “∑

all flags” = 2× “Schlafli” = 2k−1∑c=0

(−1)cf c

=t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”

where t = fk − 1.

Page 34: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 9 / 10 Euler–Poincare Formula

New Proof: wrapping upNew Proof: wrapping up

Recall “∑

all flags” = 2× “Schlafli” = 2k−1∑c=0

(−1)cf c

=t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”

where t = fk − 1.

Putting together

2k−1∑c=0

(−1)cf c =t∑

a=1

2(−1)k−1 + 2

Page 35: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 9 / 10 Euler–Poincare Formula

New Proof: wrapping upNew Proof: wrapping up

Recall “∑

all flags” = 2× “Schlafli” = 2k−1∑c=0

(−1)cf c

=t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”

where t = fk − 1.

Putting together

2k−1∑c=0

(−1)cf c =t∑

a=1

2(−1)k−1 + 2

k−1∑c=0

(−1)cf c =t∑

a=1

(−1)k−1 + 1 = (fk − 1) · (−1)k−1 + 1

Page 36: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 9 / 10 Euler–Poincare Formula

New Proof: wrapping upNew Proof: wrapping up

Recall “∑

all flags” = 2× “Schlafli” = 2k−1∑c=0

(−1)cf c

=t∑

a=1

“∑

flags in Ri” + “∑

flags in R0”

where t = fk − 1.

Putting together

2k−1∑c=0

(−1)cf c =t∑

a=1

2(−1)k−1 + 2

k−1∑c=0

(−1)cf c =t∑

a=1

(−1)k−1 + 1 = (fk − 1) · (−1)k−1 + 1

k∑c=0

(−1)cf c = − 1 · (−1)k−1 + 1 = 1 + (−1)k2

Page 37: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 10 / 10 Euler–Poincare Formula

4 Conclusions4 Conclusions

. . .

Page 38: page.10 A Short Proof of Euler{Poincar e Formulahlineny/papers/EulerNew-sli2-pp.pdf · page.10 Petr Hlin en y, ACO 25, 2017 2/10 Euler{Poincar e Formula 1 Euler{Poincar e Polyhedral

page.10

Petr Hlineny, ACO 25, 2017 10 / 10 Euler–Poincare Formula

4 Conclusions4 Conclusions

. . .

Thank you for your attention.

and

Long live the ACO!