Organic Matter Management · 2016. 11. 22. · Organic Matter Management Roch Gaussoin University...

77
Organic Matter Management Roch Gaussoin University of Nebraska-Lincoln [email protected] Alberta Golf Course Superintendents Association 2016 Property Manager's Conference Canmore, Alberta

Transcript of Organic Matter Management · 2016. 11. 22. · Organic Matter Management Roch Gaussoin University...

  • Organic Matter ManagementRoch Gaussoin

    University of [email protected]

    Alberta Golf Course Superintendents Association2016 Property Manager's ConferenceCanmore, Alberta

    mailto:[email protected]

  • www.turf.unl.edu

  • ASA Monograph (3RD Edition)

    Chapter 12Characterization, Development, and Managementof Organic Matter in Turfgrass Systems

    R.E. Gaussoin, Dep. of Agronomy and Horticulture, Univ. of NebraskaW.L. Berndt, Dep. of Resort and Hospitality Management,

    Florida Gulf Coast UniversityC.A. Dockrell, Teagasc College of Amenity Horticulture

    Dublin, IrelandR.A. Drijber, Dep. of Agronomy and Horticulture, Univ. of Nebraska

  • Soldat’s Hierarchy of Golf Course Soil Problems

    Compaction Excessive organic matter and thatch

    accumulation Layering

  • Because of inherent ambiguity in terminologyand sampling techniques, the term “thatch-mat”has appeared frequently since the late 2000’s (McCarty et al., 2007; Barton et al., 2009;Fu et al., 2009).

    . 3 4.

  • and yet one more definition…………..

    SOM- Soil Organic Matter

  • Physical And Chemical Characteristics Of Aging

    Golf Greens Roch Gaussoin, PhDJason LewisTy McClellanChas SchmidBob Shearman, PhD

  • The picture can't be displayed.

    Treatments• rootzone Mix

    – 80:20 (sand/peat)– 80:15:5 (sand/peat/soil)

    • Grow-In Procedure– Accelerated– Controlled

  • Project Schedule (Phase I)

    1996 1997 1998 1999 2000

    Data collection on soil physical, chemical, and microbial characteristics influenced by rootzone materials and grow-in procedures.

    Greens construction ( one set per year)

    Seeding

  • Project Schedule (Phase II)

    2002 2003 2004 2005

    Data collection on soil physical and chemical characteristics as influenced by age, rootzone materials and grow-in procedures.

  • 13 yr oldgreen

    9 yr oldgreen

    Materials and Methods

    10 yr oldgreen

    12 yr oldgreen

    As of 2009

  • 0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -1 1 3 5 7 9 11

    Age of Green (Years)

    Infi

    ltra

    tio

    n R

    ate

    (c

    m h

    r-1 )

    80:20

    80:15:5

    Expon. (80:15:5)

    Expon. (80:20)

    Data points and exponential regression lines of infiltration rate decline on USGA specification putting green

    Summary

    Roch here are the data sets and graphs for the changes of soil physical properties on the USGA putting greens. Each sheet contains a different data set or graph so you'll have to scroll over to see them all. I have included a separate and combined graph f

    If you have questions on how I tested the fit parameters I have attached the PDF that I followed.

    The Clegg data will not cooperate and so I need to work more on this, I included graph of the data here, the problem is in spring year 8, the data spikes, and I do not know why, it is only taken from 1 green, but still. Anyway I don't think that its real

    *Critical F-Value = F 1, 200, 0.05 = 3.808

    VariableEquationp Value for modelr2Slope Parameter F ValueIntercept Parameter F ValueNote

    Bulk Density

    Rootzone 80:20y = 96.95 + 0.846(Age)

  • 80

    85

    90

    95

    100

    105

    110

    115

    120

    1 2 3 4 5 6 7 8 9

    Age of Green (Years)

    Per

    cent

    of Y

    ear

    1 To

    tal P

    oros

    ity (%

    )

    Percent of Year 1 Total Porosity (80:20) = 99.1 - 0.6(Age)r2 = 0.08Percent of Year 1 Total Porosity (80:15:5) = 101.7 - 0.6(Age)

    No significant change in total porosity over time

  • 50

    60

    70

    80

    90

    100

    110

    120

    130

    140

    150

    1 2 3 4 5 6 7 8 9

    Age of Green (Years)

    Per

    cent

    of Y

    ear

    1 A

    ir-F

    illed

    Por

    osity

    (%)

    Percent of Year 1 Air-filled Porosity 80:20 = 100.8 - 3.8(Age)r2 = 0.26Percent of Year 1 Air-filled Porosity 80:15:5 = 105.0 - 3.8(Age)r2 = 0.26

    Significant decrease in macro-porosity over time

  • 0

    50

    100

    150

    200

    250

    300

    1 2 3 4 5 6 7 8 9

    Age of Green (Years)

    Perc

    en

    t o

    f Y

    ear

    1 C

    ap

    illa

    ry P

    oro

    sit

    y (

    %)

    y = 91.5 + 8.1(Age)r2 = 0.16

    Significant increase in micro-porosity over time

  • Formation of Mat• Formation of mat layer currently increasing

    approximately 0.65 cm annually (following establishment year).

    • No visible layering, only a transition is evident between mat and original rootzone.

    • Topdressing program– Light, Frequent

    • every 10-14 days (depending on growth) and combined with verticutting

    – Heavy, Infrequent• 2x annually (spring/fall) and combined with aerification

  • OM accumulates as sand greens age

    Source: Gaussoin and Shearman, 2003; Gaussoin et al., 2006

  • Original Rootzone

    Mat• 2004 USGA research

    committee site visit

    • original rootzone

    • mat development

  • Materials and Methods

    • 2004 rootzone samples taken below mat layer from each soil treatment and sent to Hummel labs for Quality Control Test (24 total samples) & tested against original quality control test (z-score).

    • Other analysis also completed

  • 0

    5

    10

    15

    20

    25in hr -1

    Comparison of preconstruction Ksat values to Ksat values taken 10/04.

    Original

    Date is Report DateSand Size Class/Sand Particle Diameter % Retained# Determined by Methos 1 of ASTM F-1647

    * determined at 30cm tension

    % Soil SeparatePerc Rate (in/hr)GravelV. coarseCoarseMediumFineV. FineParticle Density (g/cc)Bulk Density (g/cc)Ksat Infiltartion Rate (in/hr)Total Porosity %Aeration Porosity %Capillary Porostiy %*OM %#

    Green 3 2000SandSilt & Clay%OM2 mm1 mm0.5 mm0.25 mm0.15 mm0.05 mm

    8/12/9980-2098.91.11.324.11.28.7274812.31.7

    8/12/9980-15-597.72.30.9320.71.47.425.147.712.82.9Green 3 2000

    7/22/9980-2099.50.51.1426.51.29.731.446.49.71.111/8/9980-202.631.620.439.218.920.3

    7/22/9980-15-597.72.30.9315.51.38.530.144.810.42.611/8/9980-15-52.631.671336.615.820.8

    Lyman Richey Test Samples

    Green 2 1999

    8/1/9880-15-596.83.20.926.90.62.315.452.120.16.3Green 2 1999

    7/23/9880-2098.51.51.520.12.316.757.718.53.27/23/9880-202.611.4811.643.420.722.71.5

    7/11/9880-15-596.83.21.2112.70.12.214.453.8224.3Green 1 1998

    7/11/9880-209911.4411.90.32.815.154.922.23.78/29/9780-202.631.579.140.217.822.41.37

    QC samples Mix to determine mill settings8/29/9780-15-52.621.613.238.717.321.40.87

    Green 1 1998Green 0 1997

    8/22/9780-15-597.62.40.8715.51.46.922.746.416.93.310/31/9680-15-52.621.5412.741.11922.1

    10/31/9680-202.611.4816.243.220.422.8

    8/4/9780-2098.81.11.3720.20.85.319.848.421.13.5

    8/24/9680-15-52.621.678.936.216.319.90.75

    7/29/9780-2099.90.91.0620.20.97.123.648.717.32.3

    7/29/9780-15-596.93.10.8715.51.36.323.14616.33.98/9/9680-202.621.6313.337.817.620.21.04

    QC Test samples

    Green 0 1996

    10/25/9680-2099.911.210.97.628.547.1131.9

    QC sample sent to Physical properties

    10/19/9680/2098.91.11.181.37.324.148.115.82.3

    QC sample sent for physical properties

    10/8/9680-15-597.62.40.811.3725.445.514.93.5

    QC sample

    9/28/9680-2098.71.30.741.49.326.244.814.32.7

    9/28/9680-15-597.12.90.681.57.7254415.33.6

    QC sample

    9/20/9680-2098.81.20.741.67.923.946.816.62.4

    9/20/9680-15-597.62.40.491.67.422.74417.94

    QC sample

    9/12/9680-2098.71.30.391.38.223.746.916.62

    9/12/9680-15-595.24.80.3416.920.341.818.46.8

    QC sample

    8/24/9680-15-597.42.20.41.57.826.643.9143.6

    8/9/9680-2098.90.80.31.3829.144.113.92.5

    2004

    2004 Hummel DataSand Size Class/Sand Particle Diameter % Retained

    % Soil SeparateGravelV. coarseCoarseMediumFineV. FineV. finePerc Rate (in/hr)

    plotSandSilt & Clay2 mm1 mm0.5 mm0.25 mm0.15 mm0.10 mm0.05 mm%OM

    10198118.428.145.813.91.50.30.7613.5

    20498.50.60.97.526.447.115.41.70.40.816.7

    30498.410.67.42646.915.81.90.40.815

    1997 Yr 8 80:20 Ave98.300.870.837.7726.8346.6015.031.700.370.7915.07

    10396.81.91.37.324.246.115.82.50.90.657.7

    20196.22.31.56.524.145.915.72.71.30.6710.6

    30397.61.60.86.624.546.216.62.61.10.517.9

    1997 Yr 8 80:15:5 Ave96.871.931.206.8024.2746.0716.032.601.100.618.73

    11198.60.80.65.420.748.320.82.80.60.769.4

    21497.81.11.15.420.646.821.330.70.5611.9

    31498.90.50.65.520.347.921.52.90.80.7311.8

    1998 Yr 7 80:20 Ave98.430.800.775.4320.5347.6721.202.900.700.6811.03

    11396.52.60.96.621.646.1182.71.50.515

    21196.921.16.221.346.818.72.51.40.645.4

    31397.12.20.76.421.147.517.82.81.50.635.2

    1998 Yr 7 80:15:5 Ave96.832.270.906.4021.3346.8018.172.671.470.595.20

    12199.30.60.12.117.656.519.92.60.60.6711.4

    22499.10.90217.855.920.12.70.60.716.8

    324990.90.1218.455.320.22.50.60.8614.3

    1999 Yr 6 80:20 Ave99.130.800.072.0317.9355.9020.072.600.600.7414.17

    12396.63.20.22.417.549.920.63.92.30.635.4

    22197.42.602.317.250.621.63.720.75.7

    32396.73.10.22.317.149.621.63.92.20.614.9

    1999 Yr 6 80:15:5 Ave96.902.970.132.3317.2750.0321.273.832.170.655.33

    13198.10.917.726.748.613.51.30.30.7514.2

    23498.30.90.87.225.949.5141.40.30.9319.7

    33498.40.70.97.82649.413.31.50.40.9620.4

    2000 Yr 5 80:20 Ave98.270.830.907.5726.2049.1713.601.400.330.8818.10

    23196.92.117.525.246.414.52.11.20.7710.9

    13397.11.81.1826.845.913.41.91.10.5413.6

    33397.61.31.18.426.64613.521.10.6110

    2000 Yr 5 80:15:5 Ave97.201.731.077.9726.2046.1013.802.001.130.6411.50

    Z test

    *** Very fine sand is defined as

  • Change in Rootzone Particle Size Distribution

    • All rootzones tested in 2004 showed increased proportion of fine sand (0.15 – 0.25 mm) with decreased proportion of gravel (> 2.0 mm) and very coarse sand (2.0 – 1.0 mm).

    • 5 of 8 rootzones were significant (z-score) for increased fine sand content.

  • 0

    5

    10

    15

    20

    25

    30

    35

    2 mm 1 mm 0.5 mm 0.25 mm 0.15 mm 0.10 mm 0.05 mm

    USGA Specification

    Topdressing Sand

    USGA sand specifications compared to sand used in topdressing program for USGA plots at Mead, NE.

    %

    Original

    Date is Report DateSand Size Class/Sand Particle Diameter % Retained# Determined by Methos 1 of ASTM F-1647

    * determined at 30cm tension

    % Soil SeparatePerc Rate (in/hr)GravelV. coarseCoarseMediumFineV. FineParticle Density (g/cc)Bulk Density (g/cc)Ksat Infiltartion Rate (in/hr)Total Porosity %Aeration Porosity %Capillary Porostiy %*OM %#

    Green 3 2000SandSilt & Clay%OM2 mm1 mm0.5 mm0.25 mm0.15 mm0.05 mm

    8/12/9980-2098.91.11.324.11.28.7274812.31.7

    8/12/9980-15-597.72.30.9320.71.47.425.147.712.82.9Green 3 2000

    7/22/9980-2099.50.51.1426.51.29.731.446.49.71.111/8/9980-202.631.620.439.218.920.3

    7/22/9980-15-597.72.30.9315.51.38.530.144.810.42.611/8/9980-15-52.631.671336.615.820.8

    Lyman Richey Test Samples

    Green 2 1999

    8/1/9880-15-596.83.20.926.90.62.315.452.120.16.3Green 2 1999

    7/23/9880-2098.51.51.520.12.316.757.718.53.27/23/9880-202.611.4811.643.420.722.71.5

    7/11/9880-15-596.83.21.2112.70.12.214.453.8224.3Green 1 1998

    7/11/9880-209911.4411.90.32.815.154.922.23.78/29/9780-202.631.579.140.217.822.41.37

    QC samples Mix to determine mill settings8/29/9780-15-52.621.613.238.717.321.40.87

    Green 1 1998Green 0 1997

    8/22/9780-15-597.62.40.8715.51.46.922.746.416.93.310/31/9680-15-52.621.5412.741.11922.1

    10/31/9680-202.611.4816.243.220.422.8

    8/4/9780-2098.81.11.3720.20.85.319.848.421.13.5

    8/24/9680-15-52.621.678.936.216.319.90.75

    7/29/9780-2099.90.91.0620.20.97.123.648.717.32.3

    7/29/9780-15-596.93.10.8715.51.36.323.14616.33.98/9/9680-202.621.6313.337.817.620.21.04

    QC Test samples

    Green 0 1996

    10/25/9680-2099.911.210.97.628.547.1131.9

    QC sample sent to Physical properties

    10/19/9680/2098.91.11.181.37.324.148.115.82.3

    QC sample sent for physical properties

    10/8/9680-15-597.62.40.811.3725.445.514.93.5

    QC sample

    9/28/9680-2098.71.30.741.49.326.244.814.32.7

    9/28/9680-15-597.12.90.681.57.7254415.33.6

    QC sample

    9/20/9680-2098.81.20.741.67.923.946.816.62.4

    9/20/9680-15-597.62.40.491.67.422.74417.94

    QC sample

    9/12/9680-2098.71.30.391.38.223.746.916.62

    9/12/9680-15-595.24.80.3416.920.341.818.46.8

    QC sample

    8/24/9680-15-597.42.20.41.57.826.643.9143.6

    8/9/9680-2098.90.80.31.3829.144.113.92.5

    2004

    2004 Hummel DataSand Size Class/Sand Particle Diameter % Retained

    % Soil SeparateGravelV. coarseCoarseMediumFineV. FineV. finePerc Rate (in/hr)

    plotSandSilt & Clay2 mm1 mm0.5 mm0.25 mm0.15 mm0.10 mm0.05 mm%OM

    10198118.428.145.813.91.50.30.7613.5

    20498.50.60.97.526.447.115.41.70.40.816.7

    30498.410.67.42646.915.81.90.40.815

    1997 Yr 8 80:20 Ave98.300.870.837.7726.8346.6015.031.700.370.7915.07

    10396.81.91.37.324.246.115.82.50.90.657.7

    20196.22.31.56.524.145.915.72.71.30.6710.6

    30397.61.60.86.624.546.216.62.61.10.517.9

    1997 Yr 8 80:15:5 Ave96.871.931.206.8024.2746.0716.032.601.100.618.73

    11198.60.80.65.420.748.320.82.80.60.769.4

    21497.81.11.15.420.646.821.330.70.5611.9

    31498.90.50.65.520.347.921.52.90.80.7311.8

    1998 Yr 7 80:20 Ave98.430.800.775.4320.5347.6721.202.900.700.6811.03

    11396.52.60.96.621.646.1182.71.50.515

    21196.921.16.221.346.818.72.51.40.645.4

    31397.12.20.76.421.147.517.82.81.50.635.2

    1998 Yr 7 80:15:5 Ave96.832.270.906.4021.3346.8018.172.671.470.595.20

    12199.30.60.12.117.656.519.92.60.60.6711.4

    22499.10.90217.855.920.12.70.60.716.8

    324990.90.1218.455.320.22.50.60.8614.3

    1999 Yr 6 80:20 Ave99.130.800.072.0317.9355.9020.072.600.600.7414.17

    12396.63.20.22.417.549.920.63.92.30.635.4

    22197.42.602.317.250.621.63.720.75.7

    32396.73.10.22.317.149.621.63.92.20.614.9

    1999 Yr 6 80:15:5 Ave96.902.970.132.3317.2750.0321.273.832.170.655.33

    13198.10.917.726.748.613.51.30.30.7514.2

    23498.30.90.87.225.949.5141.40.30.9319.7

    33498.40.70.97.82649.413.31.50.40.9620.4

    2000 Yr 5 80:20 Ave98.270.830.907.5726.2049.1713.601.400.330.8818.10

    23196.92.117.525.246.414.52.11.20.7710.9

    13397.11.81.1826.845.913.41.91.10.5413.6

    33397.61.31.18.426.64613.521.10.6110

    2000 Yr 5 80:15:5 Ave97.201.731.077.9726.2046.1013.802.001.130.6411.50

    Z test

    *** Very fine sand is defined as

  • Conclusions

    • The KSAT decrease over time maybe due to SOM accumulation above and in the original rootzone and/or the increased fine sand content originating from topdressing sand

    • Mat accumulation modifies pH positively if sands are calcareous and increases nutrient retention

  • Want to know more?• Gaussoin, R., R. Shearman, L. Wit, T. McClellan, and J.

    Lewis. 2007. Soil physical and chemical characteristics of aging golf greens. Golf Course Manage. 75(1):p. 161-165.

    • Gaussoin, R., R. Shearman, L. Wit, T. McClellan, and J. Lewis. 2006. Soil physical and chemical characteristics of aging golf greens. [Online]USGA Turfgrass Environ. Res. Online. 5(14):p. [1-11].

    • Gaussoin, R., and R. Shearman. 2003. Soil microbial characteristics of aging golf greens. [Online]USGA Turfgrass Environ. Res. Online. 2(3):p. [1-8].

  • Why is high SOM considered to be “bad”?

    • Loss of infiltration• Decreased aeration• Traps “toxic” gases• Are these concerns real or imagined?• Why the confusion?

  • 2.5 3.0 3.5 4.0 4.5 5.0

    Low High

    Adams: < 5%

    J. W. Murphy: < 4.5%

    McCoy: < 3.5%

    Hartwiger & O’Brien: < 3.5 – 4.5%

    Carrow: < 3%

    Private Lab A: 1.5 – 2.5% at a 0.25 to 1-in depth

    Lowe: < 3 - 4%

    Private Lab B: < 3% - unrealistic< 4% - difficult< 5% - realistic & achievable

    N.Z. Turf In.: < 8%

  • Organic Matter Sampling depends on…….

    1. thatch + mat layer 2. between 0.5” and 4.5” 3. between 0 and 35 cm 4. between 0 and 25 cm

  • Analysis Methods

    • Many exist, but the most relevant is “combustion” or “loss on ignition”

    • The sample represents both dead and living organic matter– Food for thought……

  • Seasonal Root Depth

    -180-160-140-120-100-80-60-40-20

    0

    spring fallrootgrowth

    root decline

  • There is no “magic” number

    • Be consistent in sampling– Time of year– Technique– Lab doing analysis

  • “the squeeze test”(courtesy of Dave Oatis-USGA Director NE-

  • How do you get rid of OM?

    • Decomposition (microbial)– Increase surface area and aeration– Inoculation (???)

    • Removal– Power raking, dethatching, core

    aerification• Dilution

    – Topdressing

  • Organic Matter Degradation Study

  • Treatments• Aerator (Granular)• Aerator (Liquid)• EXP072• EXP074• EXP076• Carbo-Plex• Bio-Blend• Carbo-Plex + Bio-Blend• Bio-Groundskeeper (Granular)• Bio-Groundskeeper (Liquid)• Thatch X• EXPO70M• EcoChem Lawn Thatch Reducer• Untreated Control

  • Locations

    • KY Bluegrass Tee Box– Native Soil

    • Bentgrass Green– California Green

    • KY Bluegrass Sports Turf– Sand based– 2.5” Mowing

  • Each Plot (including untreated) Core Aerifiedbefore Application of products

  • Data Collection

    • Infiltration• Penotrometer• Thatch • Organic Matter

    – Thatch, 0-3”, 3-6”

  • Analysis SummarySource Thatch

    (mm)Clegg

    (g)Infiltrat(in/hr)

    Thatch(OM %)

    0-3”(OM %)

    3-6”(OM %)

    Site ** * ** ** ** **Trtmnt NS NS NS NS NS NS

  • 0-3” OM %

    0

    1

    2

    3

    4

    5

    6

    7

    Sports Turf Green Fairway

  • Summary

    • No product increased degradation of OM

  • How effective is removal?

    • Surface disruptive, short and long term• Core aeration is the most widespread

    practice recommended for OM management

  • Tine Size and Surface Area Chart

    Tine Size (in.)

    Spacing(in.)

    Holes/ft2

    Surface Area

    of One Tine

    Percent Surface

    Area Affected

    1/4 1.252 100 0.049 3.4%

    1/4 2.52 25 0.049 0.9%

    1/2 1.252 100 0.196 13.6%

    1/2 2.52 25 0.196 3.4%5/8 2.52 25 3.07 5.3%

  • Regardless of what spacing or tine diameter, coreaerification, as well as manycultivation techniques,promotes root growth andultimately organic matterdeposition.

  • Influence of Rootzone Organic Matter on Putting Green Quality and Performance

    • Two studies– National survey– Field study

    • Funded by:– USGA -1 year– Nebraska Golf Course Superintendents

    Assoc. – 2 years– Golf Course Superintendents Assoc. of

    South Dakota – 2 years– Peaks & Prairies GCSA - 3 years

  • National Survey

    Determine cause and effect relationship among maintenance practices and their interactions relative to surface OM accumulation

  • Sampling Procedures Years 1, 2, & 3 At least 3 different greens per golf course

    sampled Soil samples taken from 3 different area per

    green Samples are evaluated for OM levels using LOI Management survey GPS location

  • Sampling Methods• Samples from at least 3 greens per

    course– (1) Problematic, (1) Non-problematic

    plus rebuilt or varied age/management

    • 3 samples from each green• Samples taken with

    ¾ inch soil probe

  • 2006/07/08 Samples

    • Sixteen states– Nebraska, South Dakota, Iowa, Wyoming, Colorado,

    Washington, Wisconsin, Illinois, New Jersey, Minnesota, New Mexico, Montana, Hawaii, California, Connecticut, Arkansas.

    • 117 golf courses sampled– More than 1600 samples

  • WY

    CO

    SD

    NE IL

    WI

    HI

    MT

    NM

    WA ID

    IANJ

    MN

    AR

    CA

    NY, CT

  • Problematic vs Non-problematic

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Good Average Bad

  • Superintendent predicted vs actual

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Actual Predicted

  • Range of predicted vs. actual

    OM %

    Pre

    dict

    ed O

    M %

    0

    5

    10

    15

    20

    25

    30

    35

    0 1 2 3 4 5 6 7 8 9

  • Green Age

    Age

    OM

    %

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 20 40 60 80 100 120

  • Is the age effect misleading?

    • Sampling issues:– Mat depth increases as green ages

    resulting in more OM in the same volume soil.

    – Because deposition is relatively uniform, % per unit depth within the true mat layer is relatively uniform

  • State Differences(highly correlated with age)

    State

    OM

    %

    0

    1

    2

    3

    4

    5

    6

    7

    NE WA SD WY CO WI IL NJ IA MN MT NM CA CT AR

  • CultivarO

    M %

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    Unknown Penncross Providence Dominant Pennlinks L 93 A or G Series

  • CultivarO

    M %

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    Unknown Penncross Providence Dominant Pennlinks L 93 A or G Series

  • Onsite NTEP Cultivar Evaluation

    1 L-932 Putter3 Cato4 Crenshaw5 LCB-1036 Penncross7 Backspin8 Trueline9 Providence

    10 SR 102011 SR 1119 12 Viper13 Century14 Imperial15 Penn A-116 Penn A-417 Penn G-618 Penn G-1

  • Onsite NTEP Bentgrass Evaluation

    Penncross Penn A-4 Crenshaw

    Chart1

    6

    15

    7

    13

    2

    14

    11

    10

    17

    16

    5

    12

    9

    1

    8

    18

    3

    4

    Cultivar

    OM %

    2.191

    2.2423333333

    2.291

    2.3166666667

    2.3186666667

    2.351

    2.4023333333

    2.419

    2.421

    2.4246666667

    2.4266666667

    2.4313333333

    2.451

    2.469

    2.4813333333

    2.49

    2.4976666667

    2.5513333333

    Sheet1

    0.301

    NS1NS2WANS1NS2WAAverage

    12.527A2.343A2.537A12.5272.3432.5372.469

    22.333A2.240A2.383A22.3332.2402.3832.319

    32.817A2.383A2.293B32.8172.3832.2932.498

    42.810A2.307B2.537A42.8102.3072.5372.551

    52.600A2.390A2.290A52.6002.3902.2902.427

    62.233A2.107A2.233A62.2332.1072.2332.191

    0.45972.373A2.187A2.313A72.3732.1872.3132.291

    82.397A2.410A2.637A82.3972.4102.6372.481

    92.423A2.297A2.633A92.4232.2972.6332.451

    102.540A2.230A2.487A102.5402.2302.4872.419

    112.473A2.227A2.507A112.4732.2272.5072.402

    122.420A2.407A2.467A122.4202.4072.4672.431

    132.133A2.290A2.527A132.1332.2902.5272.317

    142.337A2.313A2.403A142.3372.3132.4032.351

    152.080A2.207A2.440A152.0802.2072.4402.242

    162.237A2.560A2.477A162.2372.5602.4772.425

    172.473A2.300A2.490A172.4732.3002.4902.421

    182.307A2.573A2.590A182.3072.5732.5902.490

    62.191

    152.242

    72.291

    132.317

    22.319

    142.351

    112.402

    102.419

    172.421

    162.425

    52.427

    122.431

    92.451

    12.469

    82.481

    182.490

    32.498

    42.551

    Sheet1

    Cultivar

    OM %

    Sheet2

    Sheet3

  • Onsite NTEP Bentgrass Evaluation

    Penncross Penn A-4 Crenshaw

    No differences in “total” SOM but might be density differences

    Chart1

    6

    15

    7

    13

    2

    14

    11

    10

    17

    16

    5

    12

    9

    1

    8

    18

    3

    4

    Cultivar

    OM %

    2.191

    2.2423333333

    2.291

    2.3166666667

    2.3186666667

    2.351

    2.4023333333

    2.419

    2.421

    2.4246666667

    2.4266666667

    2.4313333333

    2.451

    2.469

    2.4813333333

    2.49

    2.4976666667

    2.5513333333

    Sheet1

    0.301

    NS1NS2WANS1NS2WAAverage

    12.527A2.343A2.537A12.5272.3432.5372.469

    22.333A2.240A2.383A22.3332.2402.3832.319

    32.817A2.383A2.293B32.8172.3832.2932.498

    42.810A2.307B2.537A42.8102.3072.5372.551

    52.600A2.390A2.290A52.6002.3902.2902.427

    62.233A2.107A2.233A62.2332.1072.2332.191

    0.45972.373A2.187A2.313A72.3732.1872.3132.291

    82.397A2.410A2.637A82.3972.4102.6372.481

    92.423A2.297A2.633A92.4232.2972.6332.451

    102.540A2.230A2.487A102.5402.2302.4872.419

    112.473A2.227A2.507A112.4732.2272.5072.402

    122.420A2.407A2.467A122.4202.4072.4672.431

    132.133A2.290A2.527A132.1332.2902.5272.317

    142.337A2.313A2.403A142.3372.3132.4032.351

    152.080A2.207A2.440A152.0802.2072.4402.242

    162.237A2.560A2.477A162.2372.5602.4772.425

    172.473A2.300A2.490A172.4732.3002.4902.421

    182.307A2.573A2.590A182.3072.5732.5902.490

    62.191

    152.242

    72.291

    132.317

    22.319

    142.351

    112.402

    102.419

    172.421

    162.425

    52.427

    122.431

    92.451

    12.469

    82.481

    182.490

    32.498

    42.551

    Sheet1

    Cultivar

    OM %

    Sheet2

    Sheet3

  • Cultivation Frequency (& type)O

    M %

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Monthly 3-4 per year Spring and fall Spring only Fall only Every other year

  • Cultivation Frequency (& type)O

    M %

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Monthly 3-4 per year Spring and fall Spring only Fall only Every other year

  • Topdressing Frequency

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    1-2 Weeks Monthly Every other month Twice per year

    OM

    %

  • Topdressing

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    9.0

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    OM

    %

    Topdressing rate (tons/1000 ft2)

  • Survey Summary

    • None of the variables collected, by themselves, or in combination with others, predicted OM

    • Courses using >20 cubic ft/M*of topdressing with or without “venting” had lower OM

    • Of the known cultivars, no differences in OM were evident

    *1 ft3 = 100 lbs of dry sand; yd3 = 2700 lbs

  • TopdressingOld Tom Morris (1821–1908) is

    thought to have discovered the benefits of topdressing accidentally when he spilled a wheelbarrow of sand on a putting green and noted how the turf thrived shortly afterward (Hurdzan, 2004).

    J.B. Beard in his classic textbook“Turfgrass Science & Culture, 1973writes:“The most important managementpractice for OM managementis topdressing”

  • “the solution to pollutionis dilution”

  • How do you get rid of OM?

    • Decomposition (microbial)– Increase surface area and aeration– Inoculation (???)

    • Removal– Power raking, dethatching, core aerification

    • Dilution– Topdressing

  • Acknowledgements• USGA • Environmental Institute

    for Golf

    • Nebraska GCSA

    • GCSA of South Dakota• Peaks & Prairies GCSA

    • Jacobsen, Toro, JRM & PlanetAir

    • Nebraska Turfgrass Association

    Organic Matter ManagementSlide Number 2ASA Monograph (3RD Edition)Slide Number 4Soldat’s Hierarchy of Golf Course Soil ProblemsSlide Number 6Slide Number 7Slide Number 8and yet one more definition…………..Physical And Chemical Characteristics Of Aging Golf Greens TreatmentsProject Schedule (Phase I)Project Schedule (Phase II)Materials and MethodsSlide Number 15Slide Number 16Slide Number 17Slide Number 18Formation of MatOM accumulates as sand greens ageSlide Number 21Materials and MethodsSlide Number 23Change in Rootzone Particle Size DistributionSlide Number 25ConclusionsWant to know more?Why is high SOM considered to be “bad”?Slide Number 29Organic Matter Sampling depends on…….Analysis MethodsSeasonal Root Depth�There is no “magic” numberSlide Number 34Slide Number 35How do you get rid of OM? Organic Matter Degradation StudyTreatmentsLocationsEach Plot (including untreated) Core Aerified before Application of productsData CollectionAnalysis Summary0-3” OM %�SummaryHow effective is removal?Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Influence of Rootzone Organic Matter on Putting Green Quality and PerformanceNational Survey�Sampling Procedures Sampling Methods2006/07/08 SamplesSlide Number 56Problematic vs Non-problematicSuperintendent predicted vs actualRange of predicted vs. actualGreen AgeIs the age effect misleading?State Differences�(highly correlated with age)CultivarCultivarOnsite NTEP Cultivar Evaluation Slide Number 66Onsite NTEP Bentgrass EvaluationOnsite NTEP Bentgrass EvaluationCultivation Frequency (& type)Cultivation Frequency (& type)Topdressing FrequencyTopdressingSurvey SummaryTopdressing“the solution to pollution� is dilution”�How do you get rid of OM?Acknowledgements